CINXE.COM
Search results for: MEA (more electric aircraft)
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: MEA (more electric aircraft)</title> <meta name="description" content="Search results for: MEA (more electric aircraft)"> <meta name="keywords" content="MEA (more electric aircraft)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="MEA (more electric aircraft)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="MEA (more electric aircraft)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1828</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: MEA (more electric aircraft)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1828</span> Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucjan%20Setlak">Lucjan Setlak</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Ruda"> Emil Ruda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out based on a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=converters" title="converters">converters</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20machines" title=" electric machines"> electric machines</a>, <a href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29" title=" MEA (more electric aircraft)"> MEA (more electric aircraft)</a>, <a href="https://publications.waset.org/abstracts/search?q=PES%20%28power%20electronics%20systems%29" title=" PES (power electronics systems)"> PES (power electronics systems)</a> </p> <a href="https://publications.waset.org/abstracts/31446/review-analysis-and-simulation-of-advanced-technology-solutions-of-selected-components-in-power-electronics-systems-pes-of-more-electric-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1827</span> Electric Propulsion Systems in Aerospace Applications - Energy Balance Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Tulwin">T. Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C4%99ca"> M. Gęca</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sochaczewski"> R. Sochaczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent improvements in electric propulsion systems and energy storage systems allow for the electrification of many sectors where it was previously not feasible. This analysis proves the feasibility of electric propulsion in aviation applications reviewing recent energy storage developments. It can be more quiet, energy efficient and more environmentally friendly. Numerical simulations were done to prove that energy efficiency can be improved for rotorcrafts especially in hover conditions. New types of aircraft configurations are reviewed and future trends are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion" title=" propulsion "> propulsion </a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/106678/electric-propulsion-systems-in-aerospace-applications-energy-balance-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1826</span> A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Safi">Muhammad Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Manan"> Abdul Manan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircraft have been a hot topic in the modern aircraft world. Electric aircraft have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AI" title="AI">AI</a>, <a href="https://publications.waset.org/abstracts/search?q=avionics%20systems" title=" avionics systems"> avionics systems</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20aircrafts" title=" electric aircrafts"> electric aircrafts</a>, <a href="https://publications.waset.org/abstracts/search?q=infra-red" title=" infra-red"> infra-red</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20avionics" title=" integrated avionics"> integrated avionics</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20avionics" title=" modular avionics"> modular avionics</a>, <a href="https://publications.waset.org/abstracts/search?q=phased%20array" title=" phased array"> phased array</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20antenna" title=" reconfigurable antenna"> reconfigurable antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=UAVs" title=" UAVs"> UAVs</a> </p> <a href="https://publications.waset.org/abstracts/168417/a-review-of-emerging-technologies-in-antennas-and-phased-arrays-for-avionics-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1825</span> Flight School Perceptions of Electric Planes for Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chelsea-Anne%20Edwards">Chelsea-Anne Edwards</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Parker"> Paul Parker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flight school members are facing a major disruption in the technologies available for them to fly as electric planes enter the aviation industry. The year 2020 marked a new era in aviation with the first type certification of an electric plane. The Pipistrel Velis Electro is a two-seat electric aircraft (e-plane) designed for flight training. Electric flight training has the potential to deeply reduce emissions, noise, and cost of pilot training. Though these are all attractive features, understanding must be developed on the perceptions of the essential actor of the technology, the pilot. This study asks student pilots, flight instructors, flight center managers, and other members of flight schools about their perceptions of e-planes. The questions were divided into three categories: safety and trust of the technology, expected costs in comparison to conventional planes, and interest in the technology, including their desire to fly electric planes. Participants were recruited from flight schools using a protocol approved by the Office of Research Ethics. None of these flight schools have an e-plane in their fleet so these views are based on perceptions rather than direct experience. The results revealed perceptions that were strongly positive with many qualitative comments indicating great excitement about the potential of the new electric aviation technology. Some concerns were raised regarding battery endurance limits. Overall, the flight school