CINXE.COM
Search results for: image compression
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: image compression</title> <meta name="description" content="Search results for: image compression"> <meta name="keywords" content="image compression"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="image compression" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="image compression"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3604</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: image compression</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3604</span> Medical Image Compression Based on Region of Interest: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudeepti%20Dayal">Sudeepti Dayal</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelesh%20Gupta"> Neelesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In terms of transmission, bigger the size of any image, longer the time the channel takes for transmission. It is understood that the bandwidth of the channel is fixed. Therefore, if the size of an image is reduced, a larger number of data or images can be transmitted over the channel. Compression is the technique used to reduce the size of an image. In terms of storage, compression reduces the file size which it occupies on the disk. Any image is based on two parameters, region of interest and non-region of interest. There are several algorithms of compression that compress the data more economically. In this paper we have reviewed region of interest and non-region of interest based compression techniques and the algorithms which compress the image most efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20ratio" title="compression ratio">compression ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20of%20interest" title=" region of interest"> region of interest</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT" title=" DCT"> DCT</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a> </p> <a href="https://publications.waset.org/abstracts/43380/medical-image-compression-based-on-region-of-interest-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3603</span> A High Compression Ratio for a Losseless Image Compression Based on the Arithmetic Coding with the Sorted Run Length Coding: Meteosat Second Generation Image Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Mehdi">Cherifi Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahdir%20Mourad"> Lahdir Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Soltane"> Ameur Soltane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image compression is the heart of several multimedia techniques. It is used to reduce the number of bits required to represent an image. Meteosat Second Generation (MSG) satellite allows the acquisition of 12 image files every 15 minutes and that results in a large databases sizes. In this paper, a novel image compression method based on the arithmetic coding with the sorted Run Length Coding (SRLC) for MSG images is proposed. The SRLC allows us to find the occurrence of the consecutive pixels of the original image to create a sorted run. The arithmetic coding allows the encoding of the sorted data of the previous stage to retrieve a unique code word that represents a binary code stream in the sorted order to boost the compression ratio. Through this article, we show that our method can perform the best results concerning compression ratio and bit rate unlike the method based on the Run Length Coding (RLC) and the arithmetic coding. Evaluation criteria like the compression ratio and the bit rate allow the confirmation of the efficiency of our method of image compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=arithmetic%20coding" title=" arithmetic coding"> arithmetic coding</a>, <a href="https://publications.waset.org/abstracts/search?q=Run%20Length%20Coding" title=" Run Length Coding"> Run Length Coding</a>, <a href="https://publications.waset.org/abstracts/search?q=RLC" title=" RLC"> RLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorted%20Run%20Length%20Coding" title=" Sorted Run Length Coding"> Sorted Run Length Coding</a>, <a href="https://publications.waset.org/abstracts/search?q=SRLC" title=" SRLC"> SRLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Meteosat%20Second%20Generation" title=" Meteosat Second Generation"> Meteosat Second Generation</a>, <a href="https://publications.waset.org/abstracts/search?q=MSG" title=" MSG"> MSG</a> </p> <a href="https://publications.waset.org/abstracts/16704/a-high-compression-ratio-for-a-losseless-image-compression-based-on-the-arithmetic-coding-with-the-sorted-run-length-coding-meteosat-second-generation-image-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3602</span> GPU Accelerated Fractal Image Compression for Medical Imaging in Parallel Computing Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Enamul%20Haque">Md. Enamul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al%20Kaisan"> Abdullah Al Kaisan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmudur%20R.%20Saniat"> Mahmudur R. Saniat</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminur%20Rahman"> Aminur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have implemented both sequential and parallel version of fractal image compression algorithms using CUDA (Compute Unified Device Architecture) programming model for parallelizing the program in Graphics Processing Unit for medical images, as they are highly similar within the image itself. There is several improvements in the implementation of the algorithm as well. Fractal image compression is based on the self similarity of an image, meaning an image having similarity in majority of the regions. We take this opportunity to implement the compression algorithm and monitor the effect of it using both parallel and sequential implementation. Fractal compression has the property of high compression rate and the dimensionless scheme. Compression scheme for fractal