CINXE.COM

Search results for: direct compression

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: direct compression</title> <meta name="description" content="Search results for: direct compression"> <meta name="keywords" content="direct compression"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="direct compression" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="direct compression"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4181</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: direct compression</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4181</span> The Impact of Direct and Indirect Pressure Measuring Systems on the Pressure Mapping for the Medical Compression Garments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20M.%20Shahidi">Arash M. Shahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tilak%20Dias"> Tilak Dias</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayani%20K.%20Nandasiri"> Gayani K. Nandasiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While graduated compression is the foundation of treatment and management of many medical complications such as leg ulcer, varicose veins, and lymphedema, monitoring the interface pressure has been conducted using different sensors that operate based on diverse approaches. The variations existed from the pressure readings collected using different interface pressure measurement systems would cause difficulties in taking a decision regarding the compression therapy. It is crucial to acknowledge the differences existing between direct and indirect pressure measurement systems while considering the commercially available systems such as AMI, Picopress and OPM which are under direct measurements systems, and HATRA (BSI), HOSY (RAL-GZ) and FlexiForce which comes under the indirect measurement system. Furthermore, Piezo-resistive sensors (Flexiforce) can measure the changes in resistance corresponding to the applied force on the sensing area. Direct pressure measuring systems are capable of measuring interface pressure on the three-dimensional states, while the indirect pressure measuring systems stretch the fabric in the two-dimensional direction and extrapolate pressure from surface tension measured on the device and neglect the vital factor which is the radius of curvature. In this study, a leg mannequin of known dimensions is selected with a knitted class 3 compression stocking. It has been decided to evaluate the data collected from different available systems (AMI, PicoPress, FlexiForce, and HATRA) and compare the results. The results showed a discrepancy between Hatra, AMI, Picopress, and Flexiforce against the pressure standard used to generate class 3 compression stocking. As predicted a higher pressure value with direct interface measuring systems were monitored against HATRA due to the effect of the radius of curvature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMI" title="AMI">AMI</a>, <a href="https://publications.waset.org/abstracts/search?q=FlexiForce" title=" FlexiForce"> FlexiForce</a>, <a href="https://publications.waset.org/abstracts/search?q=graduated%20compression" title=" graduated compression"> graduated compression</a>, <a href="https://publications.waset.org/abstracts/search?q=HATRA" title=" HATRA"> HATRA</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20pressure" title=" interface pressure"> interface pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=PicoPress" title=" PicoPress"> PicoPress</a> </p> <a href="https://publications.waset.org/abstracts/79183/the-impact-of-direct-and-indirect-pressure-measuring-systems-on-the-pressure-mapping-for-the-medical-compression-garments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4180</span> Optimization of Pregelatinized Taro Boloso-I Starch as a Direct Compression Tablet Excipient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamrat%20Balcha%20Balla">Tamrat Balcha Balla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Tablets are still the most preferred means of drug delivery. The search for new and improved direct compression tablet excipients is an area of research focus. Taro Boloso-I is a variety of Colocasia esculenta (L. Schott) yielding 67% more than the other varieties (Godare) in Ethiopia. This study aimed to enhance the flowability while keeping the compressibility and compactibility of the pregelatinized Taro Boloso-I starch. Methods: Central composite design was used for the optimization of two factors which were the temperature and duration of pregelatinization against 5 responses. The responses were angle of repose, Hausner ratio, Kawakita compressibility index, mean yield pressure and tablet breaking force. Results and Discussions: An increase in both temperature and time resulted in decrease in the angle of repose. The increase in temperature was shown to decrease the Hausner ratio and to decrease the Kawakita compressibility index. The mean yield pressure was observed to increase with increasing levels of both temperature and time. The pregelatinized (optimized) Taro Boloso-I starch could show desired flow property and compressibility. Conclusions: Pregelatinized Taro Boloso - I starch could be regarded as a potential direct compression excipient in terms of flowability, compressibility and compactibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starch" title="starch">starch</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=pregelatinization" title=" pregelatinization"> pregelatinization</a>, <a href="https://publications.waset.org/abstracts/search?q=Taro%20Boloso-I" title=" Taro Boloso-I"> Taro Boloso-I</a> </p> <a href="https://publications.waset.org/abstracts/163159/optimization-of-pregelatinized-taro-boloso-i-starch-as-a-direct-compression-tablet-excipient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4179</span> GPU Accelerated Fractal Image Compression for Medical Imaging in Parallel Computing Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Enamul%20Haque">Md. Enamul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al%20Kaisan"> Abdullah Al Kaisan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmudur%20R.