CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 169 results for author: <span class="mathjax">Adhikari, R X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Adhikari%2C+R+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Adhikari, R X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Adhikari%2C+R+X&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Adhikari, R X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14607">arXiv:2411.14607</a> <span> [<a href="https://arxiv.org/pdf/2411.14607">pdf</a>, <a href="https://arxiv.org/format/2411.14607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Advanced LIGO detector performance in the fourth observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Capote%2C+E">E. Capote</a>, <a href="/search/astro-ph?searchtype=author&query=Jia%2C+W">W. Jia</a>, <a href="/search/astro-ph?searchtype=author&query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/astro-ph?searchtype=author&query=Nakano%2C+M">M. Nakano</a>, <a href="/search/astro-ph?searchtype=author&query=Xu%2C+V">V. Xu</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/astro-ph?searchtype=author&query=Appert%2C+S">S. Appert</a>, <a href="/search/astro-ph?searchtype=author&query=Apple%2C+S+K">S. K. Apple</a>, <a href="/search/astro-ph?searchtype=author&query=Arai%2C+K">K. Arai</a>, <a href="/search/astro-ph?searchtype=author&query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/astro-ph?searchtype=author&query=Ball%2C+M">M. Ball</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Barker%2C+D">D. Barker</a>, <a href="/search/astro-ph?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Betzwieser%2C+J">J. Betzwieser</a>, <a href="/search/astro-ph?searchtype=author&query=Bhattacharjee%2C+D">D. Bhattacharjee</a>, <a href="/search/astro-ph?searchtype=author&query=Billingsley%2C+G">G. Billingsley</a>, <a href="/search/astro-ph?searchtype=author&query=Biscans%2C+S">S. Biscans</a>, <a href="/search/astro-ph?searchtype=author&query=Blair%2C+C+D">C. D. Blair</a>, <a href="/search/astro-ph?searchtype=author&query=Bode%2C+N">N. Bode</a>, <a href="/search/astro-ph?searchtype=author&query=Bonilla%2C+E">E. Bonilla</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14607v1-abstract-short" style="display: inline;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14607v1-abstract-full" style="display: none;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'none'; document.getElementById('2411.14607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16565">arXiv:2410.16565</a> <span> [<a href="https://arxiv.org/pdf/2410.16565">pdf</a>, <a href="https://arxiv.org/format/2410.16565">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational waves emitted from SN 2023ixf </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1758 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16565v1-abstract-short" style="display: inline;"> We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16565v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16565v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16565v1-abstract-full" style="display: none;"> We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16565v1-abstract-full').style.display = 'none'; document.getElementById('2410.16565v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400125 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09151">arXiv:2410.09151</a> <span> [<a href="https://arxiv.org/pdf/2410.09151">pdf</a>, <a href="https://arxiv.org/format/2410.09151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a> , et al. (1758 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09151v1-abstract-short" style="display: inline;"> The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09151v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09151v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09151v1-abstract-full" style="display: none;"> The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09151v1-abstract-full').style.display = 'none'; document.getElementById('2410.09151v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages of text including references, 4 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400192 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02831">arXiv:2409.02831</a> <span> [<a href="https://arxiv.org/pdf/2409.02831">pdf</a>, <a href="https://arxiv.org/format/2409.02831">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> LIGO Detector Characterization in the first half of the fourth Observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Soni%2C+S">S. Soni</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+D">D. Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Renzo%2C+F+D">F. Di. Renzo</a>, <a href="/search/astro-ph?searchtype=author&query=Effler%2C+A">A. Effler</a>, <a href="/search/astro-ph?searchtype=author&query=Ferreira%2C+T+A">T. A. Ferreira</a>, <a href="/search/astro-ph?searchtype=author&query=Glanzer%2C+J">J. Glanzer</a>, <a href="/search/astro-ph?searchtype=author&query=Goetz%2C+E">E. Goetz</a>, <a href="/search/astro-ph?searchtype=author&query=Gonz%C3%A1lez%2C+G">G. Gonz谩lez</a>, <a href="/search/astro-ph?searchtype=author&query=Helmling-Cornell%2C+A">A. Helmling-Cornell</a>, <a href="/search/astro-ph?searchtype=author&query=Hughey%2C+B">B. Hughey</a>, <a href="/search/astro-ph?searchtype=author&query=Huxford%2C+R">R. Huxford</a>, <a href="/search/astro-ph?searchtype=author&query=Mannix%2C+B">B. Mannix</a>, <a href="/search/astro-ph?searchtype=author&query=Mo%2C+G">G. Mo</a>, <a href="/search/astro-ph?searchtype=author&query=Nandi%2C+D">D. Nandi</a>, <a href="/search/astro-ph?searchtype=author&query=Neunzert%2C+A">A. Neunzert</a>, <a href="/search/astro-ph?searchtype=author&query=Nichols%2C+S">S. Nichols</a>, <a href="/search/astro-ph?searchtype=author&query=Pham%2C+K">K. Pham</a>, <a href="/search/astro-ph?searchtype=author&query=Renzini%2C+A+I">A. I. Renzini</a>, <a href="/search/astro-ph?searchtype=author&query=Schofield%2C+R+M+S">R. M. S. Schofield</a>, <a href="/search/astro-ph?searchtype=author&query=Stuver%2C+A">A Stuver</a>, <a href="/search/astro-ph?searchtype=author&query=Trevor%2C+M">M. Trevor</a>, <a href="/search/astro-ph?searchtype=author&query=%C3%81lvarez-L%C3%B3pez%2C+S">S. 脕lvarez-L贸pez</a>, <a href="/search/astro-ph?searchtype=author&query=Beda%2C+R">R. Beda</a>, <a href="/search/astro-ph?searchtype=author&query=Berry%2C+C+P+L">C. P. L. Berry</a> , et al. (211 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02831v1-abstract-short" style="display: inline;"> Progress in gravitational-wave astronomy depends upon having sensitive detectors with good data quality. Since the end of the LIGO-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of gravitational-wave candidates and improved tools used for data-quality products. In this article, we discuss thes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02831v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02831v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02831v1-abstract-full" style="display: none;"> Progress in gravitational-wave astronomy depends upon having sensitive detectors with good data quality. Since the end of the LIGO-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of gravitational-wave candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study gravitational-waves. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02831v1-abstract-full').style.display = 'none'; document.getElementById('2409.02831v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12867">arXiv:2407.12867</a> <span> [<a href="https://arxiv.org/pdf/2407.12867">pdf</a>, <a href="https://arxiv.org/format/2407.12867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Raman%2C+G">Gayathri Raman</a>, <a href="/search/astro-ph?searchtype=author&query=Ronchini%2C+S">Samuele Ronchini</a>, <a href="/search/astro-ph?searchtype=author&query=Delaunay%2C+J">James Delaunay</a>, <a href="/search/astro-ph?searchtype=author&query=Tohuvavohu%2C+A">Aaron Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&query=Parsotan%2C+T">Tyler Parsotan</a>, <a href="/search/astro-ph?searchtype=author&query=Ambrosi%2C+E">Elena Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&query=Bernardini%2C+M+G">Maria Grazia Bernardini</a>, <a href="/search/astro-ph?searchtype=author&query=Campana%2C+S">Sergio Campana</a>, <a href="/search/astro-ph?searchtype=author&query=Cusumano%2C+G">Giancarlo Cusumano</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Ai%2C+A">Antonino D'Ai</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Avanzo%2C+P">Paolo D'Avanzo</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Elia%2C+V">Valerio D'Elia</a>, <a href="/search/astro-ph?searchtype=author&query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&query=Dichiara%2C+S">Simone Dichiara</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+P">Phil Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/astro-ph?searchtype=author&query=Kuin%2C+P">Paul Kuin</a>, <a href="/search/astro-ph?searchtype=author&query=Melandri%2C+A">Andrea Melandri</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Brien%2C+P">Paul O'Brien</a>, <a href="/search/astro-ph?searchtype=author&query=Osborne%2C+J+P">Julian P. Osborne</a>, <a href="/search/astro-ph?searchtype=author&query=Page%2C+K">Kim Page</a>, <a href="/search/astro-ph?searchtype=author&query=Palmer%2C+D+M">David M. Palmer</a>, <a href="/search/astro-ph?searchtype=author&query=Sbarufatti%2C+B">Boris Sbarufatti</a>, <a href="/search/astro-ph?searchtype=author&query=Tagliaferri%2C+G">Gianpiero Tagliaferri</a> , et al. (1797 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12867v1-abstract-short" style="display: inline;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12867v1-abstract-full" style="display: none;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'none'; document.getElementById('2407.12867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 