CINXE.COM
Search results for: qubits
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: qubits</title> <meta name="description" content="Search results for: qubits"> <meta name="keywords" content="qubits"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="qubits" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="qubits"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: qubits</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Quantum Computing with Qudits on a Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksey%20Fedorov">Aleksey Fedorov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building a scalable platform for quantum computing remains one of the most challenging tasks in quantum science and technologies. However, the implementation of most important quantum operations with qubits (quantum analogues of classical bits), such as multiqubit Toffoli gate, requires either a polynomial number of operation or a linear number of operations with the use of ancilla qubits. Therefore, the reduction of the number of operations in the presence of scalability is a crucial goal in quantum information processing. One of the most elegant ideas in this direction is to use qudits (multilevel systems) instead of qubits and rely on additional levels of qudits instead of ancillas. Although some of the already obtained results demonstrate a reduction of the number of operation, they suffer from high complexity and/or of the absence of scalability. We show a strong reduction of the number of operations for the realization of the Toffoli gate by using qudits for a scalable multi-qudit processor. This is done on the basis of a general relation between the dimensionality of qudits and their topology of connections, that we derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=qudits" title=" qudits"> qudits</a>, <a href="https://publications.waset.org/abstracts/search?q=Toffoli%20gates" title=" Toffoli gates"> Toffoli gates</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20decomposition" title=" gate decomposition"> gate decomposition</a> </p> <a href="https://publications.waset.org/abstracts/126171/quantum-computing-with-qudits-on-a-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Quantum Fisher Information of Bound Entangled W-Like States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Ozaydin">Fatih Ozaydin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum Fisher information (QFI) is a multipartite entanglement witness and recently it has been studied extensively with separability and entanglement in the focus. On the other hand, bound entanglement is a special phenomena observed in mixed entangled states. In this work, we study the QFI of W states under a four-dimensional entanglement binding channel. Starting with initally pure W states of several qubits, we find how the QFI decreases as two qubits of the W state is subject to entanglement binding. We also show that as the size of the W state increases, the effect of entanglement binding is decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quantum%20Fisher%20information" title="Quantum Fisher information">Quantum Fisher information</a>, <a href="https://publications.waset.org/abstracts/search?q=W%20states" title=" W states"> W states</a>, <a href="https://publications.waset.org/abstracts/search?q=bound%20entanglement" title=" bound entanglement"> bound entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=entanglement%20binding" title=" entanglement binding"> entanglement binding</a> </p> <a href="https://publications.waset.org/abstracts/15681/quantum-fisher-information-of-bound-entangled-w-like-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Science behind Quantum Teleportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananya%20G.">Ananya G.</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Varshitha"> B. Varshitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Shwetha%20S."> Shwetha S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavitha%20S.%20N."> Kavitha S. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar%20Gupta"> Praveen Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teleportation is the ability to travel by just reappearing at some other spot. Though teleportation has never been achieved, quantum teleportation is possible. Quantum teleportation is a process of transferring the quantum state of a particle onto another particle, under the circumstance that one does not get to know any information about the state in the process of transformation. This paper presents a brief overview of quantum teleportation, discussing the topics like Entanglement, EPR Paradox, Bell's Theorem, Qubits, elements for a successful teleport, some examples of advanced teleportation systems (also covers few ongoing experiments), applications (that includes quantum cryptography), and the current hurdles for future scientists interested in this field. Finally, major advantages and limitations to the existing teleportation theory are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teleportation" title="teleportation">teleportation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20teleportation" title=" quantum teleportation"> quantum teleportation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20entanglement" title=" quantum entanglement"> quantum entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=qubits" title=" qubits"> qubits</a>, <a href="https://publications.waset.org/abstracts/search?q=EPR%20paradox" title=" EPR paradox"> EPR paradox</a>, <a href="https://publications.waset.org/abstracts/search?q=bell%20states" title=" bell states"> bell states</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20particles" title=" quantum particles"> quantum particles</a>, <a href="https://publications.waset.org/abstracts/search?q=spooky%20action%20at%20a%20distance" title=" spooky