CINXE.COM

Search results for: ZnO/TiO2 nanocomposites

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ZnO/TiO2 nanocomposites</title> <meta name="description" content="Search results for: ZnO/TiO2 nanocomposites"> <meta name="keywords" content="ZnO/TiO2 nanocomposites"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ZnO/TiO2 nanocomposites" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ZnO/TiO2 nanocomposites"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 682</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ZnO/TiO2 nanocomposites</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> The Effect of Additives on Characterization and Photocatalytic Activity of Ag-TiO₂ Nanocomposite Prepared via Sol-Gel Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Raeis%20Farshid">S. Raeis Farshid</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Raeis%20Farshid"> B. Raeis Farshid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ag-TiO₂ nanocomposites were prepared by the sol-gel method with and without additives such as carboxy methyl cellulose (CMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), and hydroxyl propyl cellulose (HPC). The characteristics of the prepared Ag-TiO₂ nanocomposites were identified by Fourier Transform Infra-Red spectroscopy (FTIR), X-Ray Diffraction (XRD), and scanning electron microscopy (SEM) methods. The additives have a significant effect on the particle size distribution and photocatalytic activity of Ag-TiO₂ nanocomposites. SEM images have shown that the particle size distribution of Ag-TiO₂ nanocomposite in the presence of HPC was the best in comparison to the other samples. The photocatalytic activity of the synthesized nanocomposites was investigated for decolorization of methyl orange (MO) in water under UV-irradiation in a batch reactor, and the results showed that the photocatalytic activity of the nanocomposites had been increased by CMC, PEG, PVP, and HPC, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title="sol-gel method">sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag-TiO%E2%82%82" title=" Ag-TiO₂"> Ag-TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=decolorization" title=" decolorization"> decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/147280/the-effect-of-additives-on-characterization-and-photocatalytic-activity-of-ag-tio2-nanocomposite-prepared-via-sol-gel-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Is Ag@TiO2 Core-Shell Nanoparticles Superior to Ag Surface Doped TiO2 Nanostructures?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohong%20Yang">Xiaohong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Fu"> Haitao Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xizhong%20An"> Xizhong An</a>, <a href="https://publications.waset.org/abstracts/search?q=Aibing%20Yu"> Aibing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver@titanium dioxide (Ag@TiO2) core-shell nanostructures and Ag surface doped TiO2 particles (TiO2@Ag) have been designed and synthesized by sol-gel and hydrothermal methods under mild conditions. These two types of Ag/TiO2 nanocomposites were characterized in terms of their properties by various techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-Vis). Specifically, the photocatalystic performance and antibacterial behavior of such nanocomposites have been investigated and compared. It was found that The Ag@TiO2 core-shell nanostructures exhibit superior photocatalytic property to the Ag surface doped TiO2 particles under the reported conditions. While with UV pre-irradiation, the Ag@TiO2 core-shell composites exhibit better bactericidal performance. This is probably because the Ag cores tend to facilitate charge separation for TiO2, producing greater hydroxyl radicals on the surface of the TiO2 particles. These findings would be useful for the design and synthesis of Ag/TiO2 nanocomposites with desirable photocatalystic and antimicrobial activity for environmental applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%40TiO2%20core-shell%20nanoparticles" title="Ag@TiO2 core-shell nanoparticles">Ag@TiO2 core-shell nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag%20surface%20doped%20TiO2%20nanoparticles" title=" Ag surface doped TiO2 nanoparticles"> Ag surface doped TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/21864/is-ag-at-tio2-core-shell-nanoparticles-superior-to-ag-surface-doped-tio2-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> Elaboration and Characterization of PVDF/TiO2 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Benabid">F. Z. Benabid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kridi"> S. Kridi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zouai"> F. Zouai</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benachour"> D. Benachour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of present work is to characterize the PVDF/TiO2 blends as nanocomposites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the crystallinity of the PVDF/neat TiO2 nanocomposite containing 1 wt% loading of filler, due to the nucleation effect of TiO2 nanoparticles. A good dispersion was obtained in PVDF/treated TiO2 nanocomposites. The rheological study showed an increase in the fluidity in all developed nanocomposite compositions, involved by the orientation of TiO2 nanoparticles in the flow direction. The dielectric study revealed an increase in electrical conductivity in PVDF/neat TiO2 nanocomposites. However, in PVDF/ treated TiO2 nanocomposites, the electrical conductivity was decreased by the addition of 0.5 and 2 wt% loading of filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=comixing" title=" comixing"> comixing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20treatment" title=" mechanical treatment"> mechanical treatment</a> </p> <a href="https://publications.waset.org/abstracts/35087/elaboration-and-characterization-of-pvdftio2-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Bensaha">Rabah Bensaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Badreeddine%20Toubal"> Badreeddine Toubal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title="sol-gel">sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20thin%20films" title=" TiO2 thin films"> TiO2 thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=CoTiO3-TiO2%20nanocomposites%20films" title=" CoTiO3-TiO2 nanocomposites films"> CoTiO3-TiO2 nanocomposites films</a>, <a href="https://publications.waset.org/abstracts/search?q=Electrical%20conductivity" title=" Electrical conductivity"> Electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/36032/effects-of-copper-and-cobalt-co-doping-on-structural-optical-and-electrical-properties-of-tio2-thin-films-prepared-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Synthesis of Mesoporous In₂O₃-TiO₂ Nanocomposites as Efficient