%20Saniat"> Mahmudur R. Saniat</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminur%20Rahman"> Aminur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have implemented both sequential and parallel version of fractal image compression algorithms using CUDA (Compute Unified Device Architecture) programming model for parallelizing the program in Graphics Processing Unit for medical images, as they are highly similar within the image itself. There is several improvements in the implementation of the algorithm as well. Fractal image compression is based on the self similarity of an image, meaning an image having similarity in majority of the regions. We take this opportunity to implement the compression algorithm and monitor the effect of it using both parallel and sequential implementation. Fractal compression has the property of high compression rate and the dimensionless scheme. Compression scheme for fractal image is of two kinds, one is encoding and another is decoding. Encoding is very much computational expensive. On the other hand decoding is less computational. The application of fractal compression to medical images would allow obtaining much higher compression ratios. While the fractal magnification an inseparable feature of the fractal compression would be very useful in presenting the reconstructed image in a highly readable form. However, like all irreversible methods, the fractal compression is connected with the problem of information loss, which is especially troublesome in the medical imaging. A very time consuming encoding process, which can last even several hours, is another bothersome drawback of the fractal compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20GPU" title="accelerated GPU">accelerated GPU</a>, <a href="https://publications.waset.org/abstracts/search?q=CUDA" title=" CUDA"> CUDA</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20image%20compression" title=" fractal image compression"> fractal image compression</a> </p> <a href="https://publications.waset.org/abstracts/5645/gpu-accelerated-fractal-image-compression-for-medical-imaging-in-parallel-computing-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4178</span> Image Compression Using Block Power Method for SVD Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Asnaoui%20Khalid">El Asnaoui Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chawki%20Youness"> Chawki Youness</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksasse%20Brahim"> Aksasse Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouanan%20Mohammed"> Ouanan Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=SVD" title=" SVD"> SVD</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20SVD%20power%20method" title=" block SVD power method"> block SVD power method</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20compression" title=" lossless compression"> lossless compression</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20lossless" title=" near lossless"> near lossless</a> </p> <a href="https://publications.waset.org/abstracts/34041/image-compression-using-block-power-method-for-svd-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4177</span> Direct Compression Formulation of Poorly Compressible Drugs to Minimize the Tablet Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Pandey">Abhishek Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Capping and lamination are the most common tablet defects with poorly compressible drugs the common example of that Ibuprofen and Acetaminophen. Generally both these drugs are compressed by wet granulation method which is very time consuming process Ibuprofen and Acetaminophen is widely used as prescription & non-prescription medicine. Ibuprofen mainly used in the treatment of mild to moderate pain related to headache, migraine, postoperative condition and in the management of spondylitis, osteoarthritis Acetaminophen used as an analgesic and antipyretic drug. Ibuprofen having high tendency of sticking to punches of tablet punching machine while Acetaminophen is not ordinarily compressible to tablet formulation because Acetaminophen crystals are very hard and brittle in nature and fracture very easily when compressed producing capping and laminating tablet defects therefore wet granulation method is used to make them compressible. The aim of study was to prepare Ibuprofen and Acetaminophen tablets by direct compression technique and their evaluation. In this Investigation tablets were prepared by using directly compressible grade excipients. Dibasic calcium phosphate, lactose anhydrous (DCL21), microcrystalline cellulose (Avicel PH 101). In order to obtain best or optimize formulation nine different formulations were generated among them batch F5, F6, F7 shows good results and within the acceptable limit. Formulation (F7) selected as optimize product on the basis of evaluation parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capping" title="capping">capping</a>, <a href="https://publications.waset.org/abstracts/search?q=lamination" title=" lamination"> lamination</a>, <a href="https://publications.waset.org/abstracts/search?q=tablet%20defects" title=" tablet defects"> tablet defects</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20compression" title=" direct compression"> direct compression</a> </p> <a href="https://publications.waset.org/abstracts/38039/direct-compression-formulation-of-poorly-compressible-drugs-to-minimize-the-tablet-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4176</span> Experimental Investigation of the Effect of Compression Ratio in a Direct Injection Diesel Engine Running on Different Blends of Rice Bran Oil and Ethanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perminderjit%20Singh">Perminderjit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Randeep%20Singh"> Randeep Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio multifuel engine when fueled with different blends of rice bran oil methyl ester and ethanol are investigated and compared with the results of standard diesel. Biodiesel produced from rice bran oil by transesterification process has been used in this study. The experiment has been conducted at a fixed engine speed of 1500 rpm, 50% load and at compression ratios of 16.5:1, 17:1, 17.5:1 and 18:1. The impact of compression ratio on fuel consumption, brake thermal efficiency and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives the best performance has been identified. The results indicate longer ignition delay, the maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for waste cooking oil methyl ester when compared to that of diesel. The brake thermal efficiency at 50% load for rice bran oil methyl ester blends and diesel has been calculated and the blend B40 is found to give maximum thermal efficiency. The blends when used as fuel results in the reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20oil" title=" rice bran oil"> rice bran oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20ratio" title=" compression ratio"> compression ratio</a> </p> <a href="https://publications.waset.org/abstracts/3095/experimental-investigation-of-the-effect-of-compression-ratio-in-a-direct-injection-diesel-engine-running-on-different-blends-of-rice-bran-oil-and-ethanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4175</span> Comparison of Compression Properties of Stretchable Knitted Fabrics and Bi-Stretch Woven Fabrics for Compression Garments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Maqsood">Muhammad Maqsood</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Nawab"> Yasir