community is clearly in favor of introducing electric propulsion technology and reducing the environmental impacts of their industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20planes" title="electric planes">electric planes</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20training" title=" flight training"> flight training</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20aircraft" title=" green aircraft"> green aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20pilots" title=" student pilots"> student pilots</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20aviation" title=" sustainable aviation"> sustainable aviation</a> </p> <a href="https://publications.waset.org/abstracts/136258/flight-school-perceptions-of-electric-planes-for-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1824</span> [Keynote Speech]: Conceptual Design of a Short Take-Off and Landing (STOL) Light Sport Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zamri%20Omar">Zamri Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alifi%20Zainal%20Abidin"> Alifi Zainal Abidin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although flying machines have made their tremendous technological advancement since the first successfully flight of the heavier-than-air aircraft, its benefits to the greater community are still belittled. One of the reasons for this drawback is due to the relatively high cost needed to fly on the typical light aircraft. A smaller and lighter plane, widely known as Light Sport Aircraft (LSA) has the potential to attract more people to actively participate in numerous flying activities, such as for recreational, business trips or other personal purposes. In this paper, we propose a new LSA design with some simple, yet important analysis required in the aircraft conceptual design stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20sport%20aircraft" title="light sport aircraft">light sport aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20design" title=" conceptual design"> conceptual design</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20layout" title=" aircraft layout"> aircraft layout</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a> </p> <a href="https://publications.waset.org/abstracts/63570/keynote-speech-conceptual-design-of-a-short-take-off-and-landing-stol-light-sport-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1823</span> Technical Specifications of Bombardier Challenger 605 SN 5769 Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohan%20Sarker">Rohan Sarker</a>, <a href="https://publications.waset.org/abstracts/search?q=Jon%20P.%20Conlon"> Jon P. Conlon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bombardier Challenger 605 SN 5769 is a versatile business jet known for its superior range, advanced avionics, and spacious cabin. Powered by two General Electric CF34-3B engines, each producing 8,729 pounds of thrust, the aircraft offers a maximum range of 4,000 nautical miles, allowing for non-stop transcontinental flights. It operates at a maximum cruising speed of Mach 0.82 (541 mph) and a service ceiling of 41,000 feet, ensuring efficient, high-altitude travel. The aircraft’s avionics suite is equipped with the Rockwell Collins Pro Line 21, offering advanced navigation, communication, and weather systems. The cockpit features dual Flight Management Systems (FMS) and GPS to enhance operational safety and precision. Inside, the Challenger 605 boasts a luxurious and customizable cabin that accommodates up to 12 passengers. The aircraft also provides ample baggage space, excellent short-field performance, and impressive fuel efficiency, making it ideal for business or personal long-range travel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=airframe" title=" airframe"> airframe</a>, <a href="https://publications.waset.org/abstracts/search?q=Bombardier" title=" Bombardier"> Bombardier</a>, <a href="https://publications.waset.org/abstracts/search?q=engines" title=" engines"> engines</a> </p> <a href="https://publications.waset.org/abstracts/191255/technical-specifications-of-bombardier-challenger-605-sn-5769-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1822</span> Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Kaygan">Erdogan Kaygan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvin%20Gatto"> Alvin Gatto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation of adaptable winglets for enhancing morphing aircraft performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centered on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance the aerodynamic efficiency of a morphing aircraft. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist and cant angle considered. The results from this work indicate that if adaptable winglets were employed on aircraft’s improvements in aircraft performance could be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=twist" title=" twist"> twist</a>, <a href="https://publications.waset.org/abstracts/search?q=winglet" title=" winglet"> winglet</a> </p> <a href="https://publications.waset.org/abstracts/32680/computational-analysis-of-adaptable-winglets-for-improved-morphing-aircraft-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1821</span> Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shinkafi">Ahmed Shinkafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20Lawson"> Craig Lawson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=de-icing%20system" title=" de-icing system"> de-icing system</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-thermal" title=" electro-thermal"> electro-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=in-flight%20icing" title=" in-flight icing"> in-flight icing</a> </p> <a href="https://publications.waset.org/abstracts/9616/enhanced-method-of-conceptual-sizing-of-aircraft-electro-thermal-de-icing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1820</span> Survivability of Maneuvering Aircraft against Air to Air Infrared