CINXE.COM

Search results for: Kaptay György

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Kaptay György</title> <meta name="description" content="Search results for: Kaptay György"> <meta name="keywords" content="Kaptay György"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Kaptay György" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Kaptay György"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Kaptay György</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Investigation of the Grain-Boundary Segregation Transition in the Binary Fe-C Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V%C3%A9gh%20%C3%81d%C3%A1m">Végh Ádám</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekler%20Csaba"> Mekler Csaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Dezs%C5%91%20Andr%C3%A1s"> Dezső András</a>, <a href="https://publications.waset.org/abstracts/search?q=Szab%C3%B3%20D%C3%A1vid"> Szabó Dávid</a>, <a href="https://publications.waset.org/abstracts/search?q=Stomp%20D%C3%A1vid"> Stomp Dávid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaptay%20Gy%C3%B6rgy"> Kaptay György</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grain boundary segregation transition (GBST) has been calculated by a thermodynamic model in binary alloys. The method is used on cementite (Fe3C) segregation in base-centered cubic (ferrite) iron (Fe) in the Fe-C binary system. The GBST line is shown in the Fe3C lacking part of the phase diagram with high solvent (Fe) concentration. At a lower solute content (C) or at higher temperature the grain boundary is composed mostly of the solvent atoms (Fe). On higher concentration compared to the GBST line or at lower temperature a phase transformation occurs at the grain boundary, the latter mostly composed of the associates (Fe3C). These low-segregation and high-segregation states are first order interfacial phase transitions of the grain boundary and can be transformed into each other reversibly. These occur when the GBST line is crossed by changing the bulk composition or temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GBST" title="GBST">GBST</a>, <a href="https://publications.waset.org/abstracts/search?q=cementite" title=" cementite"> cementite</a>, <a href="https://publications.waset.org/abstracts/search?q=segregation" title=" segregation"> segregation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-C%20alloy" title=" Fe-C alloy"> Fe-C alloy</a> </p> <a href="https://publications.waset.org/abstracts/24587/investigation-of-the-grain-boundary-segregation-transition-in-the-binary-fe-c-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Communication Training about Depression and Suicide Prevention for Pharmacists: A Hungarian Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%B3nika%20Ditta%20T%C3%B3th">Mónika Ditta Tóth</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81d%C3%A1m%20Fritz"> Ádám Fritz</a>, <a href="https://publications.waset.org/abstracts/search?q=Bal%C3%A1zs%20Hank%C3%B3"> Balázs Hankó</a>, <a href="https://publications.waset.org/abstracts/search?q=Gy%C3%B6rgy%20Purebl"> György Purebl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communication training about depression and suicide prevention for pharmacists – A Hungarian pilot study Mónika Ditta Tóth1, Ádám Fritz2, Balázs Hankó2, György Purebl1 1: Semmelweis University, Institute of Behavioural Sciences 2: Semmelweis University, University Pharmacy Department of Pharmacy Administration Background: Suicide rates in Hungary have been one of the highest in the European Union. Depression is one of the main risk factors for suicide and recognizing and treating depression is an effective way to prevent suicidal behaviour. In their daily practice, pharmacists meet patients with high risk of mental health problems. Therefore they have a key role in the prevention of depression and suicide. Aim: The main aim of this study is to raise pharmacists’ awareness about depression and suicide to enable better recognation of verbal and non-verbal signs of these deseases. Another important objective is to reduce their stigma about depression and increase their confidence in communication with depressed and/or suicidal patients. Methods: A 3-hour communication workshop has been delivered in this pilot study about the reasons, trigger factors, verbal and non-verbal signs of depression and suicide. The training includes communication techniques which have been developed to patients needs, as well as role-playing scenarios. Depression Stigma and Morris Confidence Scales were applied before, after and 6 weeks following the training. The results of the training group are then compared with two of the following pharmacist groups: 1. written material only (N=15), 2. no material (N=15). Results: One-way ANOVA revealed significant differences in the training group regarding the level of confidence in treating and communicating with patients with depression and/or suicide following the training, and after 6 weeks (F(2, 24)= 7,135, p=,004; baseline: 20,37, after training: 30,00, follow up: 27,66). After the 3-hour workshop the personal stigma about depression decreased (baselin: 19,75 after training: 17,00, p=0,075) in the training group (N=9), whilst the perceived stigma did not change (before: 33.54, after: 33,44, p=NS). Trainees assessed the workshop as ‘useful’ and ‘gap filling’. No significant differences was found in the group of pharmacisists who got written material only. Conclusions: Despite the high rates of depression and suicide in Hungary, pharmacists do not receive lectures or seminars about mental health during their university studies. Such half-day workshops could fill this gap