Nawab</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Talha%20Ali%20Hamdani"> Syed Talha Ali Hamdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stretchable fabrics have diverse applications ranging from casual apparel to performance sportswear and compression therapy. Compression therapy is the universally accepted treatment for the management of hypertrophic scarring after severe burns. Mostly stretchable knitted fabrics are used in compression therapy but in the recent past, some studies have also been found on bi-stretch woven fabrics being used as compression garments as they also have been found quite effective in the treatment of oedema. Therefore, the objective of the present study is to compare the compression properties of stretchable knitted and bi-stretch woven fabrics for compression garments. For this purpose four woven structures and four knitted structures were produced having the same areal density and their compression, comfort and mechanical properties were compared before and after 5, 10 and 15 washes. Four knitted structures used were single jersey, single locaste, plain pique and the honeycomb, whereas four woven structures produced were 1/1 plain, 2/1 twill, 3/1 twill and 4/1 twill. The compression properties of the produced samples were tested by using kikuhime pressure sensor and it was found that bi-stretch woven fabrics possessed better compression properties before and after washes and retain their durability after repeated use, whereas knitted stretchable fabrics lost their compression ability after repeated use and the required sub garment pressure of the knitted structures after 15 washes was almost half to that of woven bi-stretch fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20garments" title="compression garments">compression garments</a>, <a href="https://publications.waset.org/abstracts/search?q=knitted%20structures" title=" knitted structures"> knitted structures</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20textiles" title=" medical textiles"> medical textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=woven%20bi-stretch" title=" woven bi-stretch"> woven bi-stretch</a> </p> <a href="https://publications.waset.org/abstracts/39769/comparison-of-compression-properties-of-stretchable-knitted-fabrics-and-bi-stretch-woven-fabrics-for-compression-garments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4174</span> A High Compression Ratio for a Losseless Image Compression Based on the Arithmetic Coding with the Sorted Run Length Coding: Meteosat Second Generation Image Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Mehdi">Cherifi Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahdir%20Mourad"> Lahdir Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Soltane"> Ameur Soltane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image compression is the heart of several multimedia techniques. It is used to reduce the number of bits required to represent an image. Meteosat Second Generation (MSG) satellite allows the acquisition of 12 image files every 15 minutes and that results in a large databases sizes. In this paper, a novel image compression method based on the arithmetic coding with the sorted Run Length Coding (SRLC) for MSG images is proposed. The SRLC allows us to find the occurrence of the consecutive pixels of the original image to create a sorted run. The arithmetic coding allows the encoding of the sorted data of the previous stage to retrieve a unique code word that represents a binary code stream in the sorted order to boost the compression ratio. Through this article, we show that our method can perform the best results concerning compression ratio and bit rate unlike the method based on the Run Length Coding (RLC) and the arithmetic coding. Evaluation criteria like the compression ratio and the bit rate allow the confirmation of the efficiency of our method of image compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=arithmetic%20coding" title=" arithmetic coding"> arithmetic coding</a>, <a href="https://publications.waset.org/abstracts/search?q=Run%20Length%20Coding" title=" Run Length Coding"> Run Length Coding</a>, <a href="https://publications.waset.org/abstracts/search?q=RLC" title=" RLC"> RLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorted%20Run%20Length%20Coding" title=" Sorted Run Length Coding"> Sorted Run Length Coding</a>, <a href="https://publications.waset.org/abstracts/search?q=SRLC" title=" SRLC"> SRLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Meteosat%20Second%20Generation" title=" Meteosat Second Generation"> Meteosat Second Generation</a>, <a href="https://publications.waset.org/abstracts/search?q=MSG" title=" MSG"> MSG</a> </p> <a href="https://publications.waset.org/abstracts/16704/a-high-compression-ratio-for-a-losseless-image-compression-based-on-the-arithmetic-coding-with-the-sorted-run-length-coding-meteosat-second-generation-image-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4173</span> A Survey on Compression Methods for Table Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Gharbi">N. Gharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constraint Satisfaction problems are mathematical problems that are often used to model many real-world problems for which we look if there exists a solution satisfying all its constraints. Table constraints are important for modeling parts of many problems since they list all combinations of allowed or forbidden values. However, they admit practical limitations because they are sometimes too large to be represented in a direct way. In this paper, we present a survey of the different categories of the proposed approaches to compress table constraints in order to reduce both space and time complexities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constraint%20programming" title="constraint programming">constraint programming</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=table%20constraints" title=" table constraints"> table constraints</a> </p> <a href="https://publications.waset.org/abstracts/49933/a-survey-on-compression-methods-for-table-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4172</span> Medical Image Compression Based on Region of Interest: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudeepti%20Dayal">Sudeepti Dayal</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelesh%20Gupta"> Neelesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In terms of transmission, bigger the size of any image, longer the time the channel takes for transmission. It is understood that the bandwidth of the channel is fixed. Therefore, if the size of an image is reduced, a larger number of data or images can be transmitted over the channel. Compression is the technique used to reduce the size of an image. In terms of storage, compression reduces the file size which it occupies on the disk. Any image is based on two parameters, region of interest and non-region of interest. There are several algorithms of compression that compress the data more economically. In this paper we have reviewed region of interest and non-region of interest based compression techniques and the algorithms which compress the image most efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20ratio" title="compression ratio">compression ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20of%20interest" title=" region of interest"> region of interest</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT" title=" DCT"> DCT</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a> </p> <a href="https://publications.waset.org/abstracts/43380/medical-image-compression-based-on-region-of-interest-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4171</span> Direct Strength Method Approach for Indian Cold Formed Steel Sections with and Without Perforation for Compression Member</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Raghu">K. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Altafhusen%20P.%20Pinjar"> Altafhusen P. Pinjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold-formed steel section are extensively used in industry and many other non-industry constructions worldwide, it is relatively a new concept in India. Cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold鈥恌ormed steel (CFS) structural members are commonly manufactured with perforations to accommodate plumbing, electrical, and heating conduits in the walls and ceilings of buildings. Current design methods available to engineers for predicting the strength of CFS members with perforations are prescriptive and limited to specific perforation locations, spacing, and sizes. The Direct Strength Method (DSM), a relatively new design method for CFS members validated for members with and without perforations, predicts the ultimate strength of general CFS members with the elastic buckling properties of the member cross section. The design compression strength and flexural strength of Indian (IS 811-1987) standard sections is calculated as per North American Specification (AISI-S100 2007) and software CUFSM 4.05. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20strength" title="direct strength">direct strength</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20formed" title=" cold formed"> cold formed</a>, <a href="https://publications.waset.org/abstracts/search?q=perforations" title=" perforations"> perforations</a>, <a href="https://publications.waset.org/abstracts/search?q=CUFSM" title=" CUFSM"> CUFSM</a> </p> <a href="https://publications.waset.org/abstracts/17353/direct-strength-method-approach-for-indian-cold-formed-steel-sections-with-and-without-perforation-for-compression-member" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4170</span> QCARNet: Networks for Quality-Adaptive Compression Artifact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung%20Ho%20Park">Seung Ho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Su%20Moon"> Young Su Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Ik%20Cho"> Nam Ik Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20artifact%20reduction" title="compression artifact reduction">compression artifact reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=deblocking" title=" deblocking"> deblocking</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20denoising" title=" image denoising"> image denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20restoration" title=" image restoration"> image restoration</a> </p> <a href="https://publications.waset.org/abstracts/108816/qcarnet-networks-for-quality-adaptive-compression-artifact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4169</span> Compression Index Estimation by Water Content and Liquid Limit and Void Ratio Using Statistics Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lizhou%20Chen">Lizhou Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Belgaid"> Abdelhamid Belgaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Assem%20Elsayed"> Assem Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoming%20Yang"> Xiaoming Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compression index is essential in foundation settlement calculation. The traditional method for determining compression index is consolidation test which is expensive and time consuming. Many researchers have used regression methods to develop empirical equations for predicting compression index from soil properties. Based on a large number of compression index data collected from consolidation tests, the accuracy of some popularly empirical equations were assessed. It was found that primary compression index is significantly overestimated in some equations while it is underestimated in others. The sensitivity analyses of soil parameters including water content, liquid limit and void ratio were performed. The results indicate that the compression index obtained from void ratio is most accurate. The ANOVA (analysis of variance) demonstrates that the equations with multiple soil parameters cannot provide better predictions than the equations with single soil parameter. In other words, it is not necessary to develop the relationships between compression index and multiple soil parameters. Meanwhile, it was noted that secondary compression index is approximately 0.7-5.0% of primary compression index with an average of 2.0%. In the end, the proposed prediction equations using power regression technique were provided that can provide more accurate predictions than those from existing equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20index" title="compression index">compression index</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20compression%20index" title=" secondary compression index"> secondary compression index</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20parameter" title=" soil parameter"> soil parameter</a> </p> <a href="https://publications.waset.org/abstracts/111582/compression-index-estimation-by-water-content-and-liquid-limit-and-void-ratio-using-statistics-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4168</span> In-Situ Quasistatic Compression and Microstructural Characterization of Aluminium Foams of Different Cell Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Islam">M. A. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20Hazell"> P. J. Hazell</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Escobedo"> J. P. Escobedo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saadatfar"> M. Saadatfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quasistatic compression and micro structural characterization of closed cell aluminium foams of different pore size and cell distributions has been carried out. Metallic foams have good potential for lightweight structures for impact and blast mitigation and therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximize energy absorption. In this paper, we present results for two different aluminium metal foams of density 0.5 g/cc and 0.7 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behavior has been investigated using computed tomography (micro-CT) analysis. The compression behavior and micro structural characterization will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20foams" title="metal foams">metal foams</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-CT" title=" micro-CT"> micro-CT</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20topology" title=" cell topology"> cell topology</a>, <a href="https://publications.waset.org/abstracts/search?q=quasistatic%20compression" title=" quasistatic compression"> quasistatic compression</a> </p> <a href="https://publications.waset.org/abstracts/11025/in-situ-quasistatic-compression-and-microstructural-characterization-of-aluminium-foams-of-different-cell-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4167</span> Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Mehdi">Cherifi Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahdir%20Mourad"> Lahdir Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Soltane"> Ameur Soltane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20transform" title=" radon transform"> radon transform</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding%20%28LPC%29" title=" linear predictive coding (LPC)"> linear predictive coding (LPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=run%20lengthcoding%20%28RLC%29" title=" run lengthcoding (RLC)"> run lengthcoding (RLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=meteosat%20second%20generation%20%28MSG%29" title=" meteosat second generation (MSG)"> meteosat second generation (MSG)</a> </p> <a href="https://publications.waset.org/abstracts/16434/meteosat-second-generation-image-compression-based-on-the-radon-transform-and-linear-predictive-coding-comparison-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4166</span> PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Jayashree">P. Jayashree</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rajkumar"> S. Rajkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20ratio" title="compression ratio">compression ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=generic%20compression" title=" generic compression"> generic compression</a>, <a href="https://publications.waset.org/abstracts/search?q=irrational%20number%20storage" title=" irrational number storage"> irrational number storage</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20encoding" title=" probabilistic encoding"> probabilistic encoding</a> </p> <a href="https://publications.waset.org/abstracts/60542/peins-a-generic-compression-scheme-using-probabilistic-encoding-and-irrational-number-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4165</span> A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammam%20Aljabri">Hammam Aljabri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20G.%20Im"> Hong G. Im</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20knock" title=" engine knock"> engine knock</a>, <a href="https://publications.waset.org/abstracts/search?q=SI%20engine" title=" SI engine"> SI engine</a> </p> <a href="https://publications.waset.org/abstracts/157284/a-computational-investigation-of-knocking-tendency-in-a-hydrogen-fueled-si-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4164</span> Video Compression Using Contourlet Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Delara%20Kazempour">Delara Kazempour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashallah%20Abasi%20Dezfuli"> Mashallah Abasi Dezfuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Javidan"> Reza Javidan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video compression used for channels with limited bandwidth and storage devices has limited storage capabilities. One of the most popular approaches in video compression is the usage of different transforms. Discrete cosine transform is one of the video compression methods that have some problems such as blocking, noising and high distortion inappropriate effect in compression ratio. wavelet transform is another approach is better than cosine transforms in balancing of compression and quality but the recognizing of curve curvature is so limit. Because of the importance of the compression and problems of the cosine and wavelet transforms, the contourlet transform is most popular in video compression. In the new proposed method, we used contourlet transform in video image compression. Contourlet transform can save details of the image better than the previous transforms because this transform is multi-scale and oriented. This transform can recognize discontinuity such as edges. In this approach we lost data less than previous approaches. Contourlet transform finds discrete space structure. This transform is useful for represented of two dimension smooth images. This transform, produces compressed images with high compression ratio along with texture and edge preservation. Finally, the results show that the majority of the images, the parameters of the mean square error and maximum signal-to-noise ratio of the new method based contourlet transform compared to wavelet transform are improved but in most of the images, the parameters of the mean square error and maximum signal-to-noise ratio in the cosine transform is better than the method based on contourlet transform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20compression" title="video compression">video compression</a>, <a href="https://publications.waset.org/abstracts/search?q=contourlet%20transform" title=" contourlet transform"> contourlet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20cosine%20transform" title=" discrete cosine transform"> discrete cosine transform</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/6930/video-compression-using-contourlet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4163</span> Normalized Compression Distance Based Scene Alteration Analysis of a Video</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshay%20Kharbanda">Lakshay Kharbanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Aabhas%20Chauhan"> Aabhas Chauhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an application of Normalized Compression Distance (NCD) to detect notable scene alterations occurring in videos is presented. Several research groups have been developing methods to perform image classification using NCD, a computable approximation to Normalized Information Distance (NID) by studying the degree of similarity in images. The timeframes where significant aberrations between the frames of a video have occurred have been identified by obtaining a threshold NCD value, using two compressors: LZMA and BZIP2 and defining scene alterations