CINXE.COM

Search results for: Andrii Sokolov

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Andrii Sokolov</title> <meta name="description" content="Search results for: Andrii Sokolov"> <meta name="keywords" content="Andrii Sokolov"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Andrii Sokolov" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Andrii Sokolov"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Andrii Sokolov</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Petropoulos">Nikolaos Petropoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Blokhina"> Elena Blokhina</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Sokolov"> Andrii Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Semenov"> Andrii Semenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Giounanlis"> Panagiotis Giounanlis</a>, <a href="https://publications.waset.org/abstracts/search?q=Xutong%20Wu"> Xutong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmytro%20Mishagli"> Dmytro Mishagli</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Koskin"> Eugene Koskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Bogdan%20Staszewski"> Robert Bogdan Staszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Leipold"> Dirk Leipold</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensed%20matter%20physics" title="condensed matter physics">condensed matter physics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title=" quantum computing"> quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20information%20theory" title=" quantum information theory"> quantum information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20physics" title=" quantum physics"> quantum physics</a> </p> <a href="https://publications.waset.org/abstracts/149557/quantum-information-scrambling-and-quantum-chaos-in-silicon-based-fermi-hubbard-quantum-dot-arrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prozorkevitch%20D.">Prozorkevitch D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mishurov%20A."> Mishurov A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokolov%20K."> Sokolov K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Karsakov%20L."> Karsakov L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pestrikova%20L."> Pestrikova L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barents%20sea%20ecosystem" title="barents sea ecosystem">barents sea ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=abiotic" title=" abiotic"> abiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=biotic" title=" biotic"> biotic</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20sets" title=" data sets"> data sets</a>, <a href="https://publications.waset.org/abstracts/search?q=trends" title=" trends"> trends</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/148270/prediction-of-marine-ecosystem-changes-based-on-the-integrated-analysis-of-multivariate-data-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Training AI to Be Empathetic and Determining the Psychotype of a Person During a Conversation with a Chatbot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliya%20Grig">Aliya Grig</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20Sokolov"> Konstantin Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Shatalin"> Igor Shatalin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The report describes the methodology for collecting data and building an ML model for determining the personality psychotype using profiling and personality traits methods based on several short messages of a user communicating on an arbitrary topic with a chitchat bot. In the course of the experiments, the minimum amount of text was revealed to confidently determine aspects of personality. Model accuracy - 85%. Users' language of communication is English. AI for a personalized communication with a user based on his mood, personality, and current emotional state. Features investigated during the research: personalized communication; providing empathy; adaptation to a user; predictive analytics. In the report, we describe the processes that captures both structured and unstructured data pertaining to a user in large quantities and diverse forms. This data is then effectively processed through ML tools to construct a knowledge graph and draw inferences regarding users of text messages in a comprehensive manner. Specifically, the system analyzes users' behavioral patterns and predicts future scenarios based on this analysis. As a result of the experiments, we provide for further research on training AI models to be empathetic, creating personalized communication for a user <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AI" title="AI">AI</a>, <a href="https://publications.waset.org/abstracts/search?q=empathetic" title=" empathetic"> empathetic</a>, <a href="https://publications.waset.org/abstracts/search?q=chatbot" title=" chatbot"> chatbot</a>, <a href="https://publications.waset.org/abstracts/search?q=AI%20models" title=" AI models"> AI models</a> </p> <a href="https://publications.waset.org/abstracts/164587/training-ai-to-be-empathetic-and-determining-the-psychotype-of-a-person-during-a-conversation-with-a-chatbot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Performances of the Double-Crystal Setup at CERN SPS Accelerator for Physics beyond Colliders Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Natochii">Andrii