10 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04248">arXiv:2404.04248</a> <span> [<a href="https://arxiv.org/pdf/2404.04248">pdf</a>, <a href="https://arxiv.org/format/2404.04248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad5beb">10.3847/2041-8213/ad5beb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Gravitational Waves from the Coalescence of a $2.5\text{-}4.5~M_\odot$ Compact Object and a Neutron Star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Ak%C3%A7ay%2C+S">S. Ak莽ay</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a> , et al. (1771 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04248v3-abstract-short" style="display: inline;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the so… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'inline'; document.getElementById('2404.04248v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04248v3-abstract-full" style="display: none;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than $5~M_\odot$ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of $55^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1}$ for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'none'; document.getElementById('2404.04248v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages (10 pages author list, 13 pages main text, 1 page acknowledgements, 13 pages appendices, 8 pages bibliography), 17 figures, 16 tables. Update to match version published in The Astrophysical Journal Letters. Data products available from https://zenodo.org/records/10845779</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300352 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL 970, L34 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03004">arXiv:2403.03004</a> <span> [<a href="https://arxiv.org/pdf/2403.03004">pdf</a>, <a href="https://arxiv.org/format/2403.03004">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralight vector dark matter search using data from the KAGRA O3GK run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a> , et al. (1778 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03004v1-abstract-short" style="display: inline;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03004v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03004v1-abstract-full" style="display: none;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for $U(1)_{B-L}$ gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the $U(1)_{B-L}$ gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'none'; document.getElementById('2403.03004v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300250 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04258">arXiv:2312.04258</a> <span> [<a href="https://arxiv.org/pdf/2312.04258">pdf</a>, <a href="https://arxiv.org/format/2312.04258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Digital Discovery of interferometric Gravitational Wave Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Krenn%2C+M">Mario Krenn</a>, <a href="/search/astro-ph?searchtype=author&query=Drori%2C+Y">Yehonathan Drori</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04258v1-abstract-short" style="display: inline;"> Gravitational waves, detected a century after they were first theorized, are spacetime distortions caused by some of the most cataclysmic events in the universe, including black hole mergers and supernovae. The successful detection of these waves has been made possible by ingenious detectors designed by human experts. Beyond these successful designs, the vast space of experimental configurations r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04258v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04258v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04258v1-abstract-full" style="display: none;"> Gravitational waves, detected a century after they were first theorized, are spacetime distortions caused by some of the most cataclysmic events in the universe, including black hole mergers and supernovae. The successful detection of these waves has been made possible by ingenious detectors designed by human experts. Beyond these successful designs, the vast space of experimental configurations remains largely unexplored, offering an exciting territory potentially rich in innovative and unconventional detection strategies. Here, we demonstrate the application of artificial intelligence (AI) to systematically explore this enormous space, revealing novel topologies for gravitational wave (GW) detectors that outperform current next-generation designs under realistic experimental constraints. Our results span a broad range of astrophysical targets, such as black hole and neutron star mergers, supernovae, and primordial GW sources. Moreover, we are able to conceptualize the initially unorthodox discovered designs, emphasizing the potential of using AI algorithms not only in discovering but also in