CINXE.COM

Norbert Fortin | University of California, Irvine - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Norbert Fortin | University of California, Irvine - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="iKPeBodehpUhj7xiArvwyiS9QcPqUhbJVbGixF1qdaHHOimcGIWWym3wD6RMyTrRH4KGqCTRG_pj1bShlwWUbw" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="norbert fortin" /> <meta name="description" content="Norbert Fortin, University of California, Irvine: 19 Followers, 9 Following, 71 Research papers. Research interests: Behavioral Neuroscience, Artificial Neural…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'b092bf3a3df71cf13feee7c143e83a57eb6b94fb'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14016,"monthly_visitors":"99 million","monthly_visitor_count":99567017,"monthly_visitor_count_in_millions":99,"user_count":283023026,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739830141000); window.Aedu.timeDifference = new Date().getTime() - 1739830141000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5708a105dd66b4c7d0ef30b7c094b1048423f0042bd2a7b123f2d99ee3cf46d9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://uci.academia.edu/NorbertFortin" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-c0b60aedadfb9d46b698730fbbcb2e70645c886b405d825adeba3a031c02455d.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":269373,"name":"Neurobiology and Behavior","url":"https://uci.academia.edu/Departments/Neurobiology_and_Behavior/Documents","university":{"id":694,"name":"University of California, Irvine","url":"https://uci.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":30601,"name":"Behavioral Neuroscience","url":"https://www.academia.edu/Documents/in/Behavioral_Neuroscience"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks"},{"id":177759,"name":"In Vivo Electrophysiology","url":"https://www.academia.edu/Documents/in/In_Vivo_Electrophysiology"},{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":236,"name":"Cognitive Psychology","url":"https://www.academia.edu/Documents/in/Cognitive_Psychology"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://uci.academia.edu/NorbertFortin&quot;,&quot;location&quot;:&quot;/NorbertFortin&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;uci.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/NorbertFortin&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-2c769819-b0c8-4823-81a6-c672d9c137b2"></div> <div id="ProfileCheckPaperUpdate-react-component-2c769819-b0c8-4823-81a6-c672d9c137b2"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Norbert Fortin</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://uci.academia.edu/">University of California, Irvine</a>, <a class="u-tcGrayDarker" href="https://uci.academia.edu/Departments/Neurobiology_and_Behavior/Documents">Neurobiology and Behavior</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Norbert" data-follow-user-id="32842667" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32842667"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">19</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">9</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">9</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/NorbertFortin/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://saic.academia.edu/JElkins"><img class="profile-avatar u-positionAbsolute" alt="James Elkins" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/15483/5205/5067/s200_james.elkins.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://saic.academia.edu/JElkins">James Elkins</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">School of the Art Institute of Chicago</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ucc-ie.academia.edu/DonRoss"><img class="profile-avatar u-positionAbsolute" alt="Don Ross" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/34228/11192/19836440/s200_don.ross.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucc-ie.academia.edu/DonRoss">Don Ross</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University College Cork</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ksu.academia.edu/DavidSeamon"><img class="profile-avatar u-positionAbsolute" alt="David Seamon" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/93547/25922/29662134/s200_david.seamon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ksu.academia.edu/DavidSeamon">David Seamon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kansas State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unipr.academia.edu/VittorioGallese"><img class="profile-avatar u-positionAbsolute" alt="Vittorio Gallese" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/138943/921229/156149242/s200_vittorio.gallese.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unipr.academia.edu/VittorioGallese">Vittorio Gallese</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Università degli Studi di Parma (Italy)</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://mq.academia.edu/JohnSutton"><img class="profile-avatar u-positionAbsolute" alt="John Sutton" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/176044/43811/40295/s200_john.sutton.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mq.academia.edu/JohnSutton">John Sutton</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Macquarie University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://northwestern.academia.edu/MichelBernabei"><img class="profile-avatar u-positionAbsolute" alt="Michel Bernabei" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/926003/346837/43114328/s200_michel.bernabei.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://northwestern.academia.edu/MichelBernabei">Michel Bernabei</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Northwestern University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unipd.academia.edu/CarloSemenza"><img class="profile-avatar u-positionAbsolute" alt="Carlo Semenza" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/3886207/2825606/3297948/s200_carlo.semenza.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unipd.academia.edu/CarloSemenza">Carlo Semenza</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Università degli Studi di Padova</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://rivpolyonline.academia.edu/PALIMOTEJUSTICE"><img class="profile-avatar u-positionAbsolute" alt="PALIMOTE JUSTICE" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/5326299/2340125/24766135/s200_justice.palimote.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://rivpolyonline.academia.edu/PALIMOTEJUSTICE">PALIMOTE JUSTICE</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">RIVERS STATE POLYTECHNIC</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://spbu.academia.edu/IrinaMalkinaPykh"><img class="profile-avatar u-positionAbsolute" alt="Irina Malkina-Pykh" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/6581650/2897754/3385098/s200_irina.malkina-pykh.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://spbu.academia.edu/IrinaMalkinaPykh">Irina Malkina-Pykh</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Saint-Petersburg State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://fiu.academia.edu/TimothyAllen"><img class="profile-avatar u-positionAbsolute" alt="Timothy Allen" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/24394126/8134298/9104551/s200_timothy.allen.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://fiu.academia.edu/TimothyAllen">Timothy Allen</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Florida International University</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32842667" href="https://www.academia.edu/Documents/in/Behavioral_Neuroscience"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://uci.academia.edu/NorbertFortin&quot;,&quot;location&quot;:&quot;/NorbertFortin&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;uci.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/NorbertFortin&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Behavioral Neuroscience&quot;]}" data-trace="false" data-dom-id="Pill-react-component-684ce002-d6f6-4def-8a2a-10f0302bba8d"></div> <div id="Pill-react-component-684ce002-d6f6-4def-8a2a-10f0302bba8d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32842667" href="https://www.academia.edu/Documents/in/Artificial_Neural_Networks"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Artificial Neural Networks&quot;]}" data-trace="false" data-dom-id="Pill-react-component-00342ce2-be9f-49e0-a766-0513cc36cf3f"></div> <div id="Pill-react-component-00342ce2-be9f-49e0-a766-0513cc36cf3f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32842667" href="https://www.academia.edu/Documents/in/In_Vivo_Electrophysiology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;In Vivo Electrophysiology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-2e64abea-3d5f-469e-9c6c-9163ecbe02da"></div> <div id="Pill-react-component-2e64abea-3d5f-469e-9c6c-9163ecbe02da"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32842667" href="https://www.academia.edu/Documents/in/Neuroscience"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Neuroscience&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9512ff17-6a08-4dea-a5ae-0d1c453a6ba5"></div> <div id="Pill-react-component-9512ff17-6a08-4dea-a5ae-0d1c453a6ba5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32842667" href="https://www.academia.edu/Documents/in/Cognitive_Psychology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Cognitive Psychology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-fa21b4ce-e787-4c31-b30f-7b7efa8d6733"></div> <div id="Pill-react-component-fa21b4ce-e787-4c31-b30f-7b7efa8d6733"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Norbert Fortin</h3></div><div class="js-work-strip profile--work_container" data-work-id="119882512"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/119882512/Navigation_and_Episodic_Like_Memory_in_Mammals"><img alt="Research paper thumbnail of Navigation and Episodic-Like Memory in Mammals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/119882512/Navigation_and_Episodic_Like_Memory_in_Mammals">Navigation and Episodic-Like Memory in Mammals</a></div><div class="wp-workCard_item"><span>Elsevier eBooks</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Navigation and episodic memory are two of the most studied cognitive abilities in behavioral rese...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Navigation and episodic memory are two of the most studied cognitive abilities in behavioral research. The capacity for efficient navigation is crucial to the survival of mammals; it allows them to optimally forage, search for mates, find shelter, and defend their territory, while conserving their energy and avoiding unnecessary exposure to predators. Episodic memory, the capacity to remember personal experiences, has unquestionably also increased the survival fitness of humans and of other mammals as well. In fact, as animals live in a continuously changing environment, the capacity for memory for unique experiences has presumably evolved to complement other types of memories specialized in extracting generalities from multiple experiences. For instance, the general knowledge that tigers are dangerous is adaptive, but remembering having seen a tiger near the river at dawn further benefits a potential prey. Navigation has been primarily studied in rodents, while episodic memory research has focused predominantly on humans. Although the two lines of research evolved rather independently for years, accumulating evidence indicates that both abilities share fundamental features and neural circuitry across mammalian species. The objectives of the present chapter are to review the behavioral approaches used to investigate navigation and episodic memory in different mammalian species, and to provide insight into the specific brain structures and potential neuronal mechanisms underlying both abilities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119882512"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119882512"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119882512; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119882512]").text(description); $(".js-view-count[data-work-id=119882512]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119882512; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119882512']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119882512]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119882512,"title":"Navigation and Episodic-Like Memory in Mammals","internal_url":"https://www.academia.edu/119882512/Navigation_and_Episodic_Like_Memory_in_Mammals","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119882510"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/119882510/Evoluci%C3%B3n_de_la_memoria_epis%C3%B3dica"><img alt="Research paper thumbnail of Evolución de la memoria episódica" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/119882510/Evoluci%C3%B3n_de_la_memoria_epis%C3%B3dica">Evolución de la memoria episódica</a></div><div class="wp-workCard_item"><span>Ludus vitalis: revista de filosofía de las ciencias de la vida = journal of philosophy of life sciences = revue de philosophie des sciences de la vie</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002) /Annu Rev Psychol/53:1­25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologsin other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. Theimplication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-­specific divergences that have developed on top of the fundamental episodic memory architec­ture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119882510"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119882510"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119882510; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119882510]").text(description); $(".js-view-count[data-work-id=119882510]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119882510; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119882510']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119882510]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119882510,"title":"Evolución de la memoria episódica","internal_url":"https://www.academia.edu/119882510/Evoluci%C3%B3n_de_la_memoria_epis%C3%B3dica","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119882508"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/119882508/Author_response_Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory"><img alt="Research paper thumbnail of Author response: Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/119882508/Author_response_Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory">Author response: Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119882508"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119882508"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119882508; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119882508]").text(description); $(".js-view-count[data-work-id=119882508]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119882508; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119882508']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119882508]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119882508,"title":"Author response: Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory","internal_url":"https://www.academia.edu/119882508/Author_response_Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119882497"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119882497/Evolutionary_State_Space_Model_and_Its_Application_to_Time_Frequency_Analysis_of_Local_Field_Potentials_eScholarship"><img alt="Research paper thumbnail of Evolutionary State-Space Model and Its Application to Time-Frequency Analysis of Local Field Potentials - eScholarship" class="work-thumbnail" src="https://attachments.academia-assets.com/115198653/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119882497/Evolutionary_State_Space_Model_and_Its_Application_to_Time_Frequency_Analysis_of_Local_Field_Potentials_eScholarship">Evolutionary State-Space Model and Its Application to Time-Frequency Analysis of Local Field Potentials - eScholarship</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose an evolutionary state space model (E-SSM) for analyzing high dimensional brain signals...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose an evolutionary state space model (E-SSM) for analyzing high dimensional brain signals (in particular, local field potentials in rats) whose statistical properties evolve over the course of a non-spatial memory experiment. Under E-SSM, brain signals are modeled as mixtures of components with oscillatory activity at defined frequency bands. One unique feature of E-SSM is that the components are parametrized as second order autoregressive AR(2) processes. To account for the potential nonstationarity of these components (since the brain responses could vary throughout the entire experiment), the parameters are allowed to vary over epochs. In contrast to independent component analysis, the method for estimating the components in E-SSM accounts for the entire temporal correlation of the components. Moreover, compared to purely data-adaptive strategies, such as filtering, E-SSM easily accommodates non-stationarity through the component of AR parameters. To estimate the model parameters and conduct statistical inference, we use Kalman smoother, maximum likelihood and blocked resampling approaches. The E-SSM model is applied to a multi-epoch LFP signals from a rat in a non-spatial (olfactory) sequence memory task. Our method captures the evolution of the power for different components across phases 1 arXiv:1610.07271v2 [stat.ME] 2 Nov 2016 of the experiment. The E-SSM model also identifies clusters of electrodes that behave similarly with respect to the decomposition of different sources. These findings suggest that the activity of different electrodes changes over the course of the experiment. Treating these epoch recordings as realizations of an identical process could give rise to misleading results. The proposed model underscores the importance of capturing the evolution in brain responses during the course of an experiment.