CINXE.COM

SHEEL PANDEY - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>SHEEL PANDEY - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="xqIf9JIuCLLV8rko6FKyXkq_TXJSUvoXLd3jpVpOYgkhcGbS9n34NZ2pb83QuGAngBNJuVu0QqsR2Z8k0U_GFQ" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"dateCreated":"2022-05-17T23:50:25-07:00","dateModified":"2024-11-11T09:27:05-08:00"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="sheel pandey" /> <meta name="description" content="SHEEL PANDEY: 9 Following, 9 Research papers. Research interest: Differential Geometry." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '1e60a92a442ff83025cbe4f252857ee7c49c0bbe'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14008,"monthly_visitors":"107 million","monthly_visitor_count":107440917,"monthly_visitor_count_in_millions":107,"user_count":283734392,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1740541676000); window.Aedu.timeDifference = new Date().getTime() - 1740541676000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-1eb081e01ca8bc0c1b1d866df79d9eb4dd2c484e4beecf76e79a7806c72fee08.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-63c3b84e278fb86e50772ccc2ac0281a0f74ac7e2f88741ecad58131583d4c47.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-85b27a68dc793256271cea8ce6f178025923f9e7e3c7450780e59eacecf59a75.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/SHEELPANDEY" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-4a9f418052ec7a403e004849742322653b010f552f60e892779ac5b03c4cc162.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY","photo":"https://0.academia-photos.com/223886010/81275914/69866065/s65_sheel.pandey.png","has_photo":true,"is_analytics_public":false,"interests":[{"id":14348,"name":"Differential Geometry","url":"https://www.academia.edu/Documents/in/Differential_Geometry"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/SHEELPANDEY&quot;,&quot;location&quot;:&quot;/SHEELPANDEY&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/SHEELPANDEY&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-5a1f5040-bf64-46d9-bfc6-28c7a8318314"></div> <div id="ProfileCheckPaperUpdate-react-component-5a1f5040-bf64-46d9-bfc6-28c7a8318314"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="SHEEL PANDEY" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/223886010/81275914/69866065/s200_sheel.pandey.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">SHEEL PANDEY</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="SHEEL" data-follow-user-id="223886010" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="223886010"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">0</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">9</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/SHEELPANDEY/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cuhk.academia.edu/MartinManchunLi"><img class="profile-avatar u-positionAbsolute" alt="Martin Man-chun Li" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/56480/83948/3346943/s200_martin_man-chun.li.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cuhk.academia.edu/MartinManchunLi">Martin Man-chun Li</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The Chinese University of Hong Kong</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://deu.academia.edu/celalcem"><img class="profile-avatar u-positionAbsolute" alt="Celal Cem Sarıoğlu" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/326106/136287/158280/s200_celal_cem.sar_o_lu.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://deu.academia.edu/celalcem">Celal Cem Sarıoğlu</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Dokuz Eylül University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://kingabdulaziz.academia.edu/CenapOzel"><img class="profile-avatar u-positionAbsolute" alt="Cenap Ozel" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/326130/136298/6959670/s200_cenap.ozel.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://kingabdulaziz.academia.edu/CenapOzel">Cenap Ozel</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">King Abdulaziz University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uohyd.academia.edu/SKumaresan"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uohyd.academia.edu/SKumaresan">S. Kumaresan</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Hyderabad</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://nmt.academia.edu/IvanAvramidi"><img class="profile-avatar u-positionAbsolute" alt="Ivan G Avramidi" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/861755/308395/365186/s200_ivan.avramidi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://nmt.academia.edu/IvanAvramidi">Ivan G Avramidi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">New Mexico Tech</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independentresearcher.academia.edu/DrJMAshfaqueAMIMAMInstP"><img class="profile-avatar u-positionAbsolute" alt="Dr. J. M. Ashfaque (MInstP)" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/2792810/914293/18370870/s200_dr._j._m..ashfaque_amima_minstp_.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independentresearcher.academia.edu/DrJMAshfaqueAMIMAMInstP">Dr. J. M. Ashfaque (MInstP)</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Independent Researcher</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://harvard.academia.edu/OliverKnill"><img class="profile-avatar u-positionAbsolute" alt="Oliver Knill" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/24636766/6662359/7528121/s200_oliver.knill.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://harvard.academia.edu/OliverKnill">Oliver Knill</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Harvard University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://maringa.academia.edu/MarceloCavalcanti"><img class="profile-avatar u-positionAbsolute" alt="Marcelo Cavalcanti" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/28210609/7976510/10615551/s200_marcelo.cavalcanti.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://maringa.academia.edu/MarceloCavalcanti">Marcelo Cavalcanti</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Estadual de Maringa</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://memphis.academia.edu/IrenaLasiecka"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://memphis.academia.edu/IrenaLasiecka">Irena Lasiecka</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Memphis</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://bub.academia.edu/MedhaHuilgol"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://bub.academia.edu/MedhaHuilgol">Medha Huilgol</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Bangalore University</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="223886010" href="https://www.academia.edu/Documents/in/Differential_Geometry"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/SHEELPANDEY&quot;,&quot;location&quot;:&quot;/SHEELPANDEY&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/SHEELPANDEY&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Differential Geometry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-a85951c1-03dc-4b88-bdf0-9e553fc10f24"></div> <div id="Pill-react-component-a85951c1-03dc-4b88-bdf0-9e553fc10f24"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by SHEEL PANDEY</h3></div><div class="js-work-strip profile--work_container" data-work-id="80162731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/80162731/A_study_in_the_theory_of_multipliers_on_banach_and_locally_convex_spaces"><img alt="Research paper thumbnail of A study in the theory of multipliers on banach and locally convex spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/80162731/A_study_in_the_theory_of_multipliers_on_banach_and_locally_convex_spaces">A study in the