action at a distance"> spooky action at a distance</a> </p> <a href="https://publications.waset.org/abstracts/148679/science-behind-quantum-teleportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Microwave Single Photon Source Using Landau-Zener Transitions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhi%20Khaire">Siddhi Khaire</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Hawaldar"> Samarth Hawaldar</a>, <a href="https://publications.waset.org/abstracts/search?q=Baladitya%20Suri"> Baladitya Suri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As efforts towards quantum communication advance, the need for single photon sources becomes imminent. Due to the extremely low energy of a single microwave photon, efforts to build single photon sources and detectors in the microwave range are relatively recent. We plan to use a Cooper Pair Box (CPB) that has a ‘sweet-spot’ where the two energy levels have minimal separation. Moreover, these qubits have fairly large anharmonicity making them close to ideal two-level systems. If the external gate voltage of these qubits is varied rapidly while passing through the sweet-spot, due to Landau-Zener effect, the qubit can be excited almost deterministically. The rapid change of the gate control voltage through the sweet spot induces a non-adiabatic population transfer from the ground to the excited state. The qubit eventually decays into the emission line emitting a single photon. The advantage of this setup is that the qubit can be excited without any coherent microwave excitation, thereby effectively increasing the usable source efficiency due to the absence of control pulse microwave photons. Since the probability of a Landau-Zener transition can be made almost close to unity by the appropriate design of parameters, this source behaves as an on-demand source of single microwave photons. The large anharmonicity of the CPB also ensures that only one excited state is involved in the transition and multiple photon output is highly improbable. Such a system has so far not been implemented and would find many applications in the areas of quantum optics, quantum computation as well as quantum communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20communication" title=" quantum communication"> quantum communication</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20optics" title=" quantum optics"> quantum optics</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20qubits" title=" superconducting qubits"> superconducting qubits</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20qubit" title=" flux qubit"> flux qubit</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20qubit" title=" charge qubit"> charge qubit</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20single%20photon%20source" title=" microwave single photon source"> microwave single photon source</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20information%20processing" title=" quantum information processing"> quantum information processing</a> </p> <a href="https://publications.waset.org/abstracts/160844/microwave-single-photon-source-using-landau-zener-transitions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justin%20Zhengjie%20Tan">Justin Zhengjie Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhao"> Yang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20electrodynamics" title="quantum electrodynamics">quantum electrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20rapid%20passage" title=" adiabatic rapid passage"> adiabatic rapid passage</a>, <a href="https://publications.waset.org/abstracts/search?q=Landau-Zener%20transitions" title=" Landau-Zener transitions"> Landau-Zener transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20environment" title=" dissipative environment"> dissipative environment</a> </p> <a href="https://publications.waset.org/abstracts/167520/dynamics-of-adiabatic-rapid-passage-in-an-open-rabi-dimer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmytro%20Zubov">Dmytro Zubov</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Volponi"> Francesco Volponi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20wave" title="heat wave">heat wave</a>, <a href="https://publications.waset.org/abstracts/search?q=D-wave" title=" D-wave"> D-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=Ising%20model" title=" Ising model"> Ising model</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title=" quantum computing"> quantum computing</a> </p> <a href="https://publications.waset.org/abstracts/34119/d-wave-quantum-computing-ising-model-a-case-study-for-forecasting-of-heat-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenjun%20Hou">Wenjun Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Perkowski"> Marek Perkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20circuit%20optimization" title=" quantum circuit optimization"> quantum circuit optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20algorithms" title=" quantum algorithms"> quantum algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20quantum%20algorithms" title=" hybrid quantum algorithms"> hybrid quantum algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20programming" title=" quantum programming"> quantum programming</a>, <a href="https://publications.waset.org/abstracts/search?q=Grover%E2%80%99s%20algorithm" title=" Grover’s algorithm"> Grover’s algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=bounded-degree%20TSP" title=" bounded-degree TSP"> bounded-degree TSP</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20cost" title=" minimal cost"> minimal cost</a>, <a href="https://publications.waset.org/abstracts/search?q=Q%23%20language" title=" Q# language"> Q# language</a> </p> <a