image is of two kinds, one is encoding and another is decoding. Encoding is very much computational expensive. On the other hand decoding is less computational. The application of fractal compression to medical images would allow obtaining much higher compression ratios. While the fractal magnification an inseparable feature of the fractal compression would be very useful in presenting the reconstructed image in a highly readable form. However, like all irreversible methods, the fractal compression is connected with the problem of information loss, which is especially troublesome in the medical imaging. A very time consuming encoding process, which can last even several hours, is another bothersome drawback of the fractal compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20GPU" title="accelerated GPU">accelerated GPU</a>, <a href="https://publications.waset.org/abstracts/search?q=CUDA" title=" CUDA"> CUDA</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20image%20compression" title=" fractal image compression"> fractal image compression</a> </p> <a href="https://publications.waset.org/abstracts/5645/gpu-accelerated-fractal-image-compression-for-medical-imaging-in-parallel-computing-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3601</span> Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Mehdi">Cherifi Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahdir%20Mourad"> Lahdir Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Soltane"> Ameur Soltane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20transform" title=" radon transform"> radon transform</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20predictive%20coding%20%28LPC%29" title=" linear predictive coding (LPC)"> linear predictive coding (LPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=run%20lengthcoding%20%28RLC%29" title=" run lengthcoding (RLC)"> run lengthcoding (RLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=meteosat%20second%20generation%20%28MSG%29" title=" meteosat second generation (MSG)"> meteosat second generation (MSG)</a> </p> <a href="https://publications.waset.org/abstracts/16434/meteosat-second-generation-image-compression-based-on-the-radon-transform-and-linear-predictive-coding-comparison-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3600</span> Image Compression Using Block Power Method for SVD Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Asnaoui%20Khalid">El Asnaoui Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chawki%20Youness"> Chawki Youness</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksasse%20Brahim"> Aksasse Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouanan%20Mohammed"> Ouanan Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=SVD" title=" SVD"> SVD</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20SVD%20power%20method" title=" block SVD power method"> block SVD power method</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20compression" title=" lossless compression"> lossless compression</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20lossless" title=" near lossless"> near lossless</a> </p> <a href="https://publications.waset.org/abstracts/34041/image-compression-using-block-power-method-for-svd-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3599</span> Image Compression on Region of Interest Based on SPIHT Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudeepti%20Dayal">Sudeepti Dayal</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelesh%20Gupta"> Neelesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Compression%20ratio" title="Compression ratio">Compression ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a>, <a href="https://publications.waset.org/abstracts/search?q=SPIHT" title=" SPIHT"> SPIHT</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT" title=" DCT"> DCT</a> </p> <a href="https://publications.waset.org/abstracts/43377/image-compression-on-region-of-interest-based-on-spiht-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3598</span> A Survey on Lossless Compression of Bayer Color Filter Array Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alina%20Trifan">Alina Trifan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B3nio%20J.%20R.%20Neves"> Ant贸nio J. R. Neves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayer%20image" title="bayer image">bayer image</a>, <a href="https://publications.waset.org/abstracts/search?q=CFA" title=" CFA"> CFA</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20compression" title=" lossless compression"> lossless compression</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20coding%20standards" title=" image coding standards"> image coding standards</a> </p> <a href="https://publications.waset.org/abstracts/39918/a-survey-on-lossless-compression-of-bayer-color-filter-array-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3597</span> Image Compression Based on Regression SVM and Biorthogonal Wavelets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zikiou%20Nadia">Zikiou Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahdir%20Mourad"> Lahdir Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Soltane"> Ameur Soltane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20discrete%20wavelet%20transform%20%28DWT-2D%29" title=" 2D discrete wavelet transform (DWT-2D)"> 2D discrete wavelet transform (DWT-2D)</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20regression%20%28SVR%29" title=" support vector regression (SVR)"> support vector regression (SVR)</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM%20Kernels" title=" SVM Kernels"> SVM Kernels</a>, <a href="https://publications.waset.org/abstracts/search?q=run-length" title=" run-length"> run-length</a>, <a href="https://publications.waset.org/abstracts/search?q=arithmetic%20coding" title=" arithmetic coding"> arithmetic coding</a> </p> <a href="https://publications.waset.org/abstracts/17954/image-compression-based-on-regression-svm-and-biorthogonal-wavelets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3596</span> QCARNet: Networks for Quality-Adaptive Compression Artifact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung%20Ho%20Park">Seung Ho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Su%20Moon"> Young Su Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Ik%20Cho"> Nam Ik Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20artifact%20reduction" title="compression artifact reduction">compression artifact reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=deblocking" title=" deblocking"> deblocking</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20denoising" title=" image denoising"> image denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20restoration" title=" image restoration"> image restoration</a> </p> <a href="https://publications.waset.org/abstracts/108816/qcarnet-networks-for-quality-adaptive-compression-artifact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3595</span> An Online 3D Modeling Method Based on a Lossless Compression Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiankang%20Wang">Jiankang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyang%20Yu"> Hongyang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title="3D reconstruction">3D reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=bundlefusion" title=" bundlefusion"> bundlefusion</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20compression" title=" lossless compression"> lossless compression</a>, <a href="https://publications.waset.org/abstracts/search?q=depth%20image" title=" depth image"> depth image</a> </p> <a href="https://publications.waset.org/abstracts/163266/an-online-3d-modeling-method-based-on-a-lossless-compression-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3594</span> Normalized Compression Distance Based Scene Alteration Analysis of a Video</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshay%20Kharbanda">Lakshay Kharbanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Aabhas%20Chauhan"> Aabhas Chauhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an application of Normalized Compression Distance (NCD) to detect notable scene alterations occurring in videos is presented. Several research groups have been developing methods to perform image classification using NCD, a computable approximation to Normalized Information Distance (NID) by studying the degree of similarity in images. The timeframes where significant aberrations between the frames of a video have occurred have been identified by obtaining a threshold NCD value, using two compressors: LZMA and BZIP2 and defining scene alterations using Pixel Difference Percentage metrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolmogorov%20complexity" title=" Kolmogorov complexity"> Kolmogorov complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20compression%20distance" title=" normalized compression distance"> normalized compression distance</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20mean%20square%20error" title=" root mean square error"> root mean square error</a> </p> <a href="https://publications.waset.org/abstracts/54601/normalized-compression-distance-based-scene-alteration-analysis-of-a-video" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3593</span> Objective Evaluation on Medical Image Compression Using Wavelet Transformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amhimmid%20Mohammed%20Saffour">Amhimmid Mohammed Saffour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Mohamed%20Abdullah"> Mustafa Mohamed Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of computers for handling image data in the healthcare is growing. However, the amount of data produced by modern image generating techniques is vast. This data might be a problem from a storage point of view or when the data is sent over a network. This paper using wavelet transform technique for medical images compression. MATLAB program, are designed to evaluate medical images storage and transmission time problem at Sebha Medical Center Libya. In this paper, three different Computed Tomography images which are abdomen, brain and chest have been selected and compressed using wavelet transform. Objective evaluation has been performed to measure the quality of the compressed images. For this evaluation, the results show that the Peak Signal to Noise Ratio (PSNR) which indicates the quality of the compressed image is ranging from (25.89db to 34.35db for abdomen images, 23.26db to 33.3db for brain images and 25.5db to 36.11db for chest images. These values shows that the compression ratio is nearly to 30:1 is acceptable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20image" title="medical image">medical image</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title=" image compression"> image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%27s" title=" wavelet's"> wavelet's</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20evaluation" title=" objective evaluation"> objective evaluation</a> </p> <a href="https://publications.waset.org/abstracts/45414/objective-evaluation-on-medical-image-compression-using-wavelet-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3592</span> Speeding-up Gray-Scale FIC by Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Al-Hilo">Eman A. Al-Hilo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawraa%20H.