Natochii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We are currently presenting the recent results from the CERN accelerator facilities obtained in the frame of the UA9 Collaboration. The UA9 experiment investigates how a tiny silicon bent crystal (few millimeters long) can be used for various high-energy physics applications. Due to the huge electrostatic field (tens of GV/cm) between crystalline planes, there is a probability for charged particles, impinging the crystal, to be trapped in the channeling regime. It gives a possibility to steer a high intensity and momentum beam by bending the crystal: channeled particles will follow the crystal curvature and deflect on the certain angle (from tens microradians for LHC to few milliradians for SPS energy ranges). The measurements at SPS, performed in 2017 and 2018, confirmed that the protons deflected by the first crystal, inserted in the primary beam halo, can be caught and channeled by the second crystal. In this configuration, we measure the single pass deflection efficiency of the second crystal and prove our opportunity to perform the fixed target experiment at SPS accelerator (LHC in the future). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channeling" title="channeling">channeling</a>, <a href="https://publications.waset.org/abstracts/search?q=double-crystal%20setup" title=" double-crystal setup"> double-crystal setup</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20target%20experiment" title=" fixed target experiment"> fixed target experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=Timepix%20detector" title=" Timepix detector"> Timepix detector</a> </p> <a href="https://publications.waset.org/abstracts/101941/performances-of-the-double-crystal-setup-at-cern-sps-accelerator-for-physics-beyond-colliders-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Using the Timepix Detector at CERN Accelerator Facilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Natochii">Andrii Natochii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The UA9 collaboration in the last two years has installed two different types of detectors to investigate the channeling effect in the bent silicon crystals with high-energy particles beam on the CERN accelerator facilities: Cherenkov detector CpFM and silicon pixel detector Timepix. In the current work, we describe the main performances of the Timepix detector operation at the SPS and H8 extracted beamline at CERN. We are presenting some detector calibration results and tuning. Our research topics also cover a cluster analysis algorithm for the particle hits reconstruction. We describe the optimal acquisition setup for the Timepix device and the edges of its functionality for the high energy and flux beam monitoring. The measurements of the crystal parameters are very important for the future bent crystal applications and needs a track reconstruction apparatus. Thus, it was decided to construct a short range (1.2 m long) particle telescope based on the Timepix sensors and test it at H8 SPS extraction beamline. The obtained results will be shown as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20monitoring" title="beam monitoring">beam monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=channeling" title=" channeling"> channeling</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20tracking" title=" particle tracking"> particle tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=Timepix%20detector" title=" Timepix detector"> Timepix detector</a> </p> <a href="https://publications.waset.org/abstracts/101942/using-the-timepix-detector-at-cern-accelerator-facilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Development of an Automatic Monitoring System Based on the Open Architecture Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Biloshchytskyi">Andrii Biloshchytskyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Serik%20Omirbayev"> Serik Omirbayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Neftissov"> Alexandr Neftissov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sapar%20Toxanov"> Sapar Toxanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Svitlana%20Biloshchytska"> Svitlana Biloshchytska</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Faizullin"> Adil Faizullin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kazakhstan has adopted a carbon neutrality strategy until 2060. In accordance with this strategy, it is necessary to introduce various tools to maintain the environmental safety of the environment. The use of IoT, in combination with the characteristics and requirements of Kazakhstan's environmental legislation, makes it possible to develop a modern environmental monitoring system. The article proposes a solution for developing an example of an automated system for the continuous collection of data on the concentration of pollutants in the atmosphere based on an open architecture. The Audino-based device acts as a microcontroller. It should be noted that the transmission of measured values is carried out via an open wireless communication protocol. The architecture of the system, which was used to build a prototype based on sensors, an Arduino microcontroller, and a wireless data transmission module, is presented. The selection of elementary components may change depending on