href="https://publications.waset.org/abstracts/111077/detailed-quantum-circuit-design-and-evaluation-of-grovers-algorithm-for-the-bounded-degree-traveling-salesman-problem-using-the-q-language" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Tailoring Quantum Oscillations of Excitonic Schrodinger’s Cats as Qubits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Bhunia">Amit Bhunia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Kumar%20Singh"> Mohit Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Al%20Huwayz"> Maryam Al Huwayz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Henini"> Mohamed Henini</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouvik%20Datta"> Shouvik Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report [https://arxiv.org/abs/2107.13518] experimental detection and control of Schrodinger’s Cat like macroscopically large, quantum coherent state of a two-component Bose-Einstein condensate of spatially indirect electron-hole pairs or excitons using a resonant tunneling diode of III-V Semiconductors. This provides access to millions of excitons as qubits to allow efficient, fault-tolerant quantum computation. In this work, we measure phase-coherent periodic oscillations in photo-generated capacitance as a function of an applied voltage bias and light intensity over a macroscopically large area. Periodic presence and absence of splitting of excitonic peaks in the optical spectra measured by photocapacitance point towards tunneling induced variations in capacitive coupling between the quantum well and quantum dots. Observation of negative ‘quantum capacitance’ due to a screening of charge carriers by the quantum well indicates Coulomb correlations of interacting excitons in the plane of the sample. We also establish that coherent resonant tunneling in this well-dot heterostructure restricts the available momentum space of the charge carriers within this quantum well. Consequently, the electric polarization vector of the associated indirect excitons collective orients along the direction of applied bias and these excitons undergo Bose-Einstein condensation below ~100 K. Generation of interference beats in photocapacitance oscillation even with incoherent white light further confirm the presence of stable, long-range spatial correlation among these indirect excitons. We finally demonstrate collective Rabi oscillations of these macroscopically large, ‘multipartite’, two-level, coupled and uncoupled quantum states of excitonic condensate as qubits. Therefore, our study not only brings the physics and technology of Bose-Einstein condensation within the reaches of semiconductor chips but also opens up experimental investigations of the fundamentals of quantum physics using similar techniques. Operational temperatures of such two-component excitonic BEC can be raised further with a more densely packed, ordered array of QDs and/or using materials having larger excitonic binding energies. However, fabrications of single crystals of 0D-2D heterostructures using 2D materials (e.g. transition metal di-chalcogenides, oxides, perovskites etc.) having higher excitonic binding energies are still an open challenge for semiconductor optoelectronics. As of now, these 0D-2D heterostructures can already be scaled up for mass production of miniaturized, portable quantum optoelectronic devices using the existing III-V and/or Nitride based semiconductor fabrication technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exciton" title="exciton">exciton</a>, <a href="https://publications.waset.org/abstracts/search?q=Bose-Einstein%20condensation" title=" Bose-Einstein condensation"> Bose-Einstein condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computation" title=" quantum computation"> quantum computation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterostructures" title=" heterostructures"> heterostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20Physics" title=" semiconductor Physics"> semiconductor Physics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20fluids" title=" quantum fluids"> quantum fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=Schrodinger%27s%20Cat" title=" Schrodinger's Cat"> Schrodinger's Cat</a> </p> <a href="https://publications.waset.org/abstracts/141320/tailoring-quantum-oscillations-of-excitonic-schrodingers-cats-as-qubits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> An Evolutionary Approach for QAOA for Max-Cut</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Schiavello">Francesca Schiavello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to create a hybrid algorithm, combining Quantum Approximate Optimization Algorithm (QAOA) with an Evolutionary Algorithm (EA) in the place of traditional gradient based optimization processes. QAOA’s were first introduced in 2014, where, at the time, their algorithm performed better than the traditional best known classical algorithm for Max-cut graphs. Whilst classical algorithms have improved since then and have returned to being faster and more efficient, this was a huge milestone for quantum computing, and their work is often used as a benchmarking tool and a foundational tool to explore variants of QAOA’s. This, alongside with other famous algorithms like Grover’s or Shor’s, highlights to the world the potential that quantum computing holds. It also presents the reality of a real quantum advantage where, if the hardware continues to improve, this could constitute a revolutionary era. Given that the hardware is not there yet, many scientists are working on the software side of things in the hopes of future progress. Some of the major limitations holding back quantum computing are the quality of qubits and the noisy interference they generate in creating solutions, the barren plateaus that effectively hinder the optimization search in the latent space, and the availability of number of qubits limiting the scale of the problem that can be solved. These three issues are intertwined and