and give practical help to recognize and communicate with depressed and/or suicidal patients in a more effective way. This way pharmacists, as community gate-keepers, could contribute to a more effective suicide prevention program in Hungary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication%20training" title="communication training">communication training</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacists" title=" pharmacists"> pharmacists</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=suicide" title=" suicide"> suicide</a> </p> <a href="https://publications.waset.org/abstracts/105483/communication-training-about-depression-and-suicide-prevention-for-pharmacists-a-hungarian-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Determination of the Phosphorous Solubility in the Iron by the Function of the Other Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andras%20Dezs%C5%91">Andras Dezső</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Baumli"> Peter Baumli</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Kaptay"> George Kaptay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phosphorous is the important components in the steels, because it makes the changing of the mechanical properties and possibly modifying the structure. The phosphorous can be create the Fe3P compounds, what is segregated in the ferrite grain boundary in the intervals of the nano-, or microscale. This intermetallic compound is decreasing the mechanical properties, for example it makes the blue brittleness which means that the brittle created by the segregated particles at 200 ... 300°C. This work describes the phosphide solubility by the other components effect. We make calculations for the Ni, Mo, Cu, S, V, C, Si, Mn, and the Cr elements by the Thermo-Calc software. We predict the effects by approximate functions. The binary Fe-P system has a solubility line, which has a determinating equation. The result is below: lnwo = -3,439 – 1.903/T where the w0 means the weight percent of the maximum soluted concentration of the phosphorous, and the T is the temperature in Kelvin. The equation show that the P more soluble element when the temperature increasing. The nickel, molybdenum, vanadium, silicon, manganese, and the chromium make dependence to the maximum soluted concentration. These functions are more dependent by the elements concentration, which are lower when we put these elements in our steels. The copper, sulphur and carbon do not make effect to the phosphorous solubility. We predict that all of cases the maximum solubility concentration increases when the temperature more and more high. Between 473K and 673 K, in the phase diagram, these systems contain mostly two or three phase eutectoid, and the singe phase, ferritic intervals. In the eutectoid areas the ferrite, the iron-phosphide, and the metal (III)-phospide are in the equilibrium. In these modelling we predicted that which elements are good for avoid the phosphide segregation or not. These datas are important when we make or choose the steels, where the phosphide segregation stopping our possibilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphorous" title="phosphorous">phosphorous</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=segregation" title=" segregation"> segregation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-calc%20software" title=" thermo-calc software"> thermo-calc software</a> </p> <a href="https://publications.waset.org/abstracts/17522/the-determination-of-the-phosphorous-solubility-in-the-iron-by-the-function-of-the-other-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Connection between Body Composition and Blood Samples Results in Aesthetic Sports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9ka%20Kov%C3%A1cs">Réka Kovács</a>, <a href="https://publications.waset.org/abstracts/search?q=Gy%C3%B6rgy%20T%C3%A9gl%C3%A1sy"> György Téglásy</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20Boros"> Szilvia Boros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Aim of the Study: Low body fat percentage frequently occurs in aesthetic sports. Because of the unrealistic expectations, their quantity and quality of nutrition intake are inadequate. This can be linked to several health issues which appear in blood samples (iron, ferritin, creatine kinase, etc.). Our retrospective study aimed to investigate the connection between body composition (InBody 770 monitor) and blood samples test results among elite adolescent (14-18 years) and adult (19-28 years) aesthetic athletes. Methods: Data collection happened between 01.08.2022. and 15.08.2022 in National Institute for Sports Medicine, Budapest. The final group consisted of 111 athletes (n=111; adolescents: n=68, adults: n=43). We used descriptive statistics, a two-sample t-test, and correlation analysis with Microsoft Office Excel 2007 software. Our results were considered significant if p<0,05. Results: In 33,3% (37/111) we found low body fat percentage (girls and women: <12%, boys and men: <8%) and in 64% (71/111) high creatine kinase levels. Differences were found mainly in the adolescent group. We found a correlation between body weight and total cholesterol, visceral fat and triglyceride, hematocrit and iron-linking capacity, moreover body fat percentage and ferritin levels. Discussion: It is important to start education about sports nutrition at an early age. The connection between low body fat percentage, serum iron, triglyceride, and ferritin levels refers to the fact that the nutrition intake of the athletes is inadequate. High blood concentrations of creatine kinase may show a lack of proper recovery, which is essential to improve