%20Al-Waelly"> Hawraa H. Al-Waelly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20gray%20level%20image" title="fractal gray level image">fractal gray level image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20compression%20technique" title=" fractal compression technique"> fractal compression technique</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20function%20system" title=" iterated function system"> iterated function system</a>, <a href="https://publications.waset.org/abstracts/search?q=moments%20feature" title=" moments feature"> moments feature</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-mean%20range-domain%20block" title=" zero-mean range-domain block"> zero-mean range-domain block</a> </p> <a href="https://publications.waset.org/abstracts/19903/speeding-up-gray-scale-fic-by-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3591</span> Embedded Digital Image System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Li">Dawei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Liu"> Cheng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiteng%20Liu"> Yiteng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces an embedded digital image system for Chinese space environment vertical exploration sounding rocket. In order to record the flight status of the sounding rocket as well as the payloads, an onboard embedded image processing system based on ADV212, a JPEG2000 compression chip, is designed in this paper. Since the sounding rocket is not designed to be recovered, all image data should be transmitted to the ground station before the re-entry while the downlink band used for the image transmission is only about 600 kbps. Under the same condition of compression ratio compared with other algorithm, JPEG2000 standard algorithm can achieve better image quality. So JPEG2000 image compression is applied under this condition with a limited downlink data band. This embedded image system supports lossless to 200:1 real time compression, with two cameras to monitor nose ejection and motor separation, and two cameras to monitor boom deployment. The encoder, ADV7182, receives PAL signal from the camera, then output the ITU-R BT.656 signal to ADV212. ADV7182 switches between four input video channels as the program sequence. Two SRAMs are used for Ping-pong operation and one 512 Mb SDRAM for buffering high frame-rate images. The whole image system has the characteristics of low power dissipation, low cost, small size and high reliability, which is rather suitable for this sounding rocket application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADV212" title="ADV212">ADV212</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20system" title=" image system"> image system</a>, <a href="https://publications.waset.org/abstracts/search?q=JPEG2000" title=" JPEG2000"> JPEG2000</a>, <a href="https://publications.waset.org/abstracts/search?q=sounding%20rocket" title=" sounding rocket"> sounding rocket</a> </p> <a href="https://publications.waset.org/abstracts/37615/embedded-digital-image-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3590</span> Bitplanes Gray-Level Image Encryption Approach Using Arnold Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abdrhman%20M.%20Ukasha">Ali Abdrhman M. Ukasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSPCE%20method" title="SSPCE method">SSPCE method</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20compression-salt-%20peppers%20attacks" title=" image compression-salt- peppers attacks"> image compression-salt- peppers attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=bitplanes%20decomposition" title=" bitplanes decomposition"> bitplanes decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnold%20transform" title=" Arnold transform"> Arnold transform</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20image%20encryption" title=" lossless image encryption"> lossless image encryption</a> </p> <a href="https://publications.waset.org/abstracts/14573/bitplanes-gray-level-image-encryption-approach-using-arnold-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3589</span> New Efficient Method for Coding Color Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walaa%20M.Abd-Elhafiez">Walaa M.Abd-Elhafiez</a>, <a href="https://publications.waset.org/abstracts/search?q=Wajeb%20Gharibi"> Wajeb Gharibi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a novel color image compression technique for efficient storage and delivery of data is proposed. The proposed compression technique started by RGB to YCbCr color transformation process. Secondly, the canny edge detection method is used to classify the blocks into edge and non-edge blocks. Each color component Y, Cb, and Cr compressed by discrete cosine transform (DCT) process, quantizing and coding step by step using adaptive arithmetic coding. Our technique is concerned with the compression ratio, bits per pixel and peak signal to noise ratio, and produce better results than JPEG and more recent published schemes (like, CBDCT-CABS and MHC). The provided experimental results illustrate the proposed technique which is efficient and feasible in terms of compression ratio, bits per pixel and peak signal to noise ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a>, <a href="https://publications.waset.org/abstracts/search?q=q-coder" title=" q-coder"> q-coder</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-detection" title=" edge-detection"> edge-detection</a> </p> <a href="https://publications.waset.org/abstracts/2342/new-efficient-method-for-coding-color-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3588</span> Bitplanes Image Encryption/Decryption Using Edge Map (SSPCE Method) and Arnold Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Ukasha">Ali A. Ukasha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSPCE%20method" title="SSPCE method">SSPCE method</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title=" image compression"> image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20and%0D%0Apeppers%20attacks" title=" salt and peppers attacks"> salt and peppers attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=bitplanes%20decomposition" title=" bitplanes decomposition"> bitplanes decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnold%20transform" title=" Arnold transform"> Arnold transform</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20image%20encryption" title=" lossless image encryption"> lossless image encryption</a> </p> <a