Missile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Yeul%20Bae">Ji-Yeul Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Mo%20Bae"> Hyung Mo Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihyuk%20Kim"> Jihyuk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An air to air infrared missile poses a significant threat to the survivability of an aircraft due to an advanced sensitivity of sensor and maneuverability of the missile. Therefore, recent military aircraft is equipped with MAW (Missile Approach Warning) to take an evasive maneuver and to deploy countermeasures like chaff and flare. In this research, an effect of MAW sensitivity and resulting evasive maneuver on the survivability of the fighter aircraft is studied. A single engine fighter jet with Mach 0.9 flying at an altitude of 5 km is modeled in the research and infrared signature of the aircraft is calculated by numerical simulation. The survivability is assessed in terms of lethal range. The MAW sensitivity and maneuverability of an aircraft is used as variables. The result showed that improvement in survivability mainly achieved when the missile approach from the side of the aircraft. And maximum 30% increase in survivability of the aircraft is achieved when existence of the missile is noticed at 7 km distance. As a conclusion, sensitivity of the MAW seems to be more important factor than the maneuverability of the aircraft in terms of the survivability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20to%20air%20missile" title="air to air missile">air to air missile</a>, <a href="https://publications.waset.org/abstracts/search?q=missile%20approach%20warning" title=" missile approach warning"> missile approach warning</a>, <a href="https://publications.waset.org/abstracts/search?q=lethal%20range" title=" lethal range"> lethal range</a>, <a href="https://publications.waset.org/abstracts/search?q=survivability" title=" survivability"> survivability</a> </p> <a href="https://publications.waset.org/abstracts/89381/survivability-of-maneuvering-aircraft-against-air-to-air-infrared-missile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1819</span> Design of a Human-in-the-Loop Aircraft Taxiing Optimisation System Using Autonomous Tow Trucks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Zaninotto">Stefano Zaninotto</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20Farrugia"> Geoffrey Farrugia</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Debattista"> Johan Debattista</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Gauci"> Jason Gauci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need to reduce fuel and noise during taxi operations in the airports with a scenario of constantly increasing air traffic has resulted in an effort by the aerospace industry to move towards electric taxiing. In fact, this is one of the problems that is currently being addressed by SESAR JU and two main solutions are being proposed. With the first solution, electric motors are installed in the main (or nose) landing gear of the aircraft. With the second solution, manned or unmanned electric tow trucks are used to tow aircraft from the gate to the runway (or vice-versa). The presence of the tow trucks results in an increase in vehicle traffic inside the airport. Therefore, it is important to design the system in a way that the workload of Air Traffic Control (ATC) is not increased and the system assists ATC in managing all ground operations. The aim of this work is to develop an electric taxiing system, based on the use of autonomous tow trucks, which optimizes aircraft ground operations while keeping ATC in the loop. This system will consist of two components: an optimization tool and a Graphical User Interface (GUI). The optimization tool will be responsible for determining the optimal path for arriving and departing aircraft; allocating a tow truck to each taxiing aircraft; detecting conflicts between aircraft and/or tow trucks; and proposing solutions to resolve any conflicts. There are two main optimization strategies proposed in the literature. With centralized optimization, a central authority coordinates and makes the decision for all ground movements, in order to find a global optimum. With the second strategy, called decentralized optimization or multi-agent system, the decision authority is distributed among several agents. These agents could be the aircraft, the tow trucks, and taxiway or runway intersections. This approach finds local optima; however, it scales better with the number of ground movements and is more robust to external disturbances (such as taxi delays or unscheduled events). The strategy proposed in this work is a hybrid system combining aspects of these two approaches. The GUI will provide information on the movement and status of each aircraft and tow truck, and alert ATC about any impending conflicts. It will also enable ATC to give taxi clearances and to modify the routes proposed by the system. The complete system will be tested via computer simulation of various taxi scenarios at multiple airports, including Malta International Airport, a major international airport, and a fictitious airport. These tests will involve actual Air Traffic Controllers in order to evaluate the GUI and assess the impact of the system on ATC workload and situation awareness. It is expected that the proposed system will increase the efficiency of taxi operations while reducing their environmental impact. Furthermore, it is envisaged that the system will facilitate various controller tasks and improve ATC situation awareness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20control" title="air traffic control">air traffic control</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20taxiing" title=" electric taxiing"> electric taxiing</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20tow%20trucks" title=" autonomous tow trucks"> autonomous tow trucks</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20user%20interface" title=" graphical user interface"> graphical user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20operations" title=" ground operations"> ground operations</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=route%20optimization" title=" route optimization"> route optimization</a> </p> <a href="https://publications.waset.org/abstracts/98056/design-of-a-human-in-the-loop-aircraft-taxiing-optimisation-system-using-autonomous-tow-trucks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1818</span> Double Layer Security Model for Identification Friend or Foe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buse%20T.