the requirements of the system; the introduction of new units is limited by the number of ports. The openness of solutions allows you to change the configuration depending on the conditions. The advantages of the solutions are openness, low cost, versatility and mobility. However, there is no comparison of the working processes of the proposed solution with traditional ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20monitoring" title="environmental monitoring">environmental monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases%20emissions" title=" greenhouse gases emissions"> greenhouse gases emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=Industry%204.0" title=" Industry 4.0"> Industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20monitoring%20system." title=" automated monitoring system."> automated monitoring system.</a> </p> <a href="https://publications.waset.org/abstracts/186523/development-of-an-automatic-monitoring-system-based-on-the-open-architecture-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Obraztsov">Evgeny Obraztsov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilya%20Kremnev"> Ilya Kremnev</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaly%20Sokolov"> Vitaly Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Maksim%20Gavrilov"> Maksim Gavrilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Tretyakov"> Evgeny Tretyakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Kukhtevich"> Vladimir Kukhtevich</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Bezlepkin"> Vladimir Bezlepkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=best-estimate%20code" title="best-estimate code">best-estimate code</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20simulation%20suite" title=" complex simulation suite"> complex simulation suite</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20simulator" title=" engineering simulator"> engineering simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20hydraulic" title=" thermal hydraulic"> thermal hydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=VEB" title=" VEB"> VEB</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20power%20unit" title=" virtual power unit"> virtual power unit</a> </p> <a href="https://publications.waset.org/abstracts/63791/engineering-thermal-hydraulic-simulator-based-on-complex-simulation-suite-virtual-unit-of-nuclear-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Shalaginov">Andrii Shalaginov</a>, <a href="https://publications.waset.org/abstracts/search?q=Katrin%20Franke"> Katrin Franke</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongwei%20Huang"> Xiongwei Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malware%20detection" title="malware detection">malware detection</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security" title=" network security"> network security</a>, <a href="https://publications.waset.org/abstracts/search?q=targeted%20attack" title=" targeted attack"> targeted attack</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20intelligence" title=" computational intelligence"> computational intelligence</a> </p> <a href="https://publications.waset.org/abstracts/44685/malware-beaconing-detection-by-mining-large-scale-dns-logs-for-targeted-attack-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Combined Use of FMRI and Voxel-Based Morphometry in Assessment of Memory Impairment in Alzheimer&#039;s Disease Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Sokolov">A. V. Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Vorobyev"> S. V. Vorobyev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yu.%20Efimtcev"> A. Yu. Efimtcev</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Yu.%20Lobzin"> V. Yu. Lobzin</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Lupanov"> I. A. Lupanov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Cherdakov"> O. A. Cherdakov</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Fokin"> V. A. Fokin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD) is the most common form of dementia. Different brain regions are involved to the pathological process of AD. The purpose of this study was to evaluate brain activation by visual memory task in patients with Alzheimer's disease and determine correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. To investigate the organization of memory and localize cortical areas activated by visual memory task we used functional magnetic resonance imaging and to evaluate brain atrophy of patients with Alzheimer's disease we used voxel-based morphometry. FMRI was performed on 1.5 T MR-scanner Siemens Magnetom Symphony with BOLD (Blood Oxygenation Level Dependent) technique, based on distinctions of magnetic properties of hemoglobin. For test stimuli we used series of 12 not related images for "Baseline" and 12 images with 6 presented before for "Active". Stimuli were presented 3 times with reduction of repeated images to 4 and 2. Patients with Alzheimer's disease showed less activation in hippocampal formation (HF) region and parahippocampal gyrus then healthy persons of control group (p<0.05). The study also showed reduced activation in posterior cingulate cortex (p<0.001). Voxel-based morphometry showed significant atrophy of grey matter in Alzheimer’s disease patients, especially of both temporal lobes (fusiform and