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d156de3ec19560312c306a5ebe9dc152" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115198653,&quot;asset_id&quot;:119882497,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115198653/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119882497"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119882497"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119882497; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119882497]").text(description); $(".js-view-count[data-work-id=119882497]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119882497; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119882497']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d156de3ec19560312c306a5ebe9dc152" } } $('.js-work-strip[data-work-id=119882497]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119882497,"title":"Evolutionary State-Space Model and Its Application to Time-Frequency Analysis of Local Field Potentials - eScholarship","internal_url":"https://www.academia.edu/119882497/Evolutionary_State_Space_Model_and_Its_Application_to_Time_Frequency_Analysis_of_Local_Field_Potentials_eScholarship","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":115198653,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115198653/thumbnails/1.jpg","file_name":"qt2bg3p3w1.pdf","download_url":"https://www.academia.edu/attachments/115198653/download_file","bulk_download_file_name":"Evolutionary_State_Space_Model_and_Its_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115198653/qt2bg3p3w1-libre.pdf?1716481741=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_State_Space_Model_and_Its_A.pdf\u0026Expires=1739833740\u0026Signature=TtnzANu8o7UdMc3h3oKsns1ij4UJJGkJoE7Y37~~elfm-lIEz4s9pmpTcNSTRSuAokxET1vgkV92T-C860T96PQVgCvfcNKyYxY2Q8MqGs52D9aawo49M6vY96R~SlCctEZME3GUjSgYzwf8InCXVZWV83tCqPA7~h8~vRFErOf1aMpIzsdL5-uiX8qhoTfDAq2qkZe6YxIjsIR4~-ZNqABEreQlAHAEX0ADcjFbg6kZSdsx4dpbkfzG2~GCLnB3wxVvVTYiSGi9ZmHH8Pyo~QfSLroWc5xKZKi67TDececHgzv8jMYd~n11MWejEFUt3i40OfZy~W5MFcoOBYkxQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":115198654,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115198654/thumbnails/1.jpg","file_name":"qt2bg3p3w1.pdf","download_url":"https://www.academia.edu/attachments/115198654/download_file","bulk_download_file_name":"Evolutionary_State_Space_Model_and_Its_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115198654/qt2bg3p3w1-libre.pdf?1716481742=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_State_Space_Model_and_Its_A.pdf\u0026Expires=1739833740\u0026Signature=eUR3FnP42DdqmhXcezABcZevj80J-IqxbAyuXuftrSdwrnStq1zCmjIPZzO1TsCHv-Lpz2TlntwkGSuCAxFglBO9bxE-V2jnTNYPVl2ZYzm4htqJu8PYj0sQW8D1Ng~ouWNAjIHTh4-poSe6a~6LG0rfmfC3gmVa~GInvPirfstijkR8L39A3dhcDgCyjtkn98-LlCiTxcHEhJ8JHmm3JwuGZTh2MF1NJeUpxTqYszgdn01chg9qXIZd8qaJQha8p1CQNfS8K7YXHrUSBO8lyrsK9WtwtwbbV~d7WtTWtKemZ-pICv2JfoUnniTnd8iNfQIurmXuHQjpV4ciuOuGOg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115506882"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115506882/Regularized_matrix_data_clustering_and_its_application_to_image_analysis"><img alt="Research paper thumbnail of Regularized matrix data clustering and its application to image analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/111894483/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115506882/Regularized_matrix_data_clustering_and_its_application_to_image_analysis">Regularized matrix data clustering and its application to image analysis</a></div><div class="wp-workCard_item"><span>Biometrics</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a novel regularized mixture model for clustering matrix‐valued data. The proposed meth...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a novel regularized mixture model for clustering matrix‐valued data. The proposed method assumes a separable covariance structure for each cluster and imposes a sparsity structure (eg, low rankness, spatial sparsity) for the mean signal of each cluster. We formulate the problem as a finite mixture model of matrix‐normal distributions with regularization terms, and then develop an expectation maximization type of algorithm for efficient computation. In theory, we show that the proposed estimators are strongly consistent for various choices of penalty functions. Simulation and two applications on brain signal studies confirm the excellent performance of the proposed method including a better prediction accuracy than the competitors and the scientific interpretability of the solution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5ce296b7e370e2152276405a5bdb7ae1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111894483,&quot;asset_id&quot;:115506882,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111894483/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115506882"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115506882"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115506882; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115506882]").text(description); $(".js-view-count[data-work-id=115506882]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115506882; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115506882']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5ce296b7e370e2152276405a5bdb7ae1" } } $('.js-work-strip[data-work-id=115506882]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115506882,"title":"Regularized matrix data clustering and its application to image analysis","internal_url":"https://www.academia.edu/115506882/Regularized_matrix_data_clustering_and_its_application_to_image_analysis","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":111894483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111894483/thumbnails/1.jpg","file_name":"1808.01749v1.pdf","download_url":"https://www.academia.edu/attachments/111894483/download_file","bulk_download_file_name":"Regularized_matrix_data_clustering_and_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111894483/1808.01749v1-libre.pdf?1709063312=\u0026response-content-disposition=attachment%3B+filename%3DRegularized_matrix_data_clustering_and_i.pdf\u0026Expires=1739833740\u0026Signature=CcqoHuFuMJ3JlupMcBqyjY9WqsqxsKWDYP69muq05IxSpR91Sf~C3QbqKupyg6NKKQ8N5wxfE5~rGRfJ0HtkHUR2BZraqFTf7jVLk4WRYzJD7U7I0ULTNY0o-nvlIzxT6NfNVOeFyiZbXMMPnqE4dhzQxN4yLKHPqZ9Q5IRRnWdEhRb3cNYXHFTFYCNjPlqK8bN~G3-ilb4l0N-JCId4P7-1KoM9p8dj4zezgkx9ZLIKLKNchTwgbCg8~vfC4N5ifCSB7eN6ZimtF0xmFxKQIcTUyn7Kbfa4QNEYfr9ZtItIyKC-AECZdMYkW4sKSBZWAfYFzq6VsCJ8UJ0IxXnX0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115506876"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115506876/Regularized_matrix_data_clustering_and_its_application_to_image_analysis"><img alt="Research paper thumbnail of Regularized matrix data clustering and its application to image analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/111894481/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115506876/Regularized_matrix_data_clustering_and_its_application_to_image_analysis">Regularized matrix data clustering and its application to image analysis</a></div><div class="wp-workCard_item"><span>Biometrics</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a novel regularized mixture model for clustering matrix‐valued data. The proposed meth...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a novel regularized mixture model for clustering matrix‐valued data. The proposed method assumes a separable covariance structure for each cluster and imposes a sparsity structure (eg, low rankness, spatial sparsity) for the mean signal of each cluster. We formulate the problem as a finite mixture model of matrix‐normal distributions with regularization terms, and then develop an expectation maximization type of algorithm for efficient computation. In theory, we show that the proposed estimators are strongly consistent for various choices of penalty functions. Simulation and two applications on brain signal studies confirm the excellent performance of the proposed method including a better prediction accuracy than the competitors and the scientific interpretability of the solution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c185c1dc8f21b29a6cd82a24b5cacd2b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111894481,&quot;asset_id&quot;:115506876,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111894481/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115506876"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115506876"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115506876; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115506876]").text(description); $(".js-view-count[data-work-id=115506876]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115506876; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115506876']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c185c1dc8f21b29a6cd82a24b5cacd2b" } } $('.js-work-strip[data-work-id=115506876]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115506876,"title":"Regularized matrix data clustering and its application to image analysis","internal_url":"https://www.academia.edu/115506876/Regularized_matrix_data_clustering_and_its_application_to_image_analysis","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":111894481,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111894481/thumbnails/1.jpg","file_name":"1808.01749v1.pdf","download_url":"https://www.academia.edu/attachments/111894481/download_file","bulk_download_file_name":"Regularized_matrix_data_clustering_and_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111894481/1808.01749v1-libre.pdf?1709063310=\u0026response-content-disposition=attachment%3B+filename%3DRegularized_matrix_data_clustering_and_i.pdf\u0026Expires=1739833740\u0026Signature=K0KRpr6VWhHoRA44Pp~ljsRnTmu9SaPL4Dh8fic6UOgL6yh8ZwhO6cf1GY7fPML89tLiN-qcNjoSQZPPhMnjSQ6tzMiTjOeiv0xkhbdiLxLnETyQ2zO470uUuaPwqCcN0kXeDdGOb3NBpM1KlrFIKEy3TEWh98KnYp~PZtBK1uTYt4BvwpXsbMTJImfKIv-orlTGxKzky2ffdjecFjrF9G22p9xwIT7miDF1ryxFDniLGFTP61HM-cEFbBg0wtI6D-bI8qs627SnXgEOE1huDesgcLFU1kh6N9woBGPKi-MuhNK9f7D2A5rp-D2p7kJifhfEi5QfQZX2k~sc5xJ7-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843243"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111843243/Smooth_online_parameter_estimation_for_time_varying_VAR_models_with_application_to_rat_local_field_potential_activity_data"><img alt="Research paper thumbnail of Smooth online parameter estimation for time varying VAR models with application to rat local field potential activity data" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111843243/Smooth_online_parameter_estimation_for_time_varying_VAR_models_with_application_to_rat_local_field_potential_activity_data">Smooth online parameter estimation for time varying VAR models with application to rat local field potential activity data</a></div><div class="wp-workCard_item"><span>Statistics and Its Interface</span><span>, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843243"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843243"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843243; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843243]").text(description); $(".js-view-count[data-work-id=111843243]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843243; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843243']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111843243]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843243,"title":"Smooth online parameter estimation for time varying VAR models with application to rat local field potential activity data","internal_url":"https://www.academia.edu/111843243/Smooth_online_parameter_estimation_for_time_varying_VAR_models_with_application_to_rat_local_field_potential_activity_data","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843242"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843242/ROCs_in_rats_Response_to_Wixted_and_Squire_Figure_1"><img alt="Research paper thumbnail of ROCs in rats? Response to Wixted and Squire: Figure 1" class="work-thumbnail" src="https://attachments.academia-assets.com/109261346/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843242/ROCs_in_rats_Response_to_Wixted_and_Squire_Figure_1">ROCs in rats? Response to Wixted and Squire: Figure 1</a></div><div class="wp-workCard_item"><span>Learning &amp; Memory</span><span>, Aug 26, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a9ee6a6fcb1b33faf74dd5f9ddbbf995" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109261346,&quot;asset_id&quot;:111843242,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109261346/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843242"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843242"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843242; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843242]").text(description); $(".js-view-count[data-work-id=111843242]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843242; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843242']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a9ee6a6fcb1b33faf74dd5f9ddbbf995" } } $('.js-work-strip[data-work-id=111843242]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843242,"title":"ROCs in rats? Response to Wixted and Squire: Figure 1","internal_url":"https://www.academia.edu/111843242/ROCs_in_rats_Response_to_Wixted_and_Squire_Figure_1","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109261346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109261346/thumbnails/1.jpg","file_name":"691.full.pdf","download_url":"https://www.academia.edu/attachments/109261346/download_file","bulk_download_file_name":"ROCs_in_rats_Response_to_Wixted_and_Squi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109261346/691.full-libre.pdf?1703016655=\u0026response-content-disposition=attachment%3B+filename%3DROCs_in_rats_Response_to_Wixted_and_Squi.pdf\u0026Expires=1739833740\u0026Signature=gIhOXL4xmPFb2z0l1M-0N5ONe7fkkVfixy-ZxNlGNMxM5ij95hRzEY4Xmej7s0s6s~Sd4ArVs~1JB6FBHViHPb33OjGiGYpUR56fdLoFxBXKLplzHUReAz3n0mFEMQ0safPex3b66XIU3DJkQ94BG0CvfiodzpmcHkKDO6-skc-GHbJfkDgP1fhK1Z6NY~cFAfn9TbHkuzk-rzjTZdNm5380YlnpyWQDJfrAI0Frkx9Vdf2UwJ4Nh1PaK21CsaZL~iHO72VPLLOCRj4DoKBqaj8pxmGYMrt4dMypaCRzolu2-B3nOriD8uTT3W2lWJM9urEF6bzShO7vOkg9wrZwEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843241"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843241/Bridging_the_Gap_Between_Brain_and_Behavior_Cognitive_and_Neural_Mechanisms_of_Episodic_Memory"><img alt="Research paper thumbnail of Bridging the Gap Between Brain and Behavior: Cognitive and Neural Mechanisms of Episodic Memory" class="work-thumbnail" src="https://attachments.academia-assets.com/109257880/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843241/Bridging_the_Gap_Between_Brain_and_Behavior_Cognitive_and_Neural_Mechanisms_of_Episodic_Memory">Bridging the Gap Between Brain and Behavior: Cognitive and Neural Mechanisms of Episodic Memory</a></div><div class="wp-workCard_item"><span>Journal of the Experimental Analysis of Behavior</span><span>, Nov 1, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion that non-human animals are capable of episodic memory is highly controversial. Here, w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion that non-human animals are capable of episodic memory is highly controversial. Here, we review recent behavioral work from our laboratory showing that the fundamental features of episodic memory can be observed in rats and that, as in humans, this capacity relies on the hippocampus. We also discuss electrophysiological evidence, from our laboratory and that of others, pointing to associative and sequential coding in hippocampal cells as potential neural mechanisms underlying episodic memory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9b51dfffd05b768ace9627499494ef53" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257880,&quot;asset_id&quot;:111843241,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257880/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843241"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843241"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843241; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843241]").text(description); $(".js-view-count[data-work-id=111843241]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843241; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843241']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9b51dfffd05b768ace9627499494ef53" } } $('.js-work-strip[data-work-id=111843241]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843241,"title":"Bridging the Gap Between Brain and Behavior: Cognitive and Neural Mechanisms of Episodic Memory","internal_url":"https://www.academia.edu/111843241/Bridging_the_Gap_Between_Brain_and_Behavior_Cognitive_and_Neural_Mechanisms_of_Episodic_Memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257880,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257880/thumbnails/1.jpg","file_name":"pmc1389783.pdf","download_url":"https://www.academia.edu/attachments/109257880/download_file","bulk_download_file_name":"Bridging_the_Gap_Between_Brain_and_Behav.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257880/pmc1389783-libre.pdf?1703013687=\u0026response-content-disposition=attachment%3B+filename%3DBridging_the_Gap_Between_Brain_and_Behav.pdf\u0026Expires=1739833740\u0026Signature=CZxwzw~qTxdaMIJ46V3-JZIq6aaacHEVEYMxXb1qmgvaRv65J2LqAQcQfWZwXGxt96QYwyXatlPN0HyOQOGrIF~5axPN1A3xxxev1TkYFdhmMkrk5AWCKKl6Z6IrzHXv83BR1dsXTZCxG0n6NqH~KBPjQ-17ktqH2ybR~wo4Vodz-kZIBno60xINEKlN8XkWCbnQFsFAZAixCRIZ7EG2YrqFBXjzRZasmwFKX7nqCOVGx4Fu19w7n3vSpUlLXrKQhmTBvxIvDzK3g~pcFxDD8u72g5VMwNr6A~U42OOqFa2Lbh3a5Ga8iM1J-c6BffEJsB8csbIlL7lHFRKvyzQ0mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109257881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257881/thumbnails/1.jpg","file_name":"pmc1389783.pdf","download_url":"https://www.academia.edu/attachments/109257881/download_file","bulk_download_file_name":"Bridging_the_Gap_Between_Brain_and_Behav.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257881/pmc1389783-libre.pdf?1703013687=\u0026response-content-disposition=attachment%3B+filename%3DBridging_the_Gap_Between_Brain_and_Behav.pdf\u0026Expires=1739833740\u0026Signature=UVb-NiUElS7562fq3tkcQ67tXmnPIpxGijUaO1IAGYkR1A6x2RE0JC7LazE0NPg7Xbe0xLVewfSYwTRHQs3e-k72~lBFagqKdWl3Ybt9EdZa8YVUs1UTke4vS4cdHReq86XyOHgamFIMPcwBaeGNaYEStrMFqzwRaZlY4WatekQYkl8Lf3yOWXgFnJE9u226Jaeq8GN8JZb3tafY7ZFFqK~xiTGmqbNDWfHBgejfxlP82xRgzt0s40RzOpI6vWUAk~yaSswyj2pnbPvJkhefAL-6LsI7757SY3GLg7npi8KhXpOgy9ff7ZGaCDjKdTVu1mwmUPGiyrckYL71NQBPfg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843240"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843240/Cognitive_Aging_A_Common_Decline_of_Episodic_Recollection_and_Spatial_Memory_in_Rats"><img alt="Research paper thumbnail of Cognitive Aging: A Common Decline of Episodic Recollection and Spatial Memory in Rats" class="work-thumbnail" src="https://attachments.academia-assets.com/109257882/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843240/Cognitive_Aging_A_Common_Decline_of_Episodic_Recollection_and_Spatial_Memory_in_Rats">Cognitive Aging: A Common Decline of Episodic Recollection and Spatial Memory in Rats</a></div><div class="wp-workCard_item"><span>The Journal of Neuroscience</span><span>, Sep 3, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In humans, recognition memory declines with aging, and this impairment is characterized by a sele...