are part of the motivation for using EAs in this work. Firstly, EAs are not based on gradient or linear optimization methods for the search in the latent space, and because of their freedom from gradients, they should suffer less from barren plateaus. Secondly, given that this algorithm performs a search in the solution space through a population of solutions, it can also be parallelized to speed up the search and optimization problem. The evaluation of the cost function, like in many other algorithms, is notoriously slow, and the ability to parallelize it can drastically improve the competitiveness of QAOA’s with respect to purely classical algorithms. Thirdly, because of the nature and structure of EA’s, solutions can be carried forward in time, making them more robust to noise and uncertainty. Preliminary results show that the EA algorithm attached to QAOA can perform on par with the traditional QAOA with a Cobyla optimizer, which is a linear based method, and in some instances, it can even create a better Max-Cut. Whilst the final objective of the work is to create an algorithm that can consistently beat the original QAOA, or its variants, due to either speedups or quality of the solution, this initial result is promising and show the potential of EAs in this field. Further tests need to be performed on an array of different graphs with the parallelization aspect of the work commencing in October 2023 and tests on real hardware scheduled for early 2024. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithm" title="evolutionary algorithm">evolutionary algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=max%20cut" title=" max cut"> max cut</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20simulation" title=" parallel simulation"> parallel simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20optimization" title=" quantum optimization"> quantum optimization</a> </p> <a href="https://publications.waset.org/abstracts/172910/an-evolutionary-approach-for-qaoa-for-max-cut" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Role of Metal-Induced Gap States in the Superconducting Qubit Decoherence at Low-Dimension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Szczesniak">Dominik Szczesniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabre%20Kais"> Sabre Kais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present communication, we analyze selected local aspects of the metal-induced gap states (MIGSs) that may be responsible for the magnetic flux noise in some of the superconducting qubit modalities at low-dimension. The presented theoretical analysis stems from the earlier bulk considerations and is aimed at further explanation of the decoherence effect by recognizing its universal character. Specifically, the analysis is carried out by using the complex band structure method for arbitrary low-dimensional junctions. This allows us to provide the most fundamental and general observations for the systems of interest. In particular, herein, we investigate in detail the MIGSs behavior in the momentum space as a function of the potential fluctuations and the electron-electron interaction magnitude at the interface. In what follows, this study is meant to provide a direct relationship between the MIGSs behavior, the discussed decoherence effect, and the intrinsic properties of the low-dimensional Josephson junctions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superconducting%20qubits" title="superconducting qubits">superconducting qubits</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-induced%20gap%20states" title=" metal-induced gap states"> metal-induced gap states</a>, <a href="https://publications.waset.org/abstracts/search?q=decoherence" title=" decoherence"> decoherence</a>, <a href="https://publications.waset.org/abstracts/search?q=low-dimension" title=" low-dimension"> low-dimension</a> </p> <a href="https://publications.waset.org/abstracts/137573/the-role-of-metal-induced-gap-states-in-the-superconducting-qubit-decoherence-at-low-dimension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Spin-Dipole Excitations Produced On-Demand in the Fermi Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mykhailo%20Moskalets">Mykhailo Moskalets</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Burset"> Pablo Burset</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Roussel"> Benjamin Roussel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Flindt"> Christian Flindt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The single-particle injection from the Andreev level and how such injection is simulated using a voltage pulse are discussed. Recently, high-speed quantum-coherent electron sources injecting one- to few-particle excitations into the Fermi sea have been experimentally realized. The main obstacle to using these excitations as flying qubits for quantum-information processing purposes is decoherence due to the long-range Coulomb interaction. An obvious way to get around this difficulty is to employ electrically neutral excitations. Here it is discussed how such excitations can be generated on-demand using the same injection principles as in existing electron sources. Namely, with the help of a voltage pulse of a certain shape applied to the Fermi sea or using a driven quantum dot with superconducting correlations. The advantage of the latter approach is the possibility of varying the electron-hole content in the excitation and the possibility of creating a charge-neutral but spin-dipole excitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreev%20level" title="Andreev level">Andreev level</a>, <a href="https://publications.waset.org/abstracts/search?q=on-demand" title=" on-demand"> on-demand</a>, <a href="https://publications.waset.org/abstracts/search?q=single-electron" title=" single-electron"> single-electron</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-dipole" title=" spin-dipole"> spin-dipole</a> </p> <a