theory of multipliers on banach and locally convex spaces</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162731]").text(description); $(".js-view-count[data-work-id=80162731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=80162731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162731,"title":"A study in the theory of multipliers on banach and locally convex spaces","internal_url":"https://www.academia.edu/80162731/A_study_in_the_theory_of_multipliers_on_banach_and_locally_convex_spaces","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162730/Weak_amenability_of_Segal_algebras"><img alt="Research paper thumbnail of Weak amenability of Segal algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/86636469/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162730/Weak_amenability_of_Segal_algebras">Weak amenability of Segal algebras</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let G G be a locally compact abelian group, and let p ∈ [ 1 , ∞ ) p \in [1,\infty ) . We show tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let G G be a locally compact abelian group, and let p ∈ [ 1 , ∞ ) p \in [1,\infty ) . We show that the Segal algebra S p ( G ) S_p(G) is always weakly amenable, but that it is amenable only if G G is discrete.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="082f46c4b2af93a32c624e97d32cd5dd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636469,&quot;asset_id&quot;:80162730,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636469/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162730]").text(description); $(".js-view-count[data-work-id=80162730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "082f46c4b2af93a32c624e97d32cd5dd" } } $('.js-work-strip[data-work-id=80162730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162730,"title":"Weak amenability of Segal algebras","internal_url":"https://www.academia.edu/80162730/Weak_amenability_of_Segal_algebras","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636469/thumbnails/1.jpg","file_name":"S0002-9939-99-05139-4.pdf","download_url":"https://www.academia.edu/attachments/86636469/download_file","bulk_download_file_name":"Weak_amenability_of_Segal_algebras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636469/S0002-9939-99-05139-4-libre.pdf?1653810287=\u0026response-content-disposition=attachment%3B+filename%3DWeak_amenability_of_Segal_algebras.pdf\u0026Expires=1740545276\u0026Signature=Ip4z8fThMRgcLxlsAMR0f~ppXEIP--qgkdhlRm9LN5Iq3L9bHZCslNAjQN4X8rbfjbDUe70Cai~e7N65ov91VfRRvQhb4z-RsiDginv2gE9x2EZBWILBbzGVL0KMe-MKNRzXTt7KJbYjdBjAXEJfYptEBIfgbSy1Mfj0kVuLMn8CFARbE-0OtQblpxy~ksxA1hUhmK2pkM-2WpNgu79On~yU81DXj6kQZ2mbeGJFFB058TKPR3YQngWyKURhjMLhFLEPHQYMTmK2Pdu9v4ZdOQQyXJtA8ZfeKmRHRn8tbZcOoHVWKYDpUkPk3VMRURfTRXIeadQOHzEcHo1lw-Ux~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":86636468,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636468/thumbnails/1.jpg","file_name":"S0002-9939-99-05139-4.pdf","download_url":"https://www.academia.edu/attachments/86636468/download_file","bulk_download_file_name":"Weak_amenability_of_Segal_algebras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636468/S0002-9939-99-05139-4-libre.pdf?1653810287=\u0026response-content-disposition=attachment%3B+filename%3DWeak_amenability_of_Segal_algebras.pdf\u0026Expires=1740545276\u0026Signature=gYA-8L4~NiiHiiym11bVL-Q8izdDC5XETN-5e93uW6w1Wn3UY6zbkQ4h18WKX1RsXR~1qmlk~PzLWFT7lF0XGhv2ZN5CQXbKp08twpvQFrxJ6JNyY8AVgAORVw9n7lssQL2iRCgFY~U-6pBa53x6K516qAeixVFSuMujGXRGhIkF0sJp75rkOsb1SHW0RwYQuNZorjiwxGiwUmah6dIbKeoRx0CsgRcrC~~QDJkj2~aVzLf0~BMqqirZ2UNt~fLudxkRZ11sitV2Z1qoBnztPL0Dmyb2ZqMrJyeWkCi2bPMX4e1HkXGKLrPKSoHcZ~wrMNYjr0jlAK38CSdKniFtag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162729/Gabor_multipliers_for_weighted_Banach_spaces_on_locally_compact_abelian_groups"><img alt="Research paper thumbnail of Gabor multipliers for weighted Banach spaces on locally compact abelian groups" class="work-thumbnail" src="https://attachments.academia-assets.com/86636510/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162729/Gabor_multipliers_for_weighted_Banach_spaces_on_locally_compact_abelian_groups">Gabor multipliers for weighted Banach spaces on locally compact abelian groups</a></div><div class="wp-workCard_item"><span>Journal of Mathematics of Kyoto University</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We use a projective groups representation ρ of the unimodular group G ×Ĝ on L 2 (G) to define Gab...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We use a projective groups representation ρ of the unimodular group G ×Ĝ on L 2 (G) to define Gabor wavelet transform of a function f with respect to a window function g, where G is a locally compact abelian group andĜ its dual group. Using these transforms, we define a weighted Banach H 1, ρ w (G) and its antidual space H 1 ∼ , ρ w (G), w being a moderate weight function on G ×Ĝ. These spaces reduce to the well known Feichtinger algebra S 0 (G) and Banach space of Feichtinger distribution S 0 (G) respectively for w ≡ 1. We obtain an atomic decomposition of H 1, ρ w (G) and study some properties of Gabor multipliers on the spaces L 2 (G), H 1, ρ w (G) and H 1 ∼ , ρ w (G). Finally, we prove a theorem on the compactness of Gabor multiplier operators on L 2 (G) and H 1, ρ w (G), which reduces to an earlier result of Feichtinger [Fei 02, Theorem 5.15 (iv)] for w = 1 and G = R d .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d101bb13cd03c8394401f9a10b69b6e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636510,&quot;asset_id&quot;:80162729,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636510/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162729]").text(description); $(".js-view-count[data-work-id=80162729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d101bb13cd03c8394401f9a10b69b6e8" } } $('.js-work-strip[data-work-id=80162729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162729,"title":"Gabor multipliers for weighted Banach spaces on locally compact abelian groups","internal_url":"https://www.academia.edu/80162729/Gabor_multipliers_for_weighted_Banach_spaces_on_locally_compact_abelian_groups","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636510,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636510/thumbnails/1.jpg","file_name":"1256219154.pdf","download_url":"https://www.academia.edu/attachments/86636510/download_file","bulk_download_file_name":"Gabor_multipliers_for_weighted_Banach_sp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636510/1256219154-libre.pdf?1653810880=\u0026response-content-disposition=attachment%3B+filename%3DGabor_multipliers_for_weighted_Banach_sp.pdf\u0026Expires=1740545276\u0026Signature=NtV6mDlBLQVLBMQB8sQRRzhq9wfh3Nl1EgguCiXHaTJxWgg8BPnqTSFV~Dy26d3eRy1h7UhZCxhcIBB1UwkHg7k7HfefwY~pOl3drm-2tXCqDeSAgTEU5jQ28HFG32y3nIj21lW2hESYxPID0fWDCT-pl665nHb8Lq-rAzrCC8Vu64uAoCMBrzE7puQFwnTrRkLWQMtvYwo3AZ0FuVaVV7xO8HjkyhLW7xiaVptehJvBI71W3JaGAKgcCg3va0dehBtr3mhmFOPrxGPz7x5wynlKFNy~~9WBlnjdem0lar9apfgJj2jLXzQjtRMwBg1~kh0k1JziPByO-Ar-e97p0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162725"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162725/Recovery_of_Band_Limited_Functions_on_Locally_Compact_Abelian_Groups_from_Irregular_Samples"><img alt="Research paper thumbnail of Recovery of Band-Limited Functions on Locally Compact Abelian Groups from Irregular Samples" class="work-thumbnail" src="https://attachments.academia-assets.com/86636511/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162725/Recovery_of_Band_Limited_Functions_on_Locally_Compact_Abelian_Groups_from_Irregular_Samples">Recovery of Band-Limited Functions on Locally Compact Abelian Groups from Irregular Samples</a></div><div class="wp-workCard_item"><span>Czechoslovak