health and performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20fat%20percentage" title="body fat percentage">body fat percentage</a>, <a href="https://publications.waset.org/abstracts/search?q=creatine%20kinase" title=" creatine kinase"> creatine kinase</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20nutrition" title=" sports nutrition"> sports nutrition</a> </p> <a href="https://publications.waset.org/abstracts/155710/the-connection-between-body-composition-and-blood-samples-results-in-aesthetic-sports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20%20Abdulhamid">Mahmoud Abdulhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Rifan%20Hardian"> Rifan Hardian</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Bhatt"> Prashant Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuvo%20Datta"> Shuvo Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Ramirez"> Adrian Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Gascon"> Jorge Gascon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Eddaoudi"> Mohamed Eddaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyorgy%20Szekely"> Gyorgy Szekely</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polybenzimidazole%20%28PBI%29" title="polybenzimidazole (PBI)">polybenzimidazole (PBI)</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsically%20microporous%20polybenzimidazole%20%28iPBI%29" title=" intrinsically microporous polybenzimidazole (iPBI)"> intrinsically microporous polybenzimidazole (iPBI)</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title=" gas separation"> gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=pnergy%20and%20process%20simulations" title=" pnergy and process simulations"> pnergy and process simulations</a> </p> <a href="https://publications.waset.org/abstracts/158578/molecular-engineering-of-intrinsically-microporous-polybenzimidazole-for-energy-efficient-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Prophylactic Replacement of Voice Prosthesis: A Study to Predict Prosthesis Lifetime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne%20Heirman">Anne Heirman</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20van%20der%20Noort"> Vincent van der Noort</a>, <a href="https://publications.waset.org/abstracts/search?q=Rob%20van%20Son"> Rob van Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Marije%20Petersen"> Marije Petersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisette%20van%20der%20Molen"> Lisette van der Molen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyorgy%20Halmos"> Gyorgy Halmos</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Dirven"> Richard Dirven</a>, <a href="https://publications.waset.org/abstracts/search?q=Michiel%20van%20den%20Brekel"> Michiel van den Brekel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Voice prosthesis leakage significantly impacts laryngectomies patients' quality of life, causing insecurity and frequent unplanned hospital visits and costs. In this study, the concept of prophylactic voice prosthesis replacement was explored to prevent leakages. Study Design: A retrospective cohort study. Setting: Tertiary hospital. Methods: Device lifetimes and voice prosthesis replacements of a retrospective cohort, including all patients with laryngectomies between 2000 and 2012 in the Netherlands Cancer Institute, were used to calculate the number of needed voice prostheses per patient per year when preventing 70% of the leakages by prophylactic replacement. Various strategies for the timing of prophylactic replacement were considered: Adaptive strategies based on the individual patient’s history of replacement and fixed strategies based on the results of patients with similar voice prosthesis or treatment characteristics. Results: Patients used a median of 3.4 voice prostheses per year (range 0.1-48.1). We found a high inter-and intrapatient variability in device lifetime. When applying prophylactic replacement, this would become a median of 9.4 voice prostheses per year, which means replacement every 38 days, implying more than six additional voice prostheses per patient per year. The individual adaptive model showed that preventing 70% of the leakages was impossible for most patients, and only a median of 25% can be prevented. Monte-Carlo simulations showed that prophylactic replacement is not feasible due to the high Coefficient of Variation (Standard Deviation/Mean) in device lifetime. Conclusion: Based on our simulations, prophylactic replacement of voice prostheses is not feasible due to high inter-and intrapatient variation in device lifetime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voice%20prosthesis" title="voice prosthesis">voice prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20rehabilitation" title=" voice rehabilitation"> voice rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20laryngectomy" title=" total laryngectomy"> total laryngectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20leakage" title=" prosthetic leakage"> prosthetic leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20lifetime" title=" device lifetime"> device lifetime</a> </p> <a href="https://publications.waset.org/abstracts/152896/prophylactic-replacement-of-voice-prosthesis-a-study-to-predict-prosthesis-lifetime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Methods and Techniques for Lower Danube Sturgeon Monitoring Used for the Assessment of Anthropic Activities Pressures and the Quantification of Risks on These Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyorgy%20Deak">Gyorgy Deak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marius%20C.%20Raischi"> Marius C. Raischi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucian%20P.