understanding these novel topologies. We've assembled more than 50 superior solutions in a publicly available Gravitational Wave Detector Zoo which could lead to many new surprising techniques. At a bigger picture, our approach is not limited to gravitational wave detectors and can be extended to AI-driven design of experiments across diverse domains of fundamental physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04258v1-abstract-full').style.display = 'none'; document.getElementById('2312.04258v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures. Comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13666">arXiv:2308.13666</a> <span> [<a href="https://arxiv.org/pdf/2308.13666">pdf</a>, <a href="https://arxiv.org/format/2308.13666">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-Wave Candidates from the Third Gravitational-wave Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fletcher%2C+C">C. Fletcher</a>, <a href="/search/astro-ph?searchtype=author&query=Wood%2C+J">J. Wood</a>, <a href="/search/astro-ph?searchtype=author&query=Hamburg%2C+R">R. Hamburg</a>, <a href="/search/astro-ph?searchtype=author&query=Veres%2C+P">P. Veres</a>, <a href="/search/astro-ph?searchtype=author&query=Hui%2C+C+M">C. M. Hui</a>, <a href="/search/astro-ph?searchtype=author&query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Briggs%2C+M+S">M. S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&query=Cleveland%2C+W+H">W. H. Cleveland</a>, <a href="/search/astro-ph?searchtype=author&query=Giles%2C+M+M">M. M. Giles</a>, <a href="/search/astro-ph?searchtype=author&query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+B+A">B. A. Hristov</a>, <a href="/search/astro-ph?searchtype=author&query=Kocevski%2C+D">D. Kocevski</a>, <a href="/search/astro-ph?searchtype=author&query=Lesage%2C+S">S. Lesage</a>, <a href="/search/astro-ph?searchtype=author&query=Mailyan%2C+B">B. Mailyan</a>, <a href="/search/astro-ph?searchtype=author&query=Malacaria%2C+C">C. Malacaria</a>, <a href="/search/astro-ph?searchtype=author&query=Poolakkil%2C+S">S. Poolakkil</a>, <a href="/search/astro-ph?searchtype=author&query=von+Kienlin%2C+A">A. von Kienlin</a>, <a href="/search/astro-ph?searchtype=author&query=Wilson-Hodge%2C+C+A">C. A. Wilson-Hodge</a>, <a href="/search/astro-ph?searchtype=author&query=Team%2C+T+F+G+B+M">The Fermi Gamma-ray Burst Monitor Team</a>, <a href="/search/astro-ph?searchtype=author&query=Crnogor%C4%8Devi%C4%87%2C+M">M. Crnogor膷evi膰</a>, <a href="/search/astro-ph?searchtype=author&query=DeLaunay%2C+J">J. DeLaunay</a>, <a href="/search/astro-ph?searchtype=author&query=Tohuvavohu%2C+A">A. Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&query=Caputo%2C+R">R. Caputo</a>, <a href="/search/astro-ph?searchtype=author&query=Cenko%2C+S+B">S. B. Cenko</a> , et al. (1674 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13666v1-abstract-short" style="display: inline;"> We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13666v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13666v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13666v1-abstract-full" style="display: none;"> We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma-rays from binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13666v1-abstract-full').style.display = 'none'; document.getElementById('2308.13666v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03822">arXiv:2308.03822</a> <span> [<a href="https://arxiv.org/pdf/2308.03822">pdf</a>, <a href="https://arxiv.org/format/2308.03822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a> , et al. (1750 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03822v1-abstract-short" style="display: inline;"> Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03822v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03822v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03822v1-abstract-full" style="display: none;"> Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass $M>70$ $M_\odot$) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities $0 < e \leq 0.3$ at $0.33$ Gpc$^{-3}$ yr$^{-1}$ at 90\% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03822v1-abstract-full').style.display = 'none'; document.getElementById('2308.03822v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300080 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00150">arXiv:2308.00150</a> <span> [<a href="https://arxiv.org/pdf/2308.00150">pdf</a>, <a href="https://arxiv.org/format/2308.00150">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.022009">10.1103/PhysRevD.109.022009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of mirror birefringence and its fluctuations to laser interferometric gravitational wave detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Michimura%2C+Y">Yuta Michimura</a>, <a href="/search/astro-ph?searchtype=author&query=Wang%2C+H">Haoyu Wang</a>, <a href="/search/astro-ph?searchtype=author&query=Salces-Carcoba%2C+F">Francisco