Mathematical Journal</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="efe459747ab884ff73f60b91bee90353" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636511,&quot;asset_id&quot;:80162725,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636511/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162725"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162725"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162725; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162725]").text(description); $(".js-view-count[data-work-id=80162725]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162725; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162725']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "efe459747ab884ff73f60b91bee90353" } } $('.js-work-strip[data-work-id=80162725]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162725,"title":"Recovery of Band-Limited Functions on Locally Compact Abelian Groups from Irregular Samples","internal_url":"https://www.academia.edu/80162725/Recovery_of_Band_Limited_Functions_on_Locally_Compact_Abelian_Groups_from_Irregular_Samples","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636511,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636511/thumbnails/1.jpg","file_name":"CzechMathJ_53-2003-2_3.pdf","download_url":"https://www.academia.edu/attachments/86636511/download_file","bulk_download_file_name":"Recovery_of_Band_Limited_Functions_on_Lo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636511/CzechMathJ_53-2003-2_3-libre.pdf?1653810881=\u0026response-content-disposition=attachment%3B+filename%3DRecovery_of_Band_Limited_Functions_on_Lo.pdf\u0026Expires=1740545276\u0026Signature=HWCqx98avjSZ7TKkrHDJxGh-ZXupAmWTeafQig4KTMHc2-~YF2A1IfVoNE~rhr~SX2O0KahppIkeCl9eFR~oyTXLBQUsq2lhBL5teoKKy6btraTWXBi2OhLBRfxg6hpFvvEY4GMBc04BC0ujwdguxcdhKuavEpBLgMr-QsJ~C3LtSu9x7-TH~MwWJD5dvZa9l19k8njMyKxxdZJFPCcd8mVPRPuHIQIyFWQdqnfX0OBpJ-vMJFBA5y2q~hwIA2m-23YUP0oEB-RS~dfJoXZfhyy7pF9qPCqgd86OEhPYki5qZ1SjIi-iim9khxJsduszCGIPmToxZWrbMLQiezZRcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162723"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162723/A_Multiplier_Problem_for_Fourier_Jacobi_Expansions_in_a_Banach_Space"><img alt="Research paper thumbnail of A Multiplier Problem for Fourier-Jacobi Expansions in a Banach Space" class="work-thumbnail" src="https://attachments.academia-assets.com/86636503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162723/A_Multiplier_Problem_for_Fourier_Jacobi_Expansions_in_a_Banach_Space">A Multiplier Problem for Fourier-Jacobi Expansions in a Banach Space</a></div><div class="wp-workCard_item"><span>Tokyo Journal of Mathematics</span><span>, 1992</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68b407814e0b1579e02670c1523a1a2d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636503,&quot;asset_id&quot;:80162723,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636503/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162723"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162723"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162723; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162723]").text(description); $(".js-view-count[data-work-id=80162723]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162723; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162723']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68b407814e0b1579e02670c1523a1a2d" } } $('.js-work-strip[data-work-id=80162723]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162723,"title":"A Multiplier Problem for Fourier-Jacobi Expansions in a Banach Space","internal_url":"https://www.academia.edu/80162723/A_Multiplier_Problem_for_Fourier_Jacobi_Expansions_in_a_Banach_Space","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636503/thumbnails/1.jpg","file_name":"1270129469.pdf","download_url":"https://www.academia.edu/attachments/86636503/download_file","bulk_download_file_name":"A_Multiplier_Problem_for_Fourier_Jacobi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636503/1270129469-libre.pdf?1653810880=\u0026response-content-disposition=attachment%3B+filename%3DA_Multiplier_Problem_for_Fourier_Jacobi.pdf\u0026Expires=1740545276\u0026Signature=bd~froKZb5dtDqG8qVoBedkDhnIK1KYaFGqhuf1pwia-WPQuN6HOEPAl5-Ulk7dMyPwU6FfYH7emBKnF-dgn6vrye9WMAFRAzRcjPvuVsWf2kDoOTsoM0TkYik60xofK~fJP8lLyDylBQa8FGv3Fe5Umex-~Zp-TOrX3BVmDrWqVZZC1lryZ4ho4z05S7IqNc0dzcD9w0CkJhb-~QnGD8vjvs9vcGECKr7O3jw-Fz3UPL-X-c1hPEVK4F8vASOddlB6mugi1lvrlGajl7R7qyK1yWJt~rDFdzjNxdpgQFPa7voL6mY5oUDE0Zwl4LcbTvPqx1lql86RVslx4yajASA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162721"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162721/Compact_Operators_on_Homogeneous_Banach_Spaces_of_Distributions_on_Locally_Compact_Abelian_Groups"><img alt="Research paper thumbnail of Compact Operators on Homogeneous Banach Spaces of Distributions on Locally Compact Abelian Groups" class="work-thumbnail" src="https://attachments.academia-assets.com/86636554/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162721/Compact_Operators_on_Homogeneous_Banach_Spaces_of_Distributions_on_Locally_Compact_Abelian_Groups">Compact Operators on Homogeneous Banach Spaces of Distributions on Locally Compact Abelian Groups</a></div><div class="wp-workCard_item"><span>Southeast Asian Bulletin of Mathematics</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, two theorems about the compactness of almost invariant operators on homogeneous Ba...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, two theorems about the compactness of almost invariant operators on homogeneous Banach spaces of distributions (in the sense of Feichtinger [11]) defined on a locally compact abelian group are proved. Our theorems generalize the corresponding results of K. de Leeuw [3] and Tewari and Madan [18] for operators on homogeneous Banach spaces on the circle group and Segal algebras on a compact abelian groups, respectively.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="573a2d26020be995328c8ccd95c4d562" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636554,&quot;asset_id&quot;:80162721,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636554/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162721"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162721"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162721; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162721]").text(description); $(".js-view-count[data-work-id=80162721]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162721; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162721']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "573a2d26020be995328c8ccd95c4d562" } } $('.js-work-strip[data-work-id=80162721]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162721,"title":"Compact Operators on Homogeneous Banach Spaces of Distributions on Locally Compact Abelian Groups","internal_url":"https://www.academia.edu/80162721/Compact_Operators_on_Homogeneous_Banach_Spaces_of_Distributions_on_Locally_Compact_Abelian_Groups","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636554,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636554/thumbnails/1.jpg","file_name":"20260611.pdf","download_url":"https://www.academia.edu/attachments/86636554/download_file","bulk_download_file_name":"Compact_Operators_on_Homogeneous_Banach.