CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;21 of 21 results for author: <span class="mathjax">Islam, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Islam%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Islam, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Islam%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Islam, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09304">arXiv:2411.09304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09304">pdf</a>, <a href="https://arxiv.org/format/2411.09304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Design and Process Analysis of a Split-Gate Trench Power MOSFET with Bottom-Trench Hk-Pillar Superjunction for Enhanced Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yunteng Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Z">Zhentao Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zonghao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Juncheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenxing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenjun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Haimeng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Aynul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hongqiang Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09304v2-abstract-short" style="display: inline;"> In this paper, we propose a simulation-based novel Split-Gate Trench MOSFET structure with an optimized fabrication process to enhance power efficiency, switching speed, and thermal stability for high-performance semiconductor applications. Integrating high-k pillars with superjunction structures beneath the split gate enhancing breakdown performance by reducing critical field intensity by up to 3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09304v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09304v2-abstract-full" style="display: none;"> In this paper, we propose a simulation-based novel Split-Gate Trench MOSFET structure with an optimized fabrication process to enhance power efficiency, switching speed, and thermal stability for high-performance semiconductor applications. Integrating high-k pillars with superjunction structures beneath the split gate enhancing breakdown performance by reducing critical field intensity by up to 35%, the device achieves a 15% improvement in Figures of Merit (FOMs) for BV2/Ron,sp. Dynamic testing reveals approximately a 25% reduction in both input and output capacitance, as well as gate-to-drain charge (QGD). This reduction, coupled with an approximately 40% improvement in Baliga&#39;s High-Frequency Figure of Merit (BHFFOM) and over 20% increase in the New High-Frequency Figure of Merit (NHFFOM), underscores the design&#39;s suitability for high-speed, high-efficiency power electronics. Simulations examining the effects of high-k pillar depth indicate that an optimal depth of 3.5 um achieves a balanced performance between BV and Ron,sp. The influence of high-k materials on BT-Hk-SJ MOSFET performance was investigated by comparing hafnium dioxide (HfO2), nitride, and oxynitride. Among these, HfO2 demonstrated optimal performance across static, dynamic, and diode characteristics due to its high dielectric constant, while material choice had minimal impact, with variations kept within 5%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09304v2-abstract-full').style.display = 'none'; document.getElementById('2411.09304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15015">arXiv:2409.15015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15015">pdf</a>, <a href="https://arxiv.org/format/2409.15015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> TCAD Simulation of Novel Multi-Spacer HK/MG 28nm Planar MOSFET for Sub-threshold Swing and DIBL Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Z">Zhentao Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yihao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zonghao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jinhong Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenxing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yunteng Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Haimeng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Aynul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hongqiang Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15015v2-abstract-short" style="display: inline;"> This study optimizes 28 nm planar MOSFET technology to reduce device leakage current and enhance switching speed. The specific aims are to decrease subthreshold swing (S.S.) and mitigate drain induced barrier lowering (DIBL) effect. Silvaco TCAD software is used for process (Athena) and device (Atlas) simulations. For the further development of MOSFET technology, we implemented our device (planar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15015v2-abstract-full').style.display = 'inline'; document.getElementById('2409.15015v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15015v2-abstract-full" style="display: none;"> This study optimizes 28 nm planar MOSFET technology to reduce device leakage current and enhance switching speed. The specific aims are to decrease subthreshold swing (S.S.) and mitigate drain induced barrier lowering (DIBL) effect. Silvaco TCAD software is used for process (Athena) and device (Atlas) simulations. For the further development of MOSFET technology, we implemented our device (planar 28 nm n-MOSFET) with high-k metal-gate (HK/MG), lightly doped drain (LDD), multiple spacers (mult-spacers), and silicide. Simulation validation shows improvements over other 28 nm devices, with lower static power consumption and notable optimizations in both S.S. (69.8 mV/dec) and DIBL effect (30.5 mV/V). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15015v2-abstract-full').style.display = 'none'; document.getElementById('2409.15015v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04800">arXiv:2408.04800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04800">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A High-Temperature Thermocouple Development by Additive Manufacturing: Tungsten-Nickel (W-Ni) and Molybdenum (Mo) Integration with Ceramic Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Azizul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Alok%2C+A">Aayush Alok</a>, <a href="/search/physics?searchtype=author&amp;query=Borra%2C+V">Vamsi Borra</a>, <a href="/search/physics?searchtype=author&amp;query=Cortes%2C+P">Pedro Cortes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04800v2-abstract-short" style="display: inline;"> Additive manufacturing holds more potential to enable the development of ceramic-based components. Ceramics offer high resistance to heat, high fracture toughness, and are extremely corrosion resistant. Thus, ceramics are widely used in sectors such as the aerospace industry, automotive, microelectronics, and biomedicine. Using various additive manufacturing platforms, ceramics with complex and un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04800v2-abstract-full').style.display = 'inline'; document.getElementById('2408.04800v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04800v2-abstract-full" style="display: none;"> Additive manufacturing holds more potential to enable the development of ceramic-based components. Ceramics offer high resistance to heat, high fracture toughness, and are extremely corrosion resistant. Thus, ceramics are widely used in sectors such as the aerospace industry, automotive, microelectronics, and biomedicine. Using various additive manufacturing platforms, ceramics with complex and uniquely designed geometry can be developed to suit specific applications. This project aims at innovating high-temperature thermocouples by embedding conductive metal pastes into a ceramic structure. The paste used includes tungsten, molybdenum, and antimony. The metal pastes are precisely extruded into a T-shaped trench inside the ceramic matrix. Following specific temperature ranges, the ceramic matrix is sintered to improve the properties of the material. The sensors produced can function at extremely high temperatures and are thereby suitable for high-temperature environments. Comparative testing of the 3D sintered sensors with conventional temperature sensors shows high correlation between the two classes of sensors. The resulting R-squared value of 0.9885 is satisfactory which implies the reliability and accuracy of 3D sintering sensors are satisfactory in temperature sensing applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04800v2-abstract-full').style.display = 'none'; document.getElementById('2408.04800v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02420">arXiv:2407.02420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02420">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/PSJ/ad5b5e">10.3847/PSJ/ad5b5e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geophysical Observations of the 24 September 2023 OSIRIS-REx Sample Return Capsule Re-Entry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Silber%2C+E+A">Elizabeth A. Silber</a>, <a href="/search/physics?searchtype=author&amp;query=Bowman%2C+D+C">Daniel C. Bowman</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+C+G">Chris G. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Eisenberg%2C+D+P">David P. Eisenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Elbing%2C+B+R">Brian R. Elbing</a>, <a href="/search/physics?searchtype=author&amp;query=Fernando%2C+B">Benjamin Fernando</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%A9s%2C+M+A">Milton A. Garc茅s</a>, <a href="/search/physics?searchtype=author&amp;query=Haaser%2C+R">Robert Haaser</a>, <a href="/search/physics?searchtype=author&amp;query=Krishnamoorthy%2C+S">Siddharth Krishnamoorthy</a>, <a href="/search/physics?searchtype=author&amp;query=Langston%2C+C+A">Charles A. Langston</a>, <a href="/search/physics?searchtype=author&amp;query=Nishikawa%2C+Y">Yasuhiro Nishikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Webster%2C+J">Jeremy Webster</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J+F">Jacob F. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Arrowsmith%2C+S">Stephen Arrowsmith</a>, <a href="/search/physics?searchtype=author&amp;query=Bazargan%2C+S">Sonia Bazargan</a>, <a href="/search/physics?searchtype=author&amp;query=Beardslee%2C+L">Luke Beardslee</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+B">Brant Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Bishop%2C+J+W">Jordan W. Bishop</a>, <a href="/search/physics?searchtype=author&amp;query=Blom%2C+P">Philip Blom</a>, <a href="/search/physics?searchtype=author&amp;query=Bracht%2C+G">Grant Bracht</a>, <a href="/search/physics?searchtype=author&amp;query=Chichester%2C+D+L">David L. Chichester</a>, <a href="/search/physics?searchtype=author&amp;query=Christe%2C+A">Anthony Christe</a>, <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+J">Jacob Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=Cummins%2C+K">Kenneth Cummins</a>, <a href="/search/physics?searchtype=author&amp;query=Cutts%2C+J">James Cutts</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02420v2-abstract-short" style="display: inline;"> Sample Return Capsules (SRCs) entering Earth&#39;s atmosphere at hypervelocity from interplanetary space are a valuable resource for studying meteor phenomena. The 24 September 2023 arrival of the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) SRC provided an unprecedented chance for geophysical observations of a well-characterized source with kn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02420v2-abstract-full').style.display = 'inline'; document.getElementById('2407.02420v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02420v2-abstract-full" style="display: none;"> Sample Return Capsules (SRCs) entering Earth&#39;s atmosphere at hypervelocity from interplanetary space are a valuable resource for studying meteor phenomena. The 24 September 2023 arrival of the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) SRC provided an unprecedented chance for geophysical observations of a well-characterized source with known parameters, including timing and trajectory. A collaborative effort involving researchers from 16 institutions executed a carefully planned geophysical observational campaign at strategically chosen locations, deploying over 400 ground-based sensors encompassing infrasound, seismic, distributed acoustic sensing (DAS), and GPS technologies. Additionally, balloons equipped with infrasound sensors were launched to capture signals at higher altitudes. This campaign (the largest of its kind so far) yielded a wealth of invaluable data anticipated to fuel scientific inquiry for years to come. The success of the observational campaign is evidenced by the near-universal detection of signals across instruments, both proximal and distal. This paper presents a comprehensive overview of the collective scientific effort, field deployment, and preliminary findings. The early findings have the potential to inform future space missions and terrestrial campaigns, contributing to our understanding of meteoroid interactions with planetary atmospheres. Furthermore, the dataset collected during this campaign will improve entry and propagation models as well as augment the study of atmospheric dynamics and shock phenomena generated by meteoroids and similar sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02420v2-abstract-full').style.display = 'none'; document.getElementById('2407.02420v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">87 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07797">arXiv:2406.07797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07797">pdf</a>, <a href="https://arxiv.org/format/2406.07797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Real-time Deformation Correction in Additively Printed Flexible Antenna Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Poolakkal%2C+S">Sreeni Poolakkal</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Abdullah Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Bansal%2C+S">Shrestha Bansal</a>, <a href="/search/physics?searchtype=author&amp;query=Rao%2C+A">Arpit Rao</a>, <a href="/search/physics?searchtype=author&amp;query=Dabrowski%2C+T">Ted Dabrowski</a>, <a href="/search/physics?searchtype=author&amp;query=Kwan%2C+K">Kalsi Kwan</a>, <a href="/search/physics?searchtype=author&amp;query=Mishra%2C+A">Amit Mishra</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Q">Quiyan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ghaderi%2C+E">Erfan Ghaderi</a>, <a href="/search/physics?searchtype=author&amp;query=Lall%2C+P">Pradeep Lall</a>, <a href="/search/physics?searchtype=author&amp;query=Shekhar%2C+S">Sudip Shekhar</a>, <a href="/search/physics?searchtype=author&amp;query=Navarro%2C+J">Julio Navarro</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+S">Shenqiang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+J">John Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+S">Subhanshu Gupta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07797v4-abstract-short" style="display: inline;"> Conformal phased arrays provide multiple degrees of freedom to the scan angle, which is typically limited by antenna aperture in rigid arrays. Silicon-based RF signal processing offers reliable, reconfigurable, multi-functional, and compact control for conformal phased arrays that can be used for on-the-move communication. While the lightweight, compactness, and shape-changing properties of the co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07797v4-abstract-full').style.display = 'inline'; document.getElementById('2406.07797v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07797v4-abstract-full" style="display: none;"> Conformal phased arrays provide multiple degrees of freedom to the scan angle, which is typically limited by antenna aperture in rigid arrays. Silicon-based RF signal processing offers reliable, reconfigurable, multi-functional, and compact control for conformal phased arrays that can be used for on-the-move communication. While the lightweight, compactness, and shape-changing properties of the conformal phased arrays are attractive, these features result in dynamic deformation of the array during motion leading to significant dynamic beam pointing errors. We propose a silicon-based, compact, reconfigurable solution to self-correct these dynamic deformation-induced beam pointing errors. Furthermore, additive printing is leveraged to enhance the flexibility of the conformal phased arrays, as the printed conductive ink is more flexible than bulk copper and can be easily deposited on flexible sheets using different printing tools, providing an environmentally-friendly solution for large-scale production. The inks such as conventional silver inks are expensive and copper-based printable inks suffer from spontaneous metal oxidation that alters trace impedance and degrades beamforming performance. This work uses a low-cost molecular copper decomposition ink with reliable RF properties at different temperature and strain to print the proposed intelligent conformal phased array operating at 2.1 GHz. Proof-of-concept prototype $2\times2$ array self-corrects the deformation induces beampointing error with an error $&lt;1.25^\circ$. The silicon based array processing part occupying only 2.58 mm$^2$ area and 83 mW power per tile. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07797v4-abstract-full').style.display = 'none'; document.getElementById('2406.07797v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12603">arXiv:2308.12603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12603">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Tissues and Organs">q-bio.TO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2051/1/012033">10.1088/1742-6596/2051/1/012033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parametric Investigation on Different Bone Densities to avoid Thermal Necrosis during Bone Drilling Process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Islam%2C+M+A">Md Ashequl Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Kamarrudin%2C+N+S">Nur Saifullah Kamarrudin</a>, <a href="/search/physics?searchtype=author&amp;query=Suhaimi%2C+M+F+F">M. F. F. Suhaimi</a>, <a href="/search/physics?searchtype=author&amp;query=Daud%2C+R">Ruslizam Daud</a>, <a href="/search/physics?searchtype=author&amp;query=Ibrahim%2C+I">Ishak Ibrahim</a>, <a href="/search/physics?searchtype=author&amp;query=Mat%2C+F">Fauziah Mat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12603v1-abstract-short" style="display: inline;"> Bone drilling is a universal surgical procedure commonly used for internal fracture fixation, implant placement, or reconstructive surgery in orthopedics and dentistry. The increased temperature during such treatment increases the risk of thermal penetration of the bone, which may delay healing or compromise the fixation&#39;s integrity. Thus, avoiding penetration during bone drilling is critical to e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12603v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12603v1-abstract-full" style="display: none;"> Bone drilling is a universal surgical procedure commonly used for internal fracture fixation, implant placement, or reconstructive surgery in orthopedics and dentistry. The increased temperature during such treatment increases the risk of thermal penetration of the bone, which may delay healing or compromise the fixation&#39;s integrity. Thus, avoiding penetration during bone drilling is critical to ensuring the implant&#39;s stability, which needs surgical drills with an optimized design. Bovine femur and mandible bones are chosen as the work material since human bones are not available and are the closest animal bone to human bone in terms of properties. In the present study, the Taguchi fractional factorial approach was used to determine the best design of surgical drills by comparing the drilling properties (i.e., signal-to-noise ratio and temperature rise). The control factors (spindle speed, drill bit diameter, drill site depth, and their levels) were arranged in an L9 orthogonal array. Drilling experiments were done using nine experimental drills with three repetitions. The findings of this study indicate that the ideal values of the surgical drill&#39;s three parameters combination (S1D1Di2) and their percentage contribution depend on the parameters&#39; drilling levels. However, the result shows that the spindle speed has the highest temperature effect among other parameters in both (femur and mandible) bones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12603v1-abstract-full').style.display = 'none'; document.getElementById('2308.12603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12034">arXiv:2308.12034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12034">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Tissues and Organs">q-bio.TO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2129/1/012096">10.1088/1742-6596/2129/1/012096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature measurement methods in an experimental setup during bone drilling: A brief review on the comparison of thermocouple and infrared thermography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Islam%2C+M+A">Md Ashequl Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Kamarrudin%2C+N+S">Nur Saifullah Kamarrudin</a>, <a href="/search/physics?searchtype=author&amp;query=Daud%2C+R">Ruslizam Daud</a>, <a href="/search/physics?searchtype=author&amp;query=Ibrahim%2C+I">Ishak Ibrahim</a>, <a href="/search/physics?searchtype=author&amp;query=Rahman%2C+A">Anas Rahman</a>, <a href="/search/physics?searchtype=author&amp;query=Mat%2C+F">Fauziah Mat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12034v1-abstract-short" style="display: inline;"> Predicting thermal response in orthopaedic surgery or dental implantation remains a significant challenge. This study aims to find a practical approach for measuring temperature elevation during a bone drilling experiment by analyzing the existing methods. Traditionally thermocouple has frequently been used to predict the bone temperature in the drilling process. However, several experimental stud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12034v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12034v1-abstract-full" style="display: none;"> Predicting thermal response in orthopaedic surgery or dental implantation remains a significant challenge. This study aims to find a practical approach for measuring temperature elevation during a bone drilling experiment by analyzing the existing methods. Traditionally thermocouple has frequently been used to predict the bone temperature in the drilling process. However, several experimental studies demonstrate that the invasive method using thermocouple is impractical in medical conditions and prefers the thermal infrared (IR) camera as a non-invasive method. This work proposes a simplified experimental model that uses the thermocouple to determine temperature rise coupled with the thermal image source approach. Furthermore, our new method provides a significant opportunity to calibrate the thermal IR camera by discovering the undetected heat elevation in a workpiece depth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12034v1-abstract-full').style.display = 'none'; document.getElementById('2308.12034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11173">arXiv:2307.11173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11173">pdf</a>, <a href="https://arxiv.org/format/2307.11173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6552/ad0542">10.1088/1361-6552/ad0542 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Completely Hackable Amateur Radio Telescope (CHART) Project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Berkhout%2C+L+M">Lindsay M. Berkhout</a>, <a href="/search/physics?searchtype=author&amp;query=Beardsley%2C+A+P">Adam P. Beardsley</a>, <a href="/search/physics?searchtype=author&amp;query=Jacobs%2C+D+C">Daniel C. Jacobs</a>, <a href="/search/physics?searchtype=author&amp;query=Braithwaite%2C+R">Raven Braithwaite</a>, <a href="/search/physics?searchtype=author&amp;query=Gutierrez-Coatney%2C+B">Bryanna Gutierrez-Coatney</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Arib Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Wright%2C+A">Ahlea Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11173v2-abstract-short" style="display: inline;"> We present the Completely Hackable Amateur Radio Telescope (CHART), a