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In humans, recognition memory declines with aging, and this impairment is characterized by a selective loss in recollection of previously studied items contrasted with relative sparing of familiarity for items in the study list. Rodent models of cognitive aging have focused on water maze learning and have demonstrated an age-associated loss in spatial, but not cued memory. The current study examined odor recognition memory in young and aged rats and compared performance in recognition with that in water maze learning. In the recognition task, young rats used both recollection and familiarity. In contrast, the aged rats showed a selective loss of recollection and relative sparing of familiarity, similar to the effects of hippocampal damage. Furthermore, performance on the recall component, but not the familiarity component, of recognition was correlated with spatial memory and recollection was poorer in aged rats that were also impaired in spatial memory. These results extend the pattern of impairment in recollection and relative sparing of familiarity observed in human cognitive aging to rats, and suggest a common age-related impairment in both spatial learning and the recollective component of nonspatial recognition memory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fa9db966934dee858c3049bce880bd00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257882,&quot;asset_id&quot;:111843240,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257882/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843240"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843240"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843240; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843240]").text(description); $(".js-view-count[data-work-id=111843240]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843240; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843240']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fa9db966934dee858c3049bce880bd00" } } $('.js-work-strip[data-work-id=111843240]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843240,"title":"Cognitive Aging: A Common Decline of Episodic Recollection and Spatial Memory in Rats","internal_url":"https://www.academia.edu/111843240/Cognitive_Aging_A_Common_Decline_of_Episodic_Recollection_and_Spatial_Memory_in_Rats","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257882,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257882/thumbnails/1.jpg","file_name":"8945.full.pdf","download_url":"https://www.academia.edu/attachments/109257882/download_file","bulk_download_file_name":"Cognitive_Aging_A_Common_Decline_of_Epis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257882/8945.full-libre.pdf?1703013690=\u0026response-content-disposition=attachment%3B+filename%3DCognitive_Aging_A_Common_Decline_of_Epis.pdf\u0026Expires=1739833740\u0026Signature=DEEeIX7JWKX73k3zU2Anp612An45iSEG3jSUGTwUVJ3Boynn-E4UVjOIJMV7cG1J39yXFO1tFdaWG741m~oIwfn7-LI1ZEfYmYRUFNsoRtTCrOVauAZEKJlYzNkSz64bApv9PR8xiA8xcn3EGSP8RNGmU5lsm6-sTHayFN64ZBeNmjkBOrTMLdwhr4QICTRz7arhijRY1Oq3yNZGm7o4TPKaTSCOBnSMQcW35Qk7HDimUJC26KZn8xd9xblmIUso3YsK27CV-cCosJh6QP64uR21Q1vmOnBrwfSiC9Rt9xEBPVvd00pbIE2JXoaztxsfxnIXDtRXRkZMdRtxgTckeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843239"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843239/CA1_20_40_Hz_oscillatory_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory"><img alt="Research paper thumbnail of CA1 20-40 Hz oscillatory dynamics reflect trial-specific information processing supporting nonspatial sequence memory" class="work-thumbnail" src="https://attachments.academia-assets.com/109257925/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843239/CA1_20_40_Hz_oscillatory_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory">CA1 20-40 Hz oscillatory dynamics reflect trial-specific information processing supporting nonspatial sequence memory</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="56f6f6933555220ff5284a225bd341f8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257925,&quot;asset_id&quot;:111843239,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257925/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843239"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843239"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843239; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843239]").text(description); $(".js-view-count[data-work-id=111843239]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843239; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843239']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "56f6f6933555220ff5284a225bd341f8" } } $('.js-work-strip[data-work-id=111843239]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843239,"title":"CA1 20-40 Hz oscillatory dynamics reflect trial-specific information processing supporting nonspatial sequence memory","internal_url":"https://www.academia.edu/111843239/CA1_20_40_Hz_oscillatory_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257925,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257925/thumbnails/1.jpg","file_name":"2020.03.10.985093.full.pdf","download_url":"https://www.academia.edu/attachments/109257925/download_file","bulk_download_file_name":"CA1_20_40_Hz_oscillatory_dynamics_reflec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257925/2020.03.10.985093.full-libre.pdf?1703013700=\u0026response-content-disposition=attachment%3B+filename%3DCA1_20_40_Hz_oscillatory_dynamics_reflec.pdf\u0026Expires=1739833740\u0026Signature=R~x4raM~YPtDuhKghA8TPTEygMC53nZcyKaZPT3rEkGtRCyc5tMZngXQz4~-E~3-M6mw19paq1xsoIfBWc-B~Jnfy2-QbNEOjWV28sjB-zWD4O5z0HqmSyzWUPP5CpZDADhQOoYbXhQMDs6iTIs7IXmhcFAU9a3GYIkwuqCJ0ZpBAFnqcjpSjFleqjtFXFb5abhZqg5PU3rrdi447YnSMIaFuHg1cv2OmPzVQ4msbzIYvI1s8jqeFy6LJvnjH42al1OaEobA3XPLZQ1AtwVS7vu9RVD-vEAsQLDM5swC39Ynq~wMh8pOsRbaB3oEs9G2juNk7eq6Bil09EkiGh3k7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843238"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843238/An_animal_model_of_amnesia_that_uses_Receiver_Operating_Characteristics_ROC_analysis_to_distinguish_recollection_from_familiarity_deficits_in_recognition_memory"><img alt="Research paper thumbnail of An animal model of amnesia that uses Receiver Operating Characteristics (ROC) analysis to distinguish recollection from familiarity deficits in recognition memory" class="work-thumbnail" src="https://attachments.academia-assets.com/109257878/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843238/An_animal_model_of_amnesia_that_uses_Receiver_Operating_Characteristics_ROC_analysis_to_distinguish_recollection_from_familiarity_deficits_in_recognition_memory">An animal model of amnesia that uses Receiver Operating Characteristics (ROC) analysis to distinguish recollection from familiarity deficits in recognition memory</a></div><div class="wp-workCard_item"><span>Neuropsychologia</span><span>, Jul 1, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here we review our development of an animal model of episodic memory and amnesia that employs on ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here we review our development of an animal model of episodic memory and amnesia that employs on signal detection analyses to characterize recognition memory performance in rats. This approach aims to distinguish episodic recollection of studied items from mere familiarity for recently experienced stimuli, and then to examine the neural basis of these memory processes. Our findings on intact animals indicate that it is possible to distinguish independent components of recognition that are associated with features of recollection and familiarity in humans. Furthermore, we have found that damage limited to the hippocampus results in a selective deficit in recollection and not familiarity. Also, aging and prefrontal damage result in a similar pattern of impaired recollection and spared familiarity. However, whereas the recollection deficit following hippocampal damage can be attributed to the forgetting of studied materials, the impairment following prefrontal damage is due to false alarms, likely reflecting a deficit in source monitoring.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37ed3d0e2e1481050ecba15eaf65badb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257878,&quot;asset_id&quot;:111843238,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257878/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843238"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843238"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843238; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843238]").text(description); $(".js-view-count[data-work-id=111843238]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843238; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843238']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37ed3d0e2e1481050ecba15eaf65badb" } } $('.js-work-strip[data-work-id=111843238]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843238,"title":"An animal model of amnesia that uses Receiver Operating Characteristics (ROC) analysis to distinguish recollection from familiarity deficits in recognition memory","internal_url":"https://www.academia.edu/111843238/An_animal_model_of_amnesia_that_uses_Receiver_Operating_Characteristics_ROC_analysis_to_distinguish_recollection_from_familiarity_deficits_in_recognition_memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257878,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257878/thumbnails/1.jpg","file_name":"pmc2891833.pdf","download_url":"https://www.academia.edu/attachments/109257878/download_file","bulk_download_file_name":"An_animal_model_of_amnesia_that_uses_Rec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257878/pmc2891833-libre.pdf?1703013698=\u0026response-content-disposition=attachment%3B+filename%3DAn_animal_model_of_amnesia_that_uses_Rec.pdf\u0026Expires=1739833740\u0026Signature=CeJuP-m6RAoOA-abg2DWeCNAWTWnFexIytcUkIYohXyOi6liV1Pc4QB0bI3W6SucDAgMMH2fffdpA8lFkvGbABatIUqjqKu-qn8kAeVgPlaZj1Kl7FeaO-Ube5r-2H5pxhzUNA1OrN5k8m~mVm-KXhoR~xHGNxWJNMYbCMbn62PrS4nAfzHxC9cwmkofOKRiqXZeS~GE2pz7EcqVnPCBytBwLTzFAGss9PdOYGYrSjrzm23~yKam6tLSp8TV2PCQg078MPa8Ot3r1S4vwN7mZqQitNWxOWDH6twa~DQLDPCp9hFf7DwV3iriH9fP6h~Z5H0Wi14M0OBKa9lODgKfbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109257879,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257879/thumbnails/1.jpg","file_name":"pmc2891833.pdf","download_url":"https://www.academia.edu/attachments/109257879/download_file","bulk_download_file_name":"An_animal_model_of_amnesia_that_uses_Rec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257879/pmc2891833-libre.pdf?1703013690=\u0026response-content-disposition=attachment%3B+filename%3DAn_animal_model_of_amnesia_that_uses_Rec.pdf\u0026Expires=1739833740\u0026Signature=WJ~obtGEtEIJsC6h30Q4EmJD3lkvBrLa93DGdi2r9I0jf3m2wqn7yK5UWMQWBz2qXisAuffyUXanCy-w1ROEYj82t3oViLIauOjEr4VJK2ooSkdzpnfDyBO8mHwFuoM~eLiIDrmGX4DBFtucGGcah6sDBCaGOxfwkH0CtILvIaMXkwpydpJaIEQ1C76zfMXo6ZlaANrwIpX4MQeohVayu-Uvh9~aYSpuOMiqkATTL9o4PBsGsh7OYL47lRJ12wpouEJQMDZIwIIe585Q1yyUBK0pUNGKzLaj7T8F4GA-SkVVUa2iVIy4uOINVr6ffg49N3f8zsMPp1XR39D5prRmEg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843237"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111843237/Episodic_Memory_and_the_Hippocampus"><img alt="Research paper thumbnail of Episodic Memory and the Hippocampus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111843237/Episodic_Memory_and_the_Hippocampus">Episodic Memory and the Hippocampus</a></div><div class="wp-workCard_item"><span>Current Directions in Psychological Science</span><span>, Apr 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Several recent studies have sought to develop animal models of episodic memory, the capacity to r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Several recent studies have sought to develop animal models of episodic memory, the capacity to recollect unique personal experiences. However, these studies have not yet provided unambiguous evidence that this capacity is based on recollection of the learning episodes. A recent study that examined memory for the ordering of events within unique experiences, and demonstrated a critical and selective role for the hippocampus, suggests a new and promising model for neurobiological analyses of episodic memory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843237"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843237"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843237; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843237]").text(description); $(".js-view-count[data-work-id=111843237]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843237; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843237']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111843237]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843237,"title":"Episodic Memory and the Hippocampus","internal_url":"https://www.academia.edu/111843237/Episodic_Memory_and_the_Hippocampus","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843236"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843236/The_Hippocampus_and_Disambiguation_of_Overlapping_Sequences"><img alt="Research paper thumbnail of The Hippocampus and Disambiguation of Overlapping Sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/109257875/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843236/The_Hippocampus_and_Disambiguation_of_Overlapping_Sequences">The Hippocampus and Disambiguation of Overlapping Sequences</a></div><div class="wp-workCard_item"><span>The Journal of Neuroscience</span><span>, Jul 1, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recent models of hippocampal function emphasize its potential role in disambiguating sequences of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recent models of hippocampal function emphasize its potential role in disambiguating sequences of events that compose distinct episodic memories. In this study, rats were trained to distinguish two overlapping sequences of odor choices. The capacity to disambiguate the sequences was measured by the critical odor choice after the overlapping elements of the sequences. When the sequences were presented in rapid alternation, damage to the hippocampus, produced either by infusions of the neurotoxin ibotenic acid or by radiofrequency current, produced a severe deficit, although animals with radiofrequency lesions relearned the task. When the sequences were presented spaced apart and in random order, animals with radiofrequency hippocampal lesions could perform the task. However, they failed when a memory delay was imposed before the critical choice. These findings support the hypothesis that the hippocampus is involved in representing sequences of nonspatial events, particularly when interference between the sequences is high or when animals must remember across a substantial delay preceding items in a current sequence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a8744d504b72d157f9f4f52714e7d4d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257875,&quot;asset_id&quot;:111843236,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257875/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843236"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843236"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843236; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843236]").text(description); $(".js-view-count[data-work-id=111843236]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843236; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843236']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a8744d504b72d157f9f4f52714e7d4d" } } $('.js-work-strip[data-work-id=111843236]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843236,"title":"The Hippocampus and Disambiguation of Overlapping Sequences","internal_url":"https://www.academia.edu/111843236/The_Hippocampus_and_Disambiguation_of_Overlapping_Sequences","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257875,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257875/thumbnails/1.jpg","file_name":"5760.full.pdf","download_url":"https://www.academia.edu/attachments/109257875/download_file","bulk_download_file_name":"The_Hippocampus_and_Disambiguation_of_Ov.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257875/5760.full-libre.pdf?1703013690=\u0026response-content-disposition=attachment%3B+filename%3DThe_Hippocampus_and_Disambiguation_of_Ov.pdf\u0026Expires=1739833740\u0026Signature=G~6juliRK0l6fvbNXg0ijP0L-jWhB58oVrbcfpaJx5fvQR-OPu8LVcRGPVHJcyWzVu5CRzbAPjybYAM2QjPDKjSdB~HNO9cf2a4w0iXv5hIT3UYsPiYg65~CGhQS6hZsjf3gQ5Uilx-21J5-XX7c7TeMllqww~bDusLYk2YO2E1qOcbA3oIAHzvjsHd9NGWwQyWHhkA6bcbR6cCxkYOV12zRRTc5-NnXvrLYCZbHYEzbufopzdW~dhwrEkXoDSzVn8zIb-oJQRzDpkRVecwrWpFvS~2xrwc4iqzSHwnh5bqXT34PJy~PmTdyqemhYnV8BfNQF5t9S8b6aqV~GP6gJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109257876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257876/thumbnails/1.jpg","file_name":"5760.full.pdf","download_url":"https://www.academia.edu/attachments/109257876/download_file","bulk_download_file_name":"The_Hippocampus_and_Disambiguation_of_Ov.