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636554/20260611-libre.pdf?1653810877=\u0026response-content-disposition=attachment%3B+filename%3DCompact_Operators_on_Homogeneous_Banach.pdf\u0026Expires=1740545276\u0026Signature=LpLQRfCDZT2THp8I-Fchgw5dg~K~-ZwMf9GQzJTovimFCKiXq4LtTBV-aaRl4sDw-HqhDrc7tdd2-O5aCDGMVzTzRFEm6~NhA6B0SdesoLPlPACvtpEbChzCauGWqo34y1HeqUlrSZCgMAegqWvivIKJ7D5DvrE~xvnUHA70QV0T-GvKP-w3R6OIfSLoIIg46JNTXE7xRn7aVZdX-BdxKTwcs8NCnPH7GeBh26bCRGixDYmUkcMQ7f2~eoPXopZh669K3isyVZpwTzgBU9Zs~H~LP5p1aHrBI1Omk6M0uhiR9iaGxtsBpBjfZ~-2F6IZUjSpGvtsLsrByHiVoVxC5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162719"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162719/Error_estimates_for_irregular_sampling_of_band_limited_functions_on_a_locally_compact_Abelian_group"><img alt="Research paper thumbnail of Error estimates for irregular sampling of band-limited functions on a locally compact Abelian group" class="work-thumbnail" src="https://attachments.academia-assets.com/86636536/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162719/Error_estimates_for_irregular_sampling_of_band_limited_functions_on_a_locally_compact_Abelian_group">Error estimates for irregular sampling of band-limited functions on a locally compact Abelian group</a></div><div class="wp-workCard_item"><span>Journal of Mathematical Analysis and Applications</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Band-limited functions f can be recovered from their sampling values (f (x i)) by means of iterat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Band-limited functions f can be recovered from their sampling values (f (x i)) by means of iterative methods, if only the sampling density is high enough. We present an error analysis for these methods, treating the typical forms of errors, i.e., jitter error, truncation error, aliasing error, quantization error, and their combinations. The derived apply uniformly to whole families of spaces, e.g., to weighted L p-spaces over some locally compact Abelian group with growth rate up to some given order. In contrast to earlier papers we do not make use of any (relative) separation condition on the sampling sets. Furthermore we discard the assumption on polynomial growth of the weights that has been used over Euclidean spaces. Consequently, even for the case of regular sampling, i.e., sampling along lattices in G, the results are new in the given generality.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6fbd55581a816b305d01065c2dc4f702" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636536,&quot;asset_id&quot;:80162719,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636536/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162719"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162719"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162719; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162719]").text(description); $(".js-view-count[data-work-id=80162719]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162719; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162719']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6fbd55581a816b305d01065c2dc4f702" } } $('.js-work-strip[data-work-id=80162719]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162719,"title":"Error estimates for irregular sampling of band-limited functions on a locally compact Abelian group","internal_url":"https://www.academia.edu/80162719/Error_estimates_for_irregular_sampling_of_band_limited_functions_on_a_locally_compact_Abelian_group","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636536,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636536/thumbnails/1.jpg","file_name":"82475147.pdf","download_url":"https://www.academia.edu/attachments/86636536/download_file","bulk_download_file_name":"Error_estimates_for_irregular_sampling_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636536/82475147-libre.pdf?1653810877=\u0026response-content-disposition=attachment%3B+filename%3DError_estimates_for_irregular_sampling_o.pdf\u0026Expires=1740545276\u0026Signature=bejkSXEm1Iho-Kb9GURq3y1Z23F04ngTyeBjPyIUIARnaI8y~Xabyun9ce8YBrOKqH8HhRseeW1e0pG8mwGGZYkZaq-YeD49XvJV0aIm5ZWVvGG5AEDWyYiaG3v8FYsIW~dOMdW-O2LQobQ4IOYMxHrx02srCNxr~tzA7Mwnutmb1ycaZYqg~Ay2Q11DfbkHEiyhFHMab8a9UkW5wjRobLbeu9G5RdINPJNkg-v~2QYnx93g5Qk5EQYuj62PjDeoyKFMa3jRDxpHbrranIAK9hhxBsbZNCHQMt2sh4A2jR8BZfnIOuyv3rQ---gdaeDOq07YVdt6b4TdmaFT-af8VA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162717"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162717/Compactness_in_Wiener_amalgams_on_locally_compact_groups"><img alt="Research paper thumbnail of Compactness in Wiener amalgams on locally compact groups" class="work-thumbnail" src="https://attachments.academia-assets.com/86636618/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162717/Compactness_in_Wiener_amalgams_on_locally_compact_groups">Compactness in Wiener amalgams on locally compact groups</a></div><div class="wp-workCard_item"><span>International Journal of Mathematics and Mathematical Sciences</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the compactness of bounded subsets in a Wiener amalgam whose local and global components...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the compactness of bounded subsets in a Wiener amalgam whose local and global components are solid Banach function (BF) spaces on a locally compact group. Our main theorem provides a generalization of the corresponding results of Feichtinger. This paper paves the way for the study of compact multiplier operators on general Wiener amalgams on the lines of Feichtinger.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="59d68f20df29ffcb55bd1645c4808ade" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636618,&quot;asset_id&quot;:80162717,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636618/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162717"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162717"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162717; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162717]").text(description); $(".js-view-count[data-work-id=80162717]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162717; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162717']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "59d68f20df29ffcb55bd1645c4808ade" } } $('.js-work-strip[data-work-id=80162717]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162717,"title":"Compactness in Wiener amalgams on locally compact groups","internal_url":"https://www.academia.edu/80162717/Compactness_in_Wiener_amalgams_on_locally_compact_groups","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636618/thumbnails/1.jpg","file_name":"bcfc7106acceb3c30931858a3922b4dc29c3.pdf","download_url":"https://www.academia.edu/attachments/86636618/download_file","bulk_download_file_name":"Compactness_in_Wiener_amalgams_on_locall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636618/bcfc7106acceb3c30931858a3922b4dc29c3-libre.pdf?1653810868=\u0026response-content-disposition=attachment%3B+filename%3DCompactness_in_Wiener_amalgams_on_locall.pdf\u0026Expires=1740545276\u0026Signature=Ab0B~dArSLab8ZDAmAFYgSG73o-5LpLWKA8PQvS7p5fdRtqzz5K7N5F7IDZJG0BxXc5L3Z5Miw~VOQaRV4ovzrBl2TCZXGfRXMETNLLg~nMZ3ByXf-sgDLH4x0MgQ6~6jnd7VUOqRJnewyEC6N6ys8IqP3xFcJ8IP2dqIOyJhPZIAHQxZzW0LUj31U03VwU8YWrRrZCxLQ0BU4rjClb1JdzvFD0KES0ipfTEltuy~7AaU38L~mPM2vjOT~zsGSEqXDlC-Q6UdKremg~R0Sm8iAhVVEOQQnEiquBCGkaqE-EjZgwNvai55Gnw5nRWzYHyajV1l53t9fiaVgSq1WHUZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162665"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162665/Minimal_norm_interpolation_in_harmonic_Hilbert_spaces_and_Wiener_amalgam_spaces_on_locally_compact_abelian_groups"><img alt="Research paper thumbnail of Minimal norm interpolation in harmonic Hilbert spaces and Wiener amalgam spaces on locally compact abelian groups" class="work-thumbnail" src="https://attachments.academia-assets.com/86636479/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162665/Minimal_norm_interpolation_in_harmonic_Hilbert_spaces_and_Wiener_amalgam_spaces_on_locally_compact_abelian_groups">Minimal norm interpolation in harmonic