project that provides hands-on radio instrumentation and design experience to undergraduates while bringing accessible radio astronomy experiments to high school students and teachers. Here we describe a system which can detect 21-cm emission from the Milky Way which is optimized for cost and simplicity of construction. Software&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11173v2-abstract-full').style.display = 'inline'; document.getElementById('2307.11173v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11173v2-abstract-full" style="display: none;"> We present the Completely Hackable Amateur Radio Telescope (CHART), a project that provides hands-on radio instrumentation and design experience to undergraduates while bringing accessible radio astronomy experiments to high school students and teachers. Here we describe a system which can detect 21-cm emission from the Milky Way which is optimized for cost and simplicity of construction. Software, documentation, and tutorials are all completely open source to improve the user experience and facilitate community involvement. We demonstrate the design with several observations which we compare with state-of-the-art surveys. The system is shown to detect galactic 21-cm emission in both rural and urban settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11173v2-abstract-full').style.display = 'none'; document.getElementById('2307.11173v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Educ. 59 015020 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14733">arXiv:2306.14733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.14733">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Temperature Dependent Failure of Atomically Thin MoTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Haider%2C+A+S+M+R">A S M Redwan Haider</a>, <a href="/search/physics?searchtype=author&amp;query=Hezam%2C+A+F+A+M">Ahmad Fatehi Ali Mohammed Hezam</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+M+A">Md Akibul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Arafat%2C+Y">Yeasir Arafat</a>, <a href="/search/physics?searchtype=author&amp;query=Ferdaous%2C+M+T">Mohammad Tanvirul Ferdaous</a>, <a href="/search/physics?searchtype=author&amp;query=Salehin%2C+S">Sayedus Salehin</a>, <a href="/search/physics?searchtype=author&amp;query=Karim%2C+M+R">Md. Rezwanul Karim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14733v3-abstract-short" style="display: inline;"> In this study, we systematically investigated the mechanical responses of monolayer molybdenum ditelluride (MoTe2) using molecular dynamics (MD) simulations. The tensile behavior of trigonal prismatic phase (2H phase) MoTe2 under uniaxial strain was simulated in the armchair and zigzag directions. We also investigated the crack formation and propagation in both armchair and zigzag directions at 10&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14733v3-abstract-full').style.display = 'inline'; document.getElementById('2306.14733v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14733v3-abstract-full" style="display: none;"> In this study, we systematically investigated the mechanical responses of monolayer molybdenum ditelluride (MoTe2) using molecular dynamics (MD) simulations. The tensile behavior of trigonal prismatic phase (2H phase) MoTe2 under uniaxial strain was simulated in the armchair and zigzag directions. We also investigated the crack formation and propagation in both armchair and zigzag directions at 10K and 300K to understand the fracture behavior of monolayer MoTe2 at different temperatures. The MD simulations show clean cleavage for the armchair direction, and the cracks were numerous and scattered in the case of the zigzag direction. Finally, we investigated the effect of temperature on Young&#39;s modulus and fracture stress of monolayer MoTe2. The results show that at a strain rate of 10^-4 ps^-1, the fracture strength of monolayer MoTe2 in the armchair and zigzag directions at 10K is 16.33 GPa (11.43 N/m) and 13.71 GPa (9.46 N/m) under a 24% and 18% fracture strain, respectively. The fracture strength of monolayer MoTe2 in the armchair and zigzag direction at 600K is 10.81 GPa (7.56 N/m) and 10.13 GPa (7.09 N/m) under a 12.5% and 12.47% fracture strain, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14733v3-abstract-full').style.display = 'none'; document.getElementById('2306.14733v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 Pages, 7 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00640">arXiv:2305.00640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00640">pdf</a>, <a href="https://arxiv.org/format/2305.00640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/CVPRW59228.2023.00209">10.1109/CVPRW59228.2023.00209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inferring the past: a combined CNN-LSTM deep learning framework to fuse satellites for historical inundation mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Giezendanner%2C+J">Jonathan Giezendanner</a>, <a href="/search/physics?searchtype=author&amp;query=Mukherjee%2C+R">Rohit Mukherjee</a>, <a href="/search/physics?searchtype=author&amp;query=Purri%2C+M">Matthew Purri</a>, <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+M">Mitchell Thomas</a>, <a href="/search/physics?searchtype=author&amp;query=Mauerman%2C+M">Max Mauerman</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A+K+M+S">A. K. M. Saiful Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Tellman%2C+B">Beth Tellman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00640v1-abstract-short" style="display: inline;"> Mapping floods using satellite data is crucial for managing and mitigating flood risks. Satellite imagery enables rapid and accurate analysis of large areas, providing critical information for emergency response and disaster management. Historical flood data derived from satellite imagery can inform long-term planning, risk management strategies, and insurance-related decisions. The Sentinel-1 sat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00640v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00640v1-abstract-full" style="display: none;"> Mapping floods using satellite data is crucial for managing and mitigating flood risks. Satellite imagery enables rapid and accurate analysis of large areas, providing critical information for emergency response and disaster management. Historical flood data derived from satellite imagery can inform long-term planning, risk management strategies, and insurance-related decisions. The Sentinel-1 satellite is effective for flood detection, but for longer time series, other satellites such as MODIS can be used in combination with deep learning models to accurately identify and map past flood events. We here develop a combined CNN--LSTM deep learning framework to fuse Sentinel-1 derived fractional flooded area with MODIS data in order to infer historical floods over Bangladesh. The results show how our framework outperforms a CNN-only approach and takes advantage of not only space, but also time in order to predict the fractional inundated area. The model is applied to historical MODIS data to infer the past 20 years of inundation extents over Bangladesh and compared to a thresholding algorithm and a physical model. Our fusion model outperforms both models in consistency and capacity to predict peak inundation extents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00640v1-abstract-full').style.display = 'none'; document.getElementById('2305.00640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2023: Earthvision Workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13941">arXiv:2303.13941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13941">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High Fidelity Freeform Manufacturing via Polyspectral Tomographic Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Bin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+W">Weichao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Mozajin%2C+H+S">Hossein S. Mozajin</a>, <a href="/search/physics?searchtype=author&amp;query=Narag%2C+J+P+C">Jadze P. C. Narag</a>, <a href="/search/physics?searchtype=author&amp;query=Christiansen%2C+T+D+V">Thor