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257876/5760.full-libre.pdf?1703013692=\u0026response-content-disposition=attachment%3B+filename%3DThe_Hippocampus_and_Disambiguation_of_Ov.pdf\u0026Expires=1739833740\u0026Signature=U4It93vl2hR1exHy2P4AasAcxV-ulBCEwkSLv9ejFCQGnO~4CO-jea46vxedhAz82n7cGZoz1z2Fovv80Re4CAj1Co7aRVedBXQQeDk7pNHKIZCYLyVx0aVIhWwYAOFi5g-qC15avaDDFK9GUFWVkBVgWQMiNsARf9X6Q5WZGrJegXhByKdbhnPdK7QOXjUn3JaQ0rNEoabDHT~gqMJUbvxrTt9dRkaasZSmR4xRknRBhr6NU35gb7tri-pU3Ix-QvD~1DHcUiqVEE6VcS8MdknKS1mFCDpFEotK4LvogwCeULKHsfZZooKA8eTJ6UvPHcIjzYHUMa~Nj2h2Hyp2Mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843234"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843234/Episodic_recollection_in_animals_If_it_walks_like_a_duck_and_quacks_like_a_duck_"><img alt="Research paper thumbnail of Episodic recollection in animals: “If it walks like a duck and quacks like a duck…”" class="work-thumbnail" src="https://attachments.academia-assets.com/109257926/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843234/Episodic_recollection_in_animals_If_it_walks_like_a_duck_and_quacks_like_a_duck_">Episodic recollection in animals: “If it walks like a duck and quacks like a duck…”</a></div><div class="wp-workCard_item"><span>Learning and Motivation</span><span>, May 1, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In humans, episodic memory is most commonly deWned as the subjective experience of recollection, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In humans, episodic memory is most commonly deWned as the subjective experience of recollection, presenting a major challenge to the identiWcation of episodic memory in animals. Here we take the position that episodic memory also has several other distinctive qualities that can be assessed objectively in animals, as well as humans, and the examination of these properties provides insights into underlying mechanisms of episodic memory. We focus on recent evidence accumulated in this laboratory indicating that recognition in rats involves a threshold retrieval process, similar to that observed in human episodic recall. Also, rats can remember the temporal order of unique events, characteristic of the replay of vivid episodic memories in humans. Furthermore, rats combine elements of &quot;when&quot; and &quot;where&quot; events occur, as well as the Xow of events within a memory, to distinguish memories that share overlapping features, also characteristic of human episodic memory. Finally, all of these capacities are dependent on the hippocampus, which also plays a critical role in human episodic memory. This combination of Wndings strongly suggests that animals have the same fundamental information processing functions that underlie episodic recall in humans.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="da9381b0d88fd96a1cc6edfa47c39002" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257926,&quot;asset_id&quot;:111843234,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257926/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843234"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843234"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843234; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843234]").text(description); $(".js-view-count[data-work-id=111843234]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843234; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843234']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "da9381b0d88fd96a1cc6edfa47c39002" } } $('.js-work-strip[data-work-id=111843234]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843234,"title":"Episodic recollection in animals: “If it walks like a duck and quacks like a duck…”","internal_url":"https://www.academia.edu/111843234/Episodic_recollection_in_animals_If_it_walks_like_a_duck_and_quacks_like_a_duck_","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257926,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257926/thumbnails/1.jpg","file_name":"Eichenbaum_Episodic_animal.pdf","download_url":"https://www.academia.edu/attachments/109257926/download_file","bulk_download_file_name":"Episodic_recollection_in_animals_If_it_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257926/Eichenbaum_Episodic_animal-libre.pdf?1703013713=\u0026response-content-disposition=attachment%3B+filename%3DEpisodic_recollection_in_animals_If_it_w.pdf\u0026Expires=1739833740\u0026Signature=djfYiNmFku-ttz56mzq2ieDNtf2cr-aByZiKL0HyII2DYNQs2Xkzcf~KptqeTImrIG4jrpVXyEvAMYG1iJwg4HhjSDrqEopZMDGQviUgaG-h5f~rhTiL2DjzvuoXtjWiMoBz5L08kIfV3BVudoM~otLFWw5OoNW8cf-hQdSEnpFNBOYLXStv12rlmcx-MI2DDqY54AirlKSMB6AZGk7sep4Ex3zxZE8btLXJ0Azbmz2KZW5DeyJ~W-Qho15xsQ~ir3qea2WbEwNNW0HvROXDYyBbxTKY4f8w8TzsVlKH7rQyCTQDA6WlKSDc~37LkIeiwAFecqBxJX0W4bYUSYxCOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843233"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843233/Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory"><img alt="Research paper thumbnail of Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory" class="work-thumbnail" src="https://attachments.academia-assets.com/109257924/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843233/Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory">Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory</a></div><div class="wp-workCard_item"><span>eLife</span><span>, May 9, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The hippocampus is known to play a critical role in processing information about temporal context...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The hippocampus is known to play a critical role in processing information about temporal context. However, it remains unclear how hippocampal oscillations are involved, and how their functional organization is influenced by connectivity gradients. We examined local field potential activity in CA1 as rats performed a nonspatial odor sequence memory task. We found that odor sequence processing epochs were characterized by distinct spectral profiles and proximodistal CA1 gradients of theta and 20-40 Hz power than track running epochs. We also discovered that 20-40 Hz power was predictive of sequence memory performance, particularly in proximal CA1 and during the plateau of high power observed in trials in which animals had to maintain their decision until instructed to respond. Altogether, these results provide evidence that dynamics of 20-40 Hz power along the CA1 axis are linked to trial-specific processing of nonspatial information critical to order judgments and are consistent with a role for 20-40 Hz power in gating information processing. Editor&#39;s evaluation This article presents intriguing evidence that 20-40 Hz amplitude increases in the hippocampus are tied to task-relevant parameters, namely, odors presented in a sequence, as well as learning. The results reveal new insights about hippocampal processing of nonspatial information and contribute to a greater understanding of hippocampal network mechanisms of memory processing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e06fb003df3402a977ef6d5a3341b093" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257924,&quot;asset_id&quot;:111843233,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257924/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843233"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843233"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843233; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843233]").text(description); $(".js-view-count[data-work-id=111843233]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843233; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843233']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e06fb003df3402a977ef6d5a3341b093" } } $('.js-work-strip[data-work-id=111843233]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843233,"title":"Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory","internal_url":"https://www.academia.edu/111843233/Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257924/thumbnails/1.jpg","file_name":"elife-55528-v2.pdf","download_url":"https://www.academia.edu/attachments/109257924/download_file","bulk_download_file_name":"Proximal_CA1_20_40_Hz_power_dynamics_ref.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257924/elife-55528-v2-libre.pdf?1703013699=\u0026response-content-disposition=attachment%3B+filename%3DProximal_CA1_20_40_Hz_power_dynamics_ref.pdf\u0026Expires=1739833741\u0026Signature=Q9mWIlsRHcknOVsv9wadnVI5ROTo7-gbj80Ed~6dtEUN1NWnYH92Waobl-UK87wxNlZkdxNmt7ebH10JTO2dyVY6KK3LOyfAvtNbbObchXZWao~G5M0N~GReW9~fl-96WMRF~320Iez770B6BKFcCsaxvYJk-tZwsgwu454Y8sPWt8mHQdaGvwqZ9DuaWQehiTXB726NlI6IofeO7BhI29v~3V6V797xglSaWmDvbI7Fp8JCf76dpTCZ1GC~1f5O2dXFOnELhl0-xXjFw1xtyDTBNQSyIwxjNf6e5EqhcctZZ8Xnx1TAdNp5rPJ7-PQEA3hDSWhn9D7N7l~LmsfJ4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843232"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843232/A_Bayesian_supervised_dual_dimensionality_reduction_model_for_simultaneous_decoding_of_LFP_and_spike_train_signals"><img alt="Research paper thumbnail of A Bayesian supervised dual‐dimensionality reduction model for simultaneous decoding of LFP and spike train signals" class="work-thumbnail" src="https://attachments.academia-assets.com/109257874/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843232/A_Bayesian_supervised_dual_dimensionality_reduction_model_for_simultaneous_decoding_of_LFP_and_spike_train_signals">A Bayesian supervised dual‐dimensionality reduction model for simultaneous decoding of LFP and spike train signals</a></div><div class="wp-workCard_item"><span>Stat</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neuroscientists are increasingly collecting multimodal data during experiments and observational ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neuroscientists are increasingly collecting multimodal data during experiments and observational studies. Different data modalities-such as electroencephalogram, functional magnetic resonance imaging, local field potential (LFP) and spike trains-offer different views of the complex systems contributing to neural phenomena. Here, we focus on joint modelling of LFP and spike train data and present a novel Bayesian method for neural decoding to infer behavioural and experimental conditions. This model performs supervised dual-dimensionality reduction: it learns low-dimensional representations of two different sources of information that not only explain variation in the input data itself but also predict extraneuronal outcomes. Despite being one probabilistic unit, the model consists of multiple modules: exponential principal components analysis (PCA) and wavelet PCA are used for dimensionality reduction in the spike train and LFP modules, respectively; these modules simultaneously interface with a Bayesian binary regression module. We demonstrate how this model may be used for prediction, parametric inference and identification of influential predictors. In prediction, the hierarchical model outperforms other models trained on LFP alone, spike train alone and combined LFP and spike train data. We compare two methods for modelling the loading matrix and find them to perform similarly. Finally, model parameters and their posterior distributions yield scientific insights.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="91b24f8250adb268eae72442e45d05bb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257874,&quot;asset_id&quot;:111843232,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257874/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843232"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843232"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843232; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843232]").text(description); $(".js-view-count[data-work-id=111843232]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843232; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843232']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "91b24f8250adb268eae72442e45d05bb" } } $('.js-work-strip[data-work-id=111843232]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843232,"title":"A Bayesian supervised dual‐dimensionality reduction model for simultaneous decoding of LFP and spike train signals","internal_url":"https://www.academia.edu/111843232/A_Bayesian_supervised_dual_dimensionality_reduction_model_for_simultaneous_decoding_of_LFP_and_spike_train_signals","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257874,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257874/thumbnails/1.jpg","file_name":"qt77q6p1g0.pdf","download_url":"https://www.academia.edu/attachments/109257874/download_file","bulk_download_file_name":"A_Bayesian_supervised_dual_dimensionalit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257874/qt77q6p1g0-libre.pdf?1703013693=\u0026response-content-disposition=attachment%3B+filename%3DA_Bayesian_supervised_dual_dimensionalit.pdf\u0026Expires=1739833741\u0026Signature=EsDYVvxH6j1LMaFfiVKHl6e5S-oea3chdRdR0~l-eWO9Bc1Q~WVca6g2vUUFOL4PYJjC80vYHg9743WFPpXrX5~pqHlgK9d2c0oz5A7yN5JMwZiJy7zLzMqDyf1sDnN534Y~t-MjhF1oEVejaXzMRXoOen3RK4cSN4cLwnSFmbra7RYS~5oqT3cKBOx2kdrAvHvCQKUNshjjG7XS-k2FNIP-IuXMx0im~dJzoe1U45PaTwdM58tnQJWx9gjBGMSEXMal22326pYsMjULbP07AiHHkmYMoJET0FakO--eD0IlP8BEtMWQ8OtTqZqDYul0WforZqhdRnE~9ZHubacc8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109257873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257873/thumbnails/1.jpg","file_name":"qt77q6p1g0.pdf","download_url":"https://www.academia.edu/attachments/109257873/download_file","bulk_download_file_name":"A_Bayesian_supervised_dual_dimensionalit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257873/qt77q6p1g0-libre.pdf?1703013695=\u0026response-content-disposition=attachment%3B+filename%3DA_Bayesian_supervised_dual_dimensionalit.pdf\u0026Expires=1739833741\u0026Signature=Ly3T7ysKtadOJ-phvEkHIjjuwr6rAqig2GeUXJ322Hb5FxX7nvkuSLjUPFJiq4FRWIeBA1uTwzRCKhlL0MAewIJxGNT4gBoDMEC0mBciJC~fATpqPR2O-y5KRB7dzm-8MsWp3bhgofqYBj3sumH-XJxZlnvJy7J5NHci5cgu~BdoRg7txd6fkcnzCQ2B~UIFd1Kb~MZmc583uWRziM95OyeP06mSobuR-DLd~VRqsY37dOllxEhPEYjqLbeCCKmi5NBOeoSDj2gKl3wM67gi~aZjEuBaLyJlqefdwMQyePHvcyCvjzXoPBzrfT6su0gz1MKM59WVAEKacmwT2g-9xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843231"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843231/Towards_a_functional_organization_of_episodic_memory_in_the_medial_temporal_lobe"><img alt="Research paper thumbnail of Towards a functional organization of episodic memory in the medial temporal lobe" class="work-thumbnail" src="https://attachments.academia-assets.com/109257872/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843231/Towards_a_functional_organization_of_episodic_memory_in_the_medial_temporal_lobe">Towards a functional organization of episodic memory in the medial temporal lobe</a></div><div class="wp-workCard_item"><span>Neuroscience &amp; Biobehavioral Reviews</span><span>, Aug 1, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here we describe a model of medial temporal lobe organization in which parallel &quot;what&quot; and &quot;where...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here we describe a model of medial temporal lobe organization in which parallel &quot;what&quot; and &quot;where&quot; processing streams converge within the hippocampus to represent events in the spatiotemporal context in which they occurred; this circuitry also mediates the retrieval of context from event cues and vice versa, which are prototypes of episodic recall. Evidence from studies in animals are reviewed in support of this model, including experiments that distinguish characteristics of episodic recollection from familiarity, neuropsychological and recording studies that have identified a key role for the hippocampus in recollection and in associating events with the context in which they occurred, and distinct roles for parahippocampal region areas in separate &quot;what&quot; and &quot;where&quot; information processing that contributes to recollective and episodic memory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2f761fa0c1dade1d9b063327654b46c0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257872,&quot;asset_id&quot;:111843231,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257872/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843231"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843231"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843231; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843231]").text(description); $(".js-view-count[data-work-id=111843231]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843231; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843231']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2f761fa0c1dade1d9b063327654b46c0" } } $('.js-work-strip[data-work-id=111843231]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843231,"title":"Towards a functional organization of episodic memory in the medial temporal lobe","internal_url":"https://www.academia.edu/111843231/Towards_a_functional_organization_of_episodic_memory_in_the_medial_temporal_lobe","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257872/thumbnails/1.jpg","file_name":"pmc3227798.pdf","download_url":"https://www.academia.edu/attachments/109257872/download_file","bulk_download_file_name":"Towards_a_functional_organization_of_epi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257872/pmc3227798-libre.pdf?1703013700=\u0026response-content-disposition=attachment%3B+filename%3DTowards_a_functional_organization_of_epi.pdf\u0026Expires=1739833741\u0026Signature=VCuGPxSJmRxan6R7ZX8zTRxMn2o1pVtQPNFbJ57BxMMn5DfkgDznDHanrKx9xYgEwSqyBbWTvcFWwhNGc8SX8hmEWpJxf-P70UPJvxw3Xnzj7U73Ov3FVMffl0YYUJFDH2G7LlJbQZKlpJ2OEbdvDRezfO8vEJDj-n2D5I~vpdg90BB7ErH5oxL7pqV2XkmdOV2iRN5yRm3gFaeb9R~BGkgVvH--OhgqkJkk6cav8tHAYZvM8k50wTwVJ6AW4PM0aClkeV-i9Bg-6S-5X3j-arHHP6LJOXjGykn4icmyiAo6HjBIWJTULWtbHksNgCD0DymStQ85fusX7-XWudk93Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843230"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111843230/Memory_for_Space_Time_and_Episodes_"><img alt="Research paper thumbnail of Memory for Space, Time, and Episodes ☆" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111843230/Memory_for_Space_Time_and_Episodes_">Memory for Space, Time, and Episodes ☆</a></div><div class="wp-workCard_item"><span>Elsevier eBooks</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Memory is one of the most studied cognitive abilities. Episodic memory, the capacity to remember ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Memory is one of the most studied cognitive abilities. Episodic memory, the capacity to remember personal experiences, has unquestionably increased the survival fitness of mammalian species, including humans. In fact, as animals live in a dynamic environment, the memory for unique experiences, organized in both space and time, has presumably evolved to complement other types of memories that are specialized in extracting generalities from multiple experiences. Here, we seek to review the behavioral approaches used to investigate spatial, temporal, and episodic memory in mammals and to provide insight into the specific brain structures and potential neuronal mechanisms underlying these capacities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843230"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843230"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843230; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843230]").text(description); $(".js-view-count[data-work-id=111843230]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843230; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843230']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111843230]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843230,"title":"Memory for Space, Time, and Episodes ☆","internal_url":"https://www.academia.edu/111843230/Memory_for_Space_Time_and_Episodes_","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843229"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843229/Recollection_like_memory_retrieval_in_rats_is_dependent_on_the_hippocampus"><img alt="Research paper thumbnail of Recollection-like memory retrieval in rats is dependent on the hippocampus" class="work-thumbnail" src="https://attachments.academia-assets.com/109257877/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843229/Recollection_like_memory_retrieval_in_rats_is_dependent_on_the_hippocampus">Recollection-like memory retrieval in rats is dependent on the hippocampus</a></div><div class="wp-workCard_item"><span>Nature</span><span>, Sep 1, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recognition memory may be supported by two independent types of retrieval, conscious recollection...