Hilbert spaces and Wiener amalgam spaces on locally compact abelian groups</a></div><div class="wp-workCard_item"><span>Journal of Mathematics of Kyoto University</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The family of harmonic Hilbert spaces is a natural enlargement of those classical L 2-Sobolev spa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The family of harmonic Hilbert spaces is a natural enlargement of those classical L 2-Sobolev space on R d which consist of continuous functions. In the present paper we demonstrate that the use of basic results from the theory of Wiener amalgam spaces allows to establish fundamental properties of harmonic Hilbert spaces even if they are defined over an arbitrary locally compact abelian group G. Even for G = R d this new approach improves previously known results. In this paper we present results on minimal norm interpolators over lattices and show that the infinite minimal norm interpolations are the limits of finite minimal norm interpolations. In addition, the new approach paves the way for the study of stability problems and error analysis for norm interpolations in harmonic Hilbert and Banach spaces on locally compact abelian groups.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a49a39b50a1da14549b915c93d0b24f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636479,&quot;asset_id&quot;:80162665,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636479/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162665"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162665"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162665; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162665]").text(description); $(".js-view-count[data-work-id=80162665]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162665; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162665']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a49a39b50a1da14549b915c93d0b24f" } } $('.js-work-strip[data-work-id=80162665]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162665,"title":"Minimal norm interpolation in harmonic Hilbert spaces and Wiener amalgam spaces on locally compact abelian groups","internal_url":"https://www.academia.edu/80162665/Minimal_norm_interpolation_in_harmonic_Hilbert_spaces_and_Wiener_amalgam_spaces_on_locally_compact_abelian_groups","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636479/thumbnails/1.jpg","file_name":"0502093.pdf","download_url":"https://www.academia.edu/attachments/86636479/download_file","bulk_download_file_name":"Minimal_norm_interpolation_in_harmonic_H.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636479/0502093-libre.pdf?1653810286=\u0026response-content-disposition=attachment%3B+filename%3DMinimal_norm_interpolation_in_harmonic_H.pdf\u0026Expires=1740545276\u0026Signature=Rr8hapLs33qhdVKNLaVoAQUBfPCALjp24pv15LJP~IgRh4k3hQ~Oa74jiSCNghOk7UF1eC246wTHVQMopxYh5SZZmDJl~G0qGAcL2FKPeJ9jGVkw-rfkGC~nxIFFO1VzuNkHMcPAijLPgh-rjIT~UjbpOFOxYDh1jkCGZdoOD63Q8SlUGbqjZujk8AwG77jRH1~ojCVz05aAObHrzliXgPicovKgLZJbMnw1a8PH0tWWLPncf3uVH5WMnpqjXYwzXRjN5zvkblMJY-6T4pG1tNK4Lr1ljvnHfB6kP-PFPEyDFbN1UGzw1LflN6VqrX6kmu6nJhyocEPqPxHzm~XW-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="15037473" id="papers"><div class="js-work-strip profile--work_container" data-work-id="80162731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/80162731/A_study_in_the_theory_of_multipliers_on_banach_and_locally_convex_spaces"><img alt="Research paper thumbnail of A study in the theory of multipliers on banach and locally convex spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/80162731/A_study_in_the_theory_of_multipliers_on_banach_and_locally_convex_spaces">A study in the theory of multipliers on banach and locally convex spaces</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162731]").text(description); $(".js-view-count[data-work-id=80162731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=80162731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162731,"title":"A study in the theory of multipliers on banach and locally convex spaces","internal_url":"https://www.academia.edu/80162731/A_study_in_the_theory_of_multipliers_on_banach_and_locally_convex_spaces","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162730/Weak_amenability_of_Segal_algebras"><img alt="Research paper thumbnail of Weak amenability of Segal algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/86636469/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162730/Weak_amenability_of_Segal_algebras">Weak amenability of Segal algebras</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let G G be a locally compact abelian group, and let p ∈ [ 1 , ∞ ) p \in [1,\infty ) . We show tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let G G be a locally compact abelian group, and let p ∈ [ 1 , ∞ ) p \in [1,\infty ) . We show that the Segal algebra S p ( G ) S_p(G) is always weakly amenable, but that it is amenable only if G G is discrete.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="082f46c4b2af93a32c624e97d32cd5dd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636469,&quot;asset_id&quot;:80162730,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636469/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162730]").text(description); $(".js-view-count[data-work-id=80162730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "082f46c4b2af93a32c624e97d32cd5dd" } } $('.js-work-strip[data-work-id=80162730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162730,"title":"Weak amenability of Segal algebras","internal_url":"https://www.academia.edu/80162730/Weak_amenability_of_Segal_algebras","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636469/thumbnails/1.jpg","file_name":"S0002-9939-99-05139-4.pdf","download_url":"https://www.academia.edu/attachments/86636469/download_file","bulk_download_file_name":"Weak_amenability_of_Segal_algebras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636469/S0002-9939-99-05139-4-libre.pdf?1653810287=\u0026response-content-disposition=attachment%3B+filename%3DWeak_amenability_of_Segal_algebras.pdf\u0026Expires=1740545276\u0026Signature=Ip4z8fThMRgcLxlsAMR0f~ppXEIP--qgkdhlRm9LN5Iq3L9bHZCslNAjQN4X8rbfjbDUe70Cai~e7N65ov91VfRRvQhb4z-RsiDginv2gE9x2EZBWILBbzGVL0KMe-MKNRzXTt7KJbYjdBjAXEJfYptEBIfgbSy1Mfj0kVuLMn8CFARbE-0OtQblpxy~ksxA1hUhmK2pkM-2WpNgu79On~yU81DXj6kQZ2mbeGJFFB058TKPR3YQngWyKURhjMLhFLEPHQYMTmK2Pdu9v4ZdOQQyXJtA8ZfeKmRHRn8tbZcOoHVWKYDpUkPk3VMRURfTRXIeadQOHzEcHo1lw-Ux~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":86636468,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636468/thumbnails/1.jpg","file_name":"S0002-9939-99-05139-4.pdf","download_url":"https://www.academia.edu/attachments/86636468/download_file","bulk_download_file_name":"Weak_amenability_of_Segal_algebras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636468/S0002-9939-99-05139-4-libre.pdf?1653810287=\u0026response-content-disposition=attachment%3B+filename%3DWeak_amenability_of_Segal_algebras.pdf\u0026Expires=1740545276\u0026Signature=gYA-8L4~NiiHiiym11bVL-Q8izdDC5XETN-5e93uW6w1Wn3UY6zbkQ4h18WKX1RsXR~1qmlk~PzLWFT7lF0XGhv2ZN5CQXbKp08twpvQFrxJ6JNyY8AVgAORVw9n7lssQL2iRCgFY~U-6pBa53x6K516qAeixVFSuMujGXRGhIkF0sJp75rkOsb1SHW0RwYQuNZorjiwxGiwUmah6dIbKeoRx0CsgRcrC~~QDJkj2~aVzLf0~BMqqirZ2UNt~fLudxkRZ11sitV2Z1qoBnztPL0Dmyb2ZqMrJyeWkCi2bPMX4e1HkXGKLrPKSoHcZ~wrMNYjr0jlAK38CSdKniFtag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162729/Gabor_multipliers_for_weighted_Banach_spaces_on_locally_compact_abelian_groups"><img alt="Research paper thumbnail of Gabor multipliers for weighted Banach spaces on locally compact abelian groups" class="work-thumbnail" src="https://attachments.academia-assets.com/86636510/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162729/Gabor_multipliers_for_weighted_Banach_spaces_on_locally_compact_abelian_groups">Gabor multipliers for weighted Banach spaces on locally compact abelian groups</a></div><div class="wp-workCard_item"><span>Journal of Mathematics of Kyoto University</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We use a projective groups representation ρ of the unimodular group G ×Ĝ on L 2 (G) to define Gab...