Photocatalyst for Treatment Industrial Wastewater under Visible Light and UV Illumination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20%20Abdelfattah">Ibrahim Abdelfattah</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20%20Ismail"> Adel Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20%20Helal"> Ahmed Helal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20%20Faisal"> Mohamed Faisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced oxidation technologies are an environment friendly approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous In₂O₃-TiO₂ nanocomposites at different In₂O₃ contents (0-3 wt%) have been synthesized through a facile sol-gel method to evaluate their photocatalytic performance for the degradation of the imazapyr herbicide and phenol under visible light and UV illumination compared with commercially available either Degussa P-25 or UV-100 Hombikat. The prepared mesoporous In₂O₃-TiO₂ nanocomposites were characterized by TEM, STEM, XRD, Raman FT-IR, Raman spectra and diffuse reflectance UV-visible. The bandgap energy of the prepared photocatalysts was derived from the diffuse reflectance spectra. XRD Raman's spectra confirmed that highly crystalline anatase TiO₂ phase was formed. TEM images show TiO₂ particles are quite uniform with 10±2 nm sizes with mesoporous structure. The mesoporous TiO₂ exhibits large pore volumes of 0.267 cm³g⁻¹ and high surface areas of 178 m²g⁻¹, but they become reduced to 0.211 cm³g⁻¹ and 112 m²g⁻¹, respectively upon In₂O₃ incorporation, with tunable mesopore diameter in the range of 5 - 7 nm. The 0.5% In₂O₃-TiO₂ nanocomposite is considered to be the optimum photocatalyst which is able to degrade 90% of imazapyr herbicide and phenol along 180 min and 60 min respectively. The proposed mechanism of this system and the role of In₂O₃ are explained by details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%E2%82%82O%E2%82%83-TiO%E2%82%82%20nanocomposites" title="In₂O₃-TiO₂ nanocomposites">In₂O₃-TiO₂ nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20illumination" title=" visible light illumination"> visible light illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20illumination" title=" UV illumination"> UV illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=herbicide%20and%20phenol%20wastewater" title=" herbicide and phenol wastewater"> herbicide and phenol wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/61850/synthesis-of-mesoporous-in2o3-tio2-nanocomposites-as-efficient-photocatalyst-for-treatment-industrial-wastewater-under-visible-light-and-uv-illumination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> Synthesis of TiO₂/Graphene Nanocomposites with Excellent Visible-Light Photocatalytic Activity Based on Chemical Exfoliation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nhan%20N.%20T.%20Ton">Nhan N. T. Ton</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20T.%20N.%20Dao"> Anh T. N. Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Kouichirou%20Katou"> Kouichirou Katou</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Taniike"> Toshiaki Taniike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facile electron-hole recombination and the broad band gap are two major drawbacks of titanium dioxide (TiO₂) when applied in visible-light photocatalysis. Hybridization of TiO₂ with graphene is a promising strategy to lessen these pitfalls. Recently, there have been many reports on the synthesis of TiO₂/graphene nanocomposites, in most of which graphene oxide (GO) was used as a starting material. However, the reduction of GO introduced a large number of defects on the graphene framework. In addition, the sensitivity of titanium alkoxide to water (GO usually contains) significantly obstructs the uniform and controlled growth of TiO₂ on graphene. Here, we demonstrate a novel technique to synthesize TiO₂/graphene nanocomposites without the use of GO. Graphene dispersion was obtained through the chemical exfoliation of graphite in titanium tetra-n-butoxide with the aid of ultrasonication. The dispersion was directly used for the sol-gel reaction in the presence of different catalysts. A TiO₂/reduced graphene oxide (TiO₂/rGO) nanocomposite, which was prepared by a solvothermal method from GO, and the commercial TiO₂-P25 were used as references. It was found that titanium alkoxide afforded the graphene dispersion of a high quality in terms of a trace amount of defects and a few layers of dispersed graphene. Moreover, the sol-gel reaction from this dispersion led to TiO₂/graphene nanocomposites featured with promising characteristics for visible-light photocatalysts including: (I) the formation of a TiO₂ nano layer (thickness ranging from 1 nm to 5 nm) that uniformly and thinly covered graphene sheets, (II) a trace amount of defects on the graphene framework (low ID/IG ratio: 0.21), (III) a significant extension of the absorption edge into the visible light region (a remarkable extension of the absorption edge to 578 nm beside the usual edge at 360 nm), and (IV) a dramatic suppression of electron-hole recombination (the lowest photoluminescence intensity compared to reference samples). These advantages were successfully demonstrated in the photocatalytic decomposition of methylene blue under visible light irradiation. The TiO₂/graphene nanocomposites exhibited 15 and 5 times higher activity than TiO₂-P25 and the TiO₂/rGO nanocomposite, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20exfoliation" title="chemical exfoliation">chemical exfoliation</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82%2Fgraphene" title=" TiO₂/graphene"> TiO₂/graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20reaction" title=" sol-gel reaction"> sol-gel reaction</a> </p> <a href="https://publications.waset.org/abstracts/90752/synthesis-of-tio2graphene-nanocomposites-with-excellent-visible-light-photocatalytic-activity-based-on-chemical-exfoliation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Active Bio-Packaging Fabricated from Coated Bagasse Papers with Polystyrene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesham%20%20Moustafa">Hesham Moustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Youssef"> Ahmed M. Youssef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for green packagingin the food field has been gained increasing attention in recent decades because of its degradability and safely. Thus, this study revealed that the by-product bagasse papers (BPs) derived from sugarcane waste can be decorated with a thin layer of polystyrene (PS) nanocomposites using the spreading approach.Three variable concentrations of TiO2 nanoparticles (i.e. 0.5, 1.0, 1.5 wt.