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recognition memory may be supported by two independent types of retrieval, conscious recollection of a specific experience and a sense of familiarity gained from previous exposure to particular stimuli1,2. In humans, signal detection techniques have been used to distinguish recollection and familiarity, respectively, in asymmetrical and curvilinear components of their receiver operating characteristic (ROC) curves, standard curves that represent item recognition across different levels of confidence or bias. To determine whether animals also employ multiple processes in recognition memory and to explore the anatomical basis of this distinction, we adapted these techniques to examine odour recognition memory in rats. Their ROC curve had asymmetrical and curvilinear components, indicating the existence of both recollection and familiarity in rats. Furthermore, following selective damage to the hippocampus the ROC curve became entirely symmetrical and remained curvilinear, supporting the view that the hippocampus specifically mediates the capacity for recollection.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d388af39a27165e5b92d302c59bfc65" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257877,&quot;asset_id&quot;:111843229,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257877/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843229"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843229"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843229; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843229]").text(description); $(".js-view-count[data-work-id=111843229]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843229; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843229']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d388af39a27165e5b92d302c59bfc65" } } $('.js-work-strip[data-work-id=111843229]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843229,"title":"Recollection-like memory retrieval in rats is dependent on the hippocampus","internal_url":"https://www.academia.edu/111843229/Recollection_like_memory_retrieval_in_rats_is_dependent_on_the_hippocampus","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257877,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257877/thumbnails/1.jpg","file_name":"pmc4053162.pdf","download_url":"https://www.academia.edu/attachments/109257877/download_file","bulk_download_file_name":"Recollection_like_memory_retrieval_in_ra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257877/pmc4053162-libre.pdf?1703013690=\u0026response-content-disposition=attachment%3B+filename%3DRecollection_like_memory_retrieval_in_ra.pdf\u0026Expires=1739833741\u0026Signature=dxWp~T4OIusA~eftsH9u1CeeR5WCiHCt3j8UhTJ0RX5FMAgRe9nJzyGFqyENfpR8DVFkrlrMox8MUNj4DYyf-BxpmjLnqwRj4Y1m7WKQWunkj2Tpq2oeHU-fb92dFTmW06B7CVDOaTMgfJsIY3pe79qu7P84t3hzSoJ3Hg2nc-TUO1y84q8gQ-SUjXqEko-Kd-uZ-WGY9JlAkUnGrQ-1Eymy-hd3yaqjmWodFcvYesu0Y-9w74BwUbLiCxGoLvup5QDT-jFZ7vvmok-FpaPoqB1ZRoJYD5ovKur2xO5WYmW3t9-AYJhrIbku-e498vZDuLBJiZuo25bm22hvqk5fHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3164553" id="papers"><div class="js-work-strip profile--work_container" data-work-id="119882512"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/119882512/Navigation_and_Episodic_Like_Memory_in_Mammals"><img alt="Research paper thumbnail of Navigation and Episodic-Like Memory in Mammals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/119882512/Navigation_and_Episodic_Like_Memory_in_Mammals">Navigation and Episodic-Like Memory in Mammals</a></div><div class="wp-workCard_item"><span>Elsevier eBooks</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Navigation and episodic memory are two of the most studied cognitive abilities in behavioral rese...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Navigation and episodic memory are two of the most studied cognitive abilities in behavioral research. The capacity for efficient navigation is crucial to the survival of mammals; it allows them to optimally forage, search for mates, find shelter, and defend their territory, while conserving their energy and avoiding unnecessary exposure to predators. Episodic memory, the capacity to remember personal experiences, has unquestionably also increased the survival fitness of humans and of other mammals as well. In fact, as animals live in a continuously changing environment, the capacity for memory for unique experiences has presumably evolved to complement other types of memories specialized in extracting generalities from multiple experiences. For instance, the general knowledge that tigers are dangerous is adaptive, but remembering having seen a tiger near the river at dawn further benefits a potential prey. Navigation has been primarily studied in rodents, while episodic memory research has focused predominantly on humans. Although the two lines of research evolved rather independently for years, accumulating evidence indicates that both abilities share fundamental features and neural circuitry across mammalian species. The objectives of the present chapter are to review the behavioral approaches used to investigate navigation and episodic memory in different mammalian species, and to provide insight into the specific brain structures and potential neuronal mechanisms underlying both abilities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119882512"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119882512"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119882512; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119882512]").text(description); $(".js-view-count[data-work-id=119882512]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119882512; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119882512']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119882512]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119882512,"title":"Navigation and Episodic-Like Memory in Mammals","internal_url":"https://www.academia.edu/119882512/Navigation_and_Episodic_Like_Memory_in_Mammals","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119882510"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/119882510/Evoluci%C3%B3n_de_la_memoria_epis%C3%B3dica"><img alt="Research paper thumbnail of Evolución de la memoria episódica" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/119882510/Evoluci%C3%B3n_de_la_memoria_epis%C3%B3dica">Evolución de la memoria episódica</a></div><div class="wp-workCard_item"><span>Ludus vitalis: revista de filosofía de las ciencias de la vida = journal of philosophy of life sciences = revue de philosophie des sciences de la vie</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002) /Annu Rev Psychol/53:1­25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologsin other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. Theimplication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-­specific divergences that have developed on top of the fundamental episodic memory architec­ture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119882510"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119882510"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119882510; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119882510]").text(description); $(".js-view-count[data-work-id=119882510]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119882510; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119882510']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119882510]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119882510,"title":"Evolución de la memoria episódica","internal_url":"https://www.academia.edu/119882510/Evoluci%C3%B3n_de_la_memoria_epis%C3%B3dica","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119882508"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/119882508/Author_response_Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory"><img alt="Research paper thumbnail of Author response: Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/119882508/Author_response_Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory">Author response: Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119882508"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119882508"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119882508; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119882508]").text(description); $(".js-view-count[data-work-id=119882508]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119882508; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119882508']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=119882508]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119882508,"title":"Author response: Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory","internal_url":"https://www.academia.edu/119882508/Author_response_Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119882497"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119882497/Evolutionary_State_Space_Model_and_Its_Application_to_Time_Frequency_Analysis_of_Local_Field_Potentials_eScholarship"><img alt="Research paper thumbnail of Evolutionary State-Space Model and Its Application to Time-Frequency Analysis of Local Field Potentials - eScholarship" class="work-thumbnail" src="https://attachments.academia-assets.com/115198653/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119882497/Evolutionary_State_Space_Model_and_Its_Application_to_Time_Frequency_Analysis_of_Local_Field_Potentials_eScholarship">Evolutionary State-Space Model and Its Application to Time-Frequency Analysis of Local Field Potentials - eScholarship</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose an evolutionary state space model (E-SSM) for analyzing high dimensional brain signals...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose an evolutionary state space model (E-SSM) for analyzing high dimensional brain signals (in particular, local field potentials in rats) whose statistical properties evolve over the course of a non-spatial memory experiment. Under E-SSM, brain signals are modeled as mixtures of components with oscillatory activity at defined frequency bands. One unique feature of E-SSM is that the components are parametrized as second order autoregressive AR(2) processes. To account for the potential nonstationarity of these components (since the brain responses could vary throughout the entire experiment), the parameters are allowed to vary over epochs. In contrast to independent component analysis, the method for estimating the components in E-SSM accounts for the entire temporal correlation of the components. Moreover, compared to purely data-adaptive strategies, such as filtering, E-SSM easily accommodates non-stationarity through the component of AR parameters. To estimate the model parameters and conduct statistical inference, we use Kalman smoother, maximum likelihood and blocked resampling approaches. The E-SSM model is applied to a multi-epoch LFP signals from a rat in a non-spatial (olfactory) sequence memory task. Our method captures the evolution of the power for different components across phases 1 arXiv:1610.07271v2 [stat.ME] 2 Nov 2016 of the experiment. The E-SSM model also identifies clusters of electrodes that behave similarly with respect to the decomposition of different sources. These findings suggest that the activity of different electrodes changes over the course of the experiment. Treating these epoch recordings as realizations of an identical process could give rise to misleading results. The proposed model underscores the importance of capturing the evolution in brain responses during the course of an experiment.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d156de3ec19560312c306a5ebe9dc152" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115198653,&quot;asset_id&quot;:119882497,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115198653/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119882497"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119882497"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119882497; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119882497]").text(description); $(".js-view-count[data-work-id=119882497]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119882497; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119882497']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d156de3ec19560312c306a5ebe9dc152" } } $('.js-work-strip[data-work-id=119882497]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119882497,"title":"Evolutionary State-Space Model and Its Application to Time-Frequency Analysis of Local Field Potentials - eScholarship","internal_url":"https://www.academia.edu/119882497/Evolutionary_State_Space_Model_and_Its_Application_to_Time_Frequency_Analysis_of_Local_Field_Potentials_eScholarship","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":115198653,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115198653/thumbnails/1.jpg","file_name":"qt2bg3p3w1.pdf","download_url":"https://www.academia.edu/attachments/115198653/download_file","bulk_download_file_name":"Evolutionary_State_Space_Model_and_Its_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115198653/qt2bg3p3w1-libre.pdf?1716481741=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_State_Space_Model_and_Its_A.pdf\u0026Expires=1739833740\u0026Signature=TtnzANu8o7UdMc3h3oKsns1ij4UJJGkJoE7Y37~~elfm-lIEz4s9pmpTcNSTRSuAokxET1vgkV92T-C860T96PQVgCvfcNKyYxY2Q8MqGs52D9aawo49M6vY96R~SlCctEZME3GUjSgYzwf8InCXVZWV83tCqPA7~h8~vRFErOf1aMpIzsdL5-uiX8qhoTfDAq2qkZe6YxIjsIR4~-ZNqABEreQlAHAEX0ADcjFbg6kZSdsx4dpbkfzG2~GCLnB3wxVvVTYiSGi9ZmHH8Pyo~QfSLroWc5xKZKi67TDececHgzv8jMYd~n11MWejEFUt3i40OfZy~W5MFcoOBYkxQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":115198654,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115198654/thumbnails/1.jpg","file_name":"qt2bg3p3w1.pdf","download_url":"https://www.academia.edu/attachments/115198654/download_file","bulk_download_file_name":"Evolutionary_State_Space_Model_and_Its_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115198654/qt2bg3p3w1-libre.pdf?1716481742=\u0026response-content-disposition=attachment%3B+filename%3DEvolutionary_State_Space_Model_and_Its_A.pdf\u0026Expires=1739833740\u0026Signature=eUR3FnP42DdqmhXcezABcZevj80J-IqxbAyuXuftrSdwrnStq1zCmjIPZzO1TsCHv-Lpz2TlntwkGSuCAxFglBO9bxE-V2jnTNYPVl2ZYzm4htqJu8PYj0sQW8D1Ng~ouWNAjIHTh4-poSe6a~6LG0rfmfC3gmVa~GInvPirfstijkR8L39A3dhcDgCyjtkn98-LlCiTxcHEhJ8JHmm3JwuGZTh2MF1NJeUpxTqYszgdn01chg9qXIZd8qaJQha8p1CQNfS8K7YXHrUSBO8lyrsK9WtwtwbbV~d7WtTWtKemZ-pICv2JfoUnniTnd8iNfQIurmXuHQjpV4ciuOuGOg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115506882"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115506882/Regularized_matrix_data_clustering_and_its_application_to_image_analysis"><img alt="Research paper thumbnail of Regularized matrix data clustering and its application to image analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/111894483/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115506882/Regularized_matrix_data_clustering_and_its_application_to_image_analysis">Regularized matrix data clustering and its application to image analysis</a></div><div class="wp-workCard_item"><span>Biometrics</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a novel regularized mixture model for clustering matrix‐valued data. The proposed meth...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a novel regularized mixture model for clustering matrix‐valued data. The proposed method assumes a separable covariance structure for each cluster and imposes a sparsity structure (eg, low rankness, spatial sparsity) for the mean signal of each cluster. We formulate the problem as a finite mixture model of matrix‐normal distributions with regularization terms, and then develop an expectation maximization type of algorithm for efficient computation. In theory, we show that the proposed estimators are strongly consistent for various choices of penalty functions. Simulation and two applications on brain signal studies confirm the excellent performance of the proposed method including a better prediction accuracy than the competitors and the scientific interpretability of the solution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5ce296b7e370e2152276405a5bdb7ae1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111894483,&quot;asset_id&quot;:115506882,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111894483/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115506882"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115506882"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115506882; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115506882]").text(description); $(".js-view-count[data-work-id=115506882]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115506882; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115506882']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5ce296b7e370e2152276405a5bdb7ae1" } } $('.js-work-strip[data-work-id=115506882]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115506882,"title":"Regularized matrix data clustering and its application to image analysis","internal_url":"https://www.academia.edu/115506882/Regularized_matrix_data_clustering_and_its_application_to_image_analysis","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":111894483,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111894483/thumbnails/1.jpg","file_name":"1808.01749v1.pdf","download_url":"https://www.academia.edu/attachments/111894483/download_file","bulk_download_file_name":"Regularized_matrix_data_clustering_and_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111894483/1808.01749v1-libre.pdf?1709063312=\u0026response-content-disposition=attachment%3B+filename%3DRegularized_matrix_data_clustering_and_i.pdf\u0026Expires=1739833740\u0026Signature=CcqoHuFuMJ3JlupMcBqyjY9WqsqxsKWDYP69muq05IxSpR91Sf~C3QbqKupyg6NKKQ8N5wxfE5~rGRfJ0HtkHUR2BZraqFTf7jVLk4WRYzJD7U7I0ULTNY0o-nvlIzxT6NfNVOeFyiZbXMMPnqE4dhzQxN4yLKHPqZ9Q5IRRnWdEhRb3cNYXHFTFYCNjPlqK8bN~G3-ilb4l0N-JCId4P7-1KoM9p8dj4zezgkx9ZLIKLKNchTwgbCg8~vfC4N5ifCSB7eN6ZimtF0xmFxKQIcTUyn7Kbfa4QNEYfr9ZtItIyKC-AECZdMYkW4sKSBZWAfYFzq6VsCJ8UJ0IxXnX0A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115506876"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115506876/Regularized_matrix_data_clustering_and_its_application_to_image_analysis"><img alt="Research paper thumbnail of Regularized matrix data clustering and its application to image analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/111894481/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115506876/Regularized_matrix_data_clustering_and_its_application_to_image_analysis">Regularized matrix data clustering and its application to image analysis</a></div><div class="wp-workCard_item"><span>Biometrics</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose a novel regularized mixture model for clustering matrix‐valued data. The proposed meth...