href="https://publications.waset.org/abstracts/168041/spin-dipole-excitations-produced-on-demand-in-the-fermi-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Quantum Entangled States and Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20%20Singh">Sanjay Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar"> Sushil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Jain"> Rashmi Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum registering is another pattern in computational hypothesis and a quantum mechanical framework has a few helpful properties like Entanglement. We plan to store data concerning the structure and substance of a basic picture in a quantum framework. Consider a variety of n qubits which we propose to use as our memory stockpiling. In recent years classical processing is switched to quantum image processing. Quantum image processing is an elegant approach to overcome the problems of its classical counter parts. Image storage, retrieval and its processing on quantum machines is an emerging area. Although quantum machines do not exist in physical reality but theoretical algorithms developed based on quantum entangled states gives new insights to process the classical images in quantum domain. Here in the present work, we give the brief overview, such that how entangled states can be useful for quantum image storage and retrieval. We discuss the properties of tripartite Greenberger-Horne-Zeilinger and W states and their usefulness to store the shapes which may consist three vertices. We also propose the techniques to store shapes having more than three vertices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Greenberger-Horne-Zeilinger" title="Greenberger-Horne-Zeilinger">Greenberger-Horne-Zeilinger</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20storage%20and%20retrieval" title=" image storage and retrieval"> image storage and retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20entanglement" title=" quantum entanglement"> quantum entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=W%20states" title=" W states"> W states</a> </p> <a href="https://publications.waset.org/abstracts/67732/quantum-entangled-states-and-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> A Generalized Space-Efficient Algorithm for Quantum Bit String Comparators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khuram%20Shahzad">Khuram Shahzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Usman%20Khan"> Omar Usman Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum bit string comparators (QBSC) operate on two sequences of n-qubits, enabling the determination of their relationships, such as equality, greater than, or less than. This is analogous to the way conditional statements are used in programming languages. Consequently, QBSCs play a crucial role in various algorithms that can be executed or adapted for quantum computers. The development of efficient and generalized comparators for any n-qubit length has long posed a challenge, as they have a high-cost footprint and lead to quantum delays. Comparators that are efficient are associated with inputs of fixed length. As a result, comparators without a generalized circuit cannot be employed at a higher level, though they are well-suited for problems with limited size requirements. In this paper, we introduce a generalized design for the comparison of two n-qubit logic states using just two ancillary bits. The design is examined on the basis of qubit requirements, ancillary bit usage, quantum cost, quantum delay, gate operations, and circuit complexity and is tested comprehensively on various input lengths. The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20comparator" title="quantum comparator">quantum comparator</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20algorithm" title=" quantum algorithm"> quantum algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=space-efficient%20comparator" title=" space-efficient comparator"> space-efficient comparator</a>, <a href="https://publications.waset.org/abstracts/search?q=comparator" title=" comparator"> comparator</a> </p> <a href="https://publications.waset.org/abstracts/193195/a-generalized-space-efficient-algorithm-for-quantum-bit-string-comparators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Quantifying Parallelism of Vectors Is the Quantification of Distributed N-Party Entanglement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Banerjee">Shreya Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20K.%20Panigrahi"> Prasanta K. Panigrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The three-way distributive entanglement is shown to be related to the parallelism of vectors. Using a measurement-based approach a set of 2−dimensional vectors is formed, representing the post-measurement states of one of the parties. These vectors originate at the same point and have an angular distance between them. The area spanned by a pair of such vectors is a measure of the entanglement of formation. This leads to a geometrical manifestation of the 3−tangle in 2−dimensions, from inequality in the area which generalizes for n− qubits to reveal that the n− tangle also has a planar structure. Quantifying the genuine n−party entanglement in every 1|(n − 1) bi-partition it is shown that the genuine n−way entanglement does not manifest in n− tangle. A new quantity geometrically similar to 3−tangle is then introduced that represents the genuine n− way entanglement. Extending the formalism to 3− qutrits, the nonlocality without entanglement can be seen to arise from a condition under which the post-measurement state vectors of a separable state show parallelism. A connection to nontrivial sum uncertainty relation analogous to Maccone and Pati uncertainty relation