%) were used to fabricate PS nanocomposites. The morphology of coated BP-PS biofilms was examined by X-ray diffraction, Fourier transferred Infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Moreover, other measurements such as mechanical, thermal stability, flammability, wettability by the contact angle, water vapor, and gas barrier properties were carried out on the fabricated BP-PS biofilms. Most outcomes showed that the major properties were enhanced when the PS nanocomposites were implemented. The use of 1.5 wt.% TiO2 in PS nanocomposite for coated BP-PS biofilm increased the tensile stress by ~ 217 % compared to uncoated BP film. Furthermore, the rate of burning for BP-PS-1.5% film was reduced to ~ 33 mm/min because of the crystallinity of PS and the barrier effect provided by TiO₂ NPs. These coated sheets provide a promising candidate for use in advanced packaging applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagasse%20paper" title="bagasse paper">bagasse paper</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20nanocomposites" title=" polystyrene nanocomposites"> polystyrene nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title=" TiO2 nanoparticles"> TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20packaging" title=" active packaging"> active packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=flammability" title=" flammability"> flammability</a> </p> <a href="https://publications.waset.org/abstracts/152558/active-bio-packaging-fabricated-from-coated-bagasse-papers-with-polystyrene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> A Novel CeO2-WOx-TiO2 Catalyst for Oxidative Desulfurization of Model Fuel Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Corazon%20Virtudazo-Ligaray">Corazon Virtudazo-Ligaray</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Daniel%20G.%20de%20Luna"> Mark Daniel G. de Luna</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Wei%20Wan"> Meng-Wei Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chun%20Lu"> Ming-Chun Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of ternary compound catalyst with nanocomposites of ceria, tungsten trioxide and titania (CeO2-WOx-TiO2) with different WOx mole fraction (10, 20, 30, 40) have been synthesized by sol-gel method. These nanocomposite catalysts were used for oxidative extractive desulfurization of model fuel oil, which were composed of dibenzothiophene (DBT) dissolved in toluene. The 30% hydrogen peroxide, H2O2 was used as oxidant and acetonitrile as extractant. These catalysts were characterized by SEM-EDS to determine the morphology. Catalytic oxidation results show that the catalysts have high selectivity in refractory fuel oil with organo sulfur contents. The oxidative removal of DBT increases as the HPW content increases. The nanocomposites CeO2-WOx-TiO2 also shows high selectivity for DBT oxidation in the DBT–toluene acetonitrile system. The catalytic oxidative desulfurization ratio of model fuel reached to 100% with nanocomposites CeO2-WOx-TiO2 (35-30-35) mol percent catalyst nanocomposition under 333 K in 30 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceria" title="ceria">ceria</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20desulfurization" title=" oxidative desulfurization"> oxidative desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=titania" title=" titania"> titania</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphotungstic%20acid" title=" phosphotungstic acid"> phosphotungstic acid</a> </p> <a href="https://publications.waset.org/abstracts/37163/a-novel-ceo2-wox-tio2-catalyst-for-oxidative-desulfurization-of-model-fuel-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasar%20Saleem">Qasar Saleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=oligomers" title=" oligomers"> oligomers</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic" title=" polylactic"> polylactic</a> </p> <a href="https://publications.waset.org/abstracts/42713/synthesis-and-characterization-of-lactic-acid-grafted-tio2-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Multifunctional Plasmonic Ag-TiO2 Nano-biocompoistes: Surface Enhanced Raman Scattering and Anti-microbial Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jai%20Prakash">Jai Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Promod%20Kumar"> Promod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chantel%20Swart"> Chantel Swart</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Neethling"> J. H. Neethling</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Janse%20van%20Vuuren"> A. Janse van Vuuren</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Swart"> H. C. Swart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ag nanoparticles (NPs) have been used as functional nanomaterials due to their optical and antibacterial properties. Similarly, TiO2 photocatalysts have also been used as suitable nanomaterials for killing cancer cells, viruses and bacteria. Here, we report on multifunctional plasmonic Ag-TiO2 nano-biocomposite synthesized by the sol-gel technique and their optical, surface enhanced Raman scattering (SERS) and antibacterial activities. The as-prepared composites of Ag–TiO2 with different silver content and TiO2 nanopowder were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersed X-ray analysis (EDX), UV-vis and Raman spectroscopy. The Ag NPs were found to be uniformly distributed and strongly attached to the TiO2 matrix. The novel optical response of the Ag-TiO2 nanocomposites is due to the strong electric field from the surface plasmon excitation of the Ag NPs. The Raman spectrum of Ag-TiO2 nanocomposite was found to be enhanced as compared to TiO2. The enhancement of the low frequency band is evident. This indicates the SERS effect of the TiO2 NPs in close vicinity of Ag NPs. In addition, nanocomposites showed enhancement in the SERS signals of methyl orange (MO) dye molecules with increasing Ag content. The localized electromagnetic field from the surface plasmon excitation of the Ag NPs was responsible for the SERS signals of the TiO2 NPs and MO molecules. The antimicrobial effect of the Ag–TiO2 nanocomposites with different silver content and TiO2 nanopowder were carried out against the bacterium Staphylococcus aureus. The Ag–TiO2 composites showed antibacterial activity towards S. aureus with increasing Ag content as compared to the TiO2 nanopowder. These results foresee promising applications of the functional plasmonic metal−semiconductor based nanobiocomposites for both chemical and biological samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-Semiconductor" title="metal-Semiconductor">metal-Semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-Biocomposites" title=" nano-Biocomposites"> nano-Biocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title=" anti-microbial activity"> anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20enhanced%20Raman%20scattering" title=" surface enhanced Raman scattering"> surface