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We use a projective groups representation ρ of the unimodular group G ×Ĝ on L 2 (G) to define Gabor wavelet transform of a function f with respect to a window function g, where G is a locally compact abelian group andĜ its dual group. Using these transforms, we define a weighted Banach H 1, ρ w (G) and its antidual space H 1 ∼ , ρ w (G), w being a moderate weight function on G ×Ĝ. These spaces reduce to the well known Feichtinger algebra S 0 (G) and Banach space of Feichtinger distribution S 0 (G) respectively for w ≡ 1. We obtain an atomic decomposition of H 1, ρ w (G) and study some properties of Gabor multipliers on the spaces L 2 (G), H 1, ρ w (G) and H 1 ∼ , ρ w (G). Finally, we prove a theorem on the compactness of Gabor multiplier operators on L 2 (G) and H 1, ρ w (G), which reduces to an earlier result of Feichtinger [Fei 02, Theorem 5.15 (iv)] for w = 1 and G = R d .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d101bb13cd03c8394401f9a10b69b6e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636510,&quot;asset_id&quot;:80162729,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636510/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162729]").text(description); $(".js-view-count[data-work-id=80162729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d101bb13cd03c8394401f9a10b69b6e8" } } $('.js-work-strip[data-work-id=80162729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162729,"title":"Gabor multipliers for weighted Banach spaces on locally compact abelian groups","internal_url":"https://www.academia.edu/80162729/Gabor_multipliers_for_weighted_Banach_spaces_on_locally_compact_abelian_groups","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636510,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636510/thumbnails/1.jpg","file_name":"1256219154.pdf","download_url":"https://www.academia.edu/attachments/86636510/download_file","bulk_download_file_name":"Gabor_multipliers_for_weighted_Banach_sp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636510/1256219154-libre.pdf?1653810880=\u0026response-content-disposition=attachment%3B+filename%3DGabor_multipliers_for_weighted_Banach_sp.pdf\u0026Expires=1740545276\u0026Signature=NtV6mDlBLQVLBMQB8sQRRzhq9wfh3Nl1EgguCiXHaTJxWgg8BPnqTSFV~Dy26d3eRy1h7UhZCxhcIBB1UwkHg7k7HfefwY~pOl3drm-2tXCqDeSAgTEU5jQ28HFG32y3nIj21lW2hESYxPID0fWDCT-pl665nHb8Lq-rAzrCC8Vu64uAoCMBrzE7puQFwnTrRkLWQMtvYwo3AZ0FuVaVV7xO8HjkyhLW7xiaVptehJvBI71W3JaGAKgcCg3va0dehBtr3mhmFOPrxGPz7x5wynlKFNy~~9WBlnjdem0lar9apfgJj2jLXzQjtRMwBg1~kh0k1JziPByO-Ar-e97p0Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162725"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162725/Recovery_of_Band_Limited_Functions_on_Locally_Compact_Abelian_Groups_from_Irregular_Samples"><img alt="Research paper thumbnail of Recovery of Band-Limited Functions on Locally Compact Abelian Groups from Irregular Samples" class="work-thumbnail" src="https://attachments.academia-assets.com/86636511/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162725/Recovery_of_Band_Limited_Functions_on_Locally_Compact_Abelian_Groups_from_Irregular_Samples">Recovery of Band-Limited Functions on Locally Compact Abelian Groups from Irregular Samples</a></div><div class="wp-workCard_item"><span>Czechoslovak Mathematical Journal</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="efe459747ab884ff73f60b91bee90353" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636511,&quot;asset_id&quot;:80162725,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636511/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162725"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162725"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162725; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162725]").text(description); $(".js-view-count[data-work-id=80162725]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162725; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162725']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "efe459747ab884ff73f60b91bee90353" } } $('.js-work-strip[data-work-id=80162725]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162725,"title":"Recovery of Band-Limited Functions on Locally Compact Abelian Groups from Irregular Samples","internal_url":"https://www.academia.edu/80162725/Recovery_of_Band_Limited_Functions_on_Locally_Compact_Abelian_Groups_from_Irregular_Samples","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636511,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636511/thumbnails/1.jpg","file_name":"CzechMathJ_53-2003-2_3.pdf","download_url":"https://www.academia.edu/attachments/86636511/download_file","bulk_download_file_name":"Recovery_of_Band_Limited_Functions_on_Lo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636511/CzechMathJ_53-2003-2_3-libre.pdf?1653810881=\u0026response-content-disposition=attachment%3B+filename%3DRecovery_of_Band_Limited_Functions_on_Lo.pdf\u0026Expires=1740545276\u0026Signature=HWCqx98avjSZ7TKkrHDJxGh-ZXupAmWTeafQig4KTMHc2-~YF2A1IfVoNE~rhr~SX2O0KahppIkeCl9eFR~oyTXLBQUsq2lhBL5teoKKy6btraTWXBi2OhLBRfxg6hpFvvEY4GMBc04BC0ujwdguxcdhKuavEpBLgMr-QsJ~C3LtSu9x7-TH~MwWJD5dvZa9l19k8njMyKxxdZJFPCcd8mVPRPuHIQIyFWQdqnfX0OBpJ-vMJFBA5y2q~hwIA2m-23YUP0oEB-RS~dfJoXZfhyy7pF9qPCqgd86OEhPYki5qZ1SjIi-iim9khxJsduszCGIPmToxZWrbMLQiezZRcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162723"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162723/A_Multiplier_Problem_for_Fourier_Jacobi_Expansions_in_a_Banach_Space"><img alt="Research paper thumbnail of A Multiplier Problem for Fourier-Jacobi Expansions in a Banach Space" class="work-thumbnail" src="https://attachments.academia-assets.com/86636503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162723/A_Multiplier_Problem_for_Fourier_Jacobi_Expansions_in_a_Banach_Space">A Multiplier Problem for Fourier-Jacobi Expansions in a Banach Space</a></div><div class="wp-workCard_item"><span>Tokyo Journal of Mathematics</span><span>, 1992</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68b407814e0b1579e02670c1523a1a2d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636503,&quot;asset_id&quot;:80162723,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636503/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162723"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162723"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162723; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162723]").text(description); $(".js-view-count[data-work-id=80162723]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162723; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162723']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68b407814e0b1579e02670c1523a1a2d" } } $('.js-work-strip[data-work-id=80162723]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162723,"title":"A Multiplier Problem for Fourier-Jacobi Expansions in a Banach