href="https://publications.waset.org/abstracts/14570/bitplanes-image-encryptiondecryption-using-edge-map-sspce-method-and-arnold-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3587</span> Image Steganography Using Least Significant Bit Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Kumari">Preeti Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridhi%20Kapoor"> Ridhi Kapoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In any communication, security is the most important issue in today’s world. In this paper, steganography is the process of hiding the important data into other data, such as text, audio, video, and image. The interest in this topic is to provide availability, confidentiality, integrity, and authenticity of data. The steganographic technique that embeds hides content with unremarkable cover media so as not to provoke eavesdropper’s suspicion or third party and hackers. In which many applications of compression, encryption, decryption, and embedding methods are used for digital image steganography. Due to compression, the nose produces in the image. To sustain noise in the image, the LSB insertion technique is used. The performance of the proposed embedding system with respect to providing security to secret message and robustness is discussed. We also demonstrate the maximum steganography capacity and visual distortion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steganography" title="steganography">steganography</a>, <a href="https://publications.waset.org/abstracts/search?q=LSB" title=" LSB"> LSB</a>, <a href="https://publications.waset.org/abstracts/search?q=encoding" title=" encoding"> encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20hiding" title=" information hiding"> information hiding</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a> </p> <a href="https://publications.waset.org/abstracts/35755/image-steganography-using-least-significant-bit-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3586</span> Video Compression Using Contourlet Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Delara%20Kazempour">Delara Kazempour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashallah%20Abasi%20Dezfuli"> Mashallah Abasi Dezfuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Javidan"> Reza Javidan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video compression used for channels with limited bandwidth and storage devices has limited storage capabilities. One of the most popular approaches in video compression is the usage of different transforms. Discrete cosine transform is one of the video compression methods that have some problems such as blocking, noising and high distortion inappropriate effect in compression ratio. wavelet transform is another approach is better than cosine transforms in balancing of compression and quality but the recognizing of curve curvature is so limit. Because of the importance of the compression and problems of the cosine and wavelet transforms, the contourlet transform is most popular in video compression. In the new proposed method, we used contourlet transform in video image compression. Contourlet transform can save details of the image better than the previous transforms because this transform is multi-scale and oriented. This transform can recognize discontinuity such as edges. In this approach we lost data less than previous approaches. Contourlet transform finds discrete space structure. This transform is useful for represented of two dimension smooth images. This transform, produces compressed images with high compression ratio along with texture and edge preservation. Finally, the results show that the majority of the images, the parameters of the mean square error and maximum signal-to-noise ratio of the new method based contourlet transform compared to wavelet transform are improved but in most of the images, the parameters of the mean square error and maximum signal-to-noise ratio in the cosine transform is better than the method based on contourlet transform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20compression" title="video compression">video compression</a>, <a href="https://publications.waset.org/abstracts/search?q=contourlet%20transform" title=" contourlet transform"> contourlet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20cosine%20transform" title=" discrete cosine transform"> discrete cosine transform</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/6930/video-compression-using-contourlet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3585</span> Medical Image Compression by Region of Interest Based on DT-CWT Using Run-length Coding and Huffman Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Seddiki">Ali Seddiki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Djebbouri"> Mohamed Djebbouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Driss%20Guerchi"> Driss Guerchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. In some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to quality purpose compression in the region of interest of scintigraphic images based on dual tree complex wavelet transform (DT-CWT) using Run-Length coding (RLE) and Huffman coding (HC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DT-CWT" title="DT-CWT">DT-CWT</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20of%20interest" title=" region of interest"> region of interest</a>, <a href="https://publications.waset.org/abstracts/search?q=run%20length%20coding" title=" run length coding"> run length coding</a>, <a href="https://publications.waset.org/abstracts/search?q=Scintigraphic%20images" title=" Scintigraphic images"> Scintigraphic images</a> </p> <a href="https://publications.waset.org/abstracts/40076/medical-image-compression-by-region-of-interest-based-on-dt-cwt-using-run-length-coding-and-huffman-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3584</span> Scintigraphic Image Coding of Region of Interest Based on SPIHT Algorithm Using Global