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose a novel regularized mixture model for clustering matrix‐valued data. The proposed method assumes a separable covariance structure for each cluster and imposes a sparsity structure (eg, low rankness, spatial sparsity) for the mean signal of each cluster. We formulate the problem as a finite mixture model of matrix‐normal distributions with regularization terms, and then develop an expectation maximization type of algorithm for efficient computation. In theory, we show that the proposed estimators are strongly consistent for various choices of penalty functions. Simulation and two applications on brain signal studies confirm the excellent performance of the proposed method including a better prediction accuracy than the competitors and the scientific interpretability of the solution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c185c1dc8f21b29a6cd82a24b5cacd2b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:111894481,&quot;asset_id&quot;:115506876,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/111894481/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115506876"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115506876"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115506876; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115506876]").text(description); $(".js-view-count[data-work-id=115506876]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115506876; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115506876']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c185c1dc8f21b29a6cd82a24b5cacd2b" } } $('.js-work-strip[data-work-id=115506876]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115506876,"title":"Regularized matrix data clustering and its application to image analysis","internal_url":"https://www.academia.edu/115506876/Regularized_matrix_data_clustering_and_its_application_to_image_analysis","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":111894481,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/111894481/thumbnails/1.jpg","file_name":"1808.01749v1.pdf","download_url":"https://www.academia.edu/attachments/111894481/download_file","bulk_download_file_name":"Regularized_matrix_data_clustering_and_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/111894481/1808.01749v1-libre.pdf?1709063310=\u0026response-content-disposition=attachment%3B+filename%3DRegularized_matrix_data_clustering_and_i.pdf\u0026Expires=1739833740\u0026Signature=K0KRpr6VWhHoRA44Pp~ljsRnTmu9SaPL4Dh8fic6UOgL6yh8ZwhO6cf1GY7fPML89tLiN-qcNjoSQZPPhMnjSQ6tzMiTjOeiv0xkhbdiLxLnETyQ2zO470uUuaPwqCcN0kXeDdGOb3NBpM1KlrFIKEy3TEWh98KnYp~PZtBK1uTYt4BvwpXsbMTJImfKIv-orlTGxKzky2ffdjecFjrF9G22p9xwIT7miDF1ryxFDniLGFTP61HM-cEFbBg0wtI6D-bI8qs627SnXgEOE1huDesgcLFU1kh6N9woBGPKi-MuhNK9f7D2A5rp-D2p7kJifhfEi5QfQZX2k~sc5xJ7-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843243"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111843243/Smooth_online_parameter_estimation_for_time_varying_VAR_models_with_application_to_rat_local_field_potential_activity_data"><img alt="Research paper thumbnail of Smooth online parameter estimation for time varying VAR models with application to rat local field potential activity data" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111843243/Smooth_online_parameter_estimation_for_time_varying_VAR_models_with_application_to_rat_local_field_potential_activity_data">Smooth online parameter estimation for time varying VAR models with application to rat local field potential activity data</a></div><div class="wp-workCard_item"><span>Statistics and Its Interface</span><span>, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843243"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843243"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843243; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843243]").text(description); $(".js-view-count[data-work-id=111843243]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843243; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843243']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111843243]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843243,"title":"Smooth online parameter estimation for time varying VAR models with application to rat local field potential activity data","internal_url":"https://www.academia.edu/111843243/Smooth_online_parameter_estimation_for_time_varying_VAR_models_with_application_to_rat_local_field_potential_activity_data","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843242"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843242/ROCs_in_rats_Response_to_Wixted_and_Squire_Figure_1"><img alt="Research paper thumbnail of ROCs in rats? Response to Wixted and Squire: Figure 1" class="work-thumbnail" src="https://attachments.academia-assets.com/109261346/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843242/ROCs_in_rats_Response_to_Wixted_and_Squire_Figure_1">ROCs in rats? Response to Wixted and Squire: Figure 1</a></div><div class="wp-workCard_item"><span>Learning &amp; Memory</span><span>, Aug 26, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a9ee6a6fcb1b33faf74dd5f9ddbbf995" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109261346,&quot;asset_id&quot;:111843242,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109261346/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843242"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843242"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843242; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843242]").text(description); $(".js-view-count[data-work-id=111843242]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843242; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843242']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a9ee6a6fcb1b33faf74dd5f9ddbbf995" } } $('.js-work-strip[data-work-id=111843242]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843242,"title":"ROCs in rats? Response to Wixted and Squire: Figure 1","internal_url":"https://www.academia.edu/111843242/ROCs_in_rats_Response_to_Wixted_and_Squire_Figure_1","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109261346,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109261346/thumbnails/1.jpg","file_name":"691.full.pdf","download_url":"https://www.academia.edu/attachments/109261346/download_file","bulk_download_file_name":"ROCs_in_rats_Response_to_Wixted_and_Squi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109261346/691.full-libre.pdf?1703016655=\u0026response-content-disposition=attachment%3B+filename%3DROCs_in_rats_Response_to_Wixted_and_Squi.pdf\u0026Expires=1739833740\u0026Signature=gIhOXL4xmPFb2z0l1M-0N5ONe7fkkVfixy-ZxNlGNMxM5ij95hRzEY4Xmej7s0s6s~Sd4ArVs~1JB6FBHViHPb33OjGiGYpUR56fdLoFxBXKLplzHUReAz3n0mFEMQ0safPex3b66XIU3DJkQ94BG0CvfiodzpmcHkKDO6-skc-GHbJfkDgP1fhK1Z6NY~cFAfn9TbHkuzk-rzjTZdNm5380YlnpyWQDJfrAI0Frkx9Vdf2UwJ4Nh1PaK21CsaZL~iHO72VPLLOCRj4DoKBqaj8pxmGYMrt4dMypaCRzolu2-B3nOriD8uTT3W2lWJM9urEF6bzShO7vOkg9wrZwEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843241"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843241/Bridging_the_Gap_Between_Brain_and_Behavior_Cognitive_and_Neural_Mechanisms_of_Episodic_Memory"><img alt="Research paper thumbnail of Bridging the Gap Between Brain and Behavior: Cognitive and Neural Mechanisms of Episodic Memory" class="work-thumbnail" src="https://attachments.academia-assets.com/109257880/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843241/Bridging_the_Gap_Between_Brain_and_Behavior_Cognitive_and_Neural_Mechanisms_of_Episodic_Memory">Bridging the Gap Between Brain and Behavior: Cognitive and Neural Mechanisms of Episodic Memory</a></div><div class="wp-workCard_item"><span>Journal of the Experimental Analysis of Behavior</span><span>, Nov 1, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion that non-human animals are capable of episodic memory is highly controversial. Here, w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion that non-human animals are capable of episodic memory is highly controversial. Here, we review recent behavioral work from our laboratory showing that the fundamental features of episodic memory can be observed in rats and that, as in humans, this capacity relies on the hippocampus. We also discuss electrophysiological evidence, from our laboratory and that of others, pointing to associative and sequential coding in hippocampal cells as potential neural mechanisms underlying episodic memory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9b51dfffd05b768ace9627499494ef53" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257880,&quot;asset_id&quot;:111843241,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257880/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843241"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843241"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843241; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843241]").text(description); $(".js-view-count[data-work-id=111843241]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843241; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843241']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9b51dfffd05b768ace9627499494ef53" } } $('.js-work-strip[data-work-id=111843241]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843241,"title":"Bridging the Gap Between Brain and Behavior: Cognitive and Neural Mechanisms of Episodic Memory","internal_url":"https://www.academia.edu/111843241/Bridging_the_Gap_Between_Brain_and_Behavior_Cognitive_and_Neural_Mechanisms_of_Episodic_Memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257880,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257880/thumbnails/1.jpg","file_name":"pmc1389783.pdf","download_url":"https://www.academia.edu/attachments/109257880/download_file","bulk_download_file_name":"Bridging_the_Gap_Between_Brain_and_Behav.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257880/pmc1389783-libre.pdf?1703013687=\u0026response-content-disposition=attachment%3B+filename%3DBridging_the_Gap_Between_Brain_and_Behav.pdf\u0026Expires=1739833740\u0026Signature=CZxwzw~qTxdaMIJ46V3-JZIq6aaacHEVEYMxXb1qmgvaRv65J2LqAQcQfWZwXGxt96QYwyXatlPN0HyOQOGrIF~5axPN1A3xxxev1TkYFdhmMkrk5AWCKKl6Z6IrzHXv83BR1dsXTZCxG0n6NqH~KBPjQ-17ktqH2ybR~wo4Vodz-kZIBno60xINEKlN8XkWCbnQFsFAZAixCRIZ7EG2YrqFBXjzRZasmwFKX7nqCOVGx4Fu19w7n3vSpUlLXrKQhmTBvxIvDzK3g~pcFxDD8u72g5VMwNr6A~U42OOqFa2Lbh3a5Ga8iM1J-c6BffEJsB8csbIlL7lHFRKvyzQ0mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109257881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257881/thumbnails/1.jpg","file_name":"pmc1389783.pdf","download_url":"https://www.academia.edu/attachments/109257881/download_file","bulk_download_file_name":"Bridging_the_Gap_Between_Brain_and_Behav.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257881/pmc1389783-libre.pdf?1703013687=\u0026response-content-disposition=attachment%3B+filename%3DBridging_the_Gap_Between_Brain_and_Behav.pdf\u0026Expires=1739833740\u0026Signature=UVb-NiUElS7562fq3tkcQ67tXmnPIpxGijUaO1IAGYkR1A6x2RE0JC7LazE0NPg7Xbe0xLVewfSYwTRHQs3e-k72~lBFagqKdWl3Ybt9EdZa8YVUs1UTke4vS4cdHReq86XyOHgamFIMPcwBaeGNaYEStrMFqzwRaZlY4WatekQYkl8Lf3yOWXgFnJE9u226Jaeq8GN8JZb3tafY7ZFFqK~xiTGmqbNDWfHBgejfxlP82xRgzt0s40RzOpI6vWUAk~yaSswyj2pnbPvJkhefAL-6LsI7757SY3GLg7npi8KhXpOgy9ff7ZGaCDjKdTVu1mwmUPGiyrckYL71NQBPfg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843240"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843240/Cognitive_Aging_A_Common_Decline_of_Episodic_Recollection_and_Spatial_Memory_in_Rats"><img alt="Research paper thumbnail of Cognitive Aging: A Common Decline of Episodic Recollection and Spatial Memory in Rats" class="work-thumbnail" src="https://attachments.academia-assets.com/109257882/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843240/Cognitive_Aging_A_Common_Decline_of_Episodic_Recollection_and_Spatial_Memory_in_Rats">Cognitive Aging: A Common Decline of Episodic Recollection and Spatial Memory in Rats</a></div><div class="wp-workCard_item"><span>The Journal of Neuroscience</span><span>, Sep 3, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In humans, recognition memory declines with aging, and this impairment is characterized by a sele...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In humans, recognition memory declines with aging, and this impairment is characterized by a selective loss in recollection of previously studied items contrasted with relative sparing of familiarity for items in the study list. Rodent models of cognitive aging have focused on water maze learning and have demonstrated an age-associated loss in spatial, but not cued memory. The current study examined odor recognition memory in young and aged rats and compared performance in recognition with that in water maze learning. In the recognition task, young rats used both recollection and familiarity. In contrast, the aged rats showed a selective loss of recollection and relative sparing of familiarity, similar to the effects of hippocampal damage. Furthermore, performance on the recall component, but not the familiarity component, of recognition was correlated with spatial memory and recollection was poorer in aged rats that were also impaired in spatial memory. These results extend the pattern of impairment in recollection and relative sparing of familiarity observed in human cognitive aging to rats, and suggest a common age-related impairment in both spatial learning and the recollective component of nonspatial recognition memory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fa9db966934dee858c3049bce880bd00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257882,&quot;asset_id&quot;:111843240,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257882/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843240"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843240"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843240; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843240]").text(description); $(".js-view-count[data-work-id=111843240]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843240; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843240']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fa9db966934dee858c3049bce880bd00" } } $('.js-work-strip[data-work-id=111843240]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843240,"title":"Cognitive Aging: A Common Decline of Episodic Recollection and Spatial Memory in Rats","internal_url":"https://www.academia.edu/111843240/Cognitive_Aging_A_Common_Decline_of_Episodic_Recollection_and_Spatial_Memory_in_Rats","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257882,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257882/thumbnails/1.jpg","file_name":"8945.full.pdf","download_url":"https://www.academia.edu/attachments/109257882/download_file","bulk_download_file_name":"Cognitive_Aging_A_Common_Decline_of_Epis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257882/8945.full-libre.pdf?1703013690=\u0026response-content-disposition=attachment%3B+filename%3DCognitive_Aging_A_Common_Decline_of_Epis.pdf\u0026Expires=1739833740\u0026Signature=DEEeIX7JWKX73k3zU2Anp612An45iSEG3jSUGTwUVJ3Boynn-E4UVjOIJMV7cG1J39yXFO1tFdaWG741m~oIwfn7-LI1ZEfYmYRUFNsoRtTCrOVauAZEKJlYzNkSz64bApv9PR8xiA8xcn3EGSP8RNGmU5lsm6-sTHayFN64ZBeNmjkBOrTMLdwhr4QICTRz7arhijRY1Oq3yNZGm7o4TPKaTSCOBnSMQcW35Qk7HDimUJC26KZn8xd9xblmIUso3YsK27CV-cCosJh6QP64uR21Q1vmOnBrwfSiC9Rt9xEBPVvd00pbIE2JXoaztxsfxnIXDtRXRkZMdRtxgTckeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843239"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843239/CA1_20_40_Hz_oscillatory_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory"><img alt="Research paper thumbnail of CA1 20-40 Hz oscillatory dynamics reflect trial-specific information processing supporting nonspatial sequence memory" class="work-thumbnail" src="https://attachments.academia-assets.com/109257925/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843239/CA1_20_40_Hz_oscillatory_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory">CA1 20-40 Hz oscillatory dynamics reflect trial-specific information processing supporting nonspatial sequence memory</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="56f6f6933555220ff5284a225bd341f8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257925,&quot;asset_id&quot;:111843239,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257925/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843239"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843239"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843239; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843239]").text(description); $(".js-view-count[data-work-id=111843239]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843239; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843239']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "56f6f6933555220ff5284a225bd341f8" } } $('.js-work-strip[data-work-id=111843239]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843239,"title":"CA1 20-40 Hz oscillatory dynamics reflect trial-specific