%20Ayd%C4%B1n">Buse T. Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Enver%20Ozdemir"> Enver Ozdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a double layer authentication scheme between the aircraft and the Air Traffic Control (ATC) tower is designed to prevent any unauthorized aircraft from introducing themselves as friends. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or foe according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as a friend. In this method, even if embedded key is captured by the enemy aircraft, without the information of the second layer, the enemy can easily be determined. Overall, in this work, we present a more reliable system by adding a physical layer in the authentication process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADS-B" title="ADS-B">ADS-B</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20with%20physical%20layer%20security" title=" communication with physical layer security"> communication with physical layer security</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20friend%20or%20foe" title=" identification friend or foe"> identification friend or foe</a> </p> <a href="https://publications.waset.org/abstracts/105521/double-layer-security-model-for-identification-friend-or-foe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1817</span> Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20H.%20Daraji">Ali H. Daraji</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Jianqiao"> Ye Jianqiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=wing" title=" wing"> wing</a> </p> <a href="https://publications.waset.org/abstracts/62736/optimisation-of-energy-harvesting-for-a-composite-aircraft-wing-structure-bonded-with-discrete-macro-fibre-composite-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1816</span> Simulations of NACA 65-415 and NACA 64-206 Airfoils Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Nagy">David Nagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper exemplifies the influence of the purpose of an aircraft on the aerodynamic properties of its airfoil. In particular, the research takes into consideration two types of aircraft, namely cargo aircraft and military high-speed aircraft and compares their airfoil characteristics using their NACA airfoils as well as computational fluid dynamics. The results show that airfoils of aircraft designed for cargo have a heavier focus on maintaining a large lift force whereas speed-oriented airplanes focus on minimizing the drag force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20simulation" title="aerodynamic simulation">aerodynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20to%20drag%20ratio" title=" lift to drag ratio"> lift to drag ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%2064-206" title=" NACA 64-206"> NACA 64-206</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%2065-415" title=" NACA 65-415"> NACA 65-415</a> </p> <a href="https://publications.waset.org/abstracts/137836/simulations-of-naca-65-415-and-naca-64-206-airfoils-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1815</span> Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Daniel%20Hoyos%20Giraldo">Jose Daniel Hoyos Giraldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesus%20Hernan%20Jimenez%20Giraldo"> Jesus Hernan Jimenez Giraldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Pablo%20Alvarado%20Perilla"> Juan Pablo Alvarado Perilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BEM" title="BEM">BEM</a>, <a href="https://publications.waset.org/abstracts/search?q=blade%20design" title=" blade design"> blade design</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20aircraft" title=" electric aircraft"> electric aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=endurance" title=" endurance"> endurance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=range" title=" range "> range </a> </p> <a href="https://publications.waset.org/abstracts/125931/improvement-of-electric-aircraft-endurance-through-an-optimal-propeller-design-using-combined-bem-vortex-and-cfd-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1814</span> Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Kumar%20Tiwari">Sudhir Kumar Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-disciplinary%20optimization" title="multi-disciplinary optimization">multi-disciplinary optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20load" title=" aircraft load"> aircraft load</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stick%20model" title=" stick model"> stick model</a> </p> <a href="https://publications.waset.org/abstracts/70989/multi-disciplinary-optimisation-methodology-for-aircraft-load-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1813</span> Double Layer Security Authentication Model for Automatic Dependent Surveillance-Broadcast </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buse%20T.%20Aydin">Buse T. Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Enver%20Ozdemir"> Enver Ozdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automatic dependent surveillance-broadcast (ADS-B) system has serious security problems. In this study, a double layer authentication scheme between the aircraft and ground station, aircraft to aircraft, ground station to ATC tower is designed to prevent any unauthorized aircrafts from introducing themselves as friends. This method can be used as a solution to the problem of authentication. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or unknown according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as friend. As a result, the ADS-B messages coming from this authenticated friendly aircraft will be processed. In this method, even if the embedded key is captured by the unknown aircraft, without the information of the second layer, the unknown aircraft can easily be determined. Overall, in this work, we present a reliable system by adding physical layer in the authentication process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADS-B" title="ADS-B">ADS-B</a>, <a href="https://publications.waset.org/abstracts/search?q=authentication" title=" authentication"> authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20with%20physical%20layer%20security" title=" communication with physical layer security"> communication with physical layer security</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20friend%20or%20foe" title=" identification friend or foe"> identification friend or foe</a> </p> <a href="https://publications.waset.org/abstracts/105990/double-layer-security-authentication-model-for-automatic-dependent-surveillance-broadcast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1812</span> Aerodynamic Devices Development for Model Aircraft Control and Wind-Driven Bicycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Moriyama">Yuta Moriyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Yamazaki"> Tsuyoshi Yamazaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita"> Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several aerodynamic devices currently attract engineers and research students. The plasma actuator is one of them, and it is very effective to control the flow. The actuator recovers a separated flow to an attached one. The actuator is also inversely applied to a spoiler. The model aircraft might be controlled by this actuator. We develop a model aircraft with the plasma actuator. Another interesting device is the Wells turbine which rotates in one direction. The present authors propose a bicycle with the Wells turbine in the wheels. Power reduction is measured when the turbine is driven by an electric motor at the exit of a wind tunnel. Several Watts power reduction might be possible. This means that the torque of the bike can be augmented by the turbine in the cross wind. These devices are tested in the wind tunnel with a three-component balance and the aerodynamic forces and moment are obtained. In this paper, we introduce these devices and their aerodynamic characteristics. The control force and moment of the plasma actuator are clarified and the power reduction of the bicycle is quantified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20aircraft" title=" model aircraft"> model aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20actuator" title=" plasma actuator"> plasma actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=Wells%20turbine" title=" Wells turbine"> Wells turbine</a> </p> <a href="https://publications.waset.org/abstracts/92167/aerodynamic-devices-development-for-model-aircraft-control-and-wind-driven-bicycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1811</span> Vibration Energy Harvesting from Aircraft Structure Using Piezoelectric Transduction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Saifudin%20Ahmed%20Atique">M. Saifudin Ahmed Atique</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Paudyal"> Santosh Paudyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Caixia%20Yang"> Caixia Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an aircraft, a great portion of energy is wasted due to its inflight structural vibration. Structural components vibrate due to aeroelastic instabilities, gust perturbations and engine rotation at very high rpm. Energy losses due to mechanical vibration can be utilized by harvesting energy from aircraft structure as electrical energy. This harvested energy can be stored in battery panels built into aircraft fuselage and can be used to power inflight auxiliary accessories i.e., lighting and entertainment systems. Moreover, this power can be used for wireless Structural Health Monitoring System (SHM) for aircraft and as an excellent replacement of aircraft Ground Power Unit (GPU)/Auxiliary Power Unit (APU) during passenger onboard time to power aircraft cabin accessories to reduce aircraft ground operation cost significantly. In this paper, we propose the design of a noble aircraft wing in which Piezoelectric panels placed under the composite skin of aircraft wing will generate electrical charges from any inflight aerodynamics or mechanical vibration and store it into battery to power auxiliary inflight systems/accessories as per requirement. Experimental results show that a well-engineered piezoelectric energy harvester based aircraft wing can produce adequate energy to support in-flight lighting and auxiliary cabin accessories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration%20energy" title="vibration energy">vibration energy</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20wing" title=" aircraft wing"> aircraft wing</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20material" title=" piezoelectric material"> piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=inflight%20accessories" title=" inflight accessories"> inflight accessories</a> </p> <a href="https://publications.waset.org/abstracts/111023/vibration-energy-harvesting-from-aircraft-structure-using-piezoelectric-transduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1810</span> Understanding Student Pilot Mental Workload in Recreational Aircraft Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ron%20Bishop">Ron Bishop</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%20Mitchell"> Jim Mitchell</a>, <a href="https://publications.waset.org/abstracts/search?q=Talitha%20Best"> Talitha Best</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in air travel worldwide has resulted in a