D. V. Christiansen</a>, <a href="/search/physics?searchtype=author&amp;query=Frisvad%2C+J+R">Jeppe R. Frisvad</a>, <a href="/search/physics?searchtype=author&amp;query=Schiefler%2C+A+A">Adrian A. Schiefler</a>, <a href="/search/physics?searchtype=author&amp;query=S%C3%B8rensen%2C+H+O">Henning O. S酶rensen</a>, <a href="/search/physics?searchtype=author&amp;query=Almdal%2C+K">Kristoffer Almdal</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Aminul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13941v2-abstract-short" style="display: inline;"> A key goal of freeform manufacturing is to achieve speed, precision and design freedom at the same time. Volumetric additive manufacturing via tomographic reconstruction offers high speed but cannot achieve optical resolution at high design freedom. Here we combine polyspectral tomographic reconstruction with pseudo-negative illumination to resolve the trilemma. We used the same units on a digital&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13941v2-abstract-full').style.display = 'inline'; document.getElementById('2303.13941v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13941v2-abstract-full" style="display: none;"> A key goal of freeform manufacturing is to achieve speed, precision and design freedom at the same time. Volumetric additive manufacturing via tomographic reconstruction offers high speed but cannot achieve optical resolution at high design freedom. Here we combine polyspectral tomographic reconstruction with pseudo-negative illumination to resolve the trilemma. We used the same units on a digital micromirror device to modulate two colors of illumination simultaneously to control the chemical stability of binary photoinhibition. The methodology enables a typical 4K projector to 3D-print up to 8.9 billion voxels in a 30x30x50 mm vial at two-digit-m-resolution in minutes, with prolonged process window and geometrically fidelous greyscale printing. These results are linked to, and thus can be improved directly upon upgrading, the precision of the optomechanical modality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13941v2-abstract-full').style.display = 'none'; document.getElementById('2303.13941v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03081">arXiv:2212.03081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03081">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Data analytics on key indicators for the city&#39;s urban services and dashboards for leadership and decision-making </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Islam%2C+M+A">Md Aminul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Sufian%2C+M+A">Md Abu Sufian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03081v4-abstract-short" style="display: inline;"> Cities are continuously evolving human settlements. Our cities are under strain in an increasingly urbanized world, and planners, decision-makers, and communities must be ready to adapt. Data is an important resource for municipal administration. Some technologies aid in the collection, processing, and visualization of urban data, assisting in the interpretation and comprehension of how urban syst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03081v4-abstract-full').style.display = 'inline'; document.getElementById('2212.03081v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03081v4-abstract-full" style="display: none;"> Cities are continuously evolving human settlements. Our cities are under strain in an increasingly urbanized world, and planners, decision-makers, and communities must be ready to adapt. Data is an important resource for municipal administration. Some technologies aid in the collection, processing, and visualization of urban data, assisting in the interpretation and comprehension of how urban systems operate. The relationship between data analytics and smart cities has come to light in recent years as interest in both has grown. A sophisticated network of interconnected systems, including planners and inhabitants, is what is known as a smart city. Data analysis has the potential to support data-driven decision-making in the context of smart cities. Both urban managers and residents are becoming more interested in city dashboards. Dashboards may collect, display, analyze, and provide information on regional performance to help smart cities development have sustainability. In order to assist decision-making processes and enhance the performance of cities, we examine how dashboards might be used to acquire accurate and representative information regarding urban challenges. This chapter culminates Data Analytics on key indicators for the city&#39;s urban services and dashboards for leadership and decision-making. A single web page with consolidated information, real-time data streams pertinent to planners and decision-makers as well as residents&#39; everyday lives, and site analytics as a method to assess user interactions and preferences are among the proposals for urban dashboards. Keywords: -Dashboard, data analytics, smart city, sustainability, Smart cities, City dashboards, Urban services, Decision-making, Interconnected systems, Real-time data streams, Key indicators, and Urban challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03081v4-abstract-full').style.display = 'none'; document.getElementById('2212.03081v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10289">arXiv:2205.10289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.10289">pdf</a>, <a href="https://arxiv.org/format/2205.10289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2022)303">10.1007/JHEP08(2022)303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heavy quarkonium dynamics at next-to-leading order in the binding energy over temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brambilla%2C+N">Nora Brambilla</a>, <a href="/search/physics?searchtype=author&amp;query=Escobedo%2C+M+%C3%81">Miguel 脕ngel Escobedo</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Ajaharul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Strickland%2C+M">Michael Strickland</a>, <a href="/search/physics?searchtype=author&amp;query=Tiwari%2C+A">Anurag Tiwari</a>, <a href="/search/physics?searchtype=author&amp;query=Vairo%2C+A">Antonio Vairo</a>, <a href="/search/physics?searchtype=author&amp;query=Griend%2C+P+V">Peter Vander Griend</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10289v1-abstract-short" style="display: inline;"> Using the potential non-relativistic quantum chromodynamics (pNRQCD) effective field theory, we derive a Lindblad equation for the evolution of the heavy-quarkonium reduced density matrix that is accurate to next-to-leading order (NLO) in the ratio of the binding energy of the state to the temperature of the medium. The resulting NLO Lindblad equation can be used to more reliably describe heavy-qu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10289v1-abstract-full').style.display = 'inline'; document.getElementById('2205.10289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10289v1-abstract-full" style="display: none;"> Using the potential non-relativistic quantum chromodynamics (pNRQCD) effective field theory, we derive a Lindblad equation for the evolution of the heavy-quarkonium reduced density matrix that is accurate to next-to-leading order (NLO) in the ratio of the binding energy of the state to the temperature of the medium. The resulting NLO Lindblad equation can be used to more reliably describe heavy-quarkonium evolution in the quark-gluon plasma at low temperatures compared to the leading-order truncation. For phenomenological application, we numerically solve the resulting NLO Lindblad equation using the quantum trajectories algorithm. To achieve this, we map the solution of the three-dimensional Lindblad equation to the solution of an ensemble of one-dimensional Schr枚dinger evolutions with Monte-Carlo sampled quantum jumps. Averaging over the Monte-Carlo sampled quantum jumps, we obtain the solution to the NLO Lindblad equation without truncation in the angular momentum quantum number of the states considered. We also consider the evolution of the system using only the complex effective Hamiltonian without stochastic jumps and