CINXE.COM

Search results for: polyoxometalate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: polyoxometalate</title> <meta name="description" content="Search results for: polyoxometalate"> <meta name="keywords" content="polyoxometalate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="polyoxometalate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="polyoxometalate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: polyoxometalate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Co-Immobilization of Palladium Nanoparticles and Polyoxometalate into the Cavities of the Mesocellular Foams: A Biomimetic Cooperative Catalytic System for Aerobic Oxidation of Alcohols under Green Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Chehri">Saeed Chehri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirvan%20Moradi"> Sirvan Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Rostami"> Amin Rostami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooperative catalyst systems have been developed as highly promising sustainable alternatives to traditional catalysts. In these catalysts, two or more catalytic centers cooperate to reduce the energy of chemical transformations. In nature, such systems are abundantly seen in metalloenzymes that use metal and an organic cofactor. We have designed a reusable cooperative catalyst oxidation system consisting of palladium nanoparticles and polyoxometalate. This biomimetic cooperative catalytic system was synthesized by the stepwise immobilization of palladium nanoparticlesandpolyoxometalateinto the same cavity of siliceous mesocellularfoams (Pd-POM@MCF)and wascharacterizedby SEM, EDX, FT-IR, TGAand ICP techniques. POM-Pd@MCF/HQexhibits high activity toward aerobic oxidation of alcohols to the corresponding carbonyl compoundsin water solvent at room temperature. The major novelties and advantages of this oxidation method are as follows: (i) this is the first report of the co-immobilization of polyoxometalateand palladium for use as a robust and highlyefficient heterogeneouscooperative oxidative nanocatalyst system for aerobic oxidation of alcohols, (ii) oxidation of alcoholswere performed using an ideal oxidant with good to high yields in a green solvent at ambient temperature and (iii) the immobilization of the oxygen-activating catalyst(polyoxometalate) and oxidizing catalyst (Pd) onto MCF provide practical cooperative catalyst the system that can be reused several times without a significant loss of activity (vi) the methodsconform to several of the guiding principles of green chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palladium%20nanoparticles" title="palladium nanoparticles">palladium nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polyoxometalate" title=" polyoxometalate"> polyoxometalate</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable%20%20cooperative%20catalytic%20system" title=" reusable cooperative catalytic system"> reusable cooperative catalytic system</a>, <a href="https://publications.waset.org/abstracts/search?q=biomimetic%20oxidation%20reaction" title=" biomimetic oxidation reaction"> biomimetic oxidation reaction</a> </p> <a href="https://publications.waset.org/abstracts/150615/co-immobilization-of-palladium-nanoparticles-and-polyoxometalate-into-the-cavities-of-the-mesocellular-foams-a-biomimetic-cooperative-catalytic-system-for-aerobic-oxidation-of-alcohols-under-green-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Ethanolamine Detection with Composite Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Krutovertsev">S. A. Krutovertsev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Tarasova"> A. E. Tarasova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Krutovertseva"> L. S. Krutovertseva</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Ivanova"> O. M. Ivanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the work was to get stable sensitive films with good sensitivity to ethanolamine (C2H7NO) in air. Ethanolamine is used as adsorbent in different processes of gas purification and separation. Besides it has wide industrial application. Chemical sensors of sorption type are widely used for gas analysis. Their behavior is determined by sensor characteristics of sensitive sorption layer. Forming conditions and characteristics of chemical gas sensors based on nanostructured modified silica films activated by different admixtures have been studied. As additives molybdenum containing polyoxometalates of the eighteen series were incorporated in silica films. The method of hydrolythic polycondensation from tetraethyl orthosilicate solutions was used for forming such films in this work. The method’s advantage is a possibility to introduce active additives directly into an initial solution. This method enables to obtain sensitive thin films with high specific surface at room temperature. Particular properties make polyoxometalates attractive as active additives for forming of gas-sensitive films. As catalyst of different redox processes, they can either accelerate the reaction of the matrix with analyzed gas or interact with it, and it results in changes of matrix’s electrical properties Polyoxometalates based films were deposited on the test structures manufactured by microelectronic planar technology with interdigitated electrodes. Modified silica films were deposited by a casting method from solutions based on tetraethyl orthosilicate and polyoxometalates. Polyoxometalates were directly incorporated into initial solutions. Composite nanostructured films were deposited by drop casting method on test structures with a pair of interdigital metal electrodes formed at their surface. The sensor’s active area was 4.0 x 4.0 mm, and electrode gap was egual 0.08 mm. Morphology of the layers surface were studied with Solver-P47 scanning probe microscope (NT-MDT, Russia), the infrared spectra were investigated by a Bruker EQUINOX 55 (Germany). The conditions of film formation varied during the tests. Electrical parameters of the sensors were measured electronically in real-time mode. Films had highly developed surface with value of 450 m2/g and nanoscale pores. Thickness of them was 0,2-0,3 µm. The study shows that the conditions of the environment affect markedly the sensors characteristics, which can be