parahippocampal gyri); frontal lobes (posterior cingulate and superior frontal gyri). The study showed correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. Thus, reduced activation in hippocampal formation and parahippocampal gyri, in posterior cingulate gyrus in patients with Alzheimer's disease correlates to significant atrophy of these regions, detected by voxel-based morphometry, and to deterioration of specific cognitive functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20MRI" title=" functional MRI"> functional MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=voxel-based%20morphometry" title=" voxel-based morphometry"> voxel-based morphometry</a> </p> <a href="https://publications.waset.org/abstracts/18475/combined-use-of-fmri-and-voxel-based-morphometry-in-assessment-of-memory-impairment-in-alzheimers-disease-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Comparative Analysis of the Treatment of the Success of the First Crusade in Modern Arab and Western Historiography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Sokolov">Oleg Sokolov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the fact that the epoch of the Crusades ended more than 700 years ago, its legacy still remains relevant both in the Middle East and in the West. There was made a comparison of the positions of the most prominent Western and Arab medievalists of XX-XXI centuries, using the example of their interpretations of the success of the First Crusade. The analyzed corpus consists of 70 works. In the modern Arab Historiography, it is often pointed out that the Seljuks' struggle against the crusaders of the First Crusade was seriously hampered by the raids of the Arab Bedouin tribes of Jazira. At the same time, it is emphasized that the Arab rulers of Northern Syria were ‘pleased’ with the defeats of the Turks and made peace with the Crusaders, refusing to fight them. At the same time it is usually underlined that the Fatimid aggression against the Turks led both the first and the second to defeat from the Crusaders and became one of the main reasons for the success of the First Crusade and the Muslims' loss of Jerusalem in 1099. The position of Western historians about the reasons for the success of the First Crusade differs significantly. First of all, in the Western Historiography, it is noted that the deaths of the Fatimid and Abbasid Caliphs and the Seljuk Sultan between 1092 and 1094 years created political vacuum just before the crusaders appeared in the Middle East political arena. In 1097-1099, when the Crusaders advanced through Asia Minor, Syria and Palestine to Jerusalem, there was an active internecine struggle between the parts of the Seljuq state that had broken up by that time, and the crusaders were not perceived as a general threat of all Muslims of this region at that time. It is also pointed out that the main goals of the Crusaders - Antioch, Edessa, and Jerusalem - were at that time periphery since the main struggle for power in the Middle East was at this time in Iran. Thus, Arab historians see the lack of support from Arabs of Syria and Jazira and the aggression from Egypt as a crucial factors preventing the Seljuks from defeating the Crusaders, while their Western counterparts consider the internal power struggle between the Seljuks as a more important reason for the success of the First Crusade. The reason for this divergence in the treatment of the events of the First Crusade is probably the prevailing in much of Arab historiography, the idea of the Franks as an enemy of all peoples and religions of the Middle East. At the same time, in contemporary Western Historiography, the crusaders are described only as one of the many military and political forces that operated in this region at the end of the eleventh century. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabs" title="Arabs">Arabs</a>, <a href="https://publications.waset.org/abstracts/search?q=Crusades" title=" Crusades"> Crusades</a>, <a href="https://publications.waset.org/abstracts/search?q=historiography" title=" historiography"> historiography</a>, <a href="https://publications.waset.org/abstracts/search?q=Turks" title=" Turks"> Turks</a> </p> <a href="https://publications.waset.org/abstracts/77316/comparative-analysis-of-the-treatment-of-the-success-of-the-first-crusade-in-modern-arab-and-western-historiography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20A.%20Sokolov">Denis A. Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20V.%20Mazurkevich"> Andrey V. Mazurkevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=femtosecond%20laser" title="femtosecond laser">femtosecond laser</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20correlation" title=" pulse correlation"> pulse correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometer" title=" interferometer"> interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20absolute%20range%20finder" title=" laser absolute range finder"> laser absolute range finder</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinate%20measurement" title=" coordinate measurement"> coordinate measurement</a> </p> <a href="https://publications.waset.org/abstracts/183368/an-absolute-femtosecond-rangefinder-for-metrological-support-in-coordinate-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Development of Alternative Fuels