pilot shortage. To increase student pilot capacity and lower costs, flight schools have increased the use of recreational aircraft (RA) with technological advanced cockpits in flight schools. The impact of RA based training compared to general aviation (GA) aircraft training on student mental workload is not well understood. This research investigated student pilot (N = 17) awareness of mental workload between technologically advanced cockpit equipped RA training with analogue gauge equipped GA training. The results showed a significantly higher rating of mental workload across subscales of mental and physical demand on the NASA-TLX in recreational aviation aircraft training compared to GA aircraft. Similarly, thematic content analysis of follow-up questions identified that mental workload of the student pilots flying the RA was perceived to be more than the GA aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20workload" title="mental workload">mental workload</a>, <a href="https://publications.waset.org/abstracts/search?q=recreational%20aircraft" title=" recreational aircraft"> recreational aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20pilot" title=" student pilot"> student pilot</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a> </p> <a href="https://publications.waset.org/abstracts/116045/understanding-student-pilot-mental-workload-in-recreational-aircraft-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1809</span> Minimize Wear and Tear in Y12 Aircraft Tyres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20D.%20Hiripitiya">N. D. Hiripitiya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20H.%20De%20Soysa"> H. V. H. De Soysa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20U.%20Thrimavithana"> H. S. U. Thrimavithana</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Epitawala"> B. R. Epitawala</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20D.%20D.%20Kuruppu"> K. A. D. D. Kuruppu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20K.%20Lokupathirage"> D. J. K. Lokupathirage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was related to identify the reasons which lead for early wear and tear of aircraft tyres. Further this research focused to rectify those issues in tyres with some modifications. The aircraft tyres of Y12 aircraft was selected for the study as due to Y12 aircraft fly frequently. Self-structured questionnaire was prepared and it was distributed among Y12 aircraft technicians. Based on their feedback several issues were identified related to tyre wear and tear. One of the reasons was uneven tyre wearing. But it could rectify after interchanging the tyre sides after completion of 50 landings. Several modifications were done in order to rectify all the identified issues. Several devices were constructed in order to enhance the life time of the Y12 aircraft tyre. Mechanical properties were measured for the worn-out tyres. The properties were compared with the control tyre sample. It was found that there was an average increment of tensile strength by 38.14 % of control tyre, when compared with the worn-out tyres which were completed 50 number of landings. The suggested modifications are in the process of implementation. It is confident that above mentioned solutions will lead to increase the life span of tyres in Y12 aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=devices" title=" devices"> devices</a>, <a href="https://publications.waset.org/abstracts/search?q=enhance%20life%20span" title=" enhance life span"> enhance life span</a>, <a href="https://publications.waset.org/abstracts/search?q=modifications%20for%20tyre%20wear" title=" modifications for tyre wear"> modifications for tyre wear</a> </p> <a href="https://publications.waset.org/abstracts/57455/minimize-wear-and-tear-in-y12-aircraft-tyres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1808</span> Internet of Things-Based Electric Vehicle Charging Notification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagarjuna%20Pitty">Nagarjuna Pitty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is believed invention “Advanced Method and Process Quick Electric Vehicle Charging” is an Electric Vehicles (EVs) are quickly turning into the heralds of vehicle innovation. This study endeavors to address the inquiries of how module charging process correspondence has been performed between the EV and Electric Vehicle Supply Equipment (EVSE). The energy utilization of gas-powered motors is higher than that of electric engines. An invention is related to an Advanced Method and Process Quick Electric Vehicle Charging. In this research paper, readings on the electric vehicle charging approaches will be checked, and the module charging phases will be described comprehensively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric" title="electric">electric</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging" title=" charging"> charging</a>, <a href="https://publications.waset.org/abstracts/search?q=notification" title=" notification"> notification</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=supply" title=" supply"> supply</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment" title=" equipment"> equipment</a> </p> <a href="https://publications.waset.org/abstracts/166037/internet-of-things-based-electric-vehicle-charging-notification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1807</span> Aerodynamic Analysis of Dimple Effect on Aircraft Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Livya">E. Livya</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Anitha"> G. Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Valli"> P. Valli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favours the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airfoil" title="airfoil">airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=dimple%20effect" title=" dimple effect"> dimple effect</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20separation" title=" boundary layer separation"> boundary layer separation</a> </p> <a href="https://publications.waset.org/abstracts/24631/aerodynamic-analysis-of-dimple-effect-on-aircraft-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1806</span> Landing Performance Improvement Using Genetic Algorithm for Electric Vertical Take Off and Landing Aircrafts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Willian%20C.