find that this provides a reliable approximation for the ground state survival probability at LO and NLO. Finally, we make comparisons with our prior leading-order pNRQCD results and experimental data available from the ATLAS, ALICE, and CMS collaborations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10289v1-abstract-full').style.display = 'none'; document.getElementById('2205.10289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-EFT 169/22 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03642">arXiv:2112.03642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.03642">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtcomm.2022.104302">10.1016/j.mtcomm.2022.104302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A comprehensive first principles calculations on (Ba0.82K0.18)(Bi0.53Pb0.47)O3 single-cubic-perovskite superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rubel%2C+M+H+K">Mirza H. K. Rubel</a>, <a href="/search/physics?searchtype=author&amp;query=Mitro%2C+S+K">Sujon Kumar Mitro</a>, <a href="/search/physics?searchtype=author&amp;query=Hossain%2C+K+M">Khandaker Monower Hossain</a>, <a href="/search/physics?searchtype=author&amp;query=Rahaman%2C+M+M">Md. Mijanur Rahaman</a>, <a href="/search/physics?searchtype=author&amp;query=Hossain%2C+M+K">M. Khalid Hossain</a>, <a href="/search/physics?searchtype=author&amp;query=Hossain%2C+J">Jaker Hossain</a>, <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+B+K">B. K. Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+I">Istiak Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A+K+M+A">A. K. M. A. Islam</a>, <a href="/search/physics?searchtype=author&amp;query=El-Denglawey%2C+A">A. El-Denglawey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03642v1-abstract-short" style="display: inline;"> In this present study, the pseudopotential plane-wave (PP-PW) pathway in the scheme of density functional theory (DFT) is utilized to investigate the various physical properties on (Ba0.82K0.18)(Bi0.53Pb0.47)O3 (BKBPO) single perovskite superconductor. We have analyzed elastic constants and moduli at zero and elevated pressures (up to 25 GPa) as well. We also have investigated the anisotropic natu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03642v1-abstract-full').style.display = 'inline'; document.getElementById('2112.03642v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03642v1-abstract-full" style="display: none;"> In this present study, the pseudopotential plane-wave (PP-PW) pathway in the scheme of density functional theory (DFT) is utilized to investigate the various physical properties on (Ba0.82K0.18)(Bi0.53Pb0.47)O3 (BKBPO) single perovskite superconductor. We have analyzed elastic constants and moduli at zero and elevated pressures (up to 25 GPa) as well. We also have investigated the anisotropic nature incorporating both the theoretical indices and graphical representations in 2D and 3D dimensions, which reveals a high level of anisotropy. The flatness of the energy bands near EF is a sign of Van-Hf singularity that might increase the electron pairing and origination of high-TC superconductivity. The computed band structure exhibits its metallic characteristics is confirmed by band overlapping. A band of DOS is formed for the strong hybridization of the constituent elements. The orbital electrons of O-2p contribute most dominantly at EF in contrast to all orbital electrons. The orbital electrons at the EF are higher from both the partial density of states and charge density mapping investigation. The coexistence of the electron and hole-like Fermi sheets exhibits the multi-band nature of BKBPO. On the other hand, Fermi surfaces with flat faces promote transport features and Fermi surface nesting as well. The calculated value of the electron-phonon coupling constant (位 = 1.46) is slightly lower than the isostructural superconductor, which indicates that the studied BKBPO can be treated as a strongly coupled superconductor similar to the reported isostructural perovskite superconductors. Furthermore, the thermodynamic properties have been evaluated and analyzed at elevated temperature and pressure by using harmonic Debye approximation (QHDA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03642v1-abstract-full').style.display = 'none'; document.getElementById('2112.03642v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Communications, 33 (2022) 104302 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06147">arXiv:2107.06147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06147">pdf</a>, <a href="https://arxiv.org/format/2107.06147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2021.108266">10.1016/j.cpc.2021.108266 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QTRAJ 1.0: A Lindblad equation solver for heavy-quarkonium dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Omar%2C+H+B">Hisham Ba Omar</a>, <a href="/search/physics?searchtype=author&amp;query=Escobedo%2C+M+%C3%81">Miguel 脕ngel Escobedo</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Ajaharul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Strickland%2C+M">Michael Strickland</a>, <a href="/search/physics?searchtype=author&amp;query=Thapa%2C+S">Sabin Thapa</a>, <a href="/search/physics?searchtype=author&amp;query=Griend%2C+P+V">Peter Vander Griend</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+J+H">Johannes Heinrich Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06147v2-abstract-short" style="display: inline;"> We introduce an open-source package called QTraj that solves the Lindblad equation for heavy-quarkonium dynamics using the quantum trajectories algorithm. The package allows users to simulate the suppression of heavy-quarkonium states using externally-supplied input from 3+1D hydrodynamics simulations. The code uses a split-step pseudo-spectral method for updating the wave-function between jumps,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06147v2-abstract-full').style.display = 'inline'; document.getElementById('2107.06147v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06147v2-abstract-full" style="display: none;"> We introduce an open-source package called QTraj that solves the Lindblad equation for heavy-quarkonium dynamics using the quantum trajectories algorithm. The package allows users to simulate the suppression of heavy-quarkonium states using externally-supplied input from 3+1D hydrodynamics simulations. The code uses a split-step pseudo-spectral method for updating the wave-function between jumps, which is implemented using the open-source multi-threaded FFTW3 package. This allows one to have manifestly unitary evolution when using real-valued potentials. In this paper, we provide detailed documentation of QTraj 1.0, installation instructions, and present various tests and benchmarks of the code. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06147v2-abstract-full').style.display = 'none'; document.getElementById('2107.06147v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 10 figures; v2 - minor typos fixed; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-EFT 142/21; HU-EP-21/17-RTG </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Computer Physics Communications 273, 108266 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01407">arXiv:2010.01407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.01407">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/htj.21981">10.1002/htj.21981 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mixed Convective Heat Transfer Enhancement in a Ventilated Cavity by Flow Modulation via Rotating Plate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Aminul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Rony%2C+M+D">Monoranjan Debnath Rony</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+M">Mahmudul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Chowdhury%2C+E+H">Emdadul Haque Chowdhury</a>, <a href="/search/physics?searchtype=author&amp;query=Hasan%2C+M+N">Mohammad Nasim Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01407v1-abstract-short" style="display: inline;"> The present study numerically explores the mixed convection phenomena in a differentially heated ventilated square cavity