Technologies: Compressed Natural Gas Home Refueling Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Kuczynski">Szymon Kuczynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krystian%20Liszka"> Krystian Liszka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Laciak"> Mariusz Laciak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Oliinyk"> Andrii Oliinyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Szurlej"> Adam Szurlej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressed natural gas (CNG) represents an excellent compromise between the availability of a technology that is proven and relatively easy to use in many areas of the automotive industry and incurred costs. This fuel causes a lower corrosion effect due to the lower content of products causing the potential difference on the walls of the engine system. Natural gas powered vehicles (NGVs) do not emit any substances that can contaminate water or land. The absence of carcinogenic substances in gaseous fuel extends the life of the engine. In the longer term, it contributes positively to waste management as well as waste disposal. Popularization of propulsion systems powered by natural gas CNG positively affects the reduction of heavy duty transport. For these reasons, CNG as a fuel stimulates considerable interest around the world. Over the last few years, technologies related to use of natural gas as an engine fuel have been developed and improved. These solutions have evolved from the prototype phase to the industrial scale implementation. The widespread availability of gaseous fuels has led to the development of a technology that allows the CNG fuel to be refueled directly from the urban gas network to the vehicle tank (ie. HYGEN - CNGHRS). Home refueling installations, although they have been known for many years, are becoming increasingly important in the present day. The major obstacle in the sale of this technology was, until recently, quite high capital expenditure compared to the later benefits. Home refueling systems allow refueling vehicle tank, with full control of fuel costs and refueling time. CNG Home Refueling Stations (such as HYGEN) allow gas value chain to overcome the dogma that there is a lack of refueling infrastructure allowing companies in gas value chain to participate in transportation market. Technology is based on one stage hydraulic compressor (instead of multistage mechanical compressor technology) which provides the possibility to compress low pressure gas from distribution gas network to 200 bar for its further usage as a fuel for NGVs. This boosts revenues and profits of gas companies by expanding its presence in higher margin of energy sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuels" title="alternative fuels">alternative fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG%20%28compressed%20natural%20gas%29" title=" CNG (compressed natural gas)"> CNG (compressed natural gas)</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG%20stations" title=" CNG stations"> CNG stations</a>, <a href="https://publications.waset.org/abstracts/search?q=NGVs%20%28natural%20gas%20vehicles%29" title=" NGVs (natural gas vehicles)"> NGVs (natural gas vehicles)</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20value%20chain" title=" gas value chain"> gas value chain</a> </p> <a href="https://publications.waset.org/abstracts/81961/development-of-alternative-fuels-technologies-compressed-natural-gas-home-refueling-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Environmental Aspects of Alternative Fuel Use for Transport with Special Focus on Compressed Natural Gas (CNG)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Kuczynski">Szymon Kuczynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krystian%20Liszka"> Krystian Liszka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Laciak"> Mariusz Laciak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Oliinyk"> Andrii Oliinyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Szurlej"> Adam Szurlej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The history of gaseous fuel use in the motive power of vehicles dates back to the second half of the nineteenth century, and thus the beginnings of the automotive industry. The engines were powered by coal gas and became the prototype for internal combustion engines built so far. It can thus be considered that this construction gave rise to the automotive industry. As the socio-economic development advances, so does the number of motor vehicles. Although, due to technological progress in recent decades, the emissions generated by internal combustion engines of cars have been reduced, a sharp increase in the number of cars and the rapidly growing traffic are an important source of air pollution and a major cause of acoustic threat, in particular in large urban agglomerations. One of the solutions, in terms of reducing exhaust emissions and improving air quality, is a more extensive use of alternative fuels: CNG, LNG, electricity and hydrogen. In the case of electricity use for transport, it should be noted that the environmental outcome depends on the structure of electricity generation. The paper shows selected regulations affecting the use of alternative fuels for transport (including Directive 2014/94/EU) and its dynamics between 2000 and 2015 in Poland and selected EU