enhanced Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/37749/multifunctional-plasmonic-ag-tio2-nano-biocompoistes-surface-enhanced-raman-scattering-and-anti-microbial-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Green Synthesis of Zinc Oxide Nano Particles Using Tomato (Lycopersicon esculentum) Extract and Its Application for Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20Sutradhar">Prasanta Sutradhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitali%20Saha"> Mitali Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With an increasing awareness of green and clean energy, zinc oxide based solar cells were found to be suitable candidates for cost-effective and environmentally friendly energy conversion devices. In this work, we have reported the green synthesis of zinc oxide nanoparticles (ZnO) by thermal method and under microwave irradiation using the aqueous extract of tomatoes as non-toxic and ecofriendly reducing material. The synthesized ZnO nanoparticles were characterised by UV-Visible spectroscopy (UV-Vis), infra-red spectroscopy (IR), particle size analyser (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X- ray diffraction study (XRD). A series of ZnO nanocomposites with titanium dioxide nanoparticles (TiO2) and graphene oxide (GO) were prepared for photovoltaic application. Structural and morphological studies of these nanocomposites were carried out using UV-vis, SEM, XRD, and AFM. The current-voltage measurements of the nanocomposites demonstrated enhanced power conversion efficiency of 6.18% in case of ZnO/GO/TiO2 nanocomposite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=I-V%20characteristics" title=" I-V characteristics"> I-V characteristics</a> </p> <a href="https://publications.waset.org/abstracts/16661/green-synthesis-of-zinc-oxide-nano-particles-using-tomato-lycopersicon-esculentum-extract-and-its-application-for-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Tensile strength and Elastic Modulus of Nanocomposites Based on Polypropylene/Linear Low Density Polyethylene/Titanium Dioxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faramarz%20Ashenai%20Ghasemi">Faramarz Ashenai Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Ghasemi"> Ismail Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Daneshpayeh"> Sajad Daneshpayeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, tensile strength and elastic modulus of nanocomposites based on polypropylene/ linear low density polyethylene/ nano titanium dioxide (PP/LLDPE/TiO2) were studied. The samples were produced using a co-rotating twin screw extruder including 0, 2, 4 Wt .% of nano particles, and 20, 40, 60 Wt.% of LLDPE. The styrene-ethylene-butylene-styrene (SEBS) was used as comptabiliser. Tensile strength and elastic modulus were evaluated. The results showed that modulus was increased by 7% with addition of nano particles in comparison to PP/LLDPE. In addition, tensile strength was decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PP%2FLLDPE%2FTiO2" title="PP/LLDPE/TiO2">PP/LLDPE/TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/35267/tensile-strength-and-elastic-modulus-of-nanocomposites-based-on-polypropylenelinear-low-density-polyethylenetitanium-dioxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> Influence of Annealing Temperature on Optical, Anticandidal, Photocatalytic and Dielectric Properties of ZnO/TiO2 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wasi%20Khan">Wasi Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Suboohi%20Shervani"> Suboohi Shervani</a>, <a href="https://publications.waset.org/abstracts/search?q=Swaleha%20Naseem"> Swaleha Naseem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Shoeb"> Mohd. Shoeb</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Khan"> J. A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Singh"> B. R. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Naqvi"> A. H. Naqvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have successfully synthesized ZnO/TiO2 nanocomposite using a two-step solochemical synthesis method. The influence of annealing temperature on microstructural, optical, anticandidal, photocatalytic activities and dielectric properties were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show the formation of nanocomposite and uniform surface morphology of all samples. The UV-Vis spectra indicate decrease in band gap energy with increase in annealing temperature. The anticandidal activity of ZnO/TiO2 nanocomposite was evaluated against MDR C. albicans 077. The in-vitro killing assay revealed that the ZnO/TiO2 nanocomposite efficiently inhibit the growth of the C. albicans 077. The nanocomposite also exhibited the photocatalytic activity for the degradation of methyl orange as a function of time at 465 nm wavelength. The electrical behaviour of composite has been studied over a wide range of frequencies at room temperature using complex impedance spectroscopy. The dielectric constants, dielectric loss and ac conductivity (σac) were studied as the function of frequency, which have been explained by ‘Maxwell Wagner Model’. The data reveals that the dielectric constant and loss (tanδ) exhibit the normal dielectric behavior and decreases with the increase in frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites" title="ZnO/TiO2 nanocomposites">ZnO/TiO2 nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20activity" title=" photocatalytic activity"> photocatalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a> </p> <a href="https://publications.waset.org/abstracts/39657/influence-of-annealing-temperature-on-optical-anticandidal-photocatalytic-and-dielectric-properties-of-znotio2-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Improved Visible Light Activities for Degrading Pollutants on ZnO-TiO2 Nanocomposites Decorated with C and Fe Nanoparticles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuvraj%20S.%20Malghe">Yuvraj S. Malghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20B.