using Pixel Difference Percentage metrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolmogorov%20complexity" title=" Kolmogorov complexity"> Kolmogorov complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20compression%20distance" title=" normalized compression distance"> normalized compression distance</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20mean%20square%20error" title=" root mean square error"> root mean square error</a> </p> <a href="https://publications.waset.org/abstracts/54601/normalized-compression-distance-based-scene-alteration-analysis-of-a-video" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4162</span> Learning Compression Techniques on Smart Phone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farouk%20Lawan%20Gambo">Farouk Lawan Gambo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamada%20Mohammad"> Hamada Mohammad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20compression" title="data compression">data compression</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20preference" title=" learning preference"> learning preference</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20learning" title=" mobile learning"> mobile learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia" title=" multimedia"> multimedia</a> </p> <a href="https://publications.waset.org/abstracts/66086/learning-compression-techniques-on-smart-phone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4161</span> Advantages of Electrifying Offshore Compression System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siva%20Sankara%20Arudra">Siva Sankara Arudra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaruzaman%20Baharuddin"> Kamaruzaman Baharuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ir.%20Ahmed%20Fadzil%20Mustafa%20Kamal"> Ir. Ahmed Fadzil Mustafa Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ir.%20Abdul%20Latif%20Mohamed"> Ir. Abdul Latif Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancement of electrical and electronics technologies has rewarded the oil and gas industry with great opportunities to embed more environmentally solutions into design. Most offshore oil and gas producers have their engineering and production asset goals to promote greater use of environmentally friendly compression system technologies to eliminate hazardous emissions from conventional gas compressor drivers. Therefore, this paper comprehensively elaborates the parametric study conducted in integrating the latest electrical and electronics drives technology into the existing compression system. This study was conducted in aspects of layout, reliability & availability, maintainability, emission, and cost. An existing offshore facility that utilized gas turbines as the driver for gas compression was set as Conventional Case for this study. The Electrification Case will utilize electric motor drives as the driver for the compression system. Findings from this study indicate more advantages in driver electrification compared to conventional compression systems. The findings of this paper can be set as a benchmark for future offshore driver selection for gas compression systems of similar operating parameters and power range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbomachinery" title="turbomachinery">turbomachinery</a>, <a href="https://publications.waset.org/abstracts/search?q=electrification" title=" electrification"> electrification</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20system" title=" compression system"> compression system</a> </p> <a href="https://publications.waset.org/abstracts/146076/advantages-of-electrifying-offshore-compression-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4160</span> Application of the Bionic Wavelet Transform and Psycho-Acoustic Model for Speech Compression </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chafik%20Barnoussi">Chafik Barnoussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Talbi"> Mourad Talbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnane%20Cherif"> Adnane Cherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we propose a new speech compression system based on the application of the Bionic Wavelet Transform (BWT) combined with the psychoacoustic model. This compression system is a modified version of the compression system using a MDCT (Modified Discrete Cosine Transform) filter banks of 32 filters each and the psychoacoustic model. This modification consists in replacing the banks of the MDCT filter banks by the bionic wavelet coefficients which are obtained from the application of the BWT to the speech signal to be compressed. These two methods are evaluated and compared with each other by computing bits before and bits after compression. They are tested on different speech signals and the obtained simulation results show that the proposed technique outperforms the second technique and this in term of compressed file size. In term of SNR, PSNR and NRMSE, the outputs speech signals of the proposed compression system are with acceptable quality. In term of PESQ and speech signal intelligibility, the proposed speech compression technique permits to obtain reconstructed speech signals with good quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20compression" title="speech compression">speech compression</a>, <a href="https://publications.waset.org/abstracts/search?q=bionic%20wavelet%20transform" title=" bionic wavelet transform"> bionic wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=filterbanks" title=" filterbanks"> filterbanks</a>, <a href="https://publications.waset.org/abstracts/search?q=psychoacoustic%20model" title=" psychoacoustic model"> psychoacoustic model</a> </p> <a href="https://publications.waset.org/abstracts/1921/application-of-the-bionic-wavelet-transform-and-psycho-acoustic-model-for-speech-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4159</span> Formulation and Evaluation of Colon-Specific Drug Delivery System of Zaltoprofen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajj%20Sarode">Surajj Sarode</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Vadnere"> G. P. Vadnere</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vidya%20Sagar"> G. Vidya Sagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compression coating is one of the strategies for delivering drug to the colon based on Gastrointestinal PH and transit time concept. The main aim of these formulations to develop rapidly disintegrating Zaltoprofen core tablets compression-coated with a mixture of time-dependent hydrophilic swellable polymer HPMC K 15 and PH responsive soluble polymer Chitosan and Guar gum in different ratios. The effect of the proportion of HPMC, Chitosan and Guar gum in the coat on premature drug release in upper part (Stomach and small intestine) of GIT and the amount of drug release in colon target area was