countries. The paper also gives a focus on the impact of alternative fuels on the environment by comparing the volume of individual emissions (compared to the emissions from conventional fuels: petrol and diesel oil). Bearing in mind that the extent of various alternative fuel use is determined in first place by economic conditions, the article describes the price relationships between alternative and conventional fuels in Poland and selected EU countries. It is pointed out that although Poland has a wealth of experience in using methane alternative fuels for transport, one of the main barriers to their development in Poland is the extensive use of LPG. In addition, a poorly developed network of CNG stations in Poland, which does not allow easy transport, especially in the northern part of the country, is a serious problem to a further development of CNG use as fuel for transport. An interesting solution to this problem seems to be the use of home CNG filling stations: Home Refuelling Appliance (HRA, refuelling time 8-10 hours) and Home Refuelling Station (HRS, refuelling time 8-10 minutes). The team is working on HRA and HRS technologies. The article also highlights the impact of alternative fuel use on energy security by reducing reliance on imports of crude oil and petroleum products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuels" title="alternative fuels">alternative fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG%20%28Compressed%20Natural%20Gas%29" title=" CNG (Compressed Natural Gas)"> CNG (Compressed Natural Gas)</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG%20stations" title=" CNG stations"> CNG stations</a>, <a href="https://publications.waset.org/abstracts/search?q=LNG%20%28Liquefied%20Natural%20Gas%29" title=" LNG (Liquefied Natural Gas)"> LNG (Liquefied Natural Gas)</a>, <a href="https://publications.waset.org/abstracts/search?q=NGVs%20%28Natural%20Gas%20Vehicles%29" title=" NGVs (Natural Gas Vehicles)"> NGVs (Natural Gas Vehicles)</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant%20emissions" title=" pollutant emissions"> pollutant emissions</a> </p> <a href="https://publications.waset.org/abstracts/54971/environmental-aspects-of-alternative-fuel-use-for-transport-with-special-focus-on-compressed-natural-gas-cng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Development of Alternative Fuels Technologies for Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Kuczynski">Szymon Kuczynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krystian%20Liszka"> Krystian Liszka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Laciak"> Mariusz Laciak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Oliinyk"> Andrii Oliinyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Szurlej"> Adam Szurlej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, in automotive transport to power vehicles, almost exclusively hydrocarbon based fuels are used. Due to increase of hydrocarbon fuels consumption, quality parameters are tightend for clean environment. At the same time efforts are undertaken for development of alternative fuels. The reasons why looking for alternative fuels for petroleum and diesel are: to increase vehicle efficiency and to reduce the environmental impact, reduction of greenhouse gases emissions and savings in consumption of limited oil resources. Significant progress was performed on development of alternative fuels such as methanol, ethanol, natural gas (CNG / LNG), LPG, dimethyl ether (DME) and biodiesel. In addition, biggest vehicle manufacturers work on fuel cell vehicles and its introduction to the market. Alcohols such as methanol and ethanol create the perfect fuel for spark-ignition engines. Their advantages are high-value antiknock which determines their application as additive (10%) to unleaded petrol and relative purity of produced exhaust gasses. Ethanol is produced in distillation process of plant products, which value as a food can be irrational. Ethanol production can be costly also for the entire economy of the country, because it requires a large complex distillation plants, large amounts of biomass and finally a significant amount of fuel to sustain the process. At the same time, the fermentation process of plants releases into the atmosphere large quantities of carbon dioxide. Natural gas cannot be directly converted into liquid fuels, although such arrangements have been proposed in the literature. Going through stage of intermediates is inevitable yet. Most popular one is conversion to methanol, which can be processed further to dimethyl ether (DME) or olefin (ethylene and propylene) for the petrochemical sector. Methanol uses natural gas as a raw material, however, requires expensive and advanced production processes. In relation to pollution emissions, the optimal vehicle fuel is LPG which is used in many countries as an engine fuel. Production of LPG is inextricably linked with production and processing of oil and gas, and which represents a small percentage. Its potential as an alternative for traditional fuels is therefore proportionately reduced. Excellent engine fuel may be biogas, however, follows to the same limitations as ethanol - the same production process is used and raw materials. Most essential fuel in the campaign of environment protection against pollution is natural gas. Natural gas as fuel