%20Lavand"> Atul B. Lavand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, semiconductor photocatalytic degradation processes have attracted a lot of attention and are used widely for the destruction of organic pollutants present in waste water. Among various semiconductors, titanium dioxide (TiO2) is the most popular photocatalyst due to its excellent chemical stability, non-toxicity, relatively low cost and high photo-oxidation power. It has been known that zinc oxide (ZnO) with band gap energy 3.2 eV is a suitable alternative to TiO2 due to its high quantum efficiency, however it corrodes in acidic medium. Unfortunately TiO2 and ZnO both are active only in UV light due to their wide band gaps. Sunlight consist about 5-7% UV light, 46% visible light and 47% infrared radiation. In order to utilize major portion of sunlight (visible spectrum), it is necessary to modify the band gap of TiO2 as well as ZnO. This can be done by several ways such as semiconductor coupling, doping the material with metals/non metals. Doping of TiO2 using transition metals like Fe, Co and non-metals such as N, C or S extends its absorption wavelengths from UV to visible region. In the present work, we have synthesized ZnO-TiO2 nanocomposite using reverse microemulsion method. Visible light photocatalytic activity of synthesized nanocomposite was investigated for degradation of aqueous solution of malachite green (MG). To increase the photocatalytic activity of ZnO-TiO2 nanocomposite, it is decorated with C and Fe. Pure, carbon (C) doped and carbon, iron(C, Fe) co-doped nanosized ZnO-TiO2 nanocomposites were synthesized using reverse microemulsion method. These composites were characterized using, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM), UV visible spectrophotometery and X-ray photoelectron spectroscopy (XPS). Visible light photocatalytic activities of synthesized nanocomposites were investigated for degradation of aqueous malachite green (MG) solution. C, Fe co-doped ZnO-TiO2 nanocomposite exhibit better photocatalytic activity and showed threefold increase in photocatalytic activity. Effect of amount of catalyst, pH and concentration of MG solution on the photodegradation rate is studied. Stability and reusability of photocatalyst is also studied. C, Fe decorated ZnO-TiO2 nanocomposite shows threefold increase in photocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title="malachite green">malachite green</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/78847/improved-visible-light-activities-for-degrading-pollutants-on-zno-tio2-nanocomposites-decorated-with-c-and-fe-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emi%20Govor%C4%8Din%20Bajsi%C4%87a">Emi Govorčin Bajsića</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Oceli%C4%87%20Bulatovi%C4%87"> Vesna Ocelić Bulatović</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Slouf"> Miroslav Slouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20%C5%A0itum"> Ana Šitum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the c for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title="polycaprolactone">polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/7940/characterization-of-biodegradable-polycaprolactone-containing-titanium-dioxide-micro-and-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> New Approach to Encapsulated Clay/Wax Nanocomposites Inside Polystyrene Particles via Minemulstion Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagi%20Greesh">Nagi Greesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study highlights a new method to obtain multiphase composites particles containing hydrophobic (wax) and inorganic (clay) compounds. Multiphase polystyrene-clay-wax nanocomposites were successfully synthesized. Styrene monomer were polymerized in the presence of different wax-clay nanocomposites concentrations in miniemulsion. Wax-clay nanocomposites were firstly obtained through ultrasonic mixing at a temperature above the melting point of the wax at different clay loadings. The obtained wax-clay nanocomposites were then used as filler in the preparation of polystyrene-wax-clay nanocomposites via miniemulsion polymerization. The particles morphology of PS/wax-clay nanocomposites latexes was mainly determined by Transmission Electron Microscopy ( TEM) , core/shell morphology was clearly observed, with the encapsulation of most wax-clay nanocomposites inside the PS particles. On the other hand, the morphology of the PS/wax-clay nanocomposites (after film formation) ranged from exfoliated to intercalated structures, depending on the percentage of wax-clay nanocomposites loading. This strategy will allow the preparation materials with tailored properties for specific applications such as paint coatings and adhesives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer-wax" title="polymer-wax">polymer-wax</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin%20wax" title=" paraffin wax"> paraffin wax</a>, <a href="https://publications.waset.org/abstracts/search?q=miniemulsion" title=" miniemulsion"> miniemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=core%2Fshell" title=" core/shell"> core/shell</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/169298/new-approach-to-encapsulated-claywax-nanocomposites-inside-polystyrene-particles-via-minemulstion-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Ahmmad">Bashir Ahmmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Kensaku%20Kanomata">Kensaku Kanomata</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumihiko%20Hirose"> Fumihiko Hirose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water/alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO2, repectively. The order of H2 gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO2, various parameters of experimental conditions were changed. Also, a comparison between Pt/TiO2, WNTs/TiO2 and GS/TiO2 was made for the amount of H2 gas production. Finally, the recyclability of SWNTs/TiO2 and GS/TiO2 were tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20materials" title=" carbon materials"> carbon materials</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol%20reforming" title=" alcohol reforming"> alcohol reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20oxide" title=" titanium oxide"> titanium oxide</a> </p> <a href="https://publications.waset.org/abstracts/3272/enhanced-photocatalytic-hydrogen-production-on-tio2-by-using-carbon-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">665</span> Enhanced Visible-Light Photocatalytic Activity of TiO2 Doped in Degradation of Acid Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Benalioua">B. Benalioua</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Benyamina"> I. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mansour"> M. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentouami"> A. Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Boury"> B. Boury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by XRD, BET and UV- vis DRS. The photocatalytic efficiency of the Zn -Fe TiO2 treated at 500°C was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Zn-Fe-TiO2 (500°C) revealed the presence of the anatase phase and the absence of the Rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV-visible diffuse reflection material showed that the Fe-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Zn -Fe- TiO2 under visible light. Indeed, the efficiency of photocatalytic Fe-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POA" title="POA">POA</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title=" heterogeneous photocatalysis"> heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping "> doping </a> </p> <a href="https://publications.waset.org/abstracts/27754/enhanced-visible-light-photocatalytic-activity-of-tio2-doped-in-degradation-of-acid-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> Investigation of Structural and Optical Properties of Coal Fly Ash Thin Film Doped with T𝒊O₂ Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rawan%20Aljabbari">Rawan Aljabbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Thamer%20Alomayri"> Thamer Alomayri</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20G.