Thresholding and Huffman Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Seddiki">A. Seddiki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djebbouri"> M. Djebbouri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Guerchi"> D. Guerchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20thresholding%20transform" title="global thresholding transform">global thresholding transform</a>, <a href="https://publications.waset.org/abstracts/search?q=huffman%20coding" title=" huffman coding"> huffman coding</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20of%20interest" title=" region of interest"> region of interest</a>, <a href="https://publications.waset.org/abstracts/search?q=SPIHT%20coding" title=" SPIHT coding"> SPIHT coding</a>, <a href="https://publications.waset.org/abstracts/search?q=scintigraphic%20images" title=" scintigraphic images"> scintigraphic images</a> </p> <a href="https://publications.waset.org/abstracts/17067/scintigraphic-image-coding-of-region-of-interest-based-on-spiht-algorithm-using-global-thresholding-and-huffman-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3583</span> Perceptual Image Coding by Exploiting Internal Generative Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuo-Cheng%20Liu">Kuo-Cheng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20generative%20mechanism" title="internal generative mechanism">internal generative mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-based%20spatial%20masking" title=" structure-based spatial masking"> structure-based spatial masking</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility%20threshold" title=" visibility threshold"> visibility threshold</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20domain" title=" wavelet domain"> wavelet domain</a> </p> <a href="https://publications.waset.org/abstracts/75216/perceptual-image-coding-by-exploiting-internal-generative-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3582</span> Color Image Compression/Encryption/Contour Extraction using 3L-DWT and SSPCE Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Ukasha">Ali A. Ukasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Majdi%20F.%20Elbireki"> Majdi F. Elbireki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20F.%20Abdullah"> Mohammad F. Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data security needed in data transmission, storage, and communication to ensure the security. This paper is divided into two parts. This work interests with the color image which is decomposed into red, green and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using the key image that has same original size and are generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours from color images recovery can be obtained with accepted level of distortion using single step parallel contour extraction (SSPCE) method. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Color images and completely reconstructed without any distortion. Also shown that the analyzed algorithm has extremely large security against some attacks like salt and pepper and Jpeg compression. Its proof that the color images can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSPCE%20method" title="SSPCE method">SSPCE method</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20compression%20and%20salt%20and%20peppers%20attacks" title=" image compression and salt and peppers attacks"> image compression and salt and peppers attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=bitplanes%20decomposition" title=" bitplanes decomposition"> bitplanes decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnold%20transform" title=" Arnold transform"> Arnold transform</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20image%20encryption" title=" lossless image encryption"> lossless image encryption</a> </p> <a href="https://publications.waset.org/abstracts/18519/color-image-compressionencryptioncontour-extraction-using-3l-dwt-and-sspce-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3581</span> Size Reduction of Images Using Constraint Optimization Approach for Machine Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chee%20Sun%20Won">Chee Sun Won</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20compression" title="image compression">image compression</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20matching" title=" image matching"> image matching</a>, <a href="https://publications.waset.org/abstracts/search?q=key-point%20detection%20and%20description" title=" key-point detection and description"> key-point detection and description</a>, <a href="https://publications.waset.org/abstracts/search?q=machine-to-machine%20communication" title=" machine-to-machine communication"> machine-to-machine communication</a> </p> <a href="https://publications.waset.org/abstracts/67605/size-reduction-of-images-using-constraint-optimization-approach-for-machine-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3580</span> PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Jayashree">P. Jayashree</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rajkumar"> S. Rajkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20ratio" title="compression ratio">compression ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=generic%20compression" title=" generic compression"> generic compression</a>, <a href="https://publications.waset.org/abstracts/search?q=irrational%20number%20storage" title=" irrational number storage"> irrational number storage</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20encoding" title=" probabilistic encoding"> probabilistic encoding</a> </p> <a href="https://publications.waset.org/abstracts/60542/peins-a-generic-compression-scheme-using-probabilistic-encoding-and-irrational-number-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3579</span> Optimal Image Representation for Linear Canonical Transform