improved by choosing of the right procedure of forming and processing. Addition of polyoxometalate into silica film resulted in stabilization of film mass and changed markedly of electrophysical characteristics. Availability of Mn3P2Mo18O62 into silica film resulted in good sensitivity and selectivity to ethanolamine. Sensitivity maximum was observed at weight content of doping additive in range of 30–50% in matrix. With ethanolamine concentration changing from 0 to 100 ppm films’ conductivity increased by 10-12 times. The increase of sensor’s sensitivity was received owing to complexing reaction of tested substance with cationic part of polyoxometalate. This fact results in intramolecular redox reaction which sharply change electrophysical properties of polyoxometalate. This process is reversible and takes place at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethanolamine" title="ethanolamine">ethanolamine</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20analysis" title=" gas analysis"> gas analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=polyoxometalate" title=" polyoxometalate"> polyoxometalate</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20film" title=" silica film"> silica film</a> </p> <a href="https://publications.waset.org/abstracts/43968/ethanolamine-detection-with-composite-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dorothea%20Vo%C3%9F">Dorothea Voß</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Esser"> Tobias Esser</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Huber"> Michael Huber</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakob%20Albert"> Jakob Albert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=downstream%20processing" title="downstream processing">downstream processing</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiltration" title=" nanofiltration"> nanofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=polyoxometalates" title=" polyoxometalates"> polyoxometalates</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20catalysis" title=" homogeneous catalysis"> homogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a> </p> <a href="https://publications.waset.org/abstracts/168256/product-separation-of-green-processes-and-catalyst-recycling-of-a-homogeneous-polyoxometalate-catalyst-using-nanofiltration-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Synthesis of an Organic-Inorganic Salt of (C2H5NO2) 2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahboobeh%20Mohadeszadeh">Mahboobeh Mohadeszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Saghi"> Majid Saghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polyoxometalate" title="Polyoxometalate">Polyoxometalate</a>, <a href="https://publications.waset.org/abstracts/search?q=Keggin" title=" Keggin"> Keggin</a>, <a href="https://publications.waset.org/abstracts/search?q=Organic-inorganic%20salt" title=" Organic-inorganic salt"> Organic-inorganic salt</a>, <a href="https://publications.waset.org/abstracts/search?q=TMV" title=" TMV"> TMV</a> </p> <a href="https://publications.waset.org/abstracts/21483/synthesis-of-an-organic-inorganic-salt-of-c2h5no2-2h4siw12o40-and-investigation-of-its-anti-viral-effect-on-the-tobacco-mosaic-virus-tmv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Synthesis of an Organic- Inorganic Salt of (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahboobeh%20Mohadeszadeh">Mahboobeh Mohadeszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Saghi"> Majid Saghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyoxometalate" title="polyoxometalate">polyoxometalate</a>, <a href="https://publications.waset.org/abstracts/search?q=keggin" title=" keggin"> keggin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic-inorganic%20salt" title=" organic-inorganic salt"> organic-inorganic salt</a>, <a href="https://publications.waset.org/abstracts/search?q=TMV" title=" TMV "> TMV </a> </p> <a href="https://publications.waset.org/abstracts/21481/synthesis-of-an-organic-inorganic-salt-of-c2h5no22h4siw12o40-and-investigation-of-its-anti-viral-effect-on-the-tobacco-mosaic-virus-tmv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Synthesis of an Organic-Inorganic Salt of 12-Silicotungstate, (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahboobeh%20Mohadeszadeh">Mahboobeh Mohadeszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Saghi"> Majid Saghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40, was synthesized. Investigation on the anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyoxometalate" title="polyoxometalate">polyoxometalate</a>, <a href="https://publications.waset.org/abstracts/search?q=keggin" title=" keggin"> keggin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic-inorganic%20salt" title=" organic-inorganic salt"> organic-inorganic salt</a>, <a href="https://publications.waset.org/abstracts/search?q=TMV" title=" TMV"> TMV</a> </p> <a href="https://publications.waset.org/abstracts/21662/synthesis-of-an-organic-inorganic-salt-of-12-silicotungstate-c2h5no22h4siw12o40-and-investigation-of-its-anti-viral-effect-on-the-tobacco-mosaic-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Huber">Michael Huber</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20J.%20Poller"> Maximilian J. Poller</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Tochtermann"> Jens Tochtermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Korth"> Wolfgang Korth</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Jess"> Andreas Jess</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakob%20Albert"> Jakob Albert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidative%20reaction%20pathway" title="oxidative reaction pathway">oxidative reaction pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrogenation%20of%20fuels" title=" denitrogenation of fuels"> denitrogenation of fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20catalysis" title=" molecular catalysis"> molecular catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=polyoxometalate" title=" polyoxometalate"> polyoxometalate</a> </p> <a href="https://publications.waset.org/abstracts/168057/revealing-the-nitrogen-reaction-pathway-for-the-catalytic-oxidative-denitrification-of-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10