information processing supporting nonspatial sequence memory","internal_url":"https://www.academia.edu/111843239/CA1_20_40_Hz_oscillatory_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257925,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257925/thumbnails/1.jpg","file_name":"2020.03.10.985093.full.pdf","download_url":"https://www.academia.edu/attachments/109257925/download_file","bulk_download_file_name":"CA1_20_40_Hz_oscillatory_dynamics_reflec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257925/2020.03.10.985093.full-libre.pdf?1703013700=\u0026response-content-disposition=attachment%3B+filename%3DCA1_20_40_Hz_oscillatory_dynamics_reflec.pdf\u0026Expires=1739833740\u0026Signature=R~x4raM~YPtDuhKghA8TPTEygMC53nZcyKaZPT3rEkGtRCyc5tMZngXQz4~-E~3-M6mw19paq1xsoIfBWc-B~Jnfy2-QbNEOjWV28sjB-zWD4O5z0HqmSyzWUPP5CpZDADhQOoYbXhQMDs6iTIs7IXmhcFAU9a3GYIkwuqCJ0ZpBAFnqcjpSjFleqjtFXFb5abhZqg5PU3rrdi447YnSMIaFuHg1cv2OmPzVQ4msbzIYvI1s8jqeFy6LJvnjH42al1OaEobA3XPLZQ1AtwVS7vu9RVD-vEAsQLDM5swC39Ynq~wMh8pOsRbaB3oEs9G2juNk7eq6Bil09EkiGh3k7g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843238"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843238/An_animal_model_of_amnesia_that_uses_Receiver_Operating_Characteristics_ROC_analysis_to_distinguish_recollection_from_familiarity_deficits_in_recognition_memory"><img alt="Research paper thumbnail of An animal model of amnesia that uses Receiver Operating Characteristics (ROC) analysis to distinguish recollection from familiarity deficits in recognition memory" class="work-thumbnail" src="https://attachments.academia-assets.com/109257878/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843238/An_animal_model_of_amnesia_that_uses_Receiver_Operating_Characteristics_ROC_analysis_to_distinguish_recollection_from_familiarity_deficits_in_recognition_memory">An animal model of amnesia that uses Receiver Operating Characteristics (ROC) analysis to distinguish recollection from familiarity deficits in recognition memory</a></div><div class="wp-workCard_item"><span>Neuropsychologia</span><span>, Jul 1, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here we review our development of an animal model of episodic memory and amnesia that employs on ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here we review our development of an animal model of episodic memory and amnesia that employs on signal detection analyses to characterize recognition memory performance in rats. This approach aims to distinguish episodic recollection of studied items from mere familiarity for recently experienced stimuli, and then to examine the neural basis of these memory processes. Our findings on intact animals indicate that it is possible to distinguish independent components of recognition that are associated with features of recollection and familiarity in humans. Furthermore, we have found that damage limited to the hippocampus results in a selective deficit in recollection and not familiarity. Also, aging and prefrontal damage result in a similar pattern of impaired recollection and spared familiarity. However, whereas the recollection deficit following hippocampal damage can be attributed to the forgetting of studied materials, the impairment following prefrontal damage is due to false alarms, likely reflecting a deficit in source monitoring.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37ed3d0e2e1481050ecba15eaf65badb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257878,&quot;asset_id&quot;:111843238,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257878/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843238"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843238"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843238; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843238]").text(description); $(".js-view-count[data-work-id=111843238]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843238; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843238']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37ed3d0e2e1481050ecba15eaf65badb" } } $('.js-work-strip[data-work-id=111843238]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843238,"title":"An animal model of amnesia that uses Receiver Operating Characteristics (ROC) analysis to distinguish recollection from familiarity deficits in recognition memory","internal_url":"https://www.academia.edu/111843238/An_animal_model_of_amnesia_that_uses_Receiver_Operating_Characteristics_ROC_analysis_to_distinguish_recollection_from_familiarity_deficits_in_recognition_memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257878,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257878/thumbnails/1.jpg","file_name":"pmc2891833.pdf","download_url":"https://www.academia.edu/attachments/109257878/download_file","bulk_download_file_name":"An_animal_model_of_amnesia_that_uses_Rec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257878/pmc2891833-libre.pdf?1703013698=\u0026response-content-disposition=attachment%3B+filename%3DAn_animal_model_of_amnesia_that_uses_Rec.pdf\u0026Expires=1739833740\u0026Signature=CeJuP-m6RAoOA-abg2DWeCNAWTWnFexIytcUkIYohXyOi6liV1Pc4QB0bI3W6SucDAgMMH2fffdpA8lFkvGbABatIUqjqKu-qn8kAeVgPlaZj1Kl7FeaO-Ube5r-2H5pxhzUNA1OrN5k8m~mVm-KXhoR~xHGNxWJNMYbCMbn62PrS4nAfzHxC9cwmkofOKRiqXZeS~GE2pz7EcqVnPCBytBwLTzFAGss9PdOYGYrSjrzm23~yKam6tLSp8TV2PCQg078MPa8Ot3r1S4vwN7mZqQitNWxOWDH6twa~DQLDPCp9hFf7DwV3iriH9fP6h~Z5H0Wi14M0OBKa9lODgKfbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109257879,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257879/thumbnails/1.jpg","file_name":"pmc2891833.pdf","download_url":"https://www.academia.edu/attachments/109257879/download_file","bulk_download_file_name":"An_animal_model_of_amnesia_that_uses_Rec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257879/pmc2891833-libre.pdf?1703013690=\u0026response-content-disposition=attachment%3B+filename%3DAn_animal_model_of_amnesia_that_uses_Rec.pdf\u0026Expires=1739833740\u0026Signature=WJ~obtGEtEIJsC6h30Q4EmJD3lkvBrLa93DGdi2r9I0jf3m2wqn7yK5UWMQWBz2qXisAuffyUXanCy-w1ROEYj82t3oViLIauOjEr4VJK2ooSkdzpnfDyBO8mHwFuoM~eLiIDrmGX4DBFtucGGcah6sDBCaGOxfwkH0CtILvIaMXkwpydpJaIEQ1C76zfMXo6ZlaANrwIpX4MQeohVayu-Uvh9~aYSpuOMiqkATTL9o4PBsGsh7OYL47lRJ12wpouEJQMDZIwIIe585Q1yyUBK0pUNGKzLaj7T8F4GA-SkVVUa2iVIy4uOINVr6ffg49N3f8zsMPp1XR39D5prRmEg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843237"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111843237/Episodic_Memory_and_the_Hippocampus"><img alt="Research paper thumbnail of Episodic Memory and the Hippocampus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111843237/Episodic_Memory_and_the_Hippocampus">Episodic Memory and the Hippocampus</a></div><div class="wp-workCard_item"><span>Current Directions in Psychological Science</span><span>, Apr 1, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Several recent studies have sought to develop animal models of episodic memory, the capacity to r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Several recent studies have sought to develop animal models of episodic memory, the capacity to recollect unique personal experiences. However, these studies have not yet provided unambiguous evidence that this capacity is based on recollection of the learning episodes. A recent study that examined memory for the ordering of events within unique experiences, and demonstrated a critical and selective role for the hippocampus, suggests a new and promising model for neurobiological analyses of episodic memory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843237"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843237"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843237; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843237]").text(description); $(".js-view-count[data-work-id=111843237]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843237; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843237']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111843237]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843237,"title":"Episodic Memory and the Hippocampus","internal_url":"https://www.academia.edu/111843237/Episodic_Memory_and_the_Hippocampus","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843236"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843236/The_Hippocampus_and_Disambiguation_of_Overlapping_Sequences"><img alt="Research paper thumbnail of The Hippocampus and Disambiguation of Overlapping Sequences" class="work-thumbnail" src="https://attachments.academia-assets.com/109257875/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843236/The_Hippocampus_and_Disambiguation_of_Overlapping_Sequences">The Hippocampus and Disambiguation of Overlapping Sequences</a></div><div class="wp-workCard_item"><span>The Journal of Neuroscience</span><span>, Jul 1, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recent models of hippocampal function emphasize its potential role in disambiguating sequences of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recent models of hippocampal function emphasize its potential role in disambiguating sequences of events that compose distinct episodic memories. In this study, rats were trained to distinguish two overlapping sequences of odor choices. The capacity to disambiguate the sequences was measured by the critical odor choice after the overlapping elements of the sequences. When the sequences were presented in rapid alternation, damage to the hippocampus, produced either by infusions of the neurotoxin ibotenic acid or by radiofrequency current, produced a severe deficit, although animals with radiofrequency lesions relearned the task. When the sequences were presented spaced apart and in random order, animals with radiofrequency hippocampal lesions could perform the task. However, they failed when a memory delay was imposed before the critical choice. These findings support the hypothesis that the hippocampus is involved in representing sequences of nonspatial events, particularly when interference between the sequences is high or when animals must remember across a substantial delay preceding items in a current sequence.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a8744d504b72d157f9f4f52714e7d4d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257875,&quot;asset_id&quot;:111843236,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257875/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843236"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843236"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843236; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843236]").text(description); $(".js-view-count[data-work-id=111843236]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843236; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843236']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a8744d504b72d157f9f4f52714e7d4d" } } $('.js-work-strip[data-work-id=111843236]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843236,"title":"The Hippocampus and Disambiguation of Overlapping Sequences","internal_url":"https://www.academia.edu/111843236/The_Hippocampus_and_Disambiguation_of_Overlapping_Sequences","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257875,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257875/thumbnails/1.jpg","file_name":"5760.full.pdf","download_url":"https://www.academia.edu/attachments/109257875/download_file","bulk_download_file_name":"The_Hippocampus_and_Disambiguation_of_Ov.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257875/5760.full-libre.pdf?1703013690=\u0026response-content-disposition=attachment%3B+filename%3DThe_Hippocampus_and_Disambiguation_of_Ov.pdf\u0026Expires=1739833740\u0026Signature=G~6juliRK0l6fvbNXg0ijP0L-jWhB58oVrbcfpaJx5fvQR-OPu8LVcRGPVHJcyWzVu5CRzbAPjybYAM2QjPDKjSdB~HNO9cf2a4w0iXv5hIT3UYsPiYg65~CGhQS6hZsjf3gQ5Uilx-21J5-XX7c7TeMllqww~bDusLYk2YO2E1qOcbA3oIAHzvjsHd9NGWwQyWHhkA6bcbR6cCxkYOV12zRRTc5-NnXvrLYCZbHYEzbufopzdW~dhwrEkXoDSzVn8zIb-oJQRzDpkRVecwrWpFvS~2xrwc4iqzSHwnh5bqXT34PJy~PmTdyqemhYnV8BfNQF5t9S8b6aqV~GP6gJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109257876,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257876/thumbnails/1.jpg","file_name":"5760.full.pdf","download_url":"https://www.academia.edu/attachments/109257876/download_file","bulk_download_file_name":"The_Hippocampus_and_Disambiguation_of_Ov.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257876/5760.full-libre.pdf?1703013692=\u0026response-content-disposition=attachment%3B+filename%3DThe_Hippocampus_and_Disambiguation_of_Ov.pdf\u0026Expires=1739833740\u0026Signature=U4It93vl2hR1exHy2P4AasAcxV-ulBCEwkSLv9ejFCQGnO~4CO-jea46vxedhAz82n7cGZoz1z2Fovv80Re4CAj1Co7aRVedBXQQeDk7pNHKIZCYLyVx0aVIhWwYAOFi5g-qC15avaDDFK9GUFWVkBVgWQMiNsARf9X6Q5WZGrJegXhByKdbhnPdK7QOXjUn3JaQ0rNEoabDHT~gqMJUbvxrTt9dRkaasZSmR4xRknRBhr6NU35gb7tri-pU3Ix-QvD~1DHcUiqVEE6VcS8MdknKS1mFCDpFEotK4LvogwCeULKHsfZZooKA8eTJ6UvPHcIjzYHUMa~Nj2h2Hyp2Mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843234"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843234/Episodic_recollection_in_animals_If_it_walks_like_a_duck_and_quacks_like_a_duck_"><img alt="Research paper thumbnail of Episodic recollection in animals: “If it walks like a duck and quacks like a duck…”" class="work-thumbnail" src="https://attachments.academia-assets.com/109257926/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843234/Episodic_recollection_in_animals_If_it_walks_like_a_duck_and_quacks_like_a_duck_">Episodic recollection in animals: “If it walks like a duck and quacks like a duck…”</a></div><div class="wp-workCard_item"><span>Learning and Motivation</span><span>, May 1, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In humans, episodic memory is most commonly deWned as the subjective experience of recollection, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In humans, episodic memory is most commonly deWned as the subjective experience of recollection, presenting a major challenge to the identiWcation of episodic memory in animals. Here we take the position that episodic memory also has several other distinctive qualities that can be assessed objectively in animals, as well as humans, and the examination of these properties provides insights into underlying mechanisms of episodic memory. We focus on recent evidence accumulated in this laboratory indicating that recognition in rats involves a threshold retrieval process, similar to that observed in human episodic recall. Also, rats can remember the temporal order of unique events, characteristic of the replay of vivid episodic memories in humans. Furthermore, rats combine elements of &quot;when&quot; and &quot;where&quot; events occur, as well as the Xow of events within a memory, to distinguish memories that share overlapping features, also characteristic of human episodic memory. Finally, all of these capacities are dependent on the hippocampus, which also plays a critical role in human episodic memory. This combination of Wndings strongly suggests that animals have the same fundamental information processing functions that underlie episodic recall in humans.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="da9381b0d88fd96a1cc6edfa47c39002" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257926,&quot;asset_id&quot;:111843234,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257926/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843234"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843234"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843234; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843234]").text(description); $(".js-view-count[data-work-id=111843234]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843234; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843234']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "da9381b0d88fd96a1cc6edfa47c39002" } } $('.js-work-strip[data-work-id=111843234]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843234,"title":"Episodic recollection in animals: “If it walks like a duck and quacks like a duck…”","internal_url":"https://www.academia.edu/111843234/Episodic_recollection_in_animals_If_it_walks_like_a_duck_and_quacks_like_a_duck_","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257926,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257926/thumbnails/1.jpg","file_name":"Eichenbaum_Episodic_animal.pdf","download_url":"https://www.academia.edu/attachments/109257926/download_file","bulk_download_file_name":"Episodic_recollection_in_animals_If_it_w.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257926/Eichenbaum_Episodic_animal-libre.pdf?1703013713=\u0026response-content-disposition=attachment%3B+filename%3DEpisodic_recollection_in_animals_If_it_w.pdf\u0026Expires=1739833740\u0026Signature=djfYiNmFku-ttz56mzq2ieDNtf2cr-aByZiKL0HyII2DYNQs2Xkzcf~KptqeTImrIG4jrpVXyEvAMYG1iJwg4HhjSDrqEopZMDGQviUgaG-h5f~rhTiL2DjzvuoXtjWiMoBz5L08kIfV3BVudoM~otLFWw5OoNW8cf-hQdSEnpFNBOYLXStv12rlmcx-MI2DDqY54AirlKSMB6AZGk7sep4Ex3zxZE8btLXJ0Azbmz2KZW5DeyJ~W-Qho15xsQ~ir3qea2WbEwNNW0HvROXDYyBbxTKY4f8w8TzsVlKH7rQyCTQDA6WlKSDc~37LkIeiwAFecqBxJX0W4bYUSYxCOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843233"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843233/Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory"><img alt="Research paper thumbnail of Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory" class="work-thumbnail" src="https://attachments.academia-assets.com/109257924/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843233/Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory">Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory</a></div><div class="wp-workCard_item"><span>eLife</span><span>, May 9, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The hippocampus is known to play a critical role in processing information about temporal context...