with active flow modulation via a rotating plate. Forced convection flow in the cavity is attained by maintaining an external fluid flow through an opening at the bottom of the left cavity wall while leaving it through another opening at the right cavity wall. A counter-clockwi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01407v1-abstract-full').style.display = 'inline'; document.getElementById('2010.01407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01407v1-abstract-full" style="display: none;"> The present study numerically explores the mixed convection phenomena in a differentially heated ventilated square cavity with active flow modulation via a rotating plate. Forced convection flow in the cavity is attained by maintaining an external fluid flow through an opening at the bottom of the left cavity wall while leaving it through another opening at the right cavity wall. A counter-clockwise rotating plate at the center of the cavity acts as active flow modulator. Moving mesh approach is used for the rotation of the plate and the numerical solution is achieved using Arbitrary Lagrangian-Eulerian (ALE) finite element formulation with a quadrilateral discretization scheme. Transient parametric simulations have been performed for various frequency of the rotating plate for a fixed Reynolds number (Re) of 100 based on maximum inlet flow velocity while the Richardson number (Ri) is maintained at unity. Heat transfer performance has been evaluated in terms of spatially averaged Nusselt number and time-averaged Nusselt number along the heated wall. Power spectrum analysis in the frequency domain obtained from the fast Fourier transform (FFT) analysis indicates that thermal frequency and plate frequency start to deviate from each other at higher values of velocity ratio (&gt; 4). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01407v1-abstract-full').style.display = 'none'; document.getElementById('2010.01407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00664">arXiv:1905.00664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.00664">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.195401">10.1103/PhysRevB.99.195401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic Evaluation of Charge-transfer Doping and Strain in Graphene/MoS2 Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rao%2C+R">Rahul Rao</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A+E">Ahmad E. Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+S">Simranjeet Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Berry%2C+R">Rajiv Berry</a>, <a href="/search/physics?searchtype=author&amp;query=Kawakami%2C+R+K">Roland K Kawakami</a>, <a href="/search/physics?searchtype=author&amp;query=Maruyama%2C+B">Benji Maruyama</a>, <a href="/search/physics?searchtype=author&amp;query=Katoch%2C+J">Jyoti Katoch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00664v2-abstract-short" style="display: inline;"> It is important to study the van der Waals interface in emerging vertical heterostructures based on layered two-dimensional (2D) materials. Being atomically thin, 2D materials are susceptible to significant strains as well as charge transfer doping across the interfaces. Here we use Raman and photoluminescence (PL) spectroscopy to study the interface between monolayer graphene/MoS2 heterostructure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00664v2-abstract-full').style.display = 'inline'; document.getElementById('1905.00664v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00664v2-abstract-full" style="display: none;"> It is important to study the van der Waals interface in emerging vertical heterostructures based on layered two-dimensional (2D) materials. Being atomically thin, 2D materials are susceptible to significant strains as well as charge transfer doping across the interfaces. Here we use Raman and photoluminescence (PL) spectroscopy to study the interface between monolayer graphene/MoS2 heterostructures prepared by mechanical exfoliation and layer-by-layer transfer. By using correlation analysis between the Raman modes of graphene and MoS2 we show that both layers are subjected to compressive strain and charge transfer doping following mechanical exfoliation and thermal annealing. Furthermore, we show that both strain and carrier concentration can be modulated in the heterostructures with additional thermal annealing. Our study highlights the importance of considering both mechanical and electronic coupling when characterizing the interface in van der Waals heterostructures, and demonstrates a method to tune their electromechanical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00664v2-abstract-full').style.display = 'none'; document.getElementById('1905.00664v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 195401, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00454">arXiv:1901.00454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.00454">pdf</a>, <a href="https://arxiv.org/format/1901.00454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsaem.8b01070">10.1021/acsaem.8b01070 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absorption Enhancement for Ultra-Thin Solar Fuel Devices with Plasmonic Gratings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Manley%2C+P">Phillip Manley</a>, <a href="/search/physics?searchtype=author&amp;query=Abdi%2C+F+F">Fatwa F. Abdi</a>, <a href="/search/physics?searchtype=author&amp;query=Berglund%2C+S">Sean Berglund</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A+T+M+N">A. T. M. Nazmul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Burger%2C+S">Sven Burger</a>, <a href="/search/physics?searchtype=author&amp;query=van+de+Krol%2C+R">Roel van de Krol</a>, <a href="/search/physics?searchtype=author&amp;query=Schmid%2C+M">Martina Schmid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00454v1-abstract-short" style="display: inline;"> We present a concept for an ultra-thin solar fuel device with a nanostructured back contact. Using rigorous simulations we show that the nanostructuring significantly increases the absorption in the semiconductor, CuBi$_2$O$_4$ in this case, by 47\% (5.2~mAcm$^{-2}$) through the excitation of plasmonic modes. We are able to attribute the resonances in the device to metal-insulator-metal plasmons c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00454v1-abstract-full').style.display = 'inline'; document.getElementById('1901.00454v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00454v1-abstract-full" style="display: none;"> We present a concept for an ultra-thin solar fuel device with a nanostructured back contact. Using rigorous simulations we show that the nanostructuring significantly increases the absorption in the semiconductor, CuBi$_2$O$_4$ in this case, by 47\% (5.2~mAcm$^{-2}$) through the excitation of plasmonic modes. We are able to attribute the resonances in the device to metal-insulator-metal plasmons coupled to either localised surface plasmon resonances or surface plasmon polaritons. Rounding applied to the metallic corners leads to a blueshift in the resonance wavelength while maintaining absorption enhancement, thus supporting the possibility for a successful realization of the device. For a 2D array, the tolerance of the polarization-dependent absorption enhancement is investigated and compared to a planar structure. The device maintains an absorption enhancement up to incident angles of 75$^{\circ}$. The study highlights the high potential for plasmonics in ultra-thin opto-electronic devices such as in solar fuel generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00454v1-abstract-full').style.display = 'none'; document.getElementById('1901.00454v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figures 18 Pages. Supporting Information Included (7 Figures 11 pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl. Energy Mater. 