%20Al-Maqate"> Faisal G. Al-Maqate</a>, <a href="https://publications.waset.org/abstracts/search?q=Abeer%20Al%20Suwat"> Abeer Al Suwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For environmentally friendly innovative technologies and a sustainable future, fly ash/TiO₂ thin film nanocomposites are essential. Fly ash will be doped with titanium dioxide in this work in order to better understand its optical characteristics and employ it in semiconductor electrical devices. This study focused on the structure, morphology, and optical properties of fly ash/TiO₂ thin films. The spin-coating technique was used to create thin coatings of fly ash/TiO₂. For the first time, the doping of TiO₂ in the fly ash host at ratios of 1, 2, and 3 wt% was investigated with the thickness of all samples fixed. When compared to undoped thin films, the surface morphology of the doped thin films was improved. The weakly crystalline structure of the doped fly ash films was verified by XRD. The optical bandgap energy of these films was successfully reduced by the TiO₂ doping, going from 3.9 to 3.5 eV. With increasing dopant concentration, the value of Urbach energy is increasing. The optical band gap is clearly in opposition to the disorder. While it considerably improved the optical conductivity to a value of 4.1 x 10^9 s^(-1), it also raised the refractive index and extinction coefficient. Depending on the TiO₂ doping ratio, the transmittance decreased, and the reflection increased. As the TiO₂ concentration rises, the absorption of photon energy rises, and the absorption coefficient of photon energy is reduced. results in their possible use as solar energy and semiconductor materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/178291/investigation-of-structural-and-optical-properties-of-coal-fly-ash-thin-film-doped-with-to2-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arifa%20Batool">Arifa Batool</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Hussain%20Bhatti"> Ghulam Hussain Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Mujtaba%20Shah"> Syed Mujtaba Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20heterojunction" title=" bulk heterojunction"> bulk heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitization" title=" photosensitization"> photosensitization</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20sensitized%20solar%20cell" title=" dye sensitized solar cell"> dye sensitized solar cell</a> </p> <a href="https://publications.waset.org/abstracts/73329/synthesis-characterization-and-applications-of-some-selected-dye-functionalized-p-and-n-type-nanoparticles-in-dye-sensitized-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-doped with Bismuth and Zinc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.Benalioua">B.Benalioua</a>, <a href="https://publications.waset.org/abstracts/search?q=I.Benyamina"> I.Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Bentouami"> A.Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=B.Boury"> B.Boury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, Zn co-doped TiO2 treated at 670°C for 2 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi-Zn-TiO2 (670°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-Zn-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 70 minutes, whereas with the P25-TiO2 discoloration is achieved after 120 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POA" title="POA">POA</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title=" heterogeneous photocatalysis"> heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=co-doping" title=" co-doping"> co-doping</a> </p> <a href="https://publications.waset.org/abstracts/43389/synthesis-characterization-and-photocatalytic-performance-of-tio2-co-doped-with-bismuth-and-zinc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-Doped with Sulfur and Nitrogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Benalioua">B. Benalioua</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Benyamina"> I. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentouami"> A. Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Boury"> B. Boury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the S, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material S-N-TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the S-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of S-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic S-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POA" title="POA">POA</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title=" heterogeneous photocatalysis"> heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=co-doping" title=" co-doping"> co-doping</a> </p> <a href="https://publications.waset.org/abstracts/26354/synthesis-characterization-and-photocatalytic-performance-of-tio2-co-doped-with-sulfur-and-nitrogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> 4-Chlorophenol Degradation in Water Using TIO₂-X%ZnS Synthesized by One-Step Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Vel%C3%A1squez%20Torres">M. E. Velásquez Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Tzompantzi"> F. Tzompantzi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Castillo-Rodr%C3%ADguez"> J. C. Castillo-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Romero%20Villegas"> A. G. Romero Villegas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mend%C3%A9z-Salazar"> S. Mendéz-Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Santolalla-Vargas"> C. E. Santolalla-Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Cardoso-Mart%C3%ADnez"> J. Cardoso-Martínez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photocatalytic degradation, as an advanced oxidation technology, is a promising method in organic pollutant degradation. In this sense, chlorophenols should be removed from the water because they are highly toxic. The TiO₂ - X% ZnS photocatalysts, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%), were synthesized using the one-step sol-gel method to use them as photocatalysts to degrade 4-chlorophenol. The photocatalysts were synthesized by a one-step sol-gel method. They were refluxed for 36 hours, dried at 80°C, and calcined at 400°C. They were labeled TiO₂ - X%ZnS, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%). The band gap was calculated