CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 286 results for author: <span class="mathjax">Evans, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Evans%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Evans, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Evans%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Evans, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Evans%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01495">arXiv:2501.01495</a> <span> [<a href="https://arxiv.org/pdf/2501.01495">pdf</a>, <a href="https://arxiv.org/format/2501.01495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a> , et al. (1794 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01495v1-abstract-short" style="display: inline;"> Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent ana… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01495v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01495v1-abstract-full" style="display: none;"> Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering the single-harmonic and the dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is $6.4\!\times\!10^{-27}$ for the young energetic pulsar J0537-6910, while the lowest constraint on the ellipticity is $8.8\!\times\!10^{-9}$ for the bright nearby millisecond pulsar J0437-4715. Additionally, for a subset of 16 targets we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of non-standard polarizations as predicted by the Brans-Dicke theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01495v1-abstract-full').style.display = 'none'; document.getElementById('2501.01495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main paper: 12 pages, 6 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400315 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14607">arXiv:2411.14607</a> <span> [<a href="https://arxiv.org/pdf/2411.14607">pdf</a>, <a href="https://arxiv.org/format/2411.14607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Advanced LIGO detector performance in the fourth observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Capote%2C+E">E. Capote</a>, <a href="/search/astro-ph?searchtype=author&query=Jia%2C+W">W. Jia</a>, <a href="/search/astro-ph?searchtype=author&query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/astro-ph?searchtype=author&query=Nakano%2C+M">M. Nakano</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+V">V. Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/astro-ph?searchtype=author&query=Appert%2C+S">S. Appert</a>, <a href="/search/astro-ph?searchtype=author&query=Apple%2C+S+K">S. K. Apple</a>, <a href="/search/astro-ph?searchtype=author&query=Arai%2C+K">K. Arai</a>, <a href="/search/astro-ph?searchtype=author&query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/astro-ph?searchtype=author&query=Ball%2C+M">M. Ball</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Barker%2C+D">D. Barker</a>, <a href="/search/astro-ph?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Betzwieser%2C+J">J. Betzwieser</a>, <a href="/search/astro-ph?searchtype=author&query=Bhattacharjee%2C+D">D. Bhattacharjee</a>, <a href="/search/astro-ph?searchtype=author&query=Billingsley%2C+G">G. Billingsley</a>, <a href="/search/astro-ph?searchtype=author&query=Biscans%2C+S">S. Biscans</a>, <a href="/search/astro-ph?searchtype=author&query=Blair%2C+C+D">C. D. Blair</a>, <a href="/search/astro-ph?searchtype=author&query=Bode%2C+N">N. Bode</a>, <a href="/search/astro-ph?searchtype=author&query=Bonilla%2C+E">E. Bonilla</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14607v1-abstract-short" style="display: inline;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14607v1-abstract-full" style="display: none;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'none'; document.getElementById('2411.14607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16565">arXiv:2410.16565</a> <span> [<a href="https://arxiv.org/pdf/2410.16565">pdf</a>, <a href="https://arxiv.org/format/2410.16565">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational waves emitted from SN 2023ixf </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1758 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16565v1-abstract-short" style="display: inline;"> We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16565v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16565v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16565v1-abstract-full" style="display: none;"> We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16565v1-abstract-full').style.display = 'none'; document.getElementById('2410.16565v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400125 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09151">arXiv:2410.09151</a> <span> [<a href="https://arxiv.org/pdf/2410.09151">pdf</a>, <a href="https://arxiv.org/format/2410.09151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a> , et al. (1758 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09151v1-abstract-short" style="display: inline;"> The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09151v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09151v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09151v1-abstract-full" style="display: none;"> The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09151v1-abstract-full').style.display = 'none'; document.getElementById('2410.09151v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages of text including references, 4 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400192 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00293">arXiv:2410.00293</a> <span> [<a href="https://arxiv.org/pdf/2410.00293">pdf</a>, <a href="https://arxiv.org/format/2410.00293">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Criteria for identifying and evaluating locations that could potentially host the Cosmic Explorer observatories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Daniel%2C+K+J">Kathryne J. Daniel</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+J+R">Joshua R. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S">Stefan Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Bristol%2C+W">Warren Bristol</a>, <a href="/search/astro-ph?searchtype=author&query=Driggers%2C+J+C">Jennifer C. Driggers</a>, <a href="/search/astro-ph?searchtype=author&query=Effler%2C+A">Anamaria Effler</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Hoover%2C+J">Joseph Hoover</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Landry%2C+M">Michael Landry</a>, <a href="/search/astro-ph?searchtype=author&query=Lovelace%2C+G">Geoffrey Lovelace</a>, <a href="/search/astro-ph?searchtype=author&query=Lukinbeal%2C+C">Chris Lukinbeal</a>, <a href="/search/astro-ph?searchtype=author&query=Mandic%2C+V">Vuk Mandic</a>, <a href="/search/astro-ph?searchtype=author&query=Pham%2C+K">Kiet Pham</a>, <a href="/search/astro-ph?searchtype=author&query=Read%2C+J">Jocelyn Read</a>, <a href="/search/astro-ph?searchtype=author&query=Russell%2C+J+B">Joshua B. Russell</a>, <a href="/search/astro-ph?searchtype=author&query=Schiettekatte%2C+F">Francois Schiettekatte</a>, <a href="/search/astro-ph?searchtype=author&query=Schofield%2C+R+M+S">Robert M. S. Schofield</a>, <a href="/search/astro-ph?searchtype=author&query=Scholz%2C+C+A">Christopher A. Scholz</a>, <a href="/search/astro-ph?searchtype=author&query=Shoemaker%2C+D+H">David H. Shoemaker</a>, <a href="/search/astro-ph?searchtype=author&query=Sledge%2C+P">Piper Sledge</a>, <a href="/search/astro-ph?searchtype=author&query=Strunk%2C+A">Amber Strunk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00293v1-abstract-short" style="display: inline;"> Cosmic Explorer (CE) is a next-generation ground-based gravitational-wave observatory that is being designed in the 2020s and is envisioned to begin operations in the 2030s together with the Einstein Telescope in Europe. The CE concept currently consists of two widely separated L-shaped observatories in the United States, one with 40 km-long arms and the other with 20 km-long arms. This order of m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00293v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00293v1-abstract-full" style="display: none;"> Cosmic Explorer (CE) is a next-generation ground-based gravitational-wave observatory that is being designed in the 2020s and is envisioned to begin operations in the 2030s together with the Einstein Telescope in Europe. The CE concept currently consists of two widely separated L-shaped observatories in the United States, one with 40 km-long arms and the other with 20 km-long arms. This order of magnitude increase in scale with respect to the LIGO-Virgo-KAGRA observatories will, together with technological improvements, deliver an order of magnitude greater astronomical reach, allowing access to gravitational waves from remnants of the first stars and opening a wide discovery aperture to the novel and unknown. In addition to pushing the reach of gravitational-wave astronomy, CE endeavors to approach the lifecycle of large scientific facilities in a way that prioritizes mutually beneficial relationships with local and Indigenous communities. This article describes the (scientific, cost and access, and social) criteria that will be used to identify and evaluate locations that could potentially host the CE observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00293v1-abstract-full').style.display = 'none'; document.getElementById('2410.00293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02831">arXiv:2409.02831</a> <span> [<a href="https://arxiv.org/pdf/2409.02831">pdf</a>, <a href="https://arxiv.org/format/2409.02831">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> LIGO Detector Characterization in the first half of the fourth Observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Soni%2C+S">S. Soni</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+D">D. Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Renzo%2C+F+D">F. Di. Renzo</a>, <a href="/search/astro-ph?searchtype=author&query=Effler%2C+A">A. Effler</a>, <a href="/search/astro-ph?searchtype=author&query=Ferreira%2C+T+A">T. A. Ferreira</a>, <a href="/search/astro-ph?searchtype=author&query=Glanzer%2C+J">J. Glanzer</a>, <a href="/search/astro-ph?searchtype=author&query=Goetz%2C+E">E. Goetz</a>, <a href="/search/astro-ph?searchtype=author&query=Gonz%C3%A1lez%2C+G">G. Gonz谩lez</a>, <a href="/search/astro-ph?searchtype=author&query=Helmling-Cornell%2C+A">A. Helmling-Cornell</a>, <a href="/search/astro-ph?searchtype=author&query=Hughey%2C+B">B. Hughey</a>, <a href="/search/astro-ph?searchtype=author&query=Huxford%2C+R">R. Huxford</a>, <a href="/search/astro-ph?searchtype=author&query=Mannix%2C+B">B. Mannix</a>, <a href="/search/astro-ph?searchtype=author&query=Mo%2C+G">G. Mo</a>, <a href="/search/astro-ph?searchtype=author&query=Nandi%2C+D">D. Nandi</a>, <a href="/search/astro-ph?searchtype=author&query=Neunzert%2C+A">A. Neunzert</a>, <a href="/search/astro-ph?searchtype=author&query=Nichols%2C+S">S. Nichols</a>, <a href="/search/astro-ph?searchtype=author&query=Pham%2C+K">K. Pham</a>, <a href="/search/astro-ph?searchtype=author&query=Renzini%2C+A+I">A. I. Renzini</a>, <a href="/search/astro-ph?searchtype=author&query=Schofield%2C+R+M+S">R. M. S. Schofield</a>, <a href="/search/astro-ph?searchtype=author&query=Stuver%2C+A">A Stuver</a>, <a href="/search/astro-ph?searchtype=author&query=Trevor%2C+M">M. Trevor</a>, <a href="/search/astro-ph?searchtype=author&query=%C3%81lvarez-L%C3%B3pez%2C+S">S. 脕lvarez-L贸pez</a>, <a href="/search/astro-ph?searchtype=author&query=Beda%2C+R">R. Beda</a>, <a href="/search/astro-ph?searchtype=author&query=Berry%2C+C+P+L">C. P. L. Berry</a> , et al. (211 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02831v1-abstract-short" style="display: inline;"> Progress in gravitational-wave astronomy depends upon having sensitive detectors with good data quality. Since the end of the LIGO-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of gravitational-wave candidates and improved tools used for data-quality products. In this article, we discuss thes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02831v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02831v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02831v1-abstract-full" style="display: none;"> Progress in gravitational-wave astronomy depends upon having sensitive detectors with good data quality. Since the end of the LIGO-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of gravitational-wave candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study gravitational-waves. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02831v1-abstract-full').style.display = 'none'; document.getElementById('2409.02831v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12867">arXiv:2407.12867</a> <span> [<a href="https://arxiv.org/pdf/2407.12867">pdf</a>, <a href="https://arxiv.org/format/2407.12867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Raman%2C+G">Gayathri Raman</a>, <a href="/search/astro-ph?searchtype=author&query=Ronchini%2C+S">Samuele Ronchini</a>, <a href="/search/astro-ph?searchtype=author&query=Delaunay%2C+J">James Delaunay</a>, <a href="/search/astro-ph?searchtype=author&query=Tohuvavohu%2C+A">Aaron Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&query=Parsotan%2C+T">Tyler Parsotan</a>, <a href="/search/astro-ph?searchtype=author&query=Ambrosi%2C+E">Elena Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&query=Bernardini%2C+M+G">Maria Grazia Bernardini</a>, <a href="/search/astro-ph?searchtype=author&query=Campana%2C+S">Sergio Campana</a>, <a href="/search/astro-ph?searchtype=author&query=Cusumano%2C+G">Giancarlo Cusumano</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Ai%2C+A">Antonino D'Ai</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Avanzo%2C+P">Paolo D'Avanzo</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Elia%2C+V">Valerio D'Elia</a>, <a href="/search/astro-ph?searchtype=author&query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&query=Dichiara%2C+S">Simone Dichiara</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+P">Phil Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Kuin%2C+P">Paul Kuin</a>, <a href="/search/astro-ph?searchtype=author&query=Melandri%2C+A">Andrea Melandri</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Brien%2C+P">Paul O'Brien</a>, <a href="/search/astro-ph?searchtype=author&query=Osborne%2C+J+P">Julian P. Osborne</a>, <a href="/search/astro-ph?searchtype=author&query=Page%2C+K">Kim Page</a>, <a href="/search/astro-ph?searchtype=author&query=Palmer%2C+D+M">David M. Palmer</a>, <a href="/search/astro-ph?searchtype=author&query=Sbarufatti%2C+B">Boris Sbarufatti</a>, <a href="/search/astro-ph?searchtype=author&query=Tagliaferri%2C+G">Gianpiero Tagliaferri</a> , et al. (1797 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12867v1-abstract-short" style="display: inline;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12867v1-abstract-full" style="display: none;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'none'; document.getElementById('2407.12867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 10 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14569">arXiv:2404.14569</a> <span> [<a href="https://arxiv.org/pdf/2404.14569">pdf</a>, <a href="https://arxiv.org/format/2404.14569">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.ado8069">10.1126/science.ado8069 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Squeezing the quantum noise of a gravitational-wave detector below the standard quantum limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jia%2C+W">Wenxuan Jia</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+V">Victoria Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Nakano%2C+M">Masayuki Nakano</a>, <a href="/search/astro-ph?searchtype=author&query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Mavalvala%2C+N">Nergis Mavalvala</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">Rich Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">Ibrahim Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R">Rana Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Ananyeva%2C+A">Alena Ananyeva</a>, <a href="/search/astro-ph?searchtype=author&query=Appert%2C+S">Stephen Appert</a>, <a href="/search/astro-ph?searchtype=author&query=Arai%2C+K">Koji Arai</a>, <a href="/search/astro-ph?searchtype=author&query=Aritomi%2C+N">Naoki Aritomi</a>, <a href="/search/astro-ph?searchtype=author&query=Aston%2C+S">Stuart Aston</a>, <a href="/search/astro-ph?searchtype=author&query=Ball%2C+M">Matthew Ball</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S">Stefan Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Barker%2C+D">David Barker</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+B">Beverly Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Betzwieser%2C+J">Joseph Betzwieser</a>, <a href="/search/astro-ph?searchtype=author&query=Bhattacharjee%2C+D">Dripta Bhattacharjee</a>, <a href="/search/astro-ph?searchtype=author&query=Billingsley%2C+G">Garilynn Billingsley</a>, <a href="/search/astro-ph?searchtype=author&query=Bode%2C+N">Nina Bode</a>, <a href="/search/astro-ph?searchtype=author&query=Bonilla%2C+E">Edgard Bonilla</a>, <a href="/search/astro-ph?searchtype=author&query=Bossilkov%2C+V">Vladimir Bossilkov</a> , et al. (146 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14569v3-abstract-short" style="display: inline;"> Precision measurements of space and time, like those made by the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental limitations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured, giving rise to an apparent limitation called the Stan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14569v3-abstract-full').style.display = 'inline'; document.getElementById('2404.14569v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14569v3-abstract-full" style="display: none;"> Precision measurements of space and time, like those made by the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental limitations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured, giving rise to an apparent limitation called the Standard Quantum Limit (SQL). Reducing quantum noise below the SQL in gravitational-wave detectors, where photons are used to continuously measure the positions of freely falling mirrors, has been an active area of research for decades. Here we show how the LIGO A+ upgrade reduced the detectors' quantum noise below the SQL by up to 3 dB while achieving a broadband sensitivity improvement, more than two decades after this possibility was first presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14569v3-abstract-full').style.display = 'none'; document.getElementById('2404.14569v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400059 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 385, 1318 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12517">arXiv:2404.12517</a> <span> [<a href="https://arxiv.org/pdf/2404.12517">pdf</a>, <a href="https://arxiv.org/format/2404.12517">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> First results from the Axion Dark-Matter Birefringent Cavity (ADBC) experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pandey%2C+S">Swadha Pandey</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+E+D">Evan D. Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12517v1-abstract-short" style="display: inline;"> Axions and axion-like particles are strongly motivated dark matter candidates that are the subject of many current ground based dark matter searches. We present first results from the Axion Dark-Matter Birefringent Cavity (ADBC) experiment, which is an optical bow-tie cavity probing the axion-induced birefringence of electromagnetic waves. Our experiment is the first optical axion detector that is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12517v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12517v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12517v1-abstract-full" style="display: none;"> Axions and axion-like particles are strongly motivated dark matter candidates that are the subject of many current ground based dark matter searches. We present first results from the Axion Dark-Matter Birefringent Cavity (ADBC) experiment, which is an optical bow-tie cavity probing the axion-induced birefringence of electromagnetic waves. Our experiment is the first optical axion detector that is tunable and quantum noise limited, making it sensitive to a wide range of axion masses. We have iteratively probed the axion mass range 40.9-43.3$\text{ neV/c}^2$, 49.3-50.6$\text{ neV/c}^2$, and 54.4-56.7$\text{ neV/c}^2$, and found no dark matter signal. On average, we constrain the ALP-photon coupling at the level $g_{a纬纬} \leq 1.9\times 10^{-8} \text{ GeV}^{-1}$. We also present prospects for future axion dark matter detection experiments using optical cavities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12517v1-abstract-full').style.display = 'none'; document.getElementById('2404.12517v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04248">arXiv:2404.04248</a> <span> [<a href="https://arxiv.org/pdf/2404.04248">pdf</a>, <a href="https://arxiv.org/format/2404.04248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad5beb">10.3847/2041-8213/ad5beb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Gravitational Waves from the Coalescence of a $2.5\text{-}4.5~M_\odot$ Compact Object and a Neutron Star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Ak%C3%A7ay%2C+S">S. Ak莽ay</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a> , et al. (1771 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04248v3-abstract-short" style="display: inline;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the so… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'inline'; document.getElementById('2404.04248v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04248v3-abstract-full" style="display: none;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than $5~M_\odot$ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of $55^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1}$ for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'none'; document.getElementById('2404.04248v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages (10 pages author list, 13 pages main text, 1 page acknowledgements, 13 pages appendices, 8 pages bibliography), 17 figures, 16 tables. Update to match version published in The Astrophysical Journal Letters. Data products available from https://zenodo.org/records/10845779</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300352 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL 970, L34 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03004">arXiv:2403.03004</a> <span> [<a href="https://arxiv.org/pdf/2403.03004">pdf</a>, <a href="https://arxiv.org/format/2403.03004">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralight vector dark matter search using data from the KAGRA O3GK run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a> , et al. (1778 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03004v1-abstract-short" style="display: inline;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03004v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03004v1-abstract-full" style="display: none;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for $U(1)_{B-L}$ gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the $U(1)_{B-L}$ gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'none'; document.getElementById('2403.03004v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300250 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13445">arXiv:2402.13445</a> <span> [<a href="https://arxiv.org/pdf/2402.13445">pdf</a>, <a href="https://arxiv.org/format/2402.13445">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Multi-messenger Astrophysics of Black Holes and Neutron Stars as Probed by Ground-based Gravitational Wave Detectors: From Present to Future </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/astro-ph?searchtype=author&query=Berti%2C+E">Emanuele Berti</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Gupta%2C+I">Ish Gupta</a>, <a href="/search/astro-ph?searchtype=author&query=Kritos%2C+K">Konstantinos Kritos</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Nitz%2C+A+H">Alexander H. Nitz</a>, <a href="/search/astro-ph?searchtype=author&query=Owen%2C+B+J">Benjamin J. Owen</a>, <a href="/search/astro-ph?searchtype=author&query=Rajbhandari%2C+B">Binod Rajbhandari</a>, <a href="/search/astro-ph?searchtype=author&query=Read%2C+J">Jocelyn Read</a>, <a href="/search/astro-ph?searchtype=author&query=Sathyaprakash%2C+B+S">Bangalore S. Sathyaprakash</a>, <a href="/search/astro-ph?searchtype=author&query=Shoemaker%2C+D+H">David H. Shoemaker</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+J+R">Joshua R. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Vitale%2C+S">Salvatore Vitale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13445v1-abstract-short" style="display: inline;"> The ground-based gravitational wave (GW) detectors LIGO and Virgo have enabled the birth of multi-messenger GW astronomy via the detection of GWs from merging stellar-mass black holes (BHs) and neutron stars (NSs). GW170817, the first binary NS merger detected in GWs and all bands of the electromagnetic spectrum, is an outstanding example of the impact that GW discoveries can have on multi-messeng… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13445v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13445v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13445v1-abstract-full" style="display: none;"> The ground-based gravitational wave (GW) detectors LIGO and Virgo have enabled the birth of multi-messenger GW astronomy via the detection of GWs from merging stellar-mass black holes (BHs) and neutron stars (NSs). GW170817, the first binary NS merger detected in GWs and all bands of the electromagnetic spectrum, is an outstanding example of the impact that GW discoveries can have on multi-messenger astronomy. Yet, GW170817 is only one of the many and varied multi-messenger sources that can be unveiled using ground-based GW detectors. In this contribution, we summarize key open questions in the astrophysics of stellar-mass BHs and NSs that can be answered using current and future-generation ground-based GW detectors, and highlight the potential for new multi-messenger discoveries ahead. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13445v1-abstract-full').style.display = 'none'; document.getElementById('2402.13445v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review submitted to the Frontiers Research Topic "The Dynamic Universe: Realizing the Potential of Time Domain and Multimessenger Astrophysics"</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.09153">arXiv:2310.09153</a> <span> [<a href="https://arxiv.org/pdf/2310.09153">pdf</a>, <a href="https://arxiv.org/format/2310.09153">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> JWST MIRI/MRS Observations and Spectral Models of the Under-luminous Type Ia Supernova 2022xkq </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=DerKacy%2C+J+M">J. M. DerKacy</a>, <a href="/search/astro-ph?searchtype=author&query=Ashall%2C+C">C. Ashall</a>, <a href="/search/astro-ph?searchtype=author&query=Hoeflich%2C+P">P. Hoeflich</a>, <a href="/search/astro-ph?searchtype=author&query=Baron%2C+E">E. Baron</a>, <a href="/search/astro-ph?searchtype=author&query=Shahbandeh%2C+M">M. Shahbandeh</a>, <a href="/search/astro-ph?searchtype=author&query=Shappee%2C+B+J">B. J. Shappee</a>, <a href="/search/astro-ph?searchtype=author&query=Andrews%2C+J">J. Andrews</a>, <a href="/search/astro-ph?searchtype=author&query=Baade%2C+D">D. Baade</a>, <a href="/search/astro-ph?searchtype=author&query=Balangan%2C+E+F">E. F Balangan</a>, <a href="/search/astro-ph?searchtype=author&query=Bostroem%2C+K+A">K. A. Bostroem</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+P+J">P. J. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+C+R">C. R. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Burrow%2C+A">A. Burrow</a>, <a href="/search/astro-ph?searchtype=author&query=Cikota%2C+A">A. Cikota</a>, <a href="/search/astro-ph?searchtype=author&query=de+Jaeger%2C+T">T. de Jaeger</a>, <a href="/search/astro-ph?searchtype=author&query=Do%2C+A">A. Do</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+Y">Y. Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Dominguez%2C+I">I. Dominguez</a>, <a href="/search/astro-ph?searchtype=author&query=Fox%2C+O">O. Fox</a>, <a href="/search/astro-ph?searchtype=author&query=Galbany%2C+L">L. Galbany</a>, <a href="/search/astro-ph?searchtype=author&query=Hoang%2C+E+T">E. T. Hoang</a>, <a href="/search/astro-ph?searchtype=author&query=Hsiao%2C+E+Y">E. Y. Hsiao</a>, <a href="/search/astro-ph?searchtype=author&query=Janzen%2C+D">D. Janzen</a>, <a href="/search/astro-ph?searchtype=author&query=Jencson%2C+J+E">J. E. Jencson</a>, <a href="/search/astro-ph?searchtype=author&query=Krisciunas%2C+K">K. Krisciunas</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.09153v2-abstract-short" style="display: inline;"> We present a JWST mid-infrared spectrum of the under-luminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) $\sim130$ days post-explosion. We identify the first MIR lines beyond 14 $渭$m in SN Ia observations. We find features unique to under-luminous SNe Ia, including: isolated emission of stable Ni, strong blends of [Ti I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09153v2-abstract-full').style.display = 'inline'; document.getElementById('2310.09153v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.09153v2-abstract-full" style="display: none;"> We present a JWST mid-infrared spectrum of the under-luminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) $\sim130$ days post-explosion. We identify the first MIR lines beyond 14 $渭$m in SN Ia observations. We find features unique to under-luminous SNe Ia, including: isolated emission of stable Ni, strong blends of [Ti II], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Co III] 11.888 $渭$m feature and the SN light curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements we constrain the mass of the exploding white dwarf. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD (M$_{\rm ej}$ $\approx 1.37$ M$_{\odot}$) of high-central density ($蟻_c \geq 2.0\times10^{9}$ g cm$^{-3}$) seen equator on, which produced M($^{56}$Ni) $= 0.324$ M$_{\odot}$ and M($^{58}$Ni) $\geq 0.06$ M$_{\odot}$. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of sub-sonic carbon burning followed by an off-center DDT beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previously possible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09153v2-abstract-full').style.display = 'none'; document.getElementById('2310.09153v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 18 figures, accepted to ApJ; updated to accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10054">arXiv:2309.10054</a> <span> [<a href="https://arxiv.org/pdf/2309.10054">pdf</a>, <a href="https://arxiv.org/format/2309.10054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pearson%2C+J">Jeniveve Pearson</a>, <a href="/search/astro-ph?searchtype=author&query=Sand%2C+D+J">David J. Sand</a>, <a href="/search/astro-ph?searchtype=author&query=Lundqvist%2C+P">Peter Lundqvist</a>, <a href="/search/astro-ph?searchtype=author&query=Galbany%2C+L">Llu铆s Galbany</a>, <a href="/search/astro-ph?searchtype=author&query=Andrews%2C+J+E">Jennifer E. Andrews</a>, <a href="/search/astro-ph?searchtype=author&query=Bostroem%2C+K+A">K. Azalee Bostroem</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+Y">Yize Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Hoang%2C+E">Emily Hoang</a>, <a href="/search/astro-ph?searchtype=author&query=Hosseinzadeh%2C+G">Griffin Hosseinzadeh</a>, <a href="/search/astro-ph?searchtype=author&query=Janzen%2C+D">Daryl Janzen</a>, <a href="/search/astro-ph?searchtype=author&query=Jencson%2C+J+E">Jacob E. Jencson</a>, <a href="/search/astro-ph?searchtype=author&query=Lundquist%2C+M+J">Michael J. Lundquist</a>, <a href="/search/astro-ph?searchtype=author&query=Mehta%2C+D">Darshana Mehta</a>, <a href="/search/astro-ph?searchtype=author&query=Retamal%2C+N+M">Nicol谩s Meza Retamal</a>, <a href="/search/astro-ph?searchtype=author&query=Shrestha%2C+M">Manisha Shrestha</a>, <a href="/search/astro-ph?searchtype=author&query=Valenti%2C+S">Stefano Valenti</a>, <a href="/search/astro-ph?searchtype=author&query=Wyatt%2C+S">Samuel Wyatt</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+J+P">Joseph P. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Ashall%2C+C">Chris Ashall</a>, <a href="/search/astro-ph?searchtype=author&query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&query=Baron%2C+E">Eddie Baron</a>, <a href="/search/astro-ph?searchtype=author&query=Blondin%2C+S">St茅phane Blondin</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+C+R">Christopher R. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+Y">Yongzhi Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+T">Ting-Wan Chen</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10054v2-abstract-short" style="display: inline;"> We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining type Ia supernova (SN Ia) in NGC 1784 ($\mathrm{D}\approx31$ Mpc), from $<1$ to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion which are criti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10054v2-abstract-full').style.display = 'inline'; document.getElementById('2309.10054v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10054v2-abstract-full" style="display: none;"> We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining type Ia supernova (SN Ia) in NGC 1784 ($\mathrm{D}\approx31$ Mpc), from $<1$ to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion which are critical to distinguishing between explosion scenarios. The early light curve of SN 2022xkq has a red early color and exhibits a flux excess which is more prominent in redder bands; this is the first time such a feature has been seen in a transitional/91bg-like SN Ia. We also present 92 optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a long-lived C I 1.0693 $渭$m feature which persists until 5 days post-maximum. We also detect C II $位$6580 in the pre-maximum optical spectra. These lines are evidence for unburnt carbon that is difficult to reconcile with the double detonation of a sub-Chandrasekhar mass white dwarf. No existing explosion model can fully explain the photometric and spectroscopic dataset of SN 2022xkq, but the considerable breadth of the observations is ideal for furthering our understanding of the processes which produce faint SNe Ia. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10054v2-abstract-full').style.display = 'none'; document.getElementById('2309.10054v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 16 figures, accepted for publication in ApJ, the figure 15 input models and synthetic spectra are now available at https://zenodo.org/record/8379254</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13666">arXiv:2308.13666</a> <span> [<a href="https://arxiv.org/pdf/2308.13666">pdf</a>, <a href="https://arxiv.org/format/2308.13666">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-Wave Candidates from the Third Gravitational-wave Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fletcher%2C+C">C. Fletcher</a>, <a href="/search/astro-ph?searchtype=author&query=Wood%2C+J">J. Wood</a>, <a href="/search/astro-ph?searchtype=author&query=Hamburg%2C+R">R. Hamburg</a>, <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">P. Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. M. Hui</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">M. S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Cleveland%2C+W+H">W. H. Cleveland</a>, <a href="/search/astro-ph?searchtype=author&query=Giles%2C+M+M">M. M. Giles</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+B+A">B. A. Hristov</a>, <a href="/search/astro-ph?searchtype=author&query=Kocevski%2C+D">D. Kocevski</a>, <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">S. Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Mailyan%2C+B">B. Mailyan</a>, <a href="/search/astro-ph?searchtype=author&query=Malacaria%2C+C">C. Malacaria</a>, <a href="/search/astro-ph?searchtype=author&query=Poolakkil%2C+S">S. Poolakkil</a>, <a href="/search/astro-ph?searchtype=author&query=von+Kienlin%2C+A">A. von Kienlin</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C+A">C. A. Wilson-Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Team%2C+T+F+G+B+M">The Fermi Gamma-ray Burst Monitor Team</a>, <a href="/search/astro-ph?searchtype=author&query=Crnogor%C4%8Devi%C4%87%2C+M">M. Crnogor膷evi膰</a>, <a href="/search/astro-ph?searchtype=author&query=DeLaunay%2C+J">J. DeLaunay</a>, <a href="/search/astro-ph?searchtype=author&query=Tohuvavohu%2C+A">A. Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&query=Caputo%2C+R">R. Caputo</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. B. Cenko</a> , et al. (1674 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13666v1-abstract-short" style="display: inline;"> We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13666v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13666v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13666v1-abstract-full" style="display: none;"> We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma-rays from binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13666v1-abstract-full').style.display = 'none'; document.getElementById('2308.13666v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03822">arXiv:2308.03822</a> <span> [<a href="https://arxiv.org/pdf/2308.03822">pdf</a>, <a href="https://arxiv.org/format/2308.03822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a> , et al. (1750 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03822v1-abstract-short" style="display: inline;"> Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03822v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03822v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03822v1-abstract-full" style="display: none;"> Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass $M>70$ $M_\odot$) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities $0 < e \leq 0.3$ at $0.33$ Gpc$^{-3}$ yr$^{-1}$ at 90\% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03822v1-abstract-full').style.display = 'none'; document.getElementById('2308.03822v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300080 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10421">arXiv:2307.10421</a> <span> [<a href="https://arxiv.org/pdf/2307.10421">pdf</a>, <a href="https://arxiv.org/format/2307.10421">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Characterizing Gravitational Wave Detector Networks: From A$^\sharp$ to Cosmic Explorer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gupta%2C+I">Ish Gupta</a>, <a href="/search/astro-ph?searchtype=author&query=Afle%2C+C">Chaitanya Afle</a>, <a href="/search/astro-ph?searchtype=author&query=Arun%2C+K+G">K. G. Arun</a>, <a href="/search/astro-ph?searchtype=author&query=Bandopadhyay%2C+A">Ananya Bandopadhyay</a>, <a href="/search/astro-ph?searchtype=author&query=Baryakhtar%2C+M">Masha Baryakhtar</a>, <a href="/search/astro-ph?searchtype=author&query=Biscoveanu%2C+S">Sylvia Biscoveanu</a>, <a href="/search/astro-ph?searchtype=author&query=Borhanian%2C+S">Ssohrab Borhanian</a>, <a href="/search/astro-ph?searchtype=author&query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&query=Dhani%2C+A">Arnab Dhani</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+E+D">Evan D. Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Hannuksela%2C+O+A">Otto A. Hannuksela</a>, <a href="/search/astro-ph?searchtype=author&query=Kacanja%2C+K">Keisi Kacanja</a>, <a href="/search/astro-ph?searchtype=author&query=Kashyap%2C+R">Rahul Kashyap</a>, <a href="/search/astro-ph?searchtype=author&query=Khadkikar%2C+S">Sanika Khadkikar</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Li%2C+T+G+F">Tjonnie G. F. Li</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+A+L">Andrew L. Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Nitz%2C+A+H">Alexander Harvey Nitz</a>, <a href="/search/astro-ph?searchtype=author&query=Owen%2C+B+J">Benjamin J. Owen</a>, <a href="/search/astro-ph?searchtype=author&query=Palomba%2C+C">Cristiano Palomba</a>, <a href="/search/astro-ph?searchtype=author&query=Pearce%2C+A">Anthony Pearce</a>, <a href="/search/astro-ph?searchtype=author&query=Phurailatpam%2C+H">Hemantakumar Phurailatpam</a>, <a href="/search/astro-ph?searchtype=author&query=Rajbhandari%2C+B">Binod Rajbhandari</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10421v2-abstract-short" style="display: inline;"> Gravitational-wave observations by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of L… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10421v2-abstract-full').style.display = 'inline'; document.getElementById('2307.10421v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10421v2-abstract-full" style="display: none;"> Gravitational-wave observations by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A#, given the infrastructure in which they exist and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped Cosmic Explorer observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein Telescope with 10 km arms in Europe. The presence of one or two A# observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy and precision measurement of the Hubble parameter. Two Cosmic Explorer observatories are indispensable for achieving precise localization of binary neutron star events, facilitating detection of electromagnetic counterparts and transforming multimessenger astronomy. Their combined operation is even more important in the detection and localization of high-redshift sources, such as binary neutron stars, beyond the star-formation peak, and primordial black hole mergers, which may occur roughly 100 million years after the Big Bang. The addition of the Einstein Telescope to a network of two Cosmic Explorer observatories is critical for accomplishing all the identified science metrics. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A# observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10421v2-abstract-full').style.display = 'none'; document.getElementById('2307.10421v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 20 figures, 14 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CE Document No. P2300019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01365">arXiv:2307.01365</a> <span> [<a href="https://arxiv.org/pdf/2307.01365">pdf</a>, <a href="https://arxiv.org/format/2307.01365">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.191002">10.1103/PhysRevLett.132.191002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First results of the Laser-Interferometric Detector for Axions (LIDA) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Heinze%2C+J">Joscha Heinze</a>, <a href="/search/astro-ph?searchtype=author&query=Gill%2C+A">Alex Gill</a>, <a href="/search/astro-ph?searchtype=author&query=Dmitriev%2C+A">Artemiy Dmitriev</a>, <a href="/search/astro-ph?searchtype=author&query=Smetana%2C+J">Jiri Smetana</a>, <a href="/search/astro-ph?searchtype=author&query=Yan%2C+T">Tianliang Yan</a>, <a href="/search/astro-ph?searchtype=author&query=Boyer%2C+V">Vincent Boyer</a>, <a href="/search/astro-ph?searchtype=author&query=Martynov%2C+D">Denis Martynov</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01365v3-abstract-short" style="display: inline;"> We present the operating principle and the first observing run of a novel kind of direct detector for axions and axion-like particles in the galactic halo. Sensitive to the polarisation rotation of linearly polarised laser light induced by an axion field, our experiment is the first detector of its kind collecting scientific data. We discuss our current peak sensitivity of $1.51\times 10^{-10}$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01365v3-abstract-full').style.display = 'inline'; document.getElementById('2307.01365v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01365v3-abstract-full" style="display: none;"> We present the operating principle and the first observing run of a novel kind of direct detector for axions and axion-like particles in the galactic halo. Sensitive to the polarisation rotation of linearly polarised laser light induced by an axion field, our experiment is the first detector of its kind collecting scientific data. We discuss our current peak sensitivity of $1.51\times 10^{-10}$ $\text{GeV}^{-1}$ (95 % confidence level) to the axion-photon coupling strength in the axion mass range of $1.97$-$2.01$ $\text{neV}$ which is, for instance, motivated by supersymmetric grand-unified theories. We also report on effects that arise in our high-finesse in-vacuum cavity at an unprecedented optical continuous-wave intensity of $4.7$ $\text{MW/cm}^2$. Our detector already belongs to the most sensitive direct searches within its measurement band, and our results pave the way towards surpassing the current sensitivity limits in the mass range from $10^{-8}$ $\text{eV}$ down to $10^{-16}$ $\text{eV}$ via quantum-enhanced laser interferometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01365v3-abstract-full').style.display = 'none'; document.getElementById('2307.01365v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13745">arXiv:2306.13745</a> <span> [<a href="https://arxiv.org/pdf/2306.13745">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&query=Afle%2C+C">Chaitanya Afle</a>, <a href="/search/astro-ph?searchtype=author&query=Ananyeva%2C+A">Alena Ananyeva</a>, <a href="/search/astro-ph?searchtype=author&query=Arun%2C+K+G">K. G. Arun</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S">Stefan Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Bandopadhyay%2C+A">Ananya Bandopadhyay</a>, <a href="/search/astro-ph?searchtype=author&query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/astro-ph?searchtype=author&query=Baryakhtar%2C+M">Masha Baryakhtar</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Berti%2C+E">Emanuele Berti</a>, <a href="/search/astro-ph?searchtype=author&query=Biscoveanu%2C+S">Sylvia Biscoveanu</a>, <a href="/search/astro-ph?searchtype=author&query=Borhanian%2C+S">Ssohrab Borhanian</a>, <a href="/search/astro-ph?searchtype=author&query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+D+A">Duncan A. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Cahillane%2C+C">Craig Cahillane</a>, <a href="/search/astro-ph?searchtype=author&query=Campbell%2C+L">Lorna Campbell</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+H">Hsin-Yu Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Daniel%2C+K+J">Kathryne J. Daniel</a>, <a href="/search/astro-ph?searchtype=author&query=Dhani%2C+A">Arnab Dhani</a>, <a href="/search/astro-ph?searchtype=author&query=Driggers%2C+J+C">Jennifer C. Driggers</a>, <a href="/search/astro-ph?searchtype=author&query=Effler%2C+A">Anamaria Effler</a>, <a href="/search/astro-ph?searchtype=author&query=Eisenstein%2C+R">Robert Eisenstein</a>, <a href="/search/astro-ph?searchtype=author&query=Fairhurst%2C+S">Stephen Fairhurst</a>, <a href="/search/astro-ph?searchtype=author&query=Feicht%2C+J">Jon Feicht</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13745v1-abstract-short" style="display: inline;"> Gravitational-wave astronomy has revolutionized humanity's view of the universe, a revolution driven by observations that no other field can make. This white paper describes an observatory that builds on decades of investment by the National Science Foundation and that will drive discovery for decades to come: Cosmic Explorer. Major discoveries in astronomy are driven by three related improvements… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13745v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13745v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13745v1-abstract-full" style="display: none;"> Gravitational-wave astronomy has revolutionized humanity's view of the universe, a revolution driven by observations that no other field can make. This white paper describes an observatory that builds on decades of investment by the National Science Foundation and that will drive discovery for decades to come: Cosmic Explorer. Major discoveries in astronomy are driven by three related improvements: better sensitivity, higher precision, and opening new observational windows. Cosmic Explorer promises all three and will deliver an order-of-magnitude greater sensitivity than LIGO. Cosmic Explorer will push the gravitational-wave frontier to almost the edge of the observable universe using technologies that have been proven by LIGO during its development. With the unprecedented sensitivity that only a new facility can deliver, Cosmic Explorer will make discoveries that cannot yet be anticipated, especially since gravitational waves are both synergistic with electromagnetic observations and can reach into regions of the universe that electromagnetic observations cannot explore. With Cosmic Explorer, scientists can use the universe as a laboratory to test the laws of physics and study the nature of matter. Cosmic Explorer allows the United States to continue its leading role in gravitational-wave science and the international network of next-generation observatories. With its extraordinary discovery potential, Cosmic Explorer will deliver revolutionary observations across astronomy, physics, and cosmology including: Black Holes and Neutron Stars Throughout Cosmic Time, Multi-Messenger Astrophysics and Dynamics of Dense Matter, New Probes of Extreme Astrophysics, Fundamental Physics and Precision Cosmology, Dark Matter and the Early Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13745v1-abstract-full').style.display = 'none'; document.getElementById('2306.13745v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13780">arXiv:2305.13780</a> <span> [<a href="https://arxiv.org/pdf/2305.13780">pdf</a>, <a href="https://arxiv.org/format/2305.13780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.043034">10.1103/PhysRevD.108.043034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine Learning for Quantum-Enhanced Gravitational-Wave Observatories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Whittle%2C+C">Chris Whittle</a>, <a href="/search/astro-ph?searchtype=author&query=Yang%2C+G">Ge Yang</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Barsotti%2C+L">Lisa Barsotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13780v1-abstract-short" style="display: inline;"> Machine learning has become an effective tool for processing the extensive data sets produced by large physics experiments. Gravitational-wave detectors are now listening to the universe with quantum-enhanced sensitivity, accomplished with the injection of squeezed vacuum states. Squeezed state preparation and injection is operationally complicated, as well as highly sensitive to environmental flu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13780v1-abstract-full').style.display = 'inline'; document.getElementById('2305.13780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13780v1-abstract-full" style="display: none;"> Machine learning has become an effective tool for processing the extensive data sets produced by large physics experiments. Gravitational-wave detectors are now listening to the universe with quantum-enhanced sensitivity, accomplished with the injection of squeezed vacuum states. Squeezed state preparation and injection is operationally complicated, as well as highly sensitive to environmental fluctuations and variations in the interferometer state. Achieving and maintaining optimal squeezing levels is a challenging problem and will require development of new techniques to reach the lofty targets set by design goals for future observing runs and next-generation detectors. We use machine learning techniques to predict the squeezing level during the third observing run of the Laser Interferometer Gravitational-Wave Observatory (LIGO) based on auxiliary data streams, and offer interpretations of our models to identify and quantify salient sources of squeezing degradation. The development of these techniques lays the groundwork for future efforts to optimize squeezed state injection in gravitational-wave detectors, with the goal of enabling closed-loop control of the squeezer subsystem by an agent based on machine learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13780v1-abstract-full').style.display = 'none'; document.getElementById('2305.13780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08393">arXiv:2304.08393</a> <span> [<a href="https://arxiv.org/pdf/2304.08393">pdf</a>, <a href="https://arxiv.org/format/2304.08393">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1670 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08393v1-abstract-short" style="display: inline;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08393v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08393v1-abstract-full" style="display: none;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'none'; document.getElementById('2304.08393v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2200031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03647">arXiv:2301.03647</a> <span> [<a href="https://arxiv.org/pdf/2301.03647">pdf</a>, <a href="https://arxiv.org/format/2301.03647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acb8a8">10.3847/2041-8213/acb8a8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST Low-Resolution MIRI Spectral Observations of SN~2021aefx: High-density Burning in a Type Ia Supernova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=DerKacy%2C+J+M">J. M. DerKacy</a>, <a href="/search/astro-ph?searchtype=author&query=Ashall%2C+C">C. Ashall</a>, <a href="/search/astro-ph?searchtype=author&query=Hoeflich%2C+P">P. Hoeflich</a>, <a href="/search/astro-ph?searchtype=author&query=Baron%2C+E">E. Baron</a>, <a href="/search/astro-ph?searchtype=author&query=Shappee%2C+B+J">B. J. Shappee</a>, <a href="/search/astro-ph?searchtype=author&query=Baade%2C+D">D. Baade</a>, <a href="/search/astro-ph?searchtype=author&query=Andrews%2C+J">J. Andrews</a>, <a href="/search/astro-ph?searchtype=author&query=Bostroem%2C+K+A">K. A. Bostroem</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+P+J">P. J. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+C+R">C. R. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Burrow%2C+A">A. Burrow</a>, <a href="/search/astro-ph?searchtype=author&query=Cikota%2C+A">A. Cikota</a>, <a href="/search/astro-ph?searchtype=author&query=de+Jaeger%2C+T">T. de Jaeger</a>, <a href="/search/astro-ph?searchtype=author&query=Do%2C+A">A. Do</a>, <a href="/search/astro-ph?searchtype=author&query=Dong%2C+Y">Y. Dong</a>, <a href="/search/astro-ph?searchtype=author&query=Dominguez%2C+I">I. Dominguez</a>, <a href="/search/astro-ph?searchtype=author&query=Galbany%2C+L">L. Galbany</a>, <a href="/search/astro-ph?searchtype=author&query=Hsiao%2C+E+Y">E. Y. Hsiao</a>, <a href="/search/astro-ph?searchtype=author&query=Karamehmetoglu%2C+E">E. Karamehmetoglu</a>, <a href="/search/astro-ph?searchtype=author&query=Krisciunas%2C+K">K. Krisciunas</a>, <a href="/search/astro-ph?searchtype=author&query=Kumar%2C+S">S. Kumar</a>, <a href="/search/astro-ph?searchtype=author&query=Lu%2C+J">J. Lu</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+T+B+M">T. B. Mera Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Maund%2C+J+R">J. R. Maund</a>, <a href="/search/astro-ph?searchtype=author&query=Mazzali%2C+P">P. Mazzali</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03647v2-abstract-short" style="display: inline;"> We present a JWST/MIRI low-resolution mid-infrared (MIR) spectroscopic observation of the normal Type Ia supernova (SN Ia) SN 2021aefx at +323 days past rest-frame B-band maximum light. The spectrum ranges from 4-14 um, and shows many unique qualities including a flat-topped [Ar III] 8.991 um profile, a strongly tilted [Co III] 11.888 um feature, and multiple stable Ni lines. These features provid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03647v2-abstract-full').style.display = 'inline'; document.getElementById('2301.03647v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03647v2-abstract-full" style="display: none;"> We present a JWST/MIRI low-resolution mid-infrared (MIR) spectroscopic observation of the normal Type Ia supernova (SN Ia) SN 2021aefx at +323 days past rest-frame B-band maximum light. The spectrum ranges from 4-14 um, and shows many unique qualities including a flat-topped [Ar III] 8.991 um profile, a strongly tilted [Co III] 11.888 um feature, and multiple stable Ni lines. These features provide critical information about the physics of the explosion. The observations are compared to synthetic spectra from detailed NLTE multi-dimensional models. The results of the best-fitting model are used to identify the components of the spectral blends and provide a quantitative comparison to the explosion physics. Emission line profiles and the presence of electron capture (EC) elements are used to constrain the mass of the exploding white dwarf (WD) and the chemical asymmetries in the ejecta. We show that the observations of SN 2021aefx are consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass (Mch) WD at a viewing angle of -30 degrees relative to the point of the deflagration-to-detonation transition. From the strength of the stable Ni lines we determine that there is little to no mixing in the central regions of the ejecta. Based on both the presence of stable Ni and the Ar velocity distributions, we obtain a strict lower limit of 1.2 Msun of the initial WD, implying that most sub-Mch explosions models are not viable models for SN 2021aefx. The analysis here shows the crucial importance of MIR spectra for distinguishing between explosion scenarios for SNe Ia. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03647v2-abstract-full').style.display = 'none'; document.getElementById('2301.03647v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures, 4 tables, accepted to ApJL; updated to accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00338">arXiv:2301.00338</a> <span> [<a href="https://arxiv.org/pdf/2301.00338">pdf</a>, <a href="https://arxiv.org/format/2301.00338">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.241401">10.1103/PhysRevLett.130.241401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unification of thermal and quantum noise in gravitational-wave detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Whittle%2C+C">Chris Whittle</a>, <a href="/search/astro-ph?searchtype=author&query=McCuller%2C+L">Lee McCuller</a>, <a href="/search/astro-ph?searchtype=author&query=Sudhir%2C+V">Vivishek Sudhir</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00338v1-abstract-short" style="display: inline;"> Contemporary gravitational-wave detectors are fundamentally limited by thermal noise -- due to dissipation in the mechanical elements of the test mass -- and quantum noise -- from the vacuum fluctuations of the optical field used to probe the test mass position. Two other fundamental noises can in principle also limit sensitivity: test-mass quantization noise due to the zero-point fluctuation of i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00338v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00338v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00338v1-abstract-full" style="display: none;"> Contemporary gravitational-wave detectors are fundamentally limited by thermal noise -- due to dissipation in the mechanical elements of the test mass -- and quantum noise -- from the vacuum fluctuations of the optical field used to probe the test mass position. Two other fundamental noises can in principle also limit sensitivity: test-mass quantization noise due to the zero-point fluctuation of its mechanical modes, and thermal excitation of the optical field. We use the quantum fluctuation-dissipation theorem to unify all four noises. This unified picture shows precisely when test-mass quantization noise and optical thermal noise can be ignored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00338v1-abstract-full').style.display = 'none'; document.getElementById('2301.00338v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2200369 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 241401 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01477">arXiv:2212.01477</a> <span> [<a href="https://arxiv.org/pdf/2212.01477">pdf</a>, <a href="https://arxiv.org/format/2212.01477">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3120">10.1093/mnras/stad3120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1680 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01477v2-abstract-short" style="display: inline;"> We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 $\mathrm{yr}^{-1}$. We estimate t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01477v2-abstract-full').style.display = 'inline'; document.getElementById('2212.01477v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01477v2-abstract-full" style="display: none;"> We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 $\mathrm{yr}^{-1}$. We estimate the sensitivity of our search over the entirety of Advanced LIGO's and Advanced Virgo's third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs $f_\mathrm{PBH} \gtrsim 0.6$ (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out $f_\mathrm{PBH} = 1$. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound $f_{\mathrm{DBH}} < 10^{-5}$ on the fraction of atomic dark matter collapsed into black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01477v2-abstract-full').style.display = 'none'; document.getElementById('2212.01477v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://dcc.ligo.org/P2200139</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00038">arXiv:2211.00038</a> <span> [<a href="https://arxiv.org/pdf/2211.00038">pdf</a>, <a href="https://arxiv.org/format/2211.00038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acb4ec">10.3847/2041-8213/acb4ec <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A JWST Near- and Mid-Infrared Nebular Spectrum of the Type Ia Supernova 2021aefx </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kwok%2C+L+A">Lindsey A. Kwok</a>, <a href="/search/astro-ph?searchtype=author&query=Jha%2C+S+W">Saurabh W. Jha</a>, <a href="/search/astro-ph?searchtype=author&query=Temim%2C+T">Tea Temim</a>, <a href="/search/astro-ph?searchtype=author&query=Fox%2C+O+D">Ori D. Fox</a>, <a href="/search/astro-ph?searchtype=author&query=Larison%2C+C">Conor Larison</a>, <a href="/search/astro-ph?searchtype=author&query=Camacho-Neves%2C+Y">Yssavo Camacho-Neves</a>, <a href="/search/astro-ph?searchtype=author&query=Newman%2C+M+J+B">Max J. Brenner Newman</a>, <a href="/search/astro-ph?searchtype=author&query=Pierel%2C+J+D+R">Justin D. R. Pierel</a>, <a href="/search/astro-ph?searchtype=author&query=Foley%2C+R+J">Ryan J. Foley</a>, <a href="/search/astro-ph?searchtype=author&query=Andrews%2C+J+E">Jennifer E. Andrews</a>, <a href="/search/astro-ph?searchtype=author&query=Badenes%2C+C">Carles Badenes</a>, <a href="/search/astro-ph?searchtype=author&query=Barna%2C+B">Barnabas Barna</a>, <a href="/search/astro-ph?searchtype=author&query=Bostroem%2C+K+A">K. Azalee Bostroem</a>, <a href="/search/astro-ph?searchtype=author&query=Deckers%2C+M">Maxime Deckers</a>, <a href="/search/astro-ph?searchtype=author&query=Flors%2C+A">Andreas Flors</a>, <a href="/search/astro-ph?searchtype=author&query=Garnavich%2C+P">Peter Garnavich</a>, <a href="/search/astro-ph?searchtype=author&query=Graham%2C+M+L">Melissa L. Graham</a>, <a href="/search/astro-ph?searchtype=author&query=Graur%2C+O">Or Graur</a>, <a href="/search/astro-ph?searchtype=author&query=Hosseinzadeh%2C+G">Griffin Hosseinzadeh</a>, <a href="/search/astro-ph?searchtype=author&query=Howell%2C+D+A">D. Andrew Howell</a>, <a href="/search/astro-ph?searchtype=author&query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&query=Johansson%2C+J">Joel Johansson</a>, <a href="/search/astro-ph?searchtype=author&query=Kendrew%2C+S">Sarah Kendrew</a>, <a href="/search/astro-ph?searchtype=author&query=Kerzendorf%2C+W+E">Wolfgang E. Kerzendorf</a>, <a href="/search/astro-ph?searchtype=author&query=Maeda%2C+K">Keiichi Maeda</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00038v2-abstract-short" style="display: inline;"> We present JWST near- and mid-infrared spectroscopic observations of the nearby normal Type Ia supernova SN 2021aefx in the nebular phase at $+255$ days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument (MIRI) observations, combined with ground-based optical data from the South African Large Telescope (SALT), constitute the first complete optical $+$ NIR $+$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00038v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00038v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00038v2-abstract-full" style="display: none;"> We present JWST near- and mid-infrared spectroscopic observations of the nearby normal Type Ia supernova SN 2021aefx in the nebular phase at $+255$ days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument (MIRI) observations, combined with ground-based optical data from the South African Large Telescope (SALT), constitute the first complete optical $+$ NIR $+$ MIR nebular SN Ia spectrum covering 0.3$-$14 $渭$m. This spectrum unveils the previously unobserved 2.5$-$5 $渭$m region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements and as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2 $渭$m and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ar III] 8.99 $渭$m line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00038v2-abstract-full').style.display = 'none'; document.getElementById('2211.00038v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in ApJ Letters, 17 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, Volume 944 L3, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10931">arXiv:2210.10931</a> <span> [<a href="https://arxiv.org/pdf/2210.10931">pdf</a>, <a href="https://arxiv.org/format/2210.10931">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10931v1-abstract-short" style="display: inline;"> Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo and KAGRA's third observation run. These 13 bu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10931v1-abstract-full').style.display = 'inline'; document.getElementById('2210.10931v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10931v1-abstract-full" style="display: none;"> Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo and KAGRA's third observation run. These 13 bursts come from two magnetars, SGR 1935$+$2154 and Swift J1818.0$-$1607. We also include three other electromagnetic burst events detected by Fermi GBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper bounds on the root-sum-square of the integrated gravitational-wave strain that reach $2.2 \times 10^{-23}$ $/\sqrt{\text{Hz}}$ at 100 Hz for the short-duration search and $8.7 \times 10^{-23}$ $/\sqrt{\text{Hz}}$ at $450$ Hz for the long-duration search, given a detection efficiency of 50%. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to $1.8 \times 10^{-22}$ $/\sqrt{\text{Hz}}$. Using the estimated distance to each magnetar, we derive upper bounds on the emitted gravitational-wave energy of $3.2 \times 10^{43}$ erg ($7.3 \times 10^{43}$ erg) for SGR 1935$+$2154 and $8.2 \times 10^{42}$ erg ($2.8 \times 10^{43}$ erg) for Swift J1818.0$-$1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935$+$2154 with available fluence information. The lowest of these ratios is $3 \times 10^3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10931v1-abstract-full').style.display = 'none'; document.getElementById('2210.10931v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages with appendices, 5 figures, 10 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100387 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02863">arXiv:2209.02863</a> <span> [<a href="https://arxiv.org/pdf/2209.02863">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aca1b0">10.3847/2041-8213/aca1b0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1670 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02863v2-abstract-short" style="display: inline;"> We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to bala… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02863v2-abstract-full').style.display = 'inline'; document.getElementById('2209.02863v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02863v2-abstract-full" style="display: none;"> We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25Hz to 1600Hz, as well as ranges in orbital speed, frequency and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100Hz and 200Hz, correspond to an amplitude h0 of about 1e-25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4e-26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically-marginalized upper limits are close to the predicted amplitude from about 70Hz to 100Hz; the limits assuming the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40Hz to 200Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500Hz or more. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02863v2-abstract-full').style.display = 'none'; document.getElementById('2209.02863v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, Open Access Journal PDF</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100110-v13 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Letters, 941, L30 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04523">arXiv:2204.04523</a> <span> [<a href="https://arxiv.org/pdf/2204.04523">pdf</a>, <a href="https://arxiv.org/format/2204.04523">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.042003">10.1103/PhysRevD.106.042003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04523v1-abstract-short" style="display: inline;"> We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04523v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04523v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04523v1-abstract-full" style="display: none;"> We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band $[10,2000]\rm~Hz$ have been used. No significant detection was found and 95$\%$ confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about $7.6\times 10^{-26}$ at $\simeq 142\rm~Hz$. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04523v1-abstract-full').style.display = 'none'; document.getElementById('2204.04523v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12038">arXiv:2203.12038</a> <span> [<a href="https://arxiv.org/pdf/2203.12038">pdf</a>, <a href="https://arxiv.org/format/2203.12038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB During the LIGO--Virgo Observing Run O3a </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+t+C">the CHIME/FRB Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1633 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12038v1-abstract-short" style="display: inline;"> We search for gravitational-wave transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB), during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC-1 Oct 2019 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets compact binary coal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12038v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12038v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12038v1-abstract-full" style="display: none;"> We search for gravitational-wave transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB), during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC-1 Oct 2019 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets compact binary coalescences with at least one neutron star component. A targeted search for generic gravitational-wave transients was conducted on 40 FRBs. We find no significant evidence for a gravitational-wave association in either search. Given the large uncertainties in the distances of the FRBs inferred from the dispersion measures in our sample, however, this does not conclusively exclude any progenitor models that include emission of a gravitational wave of the types searched for from any of these FRB events. We report $90\%$ confidence lower bounds on the distance to each FRB for a range of gravitational-wave progenitor models. By combining the inferred maximum distance information for each FRB with the sensitivity of the gravitational-wave searches, we set upper limits on the energy emitted through gravitational waves for a range of emission scenarios. We find values of order $10^{51}$-$10^{57}$ erg for a range of different emission models with central gravitational wave frequencies in the range 70-3560 Hz. Finally, we also found no significant coincident detection of gravitational waves with the repeater, FRB 20200120E, which is the closest known extragalactic FRB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12038v1-abstract-full').style.display = 'none'; document.getElementById('2203.12038v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 6 figures, 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100124 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08228">arXiv:2203.08228</a> <span> [<a href="https://arxiv.org/pdf/2203.08228">pdf</a>, <a href="https://arxiv.org/format/2203.08228">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 Cosmic Frontier White Paper: Future Gravitational-Wave Detector Facilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S+W">Stefan W. Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R">Rana Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Badurina%2C+L">Leonardo Badurina</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+D+A">Duncan A. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Chattopadhyay%2C+S">Swapan Chattopadhyay</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Fritschel%2C+P">Peter Fritschel</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+E">Evan Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Hogan%2C+J+M">Jason M. Hogan</a>, <a href="/search/astro-ph?searchtype=author&query=Jani%2C+K">Karan Jani</a>, <a href="/search/astro-ph?searchtype=author&query=Kovachy%2C+T">Tim Kovachy</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Schwartzman%2C+A">Ariel Schwartzman</a>, <a href="/search/astro-ph?searchtype=author&query=Sigg%2C+D">Daniel Sigg</a>, <a href="/search/astro-ph?searchtype=author&query=Slagmolen%2C+B">Bram Slagmolen</a>, <a href="/search/astro-ph?searchtype=author&query=Vitale%2C+S">Salvatore Vitale</a>, <a href="/search/astro-ph?searchtype=author&query=Wipf%2C+C">Christopher Wipf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08228v2-abstract-short" style="display: inline;"> The next generation of gravitational-wave observatories can explore a wide range of fundamental physics phenomena throughout the history of the universe. These phenomena include access to the universe's binary black hole population throughout cosmic time, to the universe's expansion history independent of the cosmic distance ladders, to stochastic gravitational-waves from early-universe phase tran… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08228v2-abstract-full').style.display = 'inline'; document.getElementById('2203.08228v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08228v2-abstract-full" style="display: none;"> The next generation of gravitational-wave observatories can explore a wide range of fundamental physics phenomena throughout the history of the universe. These phenomena include access to the universe's binary black hole population throughout cosmic time, to the universe's expansion history independent of the cosmic distance ladders, to stochastic gravitational-waves from early-universe phase transitions, to warped space-time in the strong-field and high-velocity limit, to the equation of state of nuclear matter at neutron star and post-merger densities, and to dark matter candidates through their interaction in extreme astrophysical environments or their interaction with the detector itself. We present the gravitational-wave detector concepts than can drive the future of gravitational-wave astrophysics. We summarize the status of the necessary technology, and the research needed to be able to build these observatories in the 2030s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08228v2-abstract-full').style.display = 'none'; document.getElementById('2203.08228v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 5 figures, contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03849">arXiv:2203.03849</a> <span> [<a href="https://arxiv.org/pdf/2203.03849">pdf</a>, <a href="https://arxiv.org/format/2203.03849">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.122005">10.1103/PhysRevD.105.122005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing squeezing for gravitational-wave detectors with an audio-band field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ganapathy%2C+D">Dhruva Ganapathy</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+V">Victoria Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Jia%2C+W">Wenxuan Jia</a>, <a href="/search/astro-ph?searchtype=author&query=Whittle%2C+C">Chris Whittle</a>, <a href="/search/astro-ph?searchtype=author&query=Tse%2C+M">Maggie Tse</a>, <a href="/search/astro-ph?searchtype=author&query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=McCuller%2C+L">Lee McCuller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03849v1-abstract-short" style="display: inline;"> Squeezed vacuum states are now employed in gravitational-wave interferometric detectors, enhancing their sensitivity and thus enabling richer astrophysical observations. In future observing runs, the detectors will incorporate a filter cavity to suppress quantum radiation pressure noise using frequency-dependent squeezing. Interferometers employing internal and external cavities decohere and degra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03849v1-abstract-full').style.display = 'inline'; document.getElementById('2203.03849v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03849v1-abstract-full" style="display: none;"> Squeezed vacuum states are now employed in gravitational-wave interferometric detectors, enhancing their sensitivity and thus enabling richer astrophysical observations. In future observing runs, the detectors will incorporate a filter cavity to suppress quantum radiation pressure noise using frequency-dependent squeezing. Interferometers employing internal and external cavities decohere and degrade squeezing in complex new ways, which must be studied to achieve increasingly ambitious noise goals. This paper introduces an audio diagnostic field (ADF) to quickly and accurately characterize the frequency-dependent response and the transient perturbations of resonant optical systems to squeezed states. This analysis enables audio field injections to become a powerful tool to witness and optimize interactions such as inter-cavity mode matching within gravitational-wave instruments. To demonstrate, we present experimental results from using the audio field to characterize a 16 m prototype filter cavity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03849v1-abstract-full').style.display = 'none'; document.getElementById('2203.03849v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01270">arXiv:2203.01270</a> <span> [<a href="https://arxiv.org/pdf/2203.01270">pdf</a>, <a href="https://arxiv.org/format/2203.01270">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac073">10.1093/ptep/ptac073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First joint observation by the underground gravitational-wave detector, KAGRA, with GEO600 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1647 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01270v2-abstract-short" style="display: inline;"> We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Germany. GEO600 and KAGRA performed a joint observing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01270v2-abstract-full').style.display = 'inline'; document.getElementById('2203.01270v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01270v2-abstract-full" style="display: none;"> We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Germany. GEO600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO--KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analysed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01270v2-abstract-full').style.display = 'none'; document.getElementById('2203.01270v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100286 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Progress of Theoretical and Experimental Physics, Volume 2022, Issue 6, 063F01 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05417">arXiv:2202.05417</a> <span> [<a href="https://arxiv.org/pdf/2202.05417">pdf</a>, <a href="https://arxiv.org/format/2202.05417">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac5253">10.3847/1538-4357/ac5253 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galactic Positrons from Thermonuclear Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Evans%2C+T+B+M">T. B. Mera Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Hoeflich%2C+P">P. Hoeflich</a>, <a href="/search/astro-ph?searchtype=author&query=Diehl%2C+R">R. Diehl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05417v1-abstract-short" style="display: inline;"> Type Ia Supernovae (SNe Ia) may originate from a wide variety of explosion scenarios and progenitor channels. They exhibit a factor of about 10 difference in brightness and, thus, a differentiation in the mass of 56Ni->56Co->56 Fe. We present a study on the fate of positrons within SNe Ia in order to evaluate their escape fractions and energy spectra. Our detailed Monte Carlo transport simulations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05417v1-abstract-full').style.display = 'inline'; document.getElementById('2202.05417v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05417v1-abstract-full" style="display: none;"> Type Ia Supernovae (SNe Ia) may originate from a wide variety of explosion scenarios and progenitor channels. They exhibit a factor of about 10 difference in brightness and, thus, a differentiation in the mass of 56Ni->56Co->56 Fe. We present a study on the fate of positrons within SNe Ia in order to evaluate their escape fractions and energy spectra. Our detailed Monte Carlo transport simulations for positrons and gamma-rays include both beta + decay of 56 Co and pair production. We simulate a wide variety of explosion scenarios, including the explosion of white dwarfs (WD) close to the Chandrasekhar mass, M(Ch), He-triggered explosions of sub-M Ch WDs, and dynamical mergers of two WDs. For each model, we study the influence of the size and morphology of the progenitor magnetic field between 1 and 1E13 G. Population synthesis based on the observed brightness distribution of SNe Ia was used to estimate the overall contributions to Galactic positrons due to escape from SN Ia. We find that this is dominated by normal-bright SNe Ia, where variations in the distribution of emitted positrons are small. We estimate a total SNe Ia contribution to the Galactic positrons of < 2% and, depending on the magnetic field morphology, less than 6...20% for M(Ch) and sub-M(Ch), respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05417v1-abstract-full').style.display = 'none'; document.getElementById('2202.05417v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10668">arXiv:2201.10668</a> <span> [<a href="https://arxiv.org/pdf/2201.10668">pdf</a>, <a href="https://arxiv.org/format/2201.10668">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac5f04">10.3847/1538-4357/ac5f04 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science-Driven Tunable Design of Cosmic Explorer Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Srivastava%2C+V">Varun Srivastava</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+D">Derek Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Landry%2C+P">Philippe Landry</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S">Stefan Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matt Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+E">Evan Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Read%2C+J">Jocelyn Read</a>, <a href="/search/astro-ph?searchtype=author&query=Sathyaprakash%2C+B+S">B. S. Sathyaprakash</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10668v2-abstract-short" style="display: inline;"> Ground-based gravitational-wave detectors like Cosmic Explorer can be tuned to improve their sensitivity at high or low frequencies by tuning the response of the signal extraction cavity. Enhanced sensitivity above 2 kHz enables measurements of the post-merger gravitational-wave spectrum from binary neutron star mergers, which depends critically on the unknown equation of state of hot, ultra-dense… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10668v2-abstract-full').style.display = 'inline'; document.getElementById('2201.10668v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10668v2-abstract-full" style="display: none;"> Ground-based gravitational-wave detectors like Cosmic Explorer can be tuned to improve their sensitivity at high or low frequencies by tuning the response of the signal extraction cavity. Enhanced sensitivity above 2 kHz enables measurements of the post-merger gravitational-wave spectrum from binary neutron star mergers, which depends critically on the unknown equation of state of hot, ultra-dense matter. Improved sensitivity below 500 Hz favors precision tests of extreme gravity with black hole ringdown signals and improves the detection prospects while facilitating an improved measurement of source properties for compact binary inspirals at cosmological distances. At intermediate frequencies, a more sensitive detector can better measure the tidal properties of neutron stars. We present and characterize the performance of tuned Cosmic Explorer configurations that are designed to optimize detections across different astrophysical source populations. These tuning options give Cosmic Explorer the flexibility to target a diverse set of science goals with the same detector infrastructure. We find that a 40 km Cosmic Explorer detector outperforms a 20 km in all key science goals other than access to post-merger physics. This suggests that Cosmic Explorer should include at least one 40 km facility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10668v2-abstract-full').style.display = 'none'; document.getElementById('2201.10668v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00697">arXiv:2201.00697</a> <span> [<a href="https://arxiv.org/pdf/2201.00697">pdf</a>, <a href="https://arxiv.org/format/2201.00697">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.102008">10.1103/PhysRevD.106.102008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00697v1-abstract-short" style="display: inline;"> We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivativ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00697v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00697v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00697v1-abstract-full" style="display: none;"> We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from $-10^{-8}$ to $10^{-9}$ Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude $h_0$ are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ${\sim}1.1\times10^{-25}$ at 95\% confidence-level. The minimum upper limit of $1.10\times10^{-25}$ is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00697v1-abstract-full').style.display = 'none'; document.getElementById('2201.00697v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 main text pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100367 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12718">arXiv:2112.12718</a> <span> [<a href="https://arxiv.org/pdf/2112.12718">pdf</a>, <a href="https://arxiv.org/ps/2112.12718">ps</a>, <a href="https://arxiv.org/format/2112.12718">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Next Generation Observatories -- Report from the Dawn VI Workshop; October 5-7 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shoemaker%2C+D+H">D. H. Shoemaker</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S">Stefan Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Barsuglia%2C+M">Matteo Barsuglia</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+E">E. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Berti%2C+E">Emanuele Berti</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+D+A">Duncan A. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Chandra%2C+P">Poonam Chandra</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Fang%2C+K">Ke Fang</a>, <a href="/search/astro-ph?searchtype=author&query=Fong%2C+W">Wen-fai Fong</a>, <a href="/search/astro-ph?searchtype=author&query=Freise%2C+A">Andreas Freise</a>, <a href="/search/astro-ph?searchtype=author&query=Fritschel%2C+P">Peter Fritschel</a>, <a href="/search/astro-ph?searchtype=author&query=Greene%2C+J">Jenny Greene</a>, <a href="/search/astro-ph?searchtype=author&query=Horowitz%2C+C+J">C. J. Horowitz</a>, <a href="/search/astro-ph?searchtype=author&query=Kissel%2C+J">Jeff Kissel</a>, <a href="/search/astro-ph?searchtype=author&query=Lantz%2C+B">Brian Lantz</a>, <a href="/search/astro-ph?searchtype=author&query=Lasky%2C+P+D">Paul D. Lasky</a>, <a href="/search/astro-ph?searchtype=author&query=Lueck%2C+H">Harald Lueck</a>, <a href="/search/astro-ph?searchtype=author&query=Miller%2C+M+C">M. Coleman Miller</a>, <a href="/search/astro-ph?searchtype=author&query=Nitz%2C+A+H">Alexander H. Nitz</a>, <a href="/search/astro-ph?searchtype=author&query=Ottaway%2C+D">David Ottaway</a>, <a href="/search/astro-ph?searchtype=author&query=Peiris%2C+H+V">Hiranya V. Peiris</a>, <a href="/search/astro-ph?searchtype=author&query=Punturo%2C+M">Michele Punturo</a>, <a href="/search/astro-ph?searchtype=author&query=Reitze%2C+D+H">D. H. Reitze</a>, <a href="/search/astro-ph?searchtype=author&query=Sanders%2C+G+H">Gary H. Sanders</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12718v3-abstract-short" style="display: inline;"> The workshop Dawn VI: Next Generation Observatories took place online over three days, 5-7 October, 2021. More than 200 physicists and astronomers attended to contribute to, and learn from, a discussion of next-generation ground-based gravitational-wave detectors. The program was centered on the next generation of ground-based gravitational-wave observatories and their synergy with the greater lan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12718v3-abstract-full').style.display = 'inline'; document.getElementById('2112.12718v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12718v3-abstract-full" style="display: none;"> The workshop Dawn VI: Next Generation Observatories took place online over three days, 5-7 October, 2021. More than 200 physicists and astronomers attended to contribute to, and learn from, a discussion of next-generation ground-based gravitational-wave detectors. The program was centered on the next generation of ground-based gravitational-wave observatories and their synergy with the greater landscape of scientific observatories of the 2030s. Cosmic Explorer (CE), a concept developed with US National Science Foundation support, was a particular focus; Einstein Telescope (ET), the European next generation concept, is an important complement and partner in forming a network. The concluding summary of the meeting expressed the sentiment that the observational science accessible to CE and ET, also in combination with data from other non-GW observatories, will stimulate a very broad community of analysts and yield insights which are exciting given the access to GWs from the entire universe. The need, and desire, for closer collaboration between ET and CE was expressed; a three-detector network is optimal for delivering much of the science. The science opportunities afforded by CE and ET are broad and compelling, impacting a wide range of disciplines in physics and high energy astrophysics. There was a consensus that CE is a concept that can deliver the promised science. A strong endorsement of Cosmic Explorer, as described in the CE Horizon Study, is a primary outcome of DAWN VI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12718v3-abstract-full').style.display = 'none'; document.getElementById('2112.12718v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the Dawn VI workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10990">arXiv:2112.10990</a> <span> [<a href="https://arxiv.org/pdf/2112.10990">pdf</a>, <a href="https://arxiv.org/format/2112.10990">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6ad0">10.3847/1538-4357/ac6ad0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1636 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10990v2-abstract-short" style="display: inline;"> Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10990v2-abstract-full').style.display = 'inline'; document.getElementById('2112.10990v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10990v2-abstract-full" style="display: none;"> Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow the frequency and frequency time-derivative of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10990v2-abstract-full').style.display = 'none'; document.getElementById('2112.10990v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 9 figures, submitted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100267 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ, 932, 133 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06861">arXiv:2112.06861</a> <span> [<a href="https://arxiv.org/pdf/2112.06861">pdf</a>, <a href="https://arxiv.org/format/2112.06861">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Tests of General Relativity with GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=de+Alarc%C3%B3n%2C+P+F">P. F. de Alarc贸n</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1657 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06861v1-abstract-short" style="display: inline;"> The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06861v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06861v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06861v1-abstract-full" style="display: none;"> The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of those detectors. We restrict our analysis to the 15 confident signals that have false alarm rates $\leq 10^{-3}\, {\rm yr}^{-1}$. In addition to signals consistent with binary black hole (BH) mergers, the new events include GW200115_042309, a signal consistent with a neutron star--BH merger. We find the residual power, after subtracting the best fit waveform from the data for each event, to be consistent with the detector noise. Additionally, we find all the post-Newtonian deformation coefficients to be consistent with the predictions from GR, with an improvement by a factor of ~2 in the -1PN parameter. We also find that the spin-induced quadrupole moments of the binary BH constituents are consistent with those of Kerr BHs in GR. We find no evidence for dispersion of GWs, non-GR modes of polarization, or post-merger echoes in the events that were analyzed. We update the bound on the mass of the graviton, at 90% credibility, to $m_g \leq 1.27 \times 10^{-23} \mathrm{eV}/c^2$. The final mass and final spin as inferred from the pre-merger and post-merger parts of the waveform are consistent with each other. The studies of the properties of the remnant BHs, including deviations of the quasi-normal mode frequencies and damping times, show consistency with the predictions of GR. In addition to considering signals individually, we also combine results from the catalog of GW signals to calculate more precise population constraints. We find no evidence in support of physics beyond GR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06861v1-abstract-full').style.display = 'none'; document.getElementById('2112.06861v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100275 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.15507">arXiv:2111.15507</a> <span> [<a href="https://arxiv.org/pdf/2111.15507">pdf</a>, <a href="https://arxiv.org/format/2111.15507">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.102001">10.1103/PhysRevD.105.102001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1647 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.15507v2-abstract-short" style="display: inline;"> This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20~Hz to 610~Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15507v2-abstract-full').style.display = 'inline'; document.getElementById('2111.15507v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.15507v2-abstract-full" style="display: none;"> This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20~Hz to 610~Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust towards possible signal frequency wanderings. Outliers from this search are followed up using two different methods, one more suitable for nearly monochromatic signals, and the other more robust towards frequency fluctuations. We do not find any evidence for such signals and set upper limits on the signal strain amplitude, the most stringent being $\approx10^{-25}$ at around 130~Hz. We interpret these upper limits as both an "exclusion region" in the boson mass/black hole mass plane and the maximum detectable distance for a given boson mass, based on an assumption of the age of the black hole/boson cloud system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15507v2-abstract-full').style.display = 'none'; document.getElementById('2111.15507v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100343 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 102001, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13106">arXiv:2111.13106</a> <span> [<a href="https://arxiv.org/pdf/2111.13106">pdf</a>, <a href="https://arxiv.org/format/2111.13106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6acf">10.3847/1538-4357/ac6acf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1672 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13106v2-abstract-short" style="display: inline;"> We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the $l=2, m=1,2$ modes with a frequency of both… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13106v2-abstract-full').style.display = 'inline'; document.getElementById('2111.13106v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13106v2-abstract-full" style="display: none;"> We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the $l=2, m=1,2$ modes with a frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was found so we present 95\% credible upper limits on the strain amplitudes $h_0$ for the single harmonic search along with limits on the pulsars' mass quadrupole moments $Q_{22}$ and ellipticities $\varepsilon$. Of the pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their electromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437\textminus4715 and J0711\textminus6830 which have spin-down ratios of 0.87 and 0.57 respectively. For nine pulsars, their spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars our limits are factors of $\sim 100$ and $\sim 20$ more constraining than their spin-down limits, respectively. For the dual harmonic searches, new limits are placed on the strain amplitudes $C_{21}$ and $C_{22}$. For 23 pulsars we also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13106v2-abstract-full').style.display = 'none'; document.getElementById('2111.13106v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100049 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03634">arXiv:2111.03634</a> <span> [<a href="https://arxiv.org/pdf/2111.03634">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.011048">10.1103/PhysRevX.13.011048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The population of merging compact binaries inferred using gravitational waves through GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03634v5-abstract-short" style="display: inline;"> We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star mer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03634v5-abstract-full').style.display = 'inline'; document.getElementById('2111.03634v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03634v5-abstract-full" style="display: none;"> We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc$^{-3} yr$^{-1}$ and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc$^{-3} yr$^{-1}$, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc$^{-3}$ yr$^{-1}$ at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to $(1+z)^魏$ with $魏=2.9^{+1.7}_{-1.8}$ for $z\lesssim1$. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from $1.2^{+0.1}_{-0.2}$ to $2.0^{+0.3}_{-0.3}\,M_\odot$. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of $8.3^{+0.3}_{-0.5}$ and $27.9^{+1.9}_{-1.8}\,M_\odot$. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately $60\,M_\odot$ [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03634v5-abstract-full').style.display = 'none'; document.getElementById('2111.03634v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14; v5: updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100239 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 13, 011048 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03608">arXiv:2111.03608</a> <span> [<a href="https://arxiv.org/pdf/2111.03608">pdf</a>, <a href="https://arxiv.org/format/2111.03608">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac532b">10.3847/1538-4357/ac532b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1610 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03608v1-abstract-short" style="display: inline;"> We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target bina… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03608v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03608v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03608v1-abstract-full" style="display: none;"> We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target binary mergers with at least one neutron star as short gamma-ray burst progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these gamma-ray bursts. A weighted binomial test of the combined results finds no evidence for sub-threshold gravitational wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each gamma-ray burst. Finally, we constrain the population of low luminosity short gamma-ray bursts using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03608v1-abstract-full').style.display = 'none'; document.getElementById('2111.03608v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100091 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03606">arXiv:2111.03606</a> <span> [<a href="https://arxiv.org/pdf/2111.03606">pdf</a>, <a href="https://arxiv.org/format/2111.03606">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.041039">10.1103/PhysRevX.13.041039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akcay%2C+S">S. Akcay</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03606v3-abstract-short" style="display: inline;"> The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03606v3-abstract-full').style.display = 'inline'; document.getElementById('2111.03606v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03606v3-abstract-full" style="display: none;"> The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin $p_\mathrm{astro} > 0.5$. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with $p_\mathrm{astro} > 0.5$ are consistent with gravitational-wave signals from binary black holes or neutron star-black hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron star-black hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with $p_\mathrm{astro} > 0.5$ across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03606v3-abstract-full').style.display = 'none'; document.getElementById('2111.03606v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">88 pages (10 pages author list, 31 pages main text, 1 page acknowledgements, 24 pages appendices, 22 pages bibliography), 17 figures, 16 tables. Update to match version to be published in Physical Review X. Data products available from https://gwosc.org/GWTC-3/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000318 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X; 13(4):041039; 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03604">arXiv:2111.03604</a> <span> [<a href="https://arxiv.org/pdf/2111.03604">pdf</a>, <a href="https://arxiv.org/format/2111.03604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac74bb">10.3847/1538-4357/ac74bb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on the cosmic expansion history from GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1654 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03604v2-abstract-short" style="display: inline;"> We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter $H(z)$, including its current value, the Hubble constant $H_0$. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03604v2-abstract-full').style.display = 'inline'; document.getElementById('2111.03604v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03604v2-abstract-full" style="display: none;"> We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter $H(z)$, including its current value, the Hubble constant $H_0$. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and $H(z)$. The source mass distribution displays a peak around $34\, {\rm M_\odot}$, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a $H(z)$ measurement, yielding $H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}}$ ($68\%$ credible interval) when combined with the $H_0$ measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the $H_0$ estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of $H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}}$ with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent $H_0$ studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about $H_0$) is the well-localized event GW190814. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03604v2-abstract-full').style.display = 'none'; document.getElementById('2111.03604v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 30 pages, 15 figure, 7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100185-v6 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12197">arXiv:2109.12197</a> <span> [<a href="https://arxiv.org/pdf/2109.12197">pdf</a>, <a href="https://arxiv.org/format/2109.12197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.061104">10.1103/PhysRevLett.129.061104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for subsolar-mass binaries in the first half of Advanced LIGO and Virgo's third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12197v1-abstract-short" style="display: inline;"> We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12197v1-abstract-full').style.display = 'inline'; document.getElementById('2109.12197v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12197v1-abstract-full" style="display: none;"> We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio $q \geq 0.1$. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 $\mathrm{yr}^{-1}$. This implies an upper limit on the merger rate of subsolar binaries in the range $[220-24200] \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes is $f_\mathrm{PBH} \equiv 惟_\mathrm{PBH} / 惟_\mathrm{DM} \lesssim 6\%$. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at $M_\mathrm{min}=1 M_\odot$, where $f_\mathrm{DBH} \equiv 惟_\mathrm{PBH} / 惟_\mathrm{DM} \lesssim 0.003\%$. These are the tightest limits on spinning subsolar-mass binaries to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12197v1-abstract-full').style.display = 'none'; document.getElementById('2109.12197v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100163-v8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09882">arXiv:2109.09882</a> <span> [<a href="https://arxiv.org/pdf/2109.09882">pdf</a>, <a href="https://arxiv.org/format/2109.09882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> A Horizon Study for Cosmic Explorer: Science, Observatories, and Community </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Afle%2C+C">Chaitanya Afle</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S+W">Stefan W. Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Biscoveanu%2C+S">Sylvia Biscoveanu</a>, <a href="/search/astro-ph?searchtype=author&query=Borhanian%2C+S">Ssohrab Borhanian</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+D+A">Duncan A. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y">Yanbei Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Eisenstein%2C+R">Robert Eisenstein</a>, <a href="/search/astro-ph?searchtype=author&query=Gruson%2C+A">Alexandra Gruson</a>, <a href="/search/astro-ph?searchtype=author&query=Gupta%2C+A">Anuradha Gupta</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+E+D">Evan D. Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Huxford%2C+R">Rachael Huxford</a>, <a href="/search/astro-ph?searchtype=author&query=Kamai%2C+B">Brittany Kamai</a>, <a href="/search/astro-ph?searchtype=author&query=Kashyap%2C+R">Rahul Kashyap</a>, <a href="/search/astro-ph?searchtype=author&query=Kissel%2C+J+S">Jeff S. Kissel</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Landry%2C+P">Philippe Landry</a>, <a href="/search/astro-ph?searchtype=author&query=Lenon%2C+A">Amber Lenon</a>, <a href="/search/astro-ph?searchtype=author&query=Lovelace%2C+G">Geoffrey Lovelace</a>, <a href="/search/astro-ph?searchtype=author&query=McCuller%2C+L">Lee McCuller</a>, <a href="/search/astro-ph?searchtype=author&query=Ng%2C+K+K+Y">Ken K. Y. Ng</a>, <a href="/search/astro-ph?searchtype=author&query=Nitz%2C+A+H">Alexander H. Nitz</a>, <a href="/search/astro-ph?searchtype=author&query=Read%2C+J">Jocelyn Read</a>, <a href="/search/astro-ph?searchtype=author&query=Sathyaprakash%2C+B+S">B. S. Sathyaprakash</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09882v2-abstract-short" style="display: inline;"> This Horizon Study describes a next-generation ground-based gravitational-wave observatory: Cosmic Explorer. With ten times the sensitivity of Advanced LIGO, Cosmic Explorer will push gravitational-wave astronomy towards the edge of the observable universe ($z \sim 100$). The goals of this Horizon Study are to describe and evaluate design concepts for Cosmic Explorer; to plan for the United States… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09882v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09882v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09882v2-abstract-full" style="display: none;"> This Horizon Study describes a next-generation ground-based gravitational-wave observatory: Cosmic Explorer. With ten times the sensitivity of Advanced LIGO, Cosmic Explorer will push gravitational-wave astronomy towards the edge of the observable universe ($z \sim 100$). The goals of this Horizon Study are to describe and evaluate design concepts for Cosmic Explorer; to plan for the United States' leadership in gravitational-wave astronomy; and to envisage the role of Cosmic Explorer in the international effort to build a "Third-Generation" (3G) observatory network that will make discoveries transformative across astronomy, physics, and cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09882v2-abstract-full').style.display = 'none'; document.getElementById('2109.09882v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">173 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CE-P2100003-v7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09255">arXiv:2109.09255</a> <span> [<a href="https://arxiv.org/pdf/2109.09255">pdf</a>, <a href="https://arxiv.org/format/2109.09255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.022002">10.1103/PhysRevD.105.022002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+C">C. Anand</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09255v2-abstract-short" style="display: inline;"> Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09255v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09255v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09255v2-abstract-full" style="display: none;"> Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the $\mathcal{J}$-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow sub-bands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per sub-band and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4$-$3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed non-astrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, $h_0^{95\%}$. The strictest constraint is $h_0^{95\%} = 4.7\times 10^{-26}$ from IGR J17062$-$6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and $r$-mode amplitude, the strictest of which are $蔚^{95\%} = 3.1\times 10^{-7}$ and $伪^{95\%} = 1.8\times 10^{-5}$ respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond X-ray pulsars to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09255v2-abstract-full').style.display = 'none'; document.getElementById('2109.09255v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 6 figures. This version contains minor typographical revisions to match published article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100221 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 022002 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08743">arXiv:2109.08743</a> <span> [<a href="https://arxiv.org/pdf/2109.08743">pdf</a>, <a href="https://arxiv.org/format/2109.08743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.241102">10.1103/PhysRevLett.127.241102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Point Absorber Limits to Future Gravitational-Wave Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jia%2C+W">W. Jia</a>, <a href="/search/astro-ph?searchtype=author&query=Yamamoto%2C+H">H. Yamamoto</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">K. Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Effler%2C+A">A. Effler</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">M. Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Fritschel%2C+P">P. Fritschel</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/astro-ph?searchtype=author&query=Appert%2C+S">S. Appert</a>, <a href="/search/astro-ph?searchtype=author&query=Arai%2C+K">K. Arai</a>, <a href="/search/astro-ph?searchtype=author&query=Areeda%2C+J+S">J. S. Areeda</a>, <a href="/search/astro-ph?searchtype=author&query=Asali%2C+Y">Y. Asali</a>, <a href="/search/astro-ph?searchtype=author&query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/astro-ph?searchtype=author&query=Austin%2C+C">C. Austin</a>, <a href="/search/astro-ph?searchtype=author&query=Baer%2C+A+M">A. M. Baer</a>, <a href="/search/astro-ph?searchtype=author&query=Ball%2C+M">M. Ball</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Banagiri%2C+S">S. Banagiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barker%2C+D">D. Barker</a>, <a href="/search/astro-ph?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/astro-ph?searchtype=author&query=Bartlett%2C+J">J. Bartlett</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Betzwieser%2C+J">J. Betzwieser</a> , et al. (176 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08743v1-abstract-short" style="display: inline;"> High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08743v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08743v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08743v1-abstract-full" style="display: none;"> High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in-situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational wave detectors that support high optical power, and thus reduce quantum noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08743v1-abstract-full').style.display = 'none'; document.getElementById('2109.08743v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100331 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13796">arXiv:2107.13796</a> <span> [<a href="https://arxiv.org/pdf/2107.13796">pdf</a>, <a href="https://arxiv.org/format/2107.13796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.102001">10.1103/PhysRevD.104.102001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1605 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13796v1-abstract-short" style="display: inline;"> After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short" $ \lesssim 1~$\,s and "long" $ \gtrsim 1~$\,s duration signals, these signals are expected from a var… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13796v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13796v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13796v1-abstract-full" style="display: none;"> After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short" $ \lesssim 1~$\,s and "long" $ \gtrsim 1~$\,s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo's third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of $2~\text{--}~ 500$~s in duration and a frequency band of $24 - 2048$ Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude $h_{\mathrm{rss}}$ as a function of waveform morphology. These $h_{\mathrm{rss}}$ limits improve upon the results from the second observing run by an average factor of 1.8. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13796v1-abstract-full').style.display = 'none'; document.getElementById('2107.13796v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100063 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03701">arXiv:2107.03701</a> <span> [<a href="https://arxiv.org/pdf/2107.03701">pdf</a>, <a href="https://arxiv.org/format/2107.03701">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.122004">10.1103/PhysRevD.104.122004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1608 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03701v1-abstract-short" style="display: inline;"> This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03701v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03701v1-abstract-full" style="display: none;"> This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate-density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as $\sim$10$^{-10} M_{\odot} c^2$ in gravitational waves at $\sim$70 Hz from a distance of 10~kpc, with 50\% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f-modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03701v1-abstract-full').style.display = 'none'; document.getElementById('2107.03701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100045 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Evans%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Evans%2C+M&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>