1 p.5810-5815 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.04181">arXiv:1706.04181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.04181">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature25466">10.1038/nature25466 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Observation of Bethe Strings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jianda Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Wang Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Bera%2C+A+K">Anup Kumar Bera</a>, <a href="/search/physics?searchtype=author&amp;query=Kamenskyi%2C+D">Dmytro Kamenskyi</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A+T+M+N">A. T. M. Nazmul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shenglong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Law%2C+J+M">Joseph Matthew Law</a>, <a href="/search/physics?searchtype=author&amp;query=Lake%2C+B">Bella Lake</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Congjun Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Loidl%2C+A">Alois Loidl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.04181v1-abstract-short" style="display: inline;"> Almost one century ago, string states - complex bound states (Wellenkomplexe) of magnetic excitations - have been predicted to exist in one-dimensional quantum magnets and since then become a subject of intensive theoretical study. However, experimental realization and identification of string states in condensed-matter systems remains an unsolved challenge up to date. Here we use high-resolution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04181v1-abstract-full').style.display = 'inline'; document.getElementById('1706.04181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.04181v1-abstract-full" style="display: none;"> Almost one century ago, string states - complex bound states (Wellenkomplexe) of magnetic excitations - have been predicted to exist in one-dimensional quantum magnets and since then become a subject of intensive theoretical study. However, experimental realization and identification of string states in condensed-matter systems remains an unsolved challenge up to date. Here we use high-resolution terahertz spectroscopy to identify string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. We observe complex bound states (strings) and fractional magnetic excitations (psinons and antipsinons) in the field-induced critical regime, which are precisely described by the Bethe ansatz. Our study reveals that two-string and three-string states govern the quantum spin dynamics close to the quantum criticality, while the fractional excitations are dominant at low energies, reflecting the antiferromagnetic quantum fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.04181v1-abstract-full').style.display = 'none'; document.getElementById('1706.04181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 554, 219-223 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.05564">arXiv:1510.05564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.05564">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3329/jsr.v6i3.19191">10.3329/jsr.v6i3.19191 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sulvanite Compounds Cu3TMS4 (TM= V, Nb and Ta): Elastic, Electronic, Optical and Thermal Properties using First-principles Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ali%2C+M+A">M. A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Jahan%2C+N">N. Jahan</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A+K+M+A">A. K. M. A. Islam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.05564v1-abstract-short" style="display: inline;"> We present a systematic first-principles study of the structural, elastic, electronic, optical and thermodynamics properties of the sulvanite compounds Cu3TMS4 (TM = V, Nb and Ta). The structural, elastic and electronic properties are in fact revisited using a different calculation code than that used by other workers and the results are compared. The band gaps are found to be 1.041, 1.667 and 1.8&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.05564v1-abstract-full').style.display = 'inline'; document.getElementById('1510.05564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.05564v1-abstract-full" style="display: none;"> We present a systematic first-principles study of the structural, elastic, electronic, optical and thermodynamics properties of the sulvanite compounds Cu3TMS4 (TM = V, Nb and Ta). The structural, elastic and electronic properties are in fact revisited using a different calculation code than that used by other workers and the results are compared. The band gaps are found to be 1.041, 1.667 and 1.815 eV for Cu3VS4, Cu3NbS4 and Cu3TaS4, respectively which are comparable to other available calculated results. The optical properties such as dielectric function, refractive index, photoconductivity, absorption coefficients, reflectivity and loss function have been calculated for the first time. The calculated results are compared with the limited measured data on energy dependent refractive index and reflectivity coefficient available only for Cu3TaS4. All the materials are dielectric, transparent in the visible range. The values of plasma frequencies are found to be 15.36, 15.58 and 15.64 eV for Cu3VS4, Cu3NbS4 and Cu3TaS4, respectively. Furthermore, following the quasi-harmonic Debye model, the temperature effect on the bulk modulus, heat capacity, and Debye temperature is calculated reflecting the anharmonic phonon effects and these are compared with both experimental and other theoretical data where available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.05564v1-abstract-full').style.display = 'none'; document.getElementById('1510.05564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Scientific Research 6 (2014) 407-419 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.3235">arXiv:1011.3235</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Markov-Chain Formulation of Reaction-Diffusion Model and its Implications for Statistical Distribution of Interface Defects in Nanoscale Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A+E">Ahmad Ehteshamul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Alam%2C+M+A">Muhammad Ashraful Alam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.3235v2-abstract-short" style="display: inline;"> Continued scaling of nanoscale transistors leads to broad device-to-device fluctuation of parameters due to random dopant effects, channel length variation, interface trap generation, etc. In this paper, we obtain the statistics of negative bias temperature instability (NBTI)-induced interface defect generation in ultra-scaled MOSFET by Markov Chain Monte-Carlo (MCMC) solution of Reaction-Diffusio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.3235v2-abstract-full').style.display = 'inline'; document.getElementById('1011.3235v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.3235v2-abstract-full" style="display: none;"> Continued scaling of nanoscale transistors leads to broad device-to-device fluctuation of parameters due to random dopant effects, channel length variation, interface trap generation, etc. In this paper, we obtain the statistics of negative bias temperature instability (NBTI)-induced interface defect generation in ultra-scaled MOSFET by Markov Chain Monte-Carlo (MCMC) solution of Reaction-Diffusion (R-D) model. Our results show that the interface defect generation at a particular stress time, i.e., NIT}@tSTS in small transistors should follow a skew-normal distribution and that the generation and annealing of interface defects are strongly correlated. Next, we use a random percolative network to demonstrate (which is also consistent with previously published results in literature based on separate techniques) that the distribution of threshold voltage shift for single interface defect, i.e., 螖VT@NIT is exponential, with finite number of transistors having zero 螖VT. Finally, we show that the statistics of 螖VT@tSTS - based on the convolution of NIT@tSTS and 螖VT@NIT - is broadly consistent with the available experimental data in literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.3235v2-abstract-full').style.display = 'none'; document.getElementById('1011.3235v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been withdrawn by the author. A similar paper is already published in Journal of Computational Electronics with the following link: http://www.springerlink.com/content/y0p362uhh3gm0u12/fulltext.pdf</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10