Space","internal_url":"https://www.academia.edu/80162723/A_Multiplier_Problem_for_Fourier_Jacobi_Expansions_in_a_Banach_Space","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636503/thumbnails/1.jpg","file_name":"1270129469.pdf","download_url":"https://www.academia.edu/attachments/86636503/download_file","bulk_download_file_name":"A_Multiplier_Problem_for_Fourier_Jacobi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636503/1270129469-libre.pdf?1653810880=\u0026response-content-disposition=attachment%3B+filename%3DA_Multiplier_Problem_for_Fourier_Jacobi.pdf\u0026Expires=1740545276\u0026Signature=bd~froKZb5dtDqG8qVoBedkDhnIK1KYaFGqhuf1pwia-WPQuN6HOEPAl5-Ulk7dMyPwU6FfYH7emBKnF-dgn6vrye9WMAFRAzRcjPvuVsWf2kDoOTsoM0TkYik60xofK~fJP8lLyDylBQa8FGv3Fe5Umex-~Zp-TOrX3BVmDrWqVZZC1lryZ4ho4z05S7IqNc0dzcD9w0CkJhb-~QnGD8vjvs9vcGECKr7O3jw-Fz3UPL-X-c1hPEVK4F8vASOddlB6mugi1lvrlGajl7R7qyK1yWJt~rDFdzjNxdpgQFPa7voL6mY5oUDE0Zwl4LcbTvPqx1lql86RVslx4yajASA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162721"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162721/Compact_Operators_on_Homogeneous_Banach_Spaces_of_Distributions_on_Locally_Compact_Abelian_Groups"><img alt="Research paper thumbnail of Compact Operators on Homogeneous Banach Spaces of Distributions on Locally Compact Abelian Groups" class="work-thumbnail" src="https://attachments.academia-assets.com/86636554/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162721/Compact_Operators_on_Homogeneous_Banach_Spaces_of_Distributions_on_Locally_Compact_Abelian_Groups">Compact Operators on Homogeneous Banach Spaces of Distributions on Locally Compact Abelian Groups</a></div><div class="wp-workCard_item"><span>Southeast Asian Bulletin of Mathematics</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, two theorems about the compactness of almost invariant operators on homogeneous Ba...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, two theorems about the compactness of almost invariant operators on homogeneous Banach spaces of distributions (in the sense of Feichtinger [11]) defined on a locally compact abelian group are proved. Our theorems generalize the corresponding results of K. de Leeuw [3] and Tewari and Madan [18] for operators on homogeneous Banach spaces on the circle group and Segal algebras on a compact abelian groups, respectively.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="573a2d26020be995328c8ccd95c4d562" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636554,&quot;asset_id&quot;:80162721,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636554/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162721"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162721"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162721; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162721]").text(description); $(".js-view-count[data-work-id=80162721]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162721; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162721']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "573a2d26020be995328c8ccd95c4d562" } } $('.js-work-strip[data-work-id=80162721]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162721,"title":"Compact Operators on Homogeneous Banach Spaces of Distributions on Locally Compact Abelian Groups","internal_url":"https://www.academia.edu/80162721/Compact_Operators_on_Homogeneous_Banach_Spaces_of_Distributions_on_Locally_Compact_Abelian_Groups","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636554,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636554/thumbnails/1.jpg","file_name":"20260611.pdf","download_url":"https://www.academia.edu/attachments/86636554/download_file","bulk_download_file_name":"Compact_Operators_on_Homogeneous_Banach.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636554/20260611-libre.pdf?1653810877=\u0026response-content-disposition=attachment%3B+filename%3DCompact_Operators_on_Homogeneous_Banach.pdf\u0026Expires=1740545276\u0026Signature=LpLQRfCDZT2THp8I-Fchgw5dg~K~-ZwMf9GQzJTovimFCKiXq4LtTBV-aaRl4sDw-HqhDrc7tdd2-O5aCDGMVzTzRFEm6~NhA6B0SdesoLPlPACvtpEbChzCauGWqo34y1HeqUlrSZCgMAegqWvivIKJ7D5DvrE~xvnUHA70QV0T-GvKP-w3R6OIfSLoIIg46JNTXE7xRn7aVZdX-BdxKTwcs8NCnPH7GeBh26bCRGixDYmUkcMQ7f2~eoPXopZh669K3isyVZpwTzgBU9Zs~H~LP5p1aHrBI1Omk6M0uhiR9iaGxtsBpBjfZ~-2F6IZUjSpGvtsLsrByHiVoVxC5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162719"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162719/Error_estimates_for_irregular_sampling_of_band_limited_functions_on_a_locally_compact_Abelian_group"><img alt="Research paper thumbnail of Error estimates for irregular sampling of band-limited functions on a locally compact Abelian group" class="work-thumbnail" src="https://attachments.academia-assets.com/86636536/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162719/Error_estimates_for_irregular_sampling_of_band_limited_functions_on_a_locally_compact_Abelian_group">Error estimates for irregular sampling of band-limited functions on a locally compact Abelian group</a></div><div class="wp-workCard_item"><span>Journal of Mathematical Analysis and Applications</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Band-limited functions f can be recovered from their sampling values (f (x i)) by means of iterat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Band-limited functions f can be recovered from their sampling values (f (x i)) by means of iterative methods, if only the sampling density is high enough. We present an error analysis for these methods, treating the typical forms of errors, i.e., jitter error, truncation error, aliasing error, quantization error, and their combinations. The derived apply uniformly to whole families of spaces, e.g., to weighted L p-spaces over some locally compact Abelian group with growth rate up to some given order. In contrast to earlier papers we do not make use of any (relative) separation condition on the sampling sets. Furthermore we discard the assumption on polynomial growth of the weights that has been used over Euclidean spaces. Consequently, even for the case of regular sampling, i.e., sampling along lattices in G, the results are new in the given generality.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6fbd55581a816b305d01065c2dc4f702" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636536,&quot;asset_id&quot;:80162719,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636536/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162719"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162719"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162719; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162719]").text(description); $(".js-view-count[data-work-id=80162719]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162719; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162719']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6fbd55581a816b305d01065c2dc4f702" } } $('.js-work-strip[data-work-id=80162719]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162719,"title":"Error estimates for irregular sampling of band-limited functions on a locally compact Abelian group","internal_url":"https://www.academia.edu/80162719/Error_estimates_for_irregular_sampling_of_band_limited_functions_on_a_locally_compact_Abelian_group","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636536,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636536/thumbnails/1.jpg","file_name":"82475147.pdf","download_url":"https://www.academia.edu/attachments/86636536/download_file","bulk_download_file_name":"Error_estimates_for_irregular_sampling_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636536/82475147-libre.pdf?1653810877=\u0026response-content-disposition=attachment%3B+filename%3DError_estimates_for_irregular_sampling_o.pdf\u0026Expires=1740545276\u0026Signature=bejkSXEm1Iho-Kb9GURq3y1Z23F04ngTyeBjPyIUIARnaI8y~Xabyun9ce8YBrOKqH8HhRseeW1e0pG8mwGGZYkZaq-YeD49XvJV0aIm5ZWVvGG5AEDWyYiaG3v8FYsIW~dOMdW-O2LQobQ4IOYMxHrx02srCNxr~tzA7Mwnutmb1ycaZYqg~Ay2Q11DfbkHEiyhFHMab8a9UkW5wjRobLbeu9G5RdINPJNkg-v~2QYnx93g5Qk5EQYuj62PjDeoyKFMa3jRDxpHbrranIAK9hhxBsbZNCHQMt2sh4A2jR8BZfnIOuyv3rQ---gdaeDOq07YVdt6b4TdmaFT-af8VA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162717"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162717/Compactness_in_Wiener_amalgams_on_locally_compact_groups"><img alt="Research paper thumbnail of Compactness in Wiener amalgams on locally compact groups" class="work-thumbnail" src="https://attachments.academia-assets.com/86636618/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162717/Compactness_in_Wiener_amalgams_on_locally_compact_groups">Compactness in Wiener amalgams on locally compact groups</a></div><div class="wp-workCard_item"><span>International Journal of Mathematics and Mathematical Sciences</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the compactness of bounded subsets in a Wiener amalgam whose local and global components...