studied. The formulations are carried out by using Direct Compression method. Sodium starch Glycolate used for rapid disintegration. FTIR used for Drug-Polymer Interaction studies. The prepared tablets were evaluated for hardness, thickness, friability, in-vitro disintegration, in-Vitro dissolution and in-vitro kinetic study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zaltoprofen" title="zaltoprofen">zaltoprofen</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=formulation" title=" formulation"> formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/15492/formulation-and-evaluation-of-colon-specific-drug-delivery-system-of-zaltoprofen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4158</span> Comparison of Direct and Indirect Tensile Strength of Brittle Materials and Accurate Estimate of Tensile Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Etezadi">M. Etezadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fahimifar"> A. Fahimifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many geotechnical designs in rocks and rock masses, tensile strength of rock and rock mass is needed. The difficulties associated with performing a direct uniaxial tensile test on a rock specimen have led to a number of indirect methods for assessing the tensile strength that in the meantime the Brazilian test is more popular. Brazilian test is widely applied in rock engineering because specimens are easy to prepare, the test is easy to conduct and uniaxial compression test machines are quite common. This study compares experimental results of direct and Brazilian tensile tests carried out on two rock types and three concrete types using 39 cylindrical and 28 disc specimens. The tests are performed using Servo-Control device. The relationship between direct and indirect tensile strength of specimens is extracted using linear regression. In the following, tensile strength of direct and indirect test is evaluated using finite element analysis. The results are analyzed and effective factors on results are studied. According to the experimental results Brazilian test is shown higher tensile strength than direct test. Because of decreasing the contact surface of grains and increasing the uniformity in concrete specimens with fine aggregate (largest grain size= 6mm), higher tensile strength in direct test is shown. The experimental and numerical results of tensile strength are compared and empirical relationship witch is obtained from experimental tests is validated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title="tensile strength">tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=brittle%20materials" title=" brittle materials"> brittle materials</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20indirect%20tensile%20test" title=" direct and indirect tensile test"> direct and indirect tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling "> numerical modeling </a> </p> <a href="https://publications.waset.org/abstracts/36005/comparison-of-direct-and-indirect-tensile-strength-of-brittle-materials-and-accurate-estimate-of-tensile-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4157</span> A New Prediction Model for Soil Compression Index </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Mohammadzadeh%20S.">D. Mohammadzadeh S.</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bolouri%20Bazaz"> J. Bolouri Bazaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model" title="new prediction model">new prediction model</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20index%20soil" title=" compression index soil"> compression index soil</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-gene%20genetic%20programming" title=" multi-gene genetic programming"> multi-gene genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=MGGP" title=" MGGP"> MGGP</a> </p> <a href="https://publications.waset.org/abstracts/35247/a-new-prediction-model-for-soil-compression-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4156</span> A Survey on Lossless Compression of Bayer Color Filter Array Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alina%20Trifan">Alina Trifan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B3nio%20J.%20R.%20Neves"> Ant贸nio J. R. Neves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayer%20image" title="bayer image">bayer image</a>, <a href="https://publications.waset.org/abstracts/search?q=CFA" title=" CFA"> CFA</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20compression" title=" lossless compression"> lossless compression</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20coding%20standards" title=" image coding standards"> image coding standards</a> </p> <a href="https://publications.waset.org/abstracts/39918/a-survey-on-lossless-compression-of-bayer-color-filter-array-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4155</span> Formulation Development, Process Optimization and Comparative study of Poorly Compressible Drugs Ibuprofen, Acetaminophen Using Direct Compression and Top Spray Granulation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Pandey">Abhishek Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ibuprofen and Acetaminophen is widely used as prescription & non-prescription medicine. Ibuprofen mainly used in the treatment of mild to moderate pain related to headache, migraine, postoperative condition and in the management of spondylitis, osteoarthritis and rheumatoid arthritis. Acetaminophen is used as an analgesic and antipyretic drug. Ibuprofen having high tendency of sticking to punches of tablet punching machine while Acetaminophen is not ordinarily compressible to tablet formulation because Acetaminophen crystals are very hard and brittle in nature and fracture very easily when compressed producing capping and laminating tablet defects therefore wet granulation method is used to make them compressible. The aim of study was to prepare Ibuprofen and Acetaminophen tablets by direct compression and top spray granulation technique. In this Investigation tablets were prepared by using directly compressible grade excipients. Dibasic calcium phosphate, lactose anhydrous (DCL21), microcrystalline cellulose (Avicel PH 101). In order to obtain best or optimized formulation, nine different formulations were generated among them batch F7, F8, F9 shows good results and within the acceptable limit. Formulation (F7) selected as optimize product on the basis of dissolution study. Furtherly, directly compressible granules of both drugs were prepared by using top spray granulation technique in fluidized bed processor equipment and compressed .In order to obtain best product process optimization was carried out by performing four trials in which various parameters like inlet air temperature, spray rate, peristaltic pump rpm, % LOD, properties of granules, blending time and hardness were optimized. Batch T3 coined as optimized batch on the basis physical & chemical evaluation. Finally formulations prepared by both techniques were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20compression" title="direct compression">direct compression</a>, <a href="https://publications.waset.org/abstracts/search?q=top%20spray%20granulation" title=" top spray granulation"> top spray granulation</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=blending%20time" title=" blending time"> blending time</a> </p> <a href="https://publications.waset.org/abstracts/37716/formulation-development-process-optimization-and-comparative-study-of-poorly-compressible-drugs-ibuprofen-acetaminophen-using-direct-compression-and-top-spray-granulation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4154</span> Comprehensive Study of X-Ray Emission by APF Plasma Focus Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Habibi">M. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The time-resolved studies of soft and hard X-ray were carried out over a wide range of argon pressures by employing an array of eight filtered photo PIN diodes and a scintillation detector, simultaneously. In 50% of the discharges, the soft X-ray is seen to be emitted in short multiple pulses corresponding to different compression, whereas it is a single pulse for hard X-rays corresponding to only the first strong compression. It should be stated that multiple compressions dominantly occur at low pressures and high pressures are mostly in the single compression regime. In 43% of the discharges, at all pressures except for optimum pressure, the first period is characterized by two or more sharp peaks.The X鈥搑ay signal intensity during the second and subsequent compressions is much smaller than the first compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20focus%20device" title="plasma focus device">plasma focus device</a>, <a href="https://publications.waset.org/abstracts/search?q=SXR" title=" SXR"> SXR</a>, <a href="https://publications.waset.org/abstracts/search?q=HXR" title=" HXR"> HXR</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-diode" title=" Pin-diode"> Pin-diode</a>, <a href="https://publications.waset.org/abstracts/search?q=argon%20plasma" title=" argon plasma"> argon plasma</a> </p> <a href="https://publications.waset.org/abstracts/26796/comprehensive-study-of-x-ray-emission-by-apf-plasma-focus-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4153</span> Energy Saving Potential of a Desiccant-Based Indirect-Direct Evaporative Cooling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Heidari">Amirreza Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Avami"> Akram Avami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Heidari"> Ehsan Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaporative cooling systems are known as energy efficient cooling systems, with much lower electricity consumption than conventional vapor compression systems. A serious limitation of these systems, however, is that they are not applicable in humid regions. Combining a desiccant wheel with these systems, known as desiccant-based evaporative cooling systems, makes it possible to use evaporative cooling in humid climates. This paper evaluates the performane of a cooling system combining desiccant wheel, direct and indirect evaporative coolers (called desiccant-based indirect-direct evaporative cooling (DIDE) system) and then evaluates the energy saving potential of this system over the conventional vapor compression cooling and drying system. To illustrate the system ability of providing comfort conditions, a dynamic hourly simulation of this system is performed for a typical 60 m虏 building in Sydney, Australia. To evaluate the energy saving potential of this system, a conventional cooling and drying system is also simulated for the same cooling capacity. It has been found that the DIE system is able to provide comfort temperature and relative humidity in a subtropical humid climate like Sydney. The electricity and natural gas consumption of this system are respectively 39.2% and 2.6% lower than that of conventional system over a week. As the research has demonstrated, the innovative DIDE system is an energy efficient cooling system for subtropical humid regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desiccant" title="desiccant">desiccant</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title=" evaporative cooling"> evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20evaporative%20cooler" title=" indirect evaporative cooler"> indirect evaporative cooler</a> </p> <a href="https://publications.waset.org/abstracts/102350/energy-saving-potential-of-a-desiccant-based-indirect-direct-evaporative-cooling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4152</span> Response of Concrete Panels Subjected to Compression-Tension State of Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20F.%20Almograbi">Mohammed F. Almograbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For reinforced concrete panels the risk of failure due to compression -tension state of stresses, results from pure shear or torsion, can be a major problem. The present calculation methods for such stresses from multiple influences are without taking into account the softening of cracked concrete remains conservative. The non-linear finite element method has become an important and increasingly used tool for the analysis and assessment of the structures by including cracking softening and tension-stiffening. The aim of this paper is to test a computer program refined recently and to simulate the compression response of cracked concrete element and to compare with the available experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20panels" title="reinforced concrete panels">reinforced concrete panels</a>, <a href="https://publications.waset.org/abstracts/search?q=compression-tension" title=" compression-tension"> compression-tension</a>, <a href="https://publications.waset.org/abstracts/search?q=shear" title=" shear"> shear</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion" title=" torsion"> torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20softening" title=" compression softening"> compression softening</a>, <a href="https://publications.waset.org/abstracts/search?q=tension%20stiffening" title=" tension stiffening"> tension stiffening</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20finite%20element%20analysis" title=" non-linear finite element analysis"> non-linear finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/5311/response-of-concrete-panels-subjected-to-compression-tension-state-of-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=139">139</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=140">140</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=direct%20compression&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10