%20Georgescu"> Lucian P. Georgescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiberius%20M.%20Danalache"> Tiberius M. Danalache</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Holban"> Elena Holban</a>, <a href="https://publications.waset.org/abstracts/search?q=Madalina%20G.%20Boboc"> Madalina G. Boboc</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Matei"> Monica Matei</a>, <a href="https://publications.waset.org/abstracts/search?q=Catalina%20Iticescu"> Catalina Iticescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Marius%20V.%20Olteanu"> Marius V. Olteanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Zamfir"> Stefan Zamfir</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Cornateanu"> Gabriel Cornateanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, on the Lower Danube, different types of pressures have been identified that affect the anadromous sturgeons stocks with an impact that leads to their decline. This paper presents techniques and procedures used by Romanian experts in the tagging and monitoring of anadromous sturgeons, as well as unique results at international level obtained on the basis of an informational volume collected in over 7 years of monitoring on these species behavior (both for adults as well as for ultrasonically tagged juveniles) on the Lower Danube. The local impact of hydrotechnical constructions (bottom sill, maritime navigation channel), the global impact of the poaching phenomenon and the impact of the restocking programs with sturgeon juveniles were assessed. Thus, the bottom sill impact on the Bala branch, the Bastroe Channel (cross-border impact) and the poaching phenomenon at the level of the Lower Danube was analyzed on the basis of a unique informational volume obtained through the use of patented monitoring systems by the Romanian experts (DKTB respectively, DKMR-01T). At the same time, the results from the monitoring of ultrasonically tagged sturgeon juveniles from the 2015 repopulation program are presented. Conclusions resulting from research can ensure favorable premises for finding some conservation solutions for CITES-protected sturgeon species that have survived for millions of years, currently being 1 species on the brink of extinction - Russian sturgeon, 2 species in danger of extinction - Beluga sturgeon and Stellate sturgeon and 2 species already extinct from the Lower Danube, namely common sturgeon and ship sturgeon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lower%20Danube" title="Lower Danube">Lower Danube</a>, <a href="https://publications.waset.org/abstracts/search?q=sturgeons%20monitoring%20%28adults%20and%20juveniles%29" title=" sturgeons monitoring (adults and juveniles)"> sturgeons monitoring (adults and juveniles)</a>, <a href="https://publications.waset.org/abstracts/search?q=tagging" title=" tagging"> tagging</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20on%20conservation" title=" impact on conservation"> impact on conservation</a> </p> <a href="https://publications.waset.org/abstracts/100774/methods-and-techniques-for-lower-danube-sturgeon-monitoring-used-for-the-assessment-of-anthropic-activities-pressures-and-the-quantification-of-risks-on-these-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Weal: The Human Core of Well-Being as Attested by Social and Life Sciences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyorgy%20Folk">Gyorgy Folk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite set of cardinal needs define the human core of living well shaped on the evolutionary time scale as attested by social and life sciences of the last decades. Well-being is the purported state of living well. Living of humans akin any other living beings involves the exchange of vital substance with nature, maintaining a supportive symbiosis with an array of other living beings, living up to bonds to kin and exerting efforts to sustain living. A supportive natural environment, access to material resources, the nearness to fellow beings, and life sustaining activity are prerequisites of well-being. Well-living is prone to misinterpretation as an individual achievement, one lives well only and only if bonded to human relationships, related to a place, incorporated in nature. Akin all other forms of it, human life is a self-sustaining arrangement. One may say that the substance of life is life, and not materials, products, and services converted into life. The human being remains shaped on an evolutionary time scale and is enabled within the non-altering core of human being, invariant of cultural differences in earthly space and time. Present paper proposes the introduction of weal, the missing link in the causal chain of societal performance and the goodness of life. Interpreted differently over the ages, cultures and disciplines, instead of well-being, the construct in general use, weal is proposed as the underlying foundation of well-being. Weal stands for the totality of socialised reality as framing well-being for the individual beyond the possibility of deliberate choice. The descriptive approach to weal, mapping it under the guidance of discrete scientific disciplines reveals a limited set of cardinal aspects, labeled here the cardinal needs. Cardinal expresses the fundamental reorientation weal can bring about, needs deliver the sense of sine qua non. Weal is conceived as a oneness mapped along eight cardinal needs. The needs, approached as aspects instead of analytically isolated factors do not require mutually exclusive definitions. To serve the purpose of reorientation, weal is operationalised as a domain in multidimensional space, each