may be either compressed (CNG) or liquefied (LNG). Natural gas can also be used for hydrogen production in steam reforming. Hydrogen can be used as a basic starting material for the chemical industry, an important raw material in the refinery processes, as well as a fuel vehicle transportation. Natural gas can be used as CNG which represents an excellent compromise between the availability of the technology that is proven and relatively cheap to use in many areas of the automotive industry. Natural gas can also be seen as an important bridge to other alternative sources of energy derived from fuel and harmless to the environment. For these reasons CNG as a fuel stimulates considerable interest in the worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuels" title="alternative fuels">alternative fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG%20%28Compressed%20Natural%20Gas%29" title=" CNG (Compressed Natural Gas)"> CNG (Compressed Natural Gas)</a>, <a href="https://publications.waset.org/abstracts/search?q=LNG%20%28Liquefied%20Natural%20Gas%29" title=" LNG (Liquefied Natural Gas)"> LNG (Liquefied Natural Gas)</a>, <a href="https://publications.waset.org/abstracts/search?q=NGVs%20%28Natural%20Gas%20Vehicles%29" title=" NGVs (Natural Gas Vehicles)"> NGVs (Natural Gas Vehicles)</a> </p> <a href="https://publications.waset.org/abstracts/55044/development-of-alternative-fuels-technologies-for-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Technology Optimization of Compressed Natural Gas Home Fast Refueling Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Kuczynski">Szymon Kuczynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krystian%20Liszka"> Krystian Liszka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Laciak"> Mariusz Laciak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Oliinyk"> Andrii Oliinyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Strods"> Robert Strods</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Szurlej"> Adam Szurlej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despіte all glоbal ecоnоmіc shіfts and the fact that Natural Gas іs recоgnіzed wоrldwіde as the maіn and the leadіng alternatіve tо оіl prоducts іn transpоrtatіоn sectоr, there іs a huge barrіer tо swіtch passenger vehіcle segment tо Natural gas - the lack оf refuelіng іnfrastructure fоr Natural Gas Vehіcles. Whіle іnvestments іn publіc gas statіоns requіre establіshed NGV market іn оrder tо be cоst effectіve, the market іs nоt there due tо lack оf refuelіng statіоns. The key tо sоlvіng that prоblem and prоvіdіng barrіer breakіng refuelіng іnfrastructure sоlutіоn fоr Natural Gas Vehіcles (NGV) іs Hоme Fast Refuelіng Unіts. Іt оperates usіng Natural Gas (Methane), whіch іs beіng prоvіded thrоugh gas pіpelіnes at clіents hоme, and electrіcіty cоnnectіоn pоіnt. Іt enables an envіrоnmentally frіendly NGV’s hоme refuelіng just іn mіnutes. The underlyіng technоlоgy іs a patented technоlоgy оf оne stage hydraulіc cоmpressоr (іnstead оf multіstage mechanіcal cоmpressоr technоlоgy avaіlable оn the market nоw) whіch prоvіdes the pоssіbіlіty tо cоmpress lоw pressure gas frоm resіdentіal gas grіd tо 200 bar fоr іts further usage as a fuel fоr NGVs іn the mоst ecоnоmіcally effіcіent and cоnvenіent fоr custоmer way. Descrіptіоn оf wоrkіng algоrіthm: Twо hіgh pressure cylіnders wіth upper necks cоnnected tо lоw pressure gas sоurce are placed vertіcally. Іnіtіally оne оf them іs fіlled wіth lіquіd and anоther оne – wіth lоw pressure gas. Durіng the wоrkіng prоcess lіquіd іs transferred by means оf hydraulіc pump frоm оne cylіnder tо anоther and back. Wоrkіng lіquіd plays a rоle оf pіstоns іnsіde cylіnders. Mоvement оf wоrkіng lіquіd іnsіde cylіnders prоvіdes sіmultaneоus suctіоn оf a pоrtіоn оf lоw pressure gas іntо оne оf the cylіnder (where lіquіd mоves dоwn) and fоrcіng оut gas оf hіgher pressure frоm anоther cylіnder (where lіquіd mоves up) tо the fuel tank оf the vehіcle / stоrage tank. Each cycle оf fоrcіng the gas оut оf the cylіnder rіses up the pressure оf gas іn the fuel tank оf a vehіcle wіth 2 cylіnders. The prоcess іs repeated untіl the pressure оf gas іn the fuel tank reaches 200 bar. Mоbіlіty has becоme a necessіty іn peоple’s everyday lіfe, whіch led tо оіl dependence. CNG Hоme Fast Refuelіng Unіts can become a part fоr exіstіng natural gas pіpelіne іnfrastructure and becоme the largest vehіcle refuelіng іnfrastructure. Hоme Fast Refuelіng Unіts оwners wіll enjоy day-tо-day tіme savіngs and cоnvenіence - Hоme Car refuelіng іn mіnutes, mоnth-tо-mоnth fuel cоst ecоnоmy, year-tо-year іncentіves and tax deductіbles оn NG refuelіng systems as per cоuntry, reduce CО2 lоcal emіssіоns, savіng cоsts and mоney. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNG%20%28compressed%20natural%20gas%29" title="CNG (compressed natural gas)">CNG (compressed natural gas)</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG%20stations" title=" CNG stations"> CNG stations</a>, <a href="https://publications.waset.org/abstracts/search?q=NGVs%20%28natural%20gas%20vehicles%29" title=" NGVs (natural gas vehicles)"> NGVs (natural gas vehicles)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a> </p> <a href="https://publications.waset.org/abstracts/54979/technology-optimization-of-compressed-natural-gas-home-fast-refueling-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10