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The hippocampus is known to play a critical role in processing information about temporal context. However, it remains unclear how hippocampal oscillations are involved, and how their functional organization is influenced by connectivity gradients. We examined local field potential activity in CA1 as rats performed a nonspatial odor sequence memory task. We found that odor sequence processing epochs were characterized by distinct spectral profiles and proximodistal CA1 gradients of theta and 20-40 Hz power than track running epochs. We also discovered that 20-40 Hz power was predictive of sequence memory performance, particularly in proximal CA1 and during the plateau of high power observed in trials in which animals had to maintain their decision until instructed to respond. Altogether, these results provide evidence that dynamics of 20-40 Hz power along the CA1 axis are linked to trial-specific processing of nonspatial information critical to order judgments and are consistent with a role for 20-40 Hz power in gating information processing. Editor&#39;s evaluation This article presents intriguing evidence that 20-40 Hz amplitude increases in the hippocampus are tied to task-relevant parameters, namely, odors presented in a sequence, as well as learning. The results reveal new insights about hippocampal processing of nonspatial information and contribute to a greater understanding of hippocampal network mechanisms of memory processing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e06fb003df3402a977ef6d5a3341b093" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257924,&quot;asset_id&quot;:111843233,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257924/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843233"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843233"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843233; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843233]").text(description); $(".js-view-count[data-work-id=111843233]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843233; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843233']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e06fb003df3402a977ef6d5a3341b093" } } $('.js-work-strip[data-work-id=111843233]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843233,"title":"Proximal CA1 20–40 Hz power dynamics reflect trial-specific information processing supporting nonspatial sequence memory","internal_url":"https://www.academia.edu/111843233/Proximal_CA1_20_40_Hz_power_dynamics_reflect_trial_specific_information_processing_supporting_nonspatial_sequence_memory","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257924/thumbnails/1.jpg","file_name":"elife-55528-v2.pdf","download_url":"https://www.academia.edu/attachments/109257924/download_file","bulk_download_file_name":"Proximal_CA1_20_40_Hz_power_dynamics_ref.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257924/elife-55528-v2-libre.pdf?1703013699=\u0026response-content-disposition=attachment%3B+filename%3DProximal_CA1_20_40_Hz_power_dynamics_ref.pdf\u0026Expires=1739833741\u0026Signature=Q9mWIlsRHcknOVsv9wadnVI5ROTo7-gbj80Ed~6dtEUN1NWnYH92Waobl-UK87wxNlZkdxNmt7ebH10JTO2dyVY6KK3LOyfAvtNbbObchXZWao~G5M0N~GReW9~fl-96WMRF~320Iez770B6BKFcCsaxvYJk-tZwsgwu454Y8sPWt8mHQdaGvwqZ9DuaWQehiTXB726NlI6IofeO7BhI29v~3V6V797xglSaWmDvbI7Fp8JCf76dpTCZ1GC~1f5O2dXFOnELhl0-xXjFw1xtyDTBNQSyIwxjNf6e5EqhcctZZ8Xnx1TAdNp5rPJ7-PQEA3hDSWhn9D7N7l~LmsfJ4Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843232"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843232/A_Bayesian_supervised_dual_dimensionality_reduction_model_for_simultaneous_decoding_of_LFP_and_spike_train_signals"><img alt="Research paper thumbnail of A Bayesian supervised dual‐dimensionality reduction model for simultaneous decoding of LFP and spike train signals" class="work-thumbnail" src="https://attachments.academia-assets.com/109257874/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843232/A_Bayesian_supervised_dual_dimensionality_reduction_model_for_simultaneous_decoding_of_LFP_and_spike_train_signals">A Bayesian supervised dual‐dimensionality reduction model for simultaneous decoding of LFP and spike train signals</a></div><div class="wp-workCard_item"><span>Stat</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neuroscientists are increasingly collecting multimodal data during experiments and observational ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neuroscientists are increasingly collecting multimodal data during experiments and observational studies. Different data modalities-such as electroencephalogram, functional magnetic resonance imaging, local field potential (LFP) and spike trains-offer different views of the complex systems contributing to neural phenomena. Here, we focus on joint modelling of LFP and spike train data and present a novel Bayesian method for neural decoding to infer behavioural and experimental conditions. This model performs supervised dual-dimensionality reduction: it learns low-dimensional representations of two different sources of information that not only explain variation in the input data itself but also predict extraneuronal outcomes. Despite being one probabilistic unit, the model consists of multiple modules: exponential principal components analysis (PCA) and wavelet PCA are used for dimensionality reduction in the spike train and LFP modules, respectively; these modules simultaneously interface with a Bayesian binary regression module. We demonstrate how this model may be used for prediction, parametric inference and identification of influential predictors. In prediction, the hierarchical model outperforms other models trained on LFP alone, spike train alone and combined LFP and spike train data. We compare two methods for modelling the loading matrix and find them to perform similarly. Finally, model parameters and their posterior distributions yield scientific insights.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="91b24f8250adb268eae72442e45d05bb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257874,&quot;asset_id&quot;:111843232,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257874/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843232"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843232"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843232; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843232]").text(description); $(".js-view-count[data-work-id=111843232]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843232; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843232']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "91b24f8250adb268eae72442e45d05bb" } } $('.js-work-strip[data-work-id=111843232]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843232,"title":"A Bayesian supervised dual‐dimensionality reduction model for simultaneous decoding of LFP and spike train signals","internal_url":"https://www.academia.edu/111843232/A_Bayesian_supervised_dual_dimensionality_reduction_model_for_simultaneous_decoding_of_LFP_and_spike_train_signals","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257874,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257874/thumbnails/1.jpg","file_name":"qt77q6p1g0.pdf","download_url":"https://www.academia.edu/attachments/109257874/download_file","bulk_download_file_name":"A_Bayesian_supervised_dual_dimensionalit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257874/qt77q6p1g0-libre.pdf?1703013693=\u0026response-content-disposition=attachment%3B+filename%3DA_Bayesian_supervised_dual_dimensionalit.pdf\u0026Expires=1739833741\u0026Signature=EsDYVvxH6j1LMaFfiVKHl6e5S-oea3chdRdR0~l-eWO9Bc1Q~WVca6g2vUUFOL4PYJjC80vYHg9743WFPpXrX5~pqHlgK9d2c0oz5A7yN5JMwZiJy7zLzMqDyf1sDnN534Y~t-MjhF1oEVejaXzMRXoOen3RK4cSN4cLwnSFmbra7RYS~5oqT3cKBOx2kdrAvHvCQKUNshjjG7XS-k2FNIP-IuXMx0im~dJzoe1U45PaTwdM58tnQJWx9gjBGMSEXMal22326pYsMjULbP07AiHHkmYMoJET0FakO--eD0IlP8BEtMWQ8OtTqZqDYul0WforZqhdRnE~9ZHubacc8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109257873,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257873/thumbnails/1.jpg","file_name":"qt77q6p1g0.pdf","download_url":"https://www.academia.edu/attachments/109257873/download_file","bulk_download_file_name":"A_Bayesian_supervised_dual_dimensionalit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257873/qt77q6p1g0-libre.pdf?1703013695=\u0026response-content-disposition=attachment%3B+filename%3DA_Bayesian_supervised_dual_dimensionalit.pdf\u0026Expires=1739833741\u0026Signature=Ly3T7ysKtadOJ-phvEkHIjjuwr6rAqig2GeUXJ322Hb5FxX7nvkuSLjUPFJiq4FRWIeBA1uTwzRCKhlL0MAewIJxGNT4gBoDMEC0mBciJC~fATpqPR2O-y5KRB7dzm-8MsWp3bhgofqYBj3sumH-XJxZlnvJy7J5NHci5cgu~BdoRg7txd6fkcnzCQ2B~UIFd1Kb~MZmc583uWRziM95OyeP06mSobuR-DLd~VRqsY37dOllxEhPEYjqLbeCCKmi5NBOeoSDj2gKl3wM67gi~aZjEuBaLyJlqefdwMQyePHvcyCvjzXoPBzrfT6su0gz1MKM59WVAEKacmwT2g-9xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843231"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843231/Towards_a_functional_organization_of_episodic_memory_in_the_medial_temporal_lobe"><img alt="Research paper thumbnail of Towards a functional organization of episodic memory in the medial temporal lobe" class="work-thumbnail" src="https://attachments.academia-assets.com/109257872/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843231/Towards_a_functional_organization_of_episodic_memory_in_the_medial_temporal_lobe">Towards a functional organization of episodic memory in the medial temporal lobe</a></div><div class="wp-workCard_item"><span>Neuroscience &amp; Biobehavioral Reviews</span><span>, Aug 1, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here we describe a model of medial temporal lobe organization in which parallel &quot;what&quot; and &quot;where...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here we describe a model of medial temporal lobe organization in which parallel &quot;what&quot; and &quot;where&quot; processing streams converge within the hippocampus to represent events in the spatiotemporal context in which they occurred; this circuitry also mediates the retrieval of context from event cues and vice versa, which are prototypes of episodic recall. Evidence from studies in animals are reviewed in support of this model, including experiments that distinguish characteristics of episodic recollection from familiarity, neuropsychological and recording studies that have identified a key role for the hippocampus in recollection and in associating events with the context in which they occurred, and distinct roles for parahippocampal region areas in separate &quot;what&quot; and &quot;where&quot; information processing that contributes to recollective and episodic memory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2f761fa0c1dade1d9b063327654b46c0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257872,&quot;asset_id&quot;:111843231,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257872/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843231"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843231"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843231; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843231]").text(description); $(".js-view-count[data-work-id=111843231]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843231; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843231']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2f761fa0c1dade1d9b063327654b46c0" } } $('.js-work-strip[data-work-id=111843231]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843231,"title":"Towards a functional organization of episodic memory in the medial temporal lobe","internal_url":"https://www.academia.edu/111843231/Towards_a_functional_organization_of_episodic_memory_in_the_medial_temporal_lobe","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257872/thumbnails/1.jpg","file_name":"pmc3227798.pdf","download_url":"https://www.academia.edu/attachments/109257872/download_file","bulk_download_file_name":"Towards_a_functional_organization_of_epi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257872/pmc3227798-libre.pdf?1703013700=\u0026response-content-disposition=attachment%3B+filename%3DTowards_a_functional_organization_of_epi.pdf\u0026Expires=1739833741\u0026Signature=VCuGPxSJmRxan6R7ZX8zTRxMn2o1pVtQPNFbJ57BxMMn5DfkgDznDHanrKx9xYgEwSqyBbWTvcFWwhNGc8SX8hmEWpJxf-P70UPJvxw3Xnzj7U73Ov3FVMffl0YYUJFDH2G7LlJbQZKlpJ2OEbdvDRezfO8vEJDj-n2D5I~vpdg90BB7ErH5oxL7pqV2XkmdOV2iRN5yRm3gFaeb9R~BGkgVvH--OhgqkJkk6cav8tHAYZvM8k50wTwVJ6AW4PM0aClkeV-i9Bg-6S-5X3j-arHHP6LJOXjGykn4icmyiAo6HjBIWJTULWtbHksNgCD0DymStQ85fusX7-XWudk93Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843230"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111843230/Memory_for_Space_Time_and_Episodes_"><img alt="Research paper thumbnail of Memory for Space, Time, and Episodes ☆" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111843230/Memory_for_Space_Time_and_Episodes_">Memory for Space, Time, and Episodes ☆</a></div><div class="wp-workCard_item"><span>Elsevier eBooks</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Memory is one of the most studied cognitive abilities. Episodic memory, the capacity to remember ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Memory is one of the most studied cognitive abilities. Episodic memory, the capacity to remember personal experiences, has unquestionably increased the survival fitness of mammalian species, including humans. In fact, as animals live in a dynamic environment, the memory for unique experiences, organized in both space and time, has presumably evolved to complement other types of memories that are specialized in extracting generalities from multiple experiences. Here, we seek to review the behavioral approaches used to investigate spatial, temporal, and episodic memory in mammals and to provide insight into the specific brain structures and potential neuronal mechanisms underlying these capacities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843230"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843230"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843230; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843230]").text(description); $(".js-view-count[data-work-id=111843230]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843230; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843230']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111843230]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843230,"title":"Memory for Space, Time, and Episodes ☆","internal_url":"https://www.academia.edu/111843230/Memory_for_Space_Time_and_Episodes_","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111843229"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111843229/Recollection_like_memory_retrieval_in_rats_is_dependent_on_the_hippocampus"><img alt="Research paper thumbnail of Recollection-like memory retrieval in rats is dependent on the hippocampus" class="work-thumbnail" src="https://attachments.academia-assets.com/109257877/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111843229/Recollection_like_memory_retrieval_in_rats_is_dependent_on_the_hippocampus">Recollection-like memory retrieval in rats is dependent on the hippocampus</a></div><div class="wp-workCard_item"><span>Nature</span><span>, Sep 1, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recognition memory may be supported by two independent types of retrieval, conscious recollection...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recognition memory may be supported by two independent types of retrieval, conscious recollection of a specific experience and a sense of familiarity gained from previous exposure to particular stimuli1,2. In humans, signal detection techniques have been used to distinguish recollection and familiarity, respectively, in asymmetrical and curvilinear components of their receiver operating characteristic (ROC) curves, standard curves that represent item recognition across different levels of confidence or bias. To determine whether animals also employ multiple processes in recognition memory and to explore the anatomical basis of this distinction, we adapted these techniques to examine odour recognition memory in rats. Their ROC curve had asymmetrical and curvilinear components, indicating the existence of both recollection and familiarity in rats. Furthermore, following selective damage to the hippocampus the ROC curve became entirely symmetrical and remained curvilinear, supporting the view that the hippocampus specifically mediates the capacity for recollection.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d388af39a27165e5b92d302c59bfc65" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109257877,&quot;asset_id&quot;:111843229,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109257877/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111843229"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111843229"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111843229; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111843229]").text(description); $(".js-view-count[data-work-id=111843229]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111843229; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111843229']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d388af39a27165e5b92d302c59bfc65" } } $('.js-work-strip[data-work-id=111843229]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111843229,"title":"Recollection-like memory retrieval in rats is dependent on the hippocampus","internal_url":"https://www.academia.edu/111843229/Recollection_like_memory_retrieval_in_rats_is_dependent_on_the_hippocampus","owner_id":32842667,"coauthors_can_edit":true,"owner":{"id":32842667,"first_name":"Norbert","middle_initials":null,"last_name":"Fortin","page_name":"NorbertFortin","domain_name":"uci","created_at":"2015-07-06T10:51:30.719-07:00","display_name":"Norbert Fortin","url":"https://uci.academia.edu/NorbertFortin"},"attachments":[{"id":109257877,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109257877/thumbnails/1.jpg","file_name":"pmc4053162.pdf","download_url":"https://www.academia.edu/attachments/109257877/download_file","bulk_download_file_name":"Recollection_like_memory_retrieval_in_ra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109257877/pmc4053162-libre.pdf?1703013690=\u0026response-content-disposition=attachment%3B+filename%3DRecollection_like_memory_retrieval_in_ra.pdf\u0026Expires=1739833741\u0026Signature=dxWp~T4OIusA~eftsH9u1CeeR5WCiHCt3j8UhTJ0RX5FMAgRe9nJzyGFqyENfpR8DVFkrlrMox8MUNj4DYyf-BxpmjLnqwRj4Y1m7WKQWunkj2Tpq2oeHU-fb92dFTmW06B7CVDOaTMgfJsIY3pe79qu7P84t3hzSoJ3Hg2nc-TUO1y84q8gQ-SUjXqEko-Kd-uZ-WGY9JlAkUnGrQ-1Eymy-hd3yaqjmWodFcvYesu0Y-9w74BwUbLiCxGoLvup5QDT-jFZ7vvmok-FpaPoqB1ZRoJYD5ovKur2xO5WYmW3t9-AYJhrIbku-e498vZDuLBJiZuo25bm22hvqk5fHg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "4f3b66c28f7a28e913221e52132ffc3fb1113936400968838b017b14e6c76c70", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="3-6KFDYk48e-5k7DiejcLw1ftjb4_-viFl4wgtDjPK2Qd32Oqf_zmPKZ_QXHmhY0NmBxXTZ85tEgOibnGozdYw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://uci.academia.edu/NorbertFortin" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="VpL8mxR_XVNyEP4LOGOHWKWE4H72If8h2miNU7h8tgIZCwsBi6RNDD5vTc12EU1DnrsnFTii8hLsDJs2chNXzA" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10