using a Cary 100 UV-Visible Spectrometer with an integrating sphere accessory. Ban gap value of each photocatalyst was: 2.7 eV of TiO₂, 2.8 eV of TiO₂ - 3%ZnS and TiO₂ - 5%ZnS, 2.9 eV of TiO₂ - 10%ZnS and 2.6 eV of TiO2 - 15%ZnS. In a batch type reactor, under the irradiation of a mercury lamp (λ = 254 nm, Pen-Ray), degradations of 55 ppm 4-chlorophenol were obtained at 360 minutes with the synthesized photocatalysts: 60% (3% ZnS), 66% (5% ZnS), 74% (10% ZnS) and 58% (15% ZnS). In this sense, the best material as a photocatalyst was TiO₂ -10%ZnS with a degradation percentage of 74%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-chlorophenol" title="4-chlorophenol">4-chlorophenol</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollutant" title=" water pollutant"> water pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/152569/4-chlorophenol-degradation-in-water-using-tio2-xzns-synthesized-by-one-step-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> Comparison of Tribological Properties of TiO₂, ZrO₂ and TiO₂–ZrO₂ Composite Films Prepared by Sol–Gel Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20%C3%87omakl%C4%B1">O. Çomaklı</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yaz%C4%B1c%C4%B1"> M. Yazıcı</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yetim"> T. Yetim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Yetim"> A. F. Yetim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20%C3%87elik"> A. Çelik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, TiO₂, ZrO₂, and TiO₂–ZrO₂ composite films were coated on Cp-Ti substrates by sol-gel method. Structures of uncoated and coated samples were investigated by X-ray diffraction and SEM. XRD data identified anatase phase in TiO₂ coated samples and tetragonal zirconia phase in ZrO₂ coated samples while both of anatase and tetragonal zirconia phases in TiO₂–ZrO₂ composite films. The mechanical and wear properties of samples were investigated using micro hardness, pin-on-disk tribotester, and 3D profilometer. The best wear resistance was obtained from TiO₂–ZrO₂ composite films. This can be attributed to their high surface hardness, low surface roughness and high thickness of the film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title="sol-gel">sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=ZrO%E2%82%82" title=" ZrO₂"> ZrO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82%E2%80%93ZrO%E2%82%82" title=" TiO₂–ZrO₂"> TiO₂–ZrO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20films" title=" composite films"> composite films</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/74998/comparison-of-tribological-properties-of-tio2-zro2-and-tio2-zro2-composite-films-prepared-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> Photocatalytic Glucose Electrooxidation Applications of Titanium Dioxide Supported CD and CdTe Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilal%20%20Kivrak">Hilal Kivrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aykut%20%C3%87a%C4%9FLar"> Aykut ÇağLar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahit%20Akta%C5%9F"> Nahit Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osman%20Solak"> Ali Osman Solak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, Cd/TiO₂ and CdTe/TiO₂ catalysts are prepared via sodium borohydride (NaBH4) reduction method. These catalysts are characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). These Cd/TiO₂ and CdTe/TiO₂ are employed as catalysts for the photocatalytic oxidation of glucose. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements are used to investigate their glucose electrooxidation activities of catalysts at long and under UV illumination (ʎ=354 nm). CdTe/TiO₂ catalyst is showed the best photocatalytic glucose electrooxidation activity compared to Cd/TiO₂ catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=NaBH4%20reduction%20method" title=" NaBH4 reduction method"> NaBH4 reduction method</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation" title=" photocatalytic glucose electrooxidation"> photocatalytic glucose electrooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tellerium" title=" Tellerium"> Tellerium</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a> </p> <a href="https://publications.waset.org/abstracts/124317/photocatalytic-glucose-electrooxidation-applications-of-titanium-dioxide-supported-cd-and-cdte-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">657</span> The Study of Visible Light Active Bismuth Modified Nitrogen Doped Titanium Dioxide Photocatlysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Benalioua">B. Benalioua</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Benyamina"> I. Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentouami"> A. Bentouami</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Boury"> B. Boury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi -N- TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POA" title="POA">POA</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title=" heterogeneous photocatalysis"> heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=co-doping" title=" co-doping"> co-doping</a> </p> <a href="https://publications.waset.org/abstracts/27753/the-study-of-visible-light-active-bismuth-modified-nitrogen-doped-titanium-dioxide-photocatlysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">656</span> Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benalia%20Kouini">Benalia Kouini</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Serier"> Aicha Serier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nNanoclay" title="nNanoclay">nNanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposites" title=" Nanocomposites"> Nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=Polypropylene" title=" Polypropylene"> Polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyamide" title=" Polyamide"> Polyamide</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20processing" title=" melt processing"> melt processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties." title=" mechanical properties."> mechanical properties.