Multiplexing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navdeep%20Goel">Navdeep Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Gabarda"> Salvador Gabarda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chirp%20signals" title="chirp signals">chirp signals</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20multiplexing" title=" image multiplexing"> image multiplexing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20transformation" title=" image transformation"> image transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20canonical%20transform" title=" linear canonical transform"> linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20approximation" title=" polynomial approximation"> polynomial approximation</a> </p> <a href="https://publications.waset.org/abstracts/35260/optimal-image-representation-for-linear-canonical-transform-multiplexing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3578</span> DWT-SATS Based Detection of Image Region Cloning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Zimba">Michael Zimba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=affine%20transformation" title="affine transformation">affine transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title=" discrete wavelet transform"> discrete wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=radix%20sort" title=" radix sort"> radix sort</a>, <a href="https://publications.waset.org/abstracts/search?q=SATS" title=" SATS"> SATS</a> </p> <a href="https://publications.waset.org/abstracts/4432/dwt-sats-based-detection-of-image-region-cloning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3577</span> Image Enhancement of Histological Slides by Using Nonlinear Transfer Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Suman">D. Suman</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nikitha"> B. Nikitha</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sarvani"> J. Sarvani</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Archana"> V. Archana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HSV%20space" title="HSV space">HSV space</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement" title=" enhancement"> enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a> </p> <a href="https://publications.waset.org/abstracts/12167/image-enhancement-of-histological-slides-by-using-nonlinear-transfer-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3576</span> New Features for Copy-Move Image Forgery Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Zimba">Michael Zimba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20electrostatic%20field" title="virtual electrostatic field">virtual electrostatic field</a>, <a href="https://publications.waset.org/abstracts/search?q=features" title=" features"> features</a>, <a href="https://publications.waset.org/abstracts/search?q=affine%20transformation" title=" affine transformation"> affine transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=copy-move%20image%20forgery" title=" copy-move image forgery"> copy-move image forgery</a> </p> <a href="https://publications.waset.org/abstracts/29604/new-features-for-copy-move-image-forgery-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3575</span> Comparison of Compression Properties of Stretchable Knitted Fabrics and Bi-Stretch Woven Fabrics for Compression Garments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Maqsood">Muhammad Maqsood</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Nawab"> Yasir Nawab</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Talha%20Ali%20Hamdani"> Syed Talha Ali Hamdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stretchable fabrics have diverse applications ranging from casual apparel to performance sportswear and compression therapy. Compression therapy is the universally accepted treatment for the management of hypertrophic scarring after severe burns. Mostly stretchable knitted fabrics are used in compression therapy but in the recent past, some studies have also been found on bi-stretch woven fabrics being used as compression garments as they also have been found quite effective in the treatment of oedema. Therefore, the objective of the present study is to compare the compression properties of stretchable knitted and bi-stretch woven fabrics for compression garments. For this purpose four woven structures and four knitted structures were produced having the same areal density and their compression, comfort and mechanical properties were compared before and after 5, 10 and 15 washes. Four knitted structures used were single jersey, single locaste, plain pique and the honeycomb, whereas four woven structures produced were 1/1 plain, 2/1 twill, 3/1 twill and 4/1 twill. The compression properties of the produced samples were tested by using kikuhime pressure sensor and it was found that bi-stretch woven fabrics possessed better compression properties before and after washes and retain their durability after repeated use, whereas knitted stretchable fabrics lost their compression ability after repeated use and the required sub garment pressure of the knitted structures after 15 washes was almost half to that of woven bi-stretch fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20garments" title="compression garments">compression garments</a>, <a href="https://publications.waset.org/abstracts/search?q=knitted%20structures" title=" knitted structures"> knitted structures</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20textiles" title=" medical textiles"> medical textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=woven%20bi-stretch" title=" woven bi-stretch"> woven bi-stretch</a> </p> <a href="https://publications.waset.org/abstracts/39769/comparison-of-compression-properties-of-stretchable-knitted-fabrics-and-bi-stretch-woven-fabrics-for-compression-garments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=121">121</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20compression&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>