dimension encompassing an optimal level of availability of the fundamental satisfiers between the extremes of drastic insufficiency and harmful excess, ensured by actual human effort. Weal seeks balance among the material and social aspects of human being while allows for cultural and individual uniqueness in attaining human flourishing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20well-being" title="human well-being">human well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20theory" title=" economic theory"> economic theory</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20needs" title=" human needs"> human needs</a> </p> <a href="https://publications.waset.org/abstracts/91641/weal-the-human-core-of-well-being-as-attested-by-social-and-life-sciences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Chemical and Electrochemical Syntheses of Two Organic Components of Ginger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrienn%20Kiss">Adrienn Kiss</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoly%20Zauer"> Karoly Zauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyorgy%20Keglevich"> Gyorgy Keglevich</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Molnarne%20Bernath"> Rita Molnarne Bernath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferulic%20acid" title="ferulic acid">ferulic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=zingerone" title=" zingerone"> zingerone</a> </p> <a href="https://publications.waset.org/abstracts/82801/chemical-and-electrochemical-syntheses-of-two-organic-components-of-ginger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Memories of Lost Fathers: The Unfinished Transmission of Generational Values in Hungarian Cinema by Peter Falanga</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Falanga">Peter Falanga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the process of de-Stalinization that began in 1956 with the Twentieth Congress of the Soviet Communist Party, many filmmakers in Hungary chose to explore their country’s political discomforts by using Socialist Realism as a negative model against which they could react to the dominating ideology. A renewed national film industry and a more permissive political regime would allow filmmakers to take to task the plight of the preceding generation who had experienced the fatal political turmoil of both World Wars and the purges of Stalin. What follows is no longer the multigenerational unity found in Socialist Realism wherein both the old and the young embrace Stalin’s revolutionary optimism; instead, the protagonists are parentless, and thus their connection to the previous generation is partially severed. In these films, violent historical forces leave one generation to search for both a connection with their family’s past, and for moral guidance to direct their future. István Szabó’s Father (1966), Márta Mészáros Diary for My Children (1984), and Pál Gábor’s Angi Vera (1978) each consider the fraught relationship between successive generations through the lens of postwar youth. A characteristic each of their protagonist’s share is that they are all missing one or both parents, and cope with familial loss either through recalling memories of their parents in dream-like sequences, or, in the case of Angi Vera, through embracing the surrogate paternalism that the Communist Party promises to provide. This paper considers the argument these films present about the progress of Hungarian history, and how this topic is explored in more recent films that similarly focus on the transmission of generational values. Scholars such as László Strausz and John Cunningham have written on the continuous concern with the transmission of generational values in more recent films such as István Szabó’s Sunshine (1999), Béla Tarr’s Werckmeister Harmonies (2000), György Pálfi’s Taxidermia (2006), Ágnes Kocsis’ Pál Adrienn (2010), and Kornél Mundruczó’s Evolution (2021). These films, they argue, make intimate portrayals of the various sweeping political changes in Hungary’s history and question how these epochs or events have impacted Hungarian identities. If these films attempt to personalize historical shifts of Hungary, then what is the significance of featuring characters who have lost one or both parents? An attempt to understand this coherent trend in Hungarian cinema will profit from examining the earlier, celebrated films of Szabó, Mészáros, and Gábor, who inaugurated this preoccupation with generational values. The pervasive interplay of dreams and memory in their films invites an additional element to their argument concerning historical progression. This paper incorporates Richard Teniman’s notion of the “dialectics of memory” in which memory is in a constant process of negation and reinvention to explain why these Directors prefer to explore Hungarian identity through the disarranged form of psychological realism over the linear causality structure of historical realism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=film%20theory" title="film theory">film theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Eastern%20European%20Studies" title=" Eastern European Studies"> Eastern European Studies</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20history" title=" film history"> film history</a>, <a href="https://publications.waset.org/abstracts/search?q=Eastern%20European%20History" title=" Eastern European History"> Eastern European History</a> </p> <a href="https://publications.waset.org/abstracts/147862/memories-of-lost-fathers-the-unfinished-transmission-of-generational-values-in-hungarian-cinema-by-peter-falanga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10