</a> </p> <a href="https://publications.waset.org/abstracts/46381/studying-the-effect-of-nanoclays-on-the-mechanical-properties-of-polypropylenepolyamide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> Toxicity Evaluation of Reduced Graphene Oxide on First Larval Stages of Artemia sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roberta%20Pecoraro">Roberta Pecoraro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this work was to investigate the potential toxic effect of titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites on nauplii of microcrustacean Artemia sp. In order to assess the nanocomposite’s toxicity, a short-term test was performed by exposing nauplii to solutions containing TiO₂-rGO. To prepare titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites, a green procedure based on solar photoreduction was proposed; it allows to obtain the photocatalysts by exploiting the photocatalytic properties of titania activated by the solar irradiation in order to avoid the high temperatures and pressures required for the standard hydrothermal synthesis. Powders of TiO₂-rGO supplied by the Department of Chemical Sciences (University of Catania) are indicated as TiO₂-rGO at 1% and TiO₂-rGO at 2%. Starting from a stock solution (1mg rGO-TiO₂/10 ml ASPM water) of each type, we tested four different concentrations (serial dilutions ranging from 10⁻¹ to 10⁻⁴ mg/ml). All the solutions have been sonicated for 12 min prior to use. Artificial seawater (called ASPM water) was prepared to guarantee the hatching of the cysts and to maintain nauplii; the durable cysts used in this study, marketed by JBL (JBL GmbH & Co. KG, Germany), were hydrated with ASPM water to obtain nauplii (instar II-III larvae). The hatching of the cysts was carried out in the laboratory by immersing them in ASPM water inside a 500 ml beaker and keeping them constantly oxygenated thanks to an aerator for the insufflation of microbubble air: after 24-48 hours, the cysts hatched, and the nauplii appeared. The nauplii in the second and third stages of development were collected one-to-one, using stereomicroscopes, and transferred into 96-well microplates where one nauplius per well was added. The wells quickly have been filled with 300 µl of each specific concentration of the solution used, and control samples were incubated only with ASPM water. Replication was performed for each concentration. Finally, the microplates were placed on an orbital shaker, and the tests were read after 24 and 48 hours from inoculating the solutions to assess the endpoint (immobility/death) for the larvae. Nauplii that appeared motionless were counted as dead, and the percentages of mortality were calculated for each treatment. The results showed a low percentage of immobilization both for TiO₂-rGO at 1% and TiO₂-rGO at 2% for all concentrations tested: for TiO₂-rGO at 1% was below 12% after 24h and below 15% after 48h; for TiO₂-rGO at 2% was below 8% after 24h and below 12% after 48h. According to other studies in the literature, the results have not shown mortality nor toxic effects on the development of larvae after exposure to rGO. Finally, it is important to highlight that the TiO₂-rGO catalysts were tested in the solar photodegradation of a toxic herbicide (2,4-Dichlorophenoxyacetic acid, 2,4-D), obtaining a high percentage of degradation; therefore, this alternative approach could be considered a good strategy to obtain performing photocatalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nauplii" title="Nauplii">Nauplii</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20properties" title=" photocatalytic properties"> photocatalytic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20GO" title=" reduced GO"> reduced GO</a>, <a href="https://publications.waset.org/abstracts/search?q=short-term%20toxicity%20test" title=" short-term toxicity test"> short-term toxicity test</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/140527/toxicity-evaluation-of-reduced-graphene-oxide-on-first-larval-stages-of-artemia-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">654</span> Optical and Magnetic Properties of Ferromagnetic Co-Ni Co-Doped TiO2 Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Bensaha">Rabah Bensaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Badreddine%20Toubal"> Badreddine Toubal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the structural, optical and magnetic properties of TiO2, Co-doped TiO2, Ni-doped TiO2 and Co-Ni co-doped TiO2 thin films prepared by the sol-gel dip coating method. Fully anatase phase was obtained by adding metal ions without any detectable impurity phase or oxide formed. AFM and SEM micrographs clearly confirm that the addition of Co-Ni affects the shape of anatase nanoparticles. The crystallite sizes and surface roughness of TiO2 films increase with Co-doping, Ni-doping and Co–Ni co-doping, respectively. The refractive index, thickness and optical band gap values of the films were obtained by means of optical transmittance spectra measurements. The band gap of TiO2 sample was decreased by Co-doping, Ni-doping and Co–Ni co-doping TiO2 films. Both undoped and Co-Ni co-doped films were found to be ferromagnetic at room temperature may due to the presence of oxygen vacancy defect and the probable formation of metal clusters Co-Ni. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Ni%20co-doped" title="Co-Ni co-doped">Co-Ni co-doped</a>, <a href="https://publications.waset.org/abstracts/search?q=anatase%20TiO2" title=" anatase TiO2"> anatase TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/35968/optical-and-magnetic-properties-of-ferromagnetic-co-ni-co-doped-tio2-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">653</span> Synthesis of a Hybrid Material (PVA/SiO₂/TiO₂) by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gueridi%20Bachir">Gueridi Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Dadache%20Derradji"> Dadache Derradji</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouabah%20Farid"> Rouabah Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused on the preparation and characterization of poly (vinyl alcohol)/silica gel/Nano-TiO₂, and the study of titanium dioxide (TiO₂) nanoparticles 1% on the properties of poly (vinyl alcohol) (PVA)/silica films. Fourier transform infrared (FT-IR), water contact angle, ultraviolet-visible spectrometry (UV-VIS)) were used to characterize the hybrid films obtained. The PVA/SiO₂/Nano-TiO₂ films were successfully synthesized. Owing to the FT-IR Analysis, the chemical bonds have clearly shown that the PVA backbone is linked to the (SiO₂-TiO₂) network. UV-VIS tests indicated that the hybrid films' UV shielding properties were drastically enhanced as a result of the addition of TiO₂. The water contact angle results revealed that TiO₂ nanoparticles used as a doping compound possess an important influence on the hydrophilicity of PVA/SiO₂ as thin films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title="sol-gel method">sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20materials" title=" hybrid materials"> hybrid materials</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA%2FSIO%E2%82%82%2FTiO%E2%82%82" title=" PVA/SIO₂/TiO₂"> PVA/SIO₂/TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopical%20characterization" title=" spectroscopical characterization"> spectroscopical characterization</a> </p> <a href="https://publications.waset.org/abstracts/194584/synthesis-of-a-hybrid-material-pvasio2tio2-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10