is then presented using decomposition of post-measurement state vectors along parallel and perpendicular direction of the pre-measurement state vectors. This study opens a novel way to understand multiparty entanglement in qubit and qudit systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geometry%20of%20quantum%20entanglement" title="Geometry of quantum entanglement">Geometry of quantum entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=Multipartite%20and%20distributive%20entanglement" title=" Multipartite and distributive entanglement"> Multipartite and distributive entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=Parallelism%20of%20vectors" title=" Parallelism of vectors "> Parallelism of vectors </a>, <a href="https://publications.waset.org/abstracts/search?q=Tangle" title=" Tangle"> Tangle</a> </p> <a href="https://publications.waset.org/abstracts/121889/quantifying-parallelism-of-vectors-is-the-quantification-of-distributed-n-party-entanglement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> A Novel Way to Create Qudit Quantum Error Correction Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Moorthy">Arun Moorthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=qudit" title="qudit">qudit</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20correction" title=" error correction"> error correction</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum" title=" quantum"> quantum</a>, <a href="https://publications.waset.org/abstracts/search?q=qubit" title=" qubit"> qubit</a> </p> <a href="https://publications.waset.org/abstracts/138747/a-novel-way-to-create-qudit-quantum-error-correction-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Proposal of Optimality Evaluation for Quantum Secure Communication Protocols by Taking the Average of the Main Protocol Parameters: Efficiency, Security and Practicality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgi%20Bebrov">Georgi Bebrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozalina%20Dimova"> Rozalina Dimova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of quantum secure communication, there is no evaluation that characterizes quantum secure communication (QSC) protocols in a complete, general manner. The current paper addresses the problem concerning the lack of such an evaluation for QSC protocols by introducing an optimality evaluation, which is expressed as the average over the three main parameters of QSC protocols: efficiency, security, and practicality. For the efficiency evaluation, the common expression of this parameter is used, which incorporates all the classical and quantum resources (bits and qubits) utilized for transferring a certain amount of information (bits) in a secure manner. By using criteria approach whether or not certain criteria are met, an expression for the practicality evaluation is presented, which accounts for the complexity of the QSC practical realization. Based on the error rates that the common quantum attacks (Measurement and resend, Intercept and resend, probe attack, and entanglement swapping attack) induce, the security evaluation for a QSC protocol is proposed as the minimum function taken over the error rates of the mentioned quantum attacks. For the sake of clarity, an example is presented in order to show how the optimality is calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20cryptography" title="quantum cryptography">quantum cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20secure%20communcation" title=" quantum secure communcation"> quantum secure communcation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20secure%20direct%20communcation%20security" title=" quantum secure direct communcation security"> quantum secure direct communcation security</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20secure%20direct%20communcation%20efficiency" title=" quantum secure direct communcation efficiency"> quantum secure direct communcation efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20secure%20direct%20communcation%20practicality" title=" quantum secure direct communcation practicality"> quantum secure direct communcation practicality</a> </p> <a href="https://publications.waset.org/abstracts/104501/proposal-of-optimality-evaluation-for-quantum-secure-communication-protocols-by-taking-the-average-of-the-main-protocol-parameters-efficiency-security-and-practicality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Petropoulos">Nikolaos Petropoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Blokhina"> Elena Blokhina</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Sokolov"> Andrii Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Semenov"> Andrii Semenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Giounanlis"> Panagiotis Giounanlis</a>, <a href="https://publications.waset.org/abstracts/search?q=Xutong%20Wu"> Xutong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmytro%20Mishagli"> Dmytro Mishagli</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Koskin"> Eugene Koskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Bogdan%20Staszewski"> Robert Bogdan Staszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Leipold"> Dirk Leipold</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensed%20matter%20physics" title="condensed matter physics">condensed matter physics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title=" quantum computing"> quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20information%20theory" title=" quantum information theory"> quantum information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20physics" title=" quantum physics"> quantum physics</a> </p> <a href="https://publications.waset.org/abstracts/149557/quantum-information-scrambling-and-quantum-chaos-in-silicon-based-fermi-hubbard-quantum-dot-arrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>