%20De%20Brito">Willian C. De Brito</a>, <a href="https://publications.waset.org/abstracts/search?q=Hernan%20D.%20C.%20Munoz"> Hernan D. C. Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Erlan%20V.%20C.%20Carvalho"> Erlan V. C. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Helder%20L.%20C.%20De%20Oliveira"> Helder L. C. De Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger’s transport equivalent to a car, with mobility within large cities and between cities. Today’s civil air transport remains costly and accounts for 2% of the man-made CO₂ emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, all electric aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this paper addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization genetic algorithm, while final programming can be adapted for take-off and flight level changes as well. A real tilt rotor aircraft with fully electric power plant data was used to fit the derived dynamic equations of motion. Although a tilt rotor design is used as a proof of concept, it is possible to change the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide the time history response for aircraft´s attitude, rotors RPM and thrust direction (or vertical and horizontal thrust, for independent motors designs) that, if followed, results in the minimum electric power consumption through that landing path. Safety, comfort and design constraints are assumed to give representativeness to the solution. Results are highly dependent on these constraints. For the tested cases, performance improvement ranged from 5 to 10% changing initial airspeed, altitude, flight path angle, and attitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20taxi%20travel" title="air taxi travel">air taxi travel</a>, <a href="https://publications.waset.org/abstracts/search?q=all%20electric%20aircraft" title=" all electric aircraft"> all electric aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=batteries" title=" batteries"> batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20performance" title=" landing performance"> landing performance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20improvement" title=" performance improvement"> performance improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20rotor" title=" tilt rotor"> tilt rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=VTOL%20design" title=" VTOL design"> VTOL design</a> </p> <a href="https://publications.waset.org/abstracts/112461/landing-performance-improvement-using-genetic-algorithm-for-electric-vertical-take-off-and-landing-aircrafts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1805</span> A Comparison Between the Internal Combustion Engine and Electric Motor in the Automobile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jack%20Mason">Jack Mason</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Pourmovhed"> Ahmad Pourmovhed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will discuss the advantages and disadvantages of the internal combustion engine when compared to different types of electric vehicles. The Internal Combustion Engine (ICE)'s overall cost, environmental impact, and usability will all be compared to different types of Electric Vehicles (EVs) including Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs). Also, the ways to solve the issues of the problems each vehicle presents will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine" title="interal combustion engine">interal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20electric%20vehicle" title=" battery electric vehicle"> battery electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell%20electric%20vehicle" title=" fuel cell electric vehicle"> fuel cell electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a> </p> <a href="https://publications.waset.org/abstracts/143248/a-comparison-between-the-internal-combustion-engine-and-electric-motor-in-the-automobile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1804</span> Noise Reduction by Energising the Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20P.%20Kumar">Kiran P. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Nayana"> H. M. Nayana</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rakshitha"> R. Rakshitha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sushmitha"> S. Sushmitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airframe" title="airframe">airframe</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a> </p> <a href="https://publications.waset.org/abstracts/53714/noise-reduction-by-energising-the-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1803</span> Aircraft Pitch Attitude Control Using Backstepping </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Labane%20Chrif">Labane Chrif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title="nonlinear control">nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=backstepping" title=" backstepping"> backstepping</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20control" title=" aircraft control"> aircraft control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20model" title=" longitudinal model"> longitudinal model</a> </p> <a href="https://publications.waset.org/abstracts/23396/aircraft-pitch-attitude-control-using-backstepping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1802</span> Effects of Aircraft Wing Configuration on Aerodynamic Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aderet%20Pantierer">Aderet Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmuel%20Pantierer"> Shmuel Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Atif%20Saeed"> Atif Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Elzawawy"> Amir Elzawawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, air travel has seen volatile growth. Due to this growth, the maximization of efficiency and space utilization has been a major issue for aircraft manufacturers. Elongation of the wingspan of aircraft has resulted in increased lift; and, thereby, efficiency. However, increasing the wingspan of aircraft has been detrimental to the manufacturing process and has led to airport congestion and required airport reconfiguration to accommodate the extended wingspans of aircraft. This project outlines differing wing configurations of a commercial aircraft and the effects on the aerodynamic loads produced. Multiple wing configurations are analyzed using Finite Element Models. These models are then validated by testing one wing configuration in a wind tunnel under laminar flow and turbulent flow conditions. The wing configurations to be tested include high and low wing aircraft, as well as various combinations of the two, including a unique model hereon referred to as an infinity wing. The infinity wing configuration consists of both a high and low wing, with the two wings connected by a vertical airfoil. This project seeks to determine if a wing configuration consisting of multiple airfoils produces more lift than the standard wing configurations and is able to provide a solution to manufacturing limitations as well as airport congestion. If the analysis confirms the hypothesis, a trade study will be performed to determine if and when an arrangement of multiple wings would be cost-effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20design" title=" aircraft design"> aircraft design</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20efficiency" title=" aircraft efficiency"> aircraft efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20configuration" title=" wing configuration"> wing configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20design" title=" wing design"> wing design</a> </p> <a href="https://publications.waset.org/abstracts/115909/effects-of-aircraft-wing-configuration-on-aerodynamic-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1801</span> Factors Associated with Fatal and Non-Fatal Accidents of Commercial Aviation Fixed-Wing Aircraft in Indonesia (2007-2018)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adre%20Dwi%20Wiratama">Adre Dwi Wiratama</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Sampurna"> Budi Sampurna</a>, <a href="https://publications.waset.org/abstracts/search?q=Syougie%20Ali"> Syougie Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Djunadi"> Djunadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Even though safety is a priority in Commercial Aviation (CA) operations, fatal fixed-wing aircraft accidents still occur frequently in Indonesia. Objective: This research aims to determine factors associated with fatal and non-fatal CA fixed-wing aircraft accidents in Indonesia. Methods: The research used a cross-sectional design, which was carried out in July 2023. It included all final reports on fixed-wing aircraft accidents published by the Indonesian National Transportation Safety Committee (KNKT). Analysis was conducted using chi-square and Fisher’s exact test methods using IBM SPSS software version 29.0. Results: Out of 52 final reports, 25 were fatal. The study found that factors associated with a higher risk of fatal accidents are pilots in command with CPL, unpressurized aircraft, single-engine aircraft, aircraft with MTOW less than 5,700kg, accidents occurring at weekends, accidents occurring outside of airport premises, CFIT occurrences, and the cruise phase of flight. The factor associated with non-fatal accidents is the landing phase. Conclusion: Efforts such as enhancing pilot training and certification processes, implementing stricter safety regulations for small, unpressurized, single-engine aircraft, and increasing safety measures during weekends and specific phases of flight can reduce future fatal accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatal%20accident" title="fatal accident">fatal accident</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-wing%20aircraft" title=" fixed-wing aircraft"> fixed-wing aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20aviation" title=" commercial aviation"> commercial aviation</a> </p> <a href="https://publications.waset.org/abstracts/193251/factors-associated-with-fatal-and-non-fatal-accidents-of-commercial-aviation-fixed-wing-aircraft-in-indonesia-2007-2018" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1800</span> Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20P.%20Andrade">J. P. P. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20F.%20Campos"> V. A. F. Campos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=F-16%20aircraft" title="F-16 aircraft">F-16 aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=pole%20placement" title=" pole placement"> pole placement</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a> </p> <a href="https://publications.waset.org/abstracts/58790/robust-control-of-a-dynamic-model-of-an-f-16-aircraft-with-improved-damping-through-linear-matrix-inequalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1799</span> Advanced Simulation of Power Consumption of Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilya%20Kavalchuk">Ilya Kavalchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayrettin%20Arisoy"> Hayrettin Arisoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Stojcevski"> Alex Stojcevski</a>, <a href="https://publications.waset.org/abstracts/search?q=Aman%20Maun%20Than%20Oo"> Aman Maun Than Oo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=EV" title=" EV"> EV</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20management" title=" power management"> power management</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/17216/advanced-simulation-of-power-consumption-of-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>