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the compactness of bounded subsets in a Wiener amalgam whose local and global components are solid Banach function (BF) spaces on a locally compact group. Our main theorem provides a generalization of the corresponding results of Feichtinger. This paper paves the way for the study of compact multiplier operators on general Wiener amalgams on the lines of Feichtinger.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="59d68f20df29ffcb55bd1645c4808ade" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636618,&quot;asset_id&quot;:80162717,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636618/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162717"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162717"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162717; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162717]").text(description); $(".js-view-count[data-work-id=80162717]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162717; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162717']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "59d68f20df29ffcb55bd1645c4808ade" } } $('.js-work-strip[data-work-id=80162717]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162717,"title":"Compactness in Wiener amalgams on locally compact groups","internal_url":"https://www.academia.edu/80162717/Compactness_in_Wiener_amalgams_on_locally_compact_groups","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636618/thumbnails/1.jpg","file_name":"bcfc7106acceb3c30931858a3922b4dc29c3.pdf","download_url":"https://www.academia.edu/attachments/86636618/download_file","bulk_download_file_name":"Compactness_in_Wiener_amalgams_on_locall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636618/bcfc7106acceb3c30931858a3922b4dc29c3-libre.pdf?1653810868=\u0026response-content-disposition=attachment%3B+filename%3DCompactness_in_Wiener_amalgams_on_locall.pdf\u0026Expires=1740545276\u0026Signature=Ab0B~dArSLab8ZDAmAFYgSG73o-5LpLWKA8PQvS7p5fdRtqzz5K7N5F7IDZJG0BxXc5L3Z5Miw~VOQaRV4ovzrBl2TCZXGfRXMETNLLg~nMZ3ByXf-sgDLH4x0MgQ6~6jnd7VUOqRJnewyEC6N6ys8IqP3xFcJ8IP2dqIOyJhPZIAHQxZzW0LUj31U03VwU8YWrRrZCxLQ0BU4rjClb1JdzvFD0KES0ipfTEltuy~7AaU38L~mPM2vjOT~zsGSEqXDlC-Q6UdKremg~R0Sm8iAhVVEOQQnEiquBCGkaqE-EjZgwNvai55Gnw5nRWzYHyajV1l53t9fiaVgSq1WHUZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80162665"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/80162665/Minimal_norm_interpolation_in_harmonic_Hilbert_spaces_and_Wiener_amalgam_spaces_on_locally_compact_abelian_groups"><img alt="Research paper thumbnail of Minimal norm interpolation in harmonic Hilbert spaces and Wiener amalgam spaces on locally compact abelian groups" class="work-thumbnail" src="https://attachments.academia-assets.com/86636479/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/80162665/Minimal_norm_interpolation_in_harmonic_Hilbert_spaces_and_Wiener_amalgam_spaces_on_locally_compact_abelian_groups">Minimal norm interpolation in harmonic Hilbert spaces and Wiener amalgam spaces on locally compact abelian groups</a></div><div class="wp-workCard_item"><span>Journal of Mathematics of Kyoto University</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The family of harmonic Hilbert spaces is a natural enlargement of those classical L 2-Sobolev spa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The family of harmonic Hilbert spaces is a natural enlargement of those classical L 2-Sobolev space on R d which consist of continuous functions. In the present paper we demonstrate that the use of basic results from the theory of Wiener amalgam spaces allows to establish fundamental properties of harmonic Hilbert spaces even if they are defined over an arbitrary locally compact abelian group G. Even for G = R d this new approach improves previously known results. In this paper we present results on minimal norm interpolators over lattices and show that the infinite minimal norm interpolations are the limits of finite minimal norm interpolations. In addition, the new approach paves the way for the study of stability problems and error analysis for norm interpolations in harmonic Hilbert and Banach spaces on locally compact abelian groups.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a49a39b50a1da14549b915c93d0b24f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86636479,&quot;asset_id&quot;:80162665,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86636479/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80162665"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80162665"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80162665; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80162665]").text(description); $(".js-view-count[data-work-id=80162665]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80162665; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80162665']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a49a39b50a1da14549b915c93d0b24f" } } $('.js-work-strip[data-work-id=80162665]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80162665,"title":"Minimal norm interpolation in harmonic Hilbert spaces and Wiener amalgam spaces on locally compact abelian groups","internal_url":"https://www.academia.edu/80162665/Minimal_norm_interpolation_in_harmonic_Hilbert_spaces_and_Wiener_amalgam_spaces_on_locally_compact_abelian_groups","owner_id":223886010,"coauthors_can_edit":true,"owner":{"id":223886010,"first_name":"SHEEL","middle_initials":null,"last_name":"PANDEY","page_name":"SHEELPANDEY","domain_name":"independent","created_at":"2022-05-17T23:50:25.745-07:00","display_name":"SHEEL PANDEY","url":"https://independent.academia.edu/SHEELPANDEY"},"attachments":[{"id":86636479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86636479/thumbnails/1.jpg","file_name":"0502093.pdf","download_url":"https://www.academia.edu/attachments/86636479/download_file","bulk_download_file_name":"Minimal_norm_interpolation_in_harmonic_H.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86636479/0502093-libre.pdf?1653810286=\u0026response-content-disposition=attachment%3B+filename%3DMinimal_norm_interpolation_in_harmonic_H.pdf\u0026Expires=1740545276\u0026Signature=Rr8hapLs33qhdVKNLaVoAQUBfPCALjp24pv15LJP~IgRh4k3hQ~Oa74jiSCNghOk7UF1eC246wTHVQMopxYh5SZZmDJl~G0qGAcL2FKPeJ9jGVkw-rfkGC~nxIFFO1VzuNkHMcPAijLPgh-rjIT~UjbpOFOxYDh1jkCGZdoOD63Q8SlUGbqjZujk8AwG77jRH1~ojCVz05aAObHrzliXgPicovKgLZJbMnw1a8PH0tWWLPncf3uVH5WMnpqjXYwzXRjN5zvkblMJY-6T4pG1tNK4Lr1ljvnHfB6kP-PFPEyDFbN1UGzw1LflN6VqrX6kmu6nJhyocEPqPxHzm~XW-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "623a421deb5a0b5e344cf332a5492c41fb424818022c92ab80bddd22a10c5981", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="wTRzRBLzsWuUuwXP8NCuPbYtxPKlrhztU4qJp86GV38m5gpidqBB7Nzg0yrIOnxEfIHAOaxIpFFvjvUmRYfzYw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/SHEELPANDEY" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="vuisTVeuiFfe9qaBy5I5GZcjGfSopkCpIyO81zibcTlZOtVrM_140JatcGTzeOtgXY8dP6FA-BUfJ8BWs5rVJQ" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10