Salces-Carcoba</a>, <a href="/search/astro-ph?searchtype=author&query=Wipf%2C+C">Christopher Wipf</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+A">Aidan Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Arai%2C+K">Koji Arai</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00150v2-abstract-short" style="display: inline;"> Crystalline materials are promising candidates as substrates or high-reflective coatings of mirrors to reduce thermal noises in future laser interferometric gravitational wave detectors. However, birefringence of such materials could degrade the sensitivity of gravitational wave detectors, not only because it can introduce optical losses, but also because its fluctuations create extra phase noise… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00150v2-abstract-full').style.display = 'inline'; document.getElementById('2308.00150v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00150v2-abstract-full" style="display: none;"> Crystalline materials are promising candidates as substrates or high-reflective coatings of mirrors to reduce thermal noises in future laser interferometric gravitational wave detectors. However, birefringence of such materials could degrade the sensitivity of gravitational wave detectors, not only because it can introduce optical losses, but also because its fluctuations create extra phase noise in the arm cavity reflected beam. In this paper, we analytically estimate the effects of birefringence and its fluctuations in the mirror substrate and coating for gravitational wave detectors. Our calculations show that the requirements for the birefringence fluctuations in silicon substrate and AlGaAs coating will be on the order of $10^{-8}$ and $10^{-10}$ rad/$\sqrt{\rm Hz}$ at 100~Hz, respectively, for future gravitational wave detectors. We also point out that optical cavity response needs to be carefully taken into account to estimate optical losses from depolarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00150v2-abstract-full').style.display = 'none'; document.getElementById('2308.00150v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300220, JGW-P2315068 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 022009 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08393">arXiv:2304.08393</a> <span> [<a href="https://arxiv.org/pdf/2304.08393">pdf</a>, <a href="https://arxiv.org/format/2304.08393">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1670 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08393v1-abstract-short" style="display: inline;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08393v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08393v1-abstract-full" style="display: none;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'none'; document.getElementById('2304.08393v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2200031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01477">arXiv:2212.01477</a> <span> [<a href="https://arxiv.org/pdf/2212.01477">pdf</a>, <a href="https://arxiv.org/format/2212.01477">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3120">10.1093/mnras/stad3120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1680 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01477v2-abstract-short" style="display: inline;"> We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 $\mathrm{yr}^{-1}$. We estimate t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01477v2-abstract-full').style.display = 'inline'; document.getElementById('2212.01477v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01477v2-abstract-full" style="display: none;"> We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 $\mathrm{yr}^{-1}$. We estimate the sensitivity of our search over the entirety of Advanced LIGO's and Advanced Virgo's third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs $f_\mathrm{PBH} \gtrsim 0.6$ (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out $f_\mathrm{PBH} = 1$. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound $f_{\mathrm{DBH}} < 10^{-5}$ on the fraction of atomic dark matter collapsed into black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01477v2-abstract-full').style.display = 'none'; document.getElementById('2212.01477v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://dcc.ligo.org/P2200139</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09978">arXiv:2211.09978</a> <span> [<a href="https://arxiv.org/pdf/2211.09978">pdf</a>, <a href="https://arxiv.org/format/2211.09978">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass Cosmic Frontier Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chou%2C+A+S">Aaron S. Chou</a>, <a href="/search/astro-ph?searchtype=author&query=Soares-Santos%2C+M">Marcelle Soares-Santos</a>, <a href="/search/astro-ph?searchtype=author&query=Tait%2C+T+M+P">Tim M. P. Tait</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Anchordoqui%2C+L+A">Luis A. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&query=Annis%2C+J">James Annis</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C+L">Clarence L. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Cooley%2C+J">Jodi Cooley</a>, <a href="/search/astro-ph?searchtype=author&query=Drlica-Wagner%2C+A">Alex Drlica-Wagner</a>, <a href="/search/astro-ph?searchtype=author&query=Fang%2C+K">Ke Fang</a>, <a href="/search/astro-ph?searchtype=author&query=Flaugher%2C+B">Brenna Flaugher</a>, <a href="/search/astro-ph?searchtype=author&query=Jaeckel%2C+J">Joerg Jaeckel</a>, <a href="/search/astro-ph?searchtype=author&query=Lippincott%2C+W+H">W. Hugh Lippincott</a>, <a href="/search/astro-ph?searchtype=author&query=Miranda%2C+V">Vivian Miranda</a>, <a href="/search/astro-ph?searchtype=author&query=Newburgh%2C+L">Laura Newburgh</a>, <a href="/search/astro-ph?searchtype=author&query=Newman%2C+J+A">Jeffrey A. Newman</a>, <a href="/search/astro-ph?searchtype=author&query=Prescod-Weinstein%2C+C">Chanda Prescod-Weinstein</a>, <a href="/search/astro-ph?searchtype=author&query=Rybka%2C+G">Gray Rybka</a>, <a href="/search/astro-ph?searchtype=author&query=Sathyaprakash%2C+B+S">B. S. Sathyaprakash</a>, <a href="/search/astro-ph?searchtype=author&query=Schlegel%2C+D+J">David J. Schlegel</a>, <a href="/search/astro-ph?searchtype=author&query=Slatyer%2C+D+M+S+T+R">Deirdre M. Shoemaker Tracy R. Slatyer</a>, <a href="/search/astro-ph?searchtype=author&query=Slosar%2C+A">Anze Slosar</a>, <a href="/search/astro-ph?searchtype=author&query=Tollefson%2C+K">Kirsten Tollefson</a>, <a href="/search/astro-ph?searchtype=author&query=Winslow%2C+L">Lindley Winslow</a>, <a href="/search/astro-ph?searchtype=author&query=Yu%2C+H">Hai-Bo Yu</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09978v1-abstract-short" style="display: inline;"> This report summarizes the current status of Cosmic Frontier physics and the broad and exciting future prospects identified for the Cosmic Frontier as part of the 2021 Snowmass Process. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09978v1-abstract-full" style="display: none;"> This report summarizes the current status of Cosmic Frontier physics and the broad and exciting future prospects identified for the Cosmic Frontier as part of the 2021 Snowmass Process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09978v1-abstract-full').style.display = 'none'; document.getElementById('2211.09978v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages. Contribution to the 2021 Snowmass Summer Study</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCI-HEP-TR-2022-26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10931">arXiv:2210.10931</a> <span> [<a href="https://arxiv.org/pdf/2210.10931">pdf</a>, <a href="https://arxiv.org/format/2210.10931">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10931v1-abstract-short" style="display: inline;"> Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo and KAGRA's third observation run. These 13 bu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10931v1-abstract-full').style.display = 'inline'; document.getElementById('2210.10931v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10931v1-abstract-full" style="display: none;"> Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo and KAGRA's third observation run. These 13 bursts come from two magnetars, SGR 1935$+$2154 and Swift J1818.0$-$1607. We also include three other electromagnetic burst events detected by Fermi GBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper bounds on the root-sum-square of the integrated gravitational-wave strain that reach $2.2 \times 10^{-23}$ $/\sqrt{\text{Hz}}$ at 100 Hz for the short-duration search and $8.7 \times 10^{-23}$ $/\sqrt{\text{Hz}}$ at $450$ Hz for the long-duration search, given a detection efficiency of 50%. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to $1.8 \times 10^{-22}$ $/\sqrt{\text{Hz}}$. Using the estimated distance to each magnetar, we derive upper bounds on the emitted gravitational-wave energy of $3.2 \times 10^{43}$ erg ($7.3 \times 10^{43}$ erg) for SGR 1935$+$2154 and $8.2 \times 10^{42}$ erg ($2.8 \times 10^{43}$ erg) for Swift J1818.0$-$1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935$+$2154 with available fluence information. The lowest of these ratios is $3 \times 10^3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10931v1-abstract-full').style.display = 'none'; document.getElementById('2210.10931v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages with appendices, 5 figures, 10 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100387 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11726">arXiv:2209.11726</a> <span> [<a href="https://arxiv.org/pdf/2209.11726">pdf</a>, <a href="https://arxiv.org/format/2209.11726">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Report of the Topical Group on Cosmic Probes of Fundamental Physics for for Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Anchordoqui%2C+L+A">Luis A. Anchordoqui</a>, <a href="/search/astro-ph?searchtype=author&query=Fang%2C+K">Ke Fang</a>, <a href="/search/astro-ph?searchtype=author&query=Sathyaprakash%2C+B+S">B. S. Sathyaprakash</a>, <a href="/search/astro-ph?searchtype=author&query=Tollefson%2C+K">Kirsten Tollefson</a>, <a href="/search/astro-ph?searchtype=author&query=Lewis%2C+T+R">Tiffany R. Lewis</a>, <a href="/search/astro-ph?searchtype=author&query=Engel%2C+K">Kristi Engel</a>, <a href="/search/astro-ph?searchtype=author&query=Aboubrahim%2C+A">Amin Aboubrahim</a>, <a href="/search/astro-ph?searchtype=author&query=Akarsu%2C+O">Ozgur Akarsu</a>, <a href="/search/astro-ph?searchtype=author&query=Akrami%2C+Y">Yashar Akrami</a>, <a href="/search/astro-ph?searchtype=author&query=Aloisio%2C+R">Roberto Aloisio</a>, <a href="/search/astro-ph?searchtype=author&query=Batista%2C+R+A">Rafael Alves Batista</a>, <a href="/search/astro-ph?searchtype=author&query=Ballardini%2C+M">Mario Ballardini</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S+W">Stefan W. Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+E">Ellen Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Benisty%2C+D">David Benisty</a>, <a href="/search/astro-ph?searchtype=author&query=Berti%2C+E">Emanuele Berti</a>, <a href="/search/astro-ph?searchtype=author&query=Birrer%2C+S">Simon Birrer</a>, <a href="/search/astro-ph?searchtype=author&query=Bonilla%2C+A">Alexander Bonilla</a>, <a href="/search/astro-ph?searchtype=author&query=Brito%2C+R">Richard Brito</a>, <a href="/search/astro-ph?searchtype=author&query=Bustamante%2C+M">Mauricio Bustamante</a>, <a href="/search/astro-ph?searchtype=author&query=Caldwell%2C+R">Robert Caldwell</a>, <a href="/search/astro-ph?searchtype=author&query=Cardoso%2C+V">Vitor Cardoso</a>, <a href="/search/astro-ph?searchtype=author&query=Chakrabarti%2C+S">Sukanya Chakrabarti</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+T+Y">Thomas Y. Chen</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11726v1-abstract-short" style="display: inline;"> Cosmic Probes of Fundamental Physics take two primary forms: Very high energy particles (cosmic rays, neutrinos, and gamma rays) and gravitational waves. Already today, these probes give access to fundamental physics not available by any other means, helping elucidate the underlying theory that completes the Standard Model. The last decade has witnessed a revolution of exciting discoveries such as… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11726v1-abstract-full').style.display = 'inline'; document.getElementById('2209.11726v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11726v1-abstract-full" style="display: none;"> Cosmic Probes of Fundamental Physics take two primary forms: Very high energy particles (cosmic rays, neutrinos, and gamma rays) and gravitational waves. Already today, these probes give access to fundamental physics not available by any other means, helping elucidate the underlying theory that completes the Standard Model. The last decade has witnessed a revolution of exciting discoveries such as the detection of high-energy neutrinos and gravitational waves. The scope for major developments in the next decades is dramatic, as we detail in this report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11726v1-abstract-full').style.display = 'none'; document.getElementById('2209.11726v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Report of theTopical Group on Cosmic Probes of Fundamental Physics, for the U.S. decadal Particle Physics Planning Exercise (Snowmass 2021)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02863">arXiv:2209.02863</a> <span> [<a href="https://arxiv.org/pdf/2209.02863">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aca1b0">10.3847/2041-8213/aca1b0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1670 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02863v2-abstract-short" style="display: inline;"> We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to bala… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02863v2-abstract-full').style.display = 'inline'; document.getElementById('2209.02863v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02863v2-abstract-full" style="display: none;"> We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25Hz to 1600Hz, as well as ranges in orbital speed, frequency and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100Hz and 200Hz, correspond to an amplitude h0 of about 1e-25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4e-26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically-marginalized upper limits are close to the predicted amplitude from about 70Hz to 100Hz; the limits assuming the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40Hz to 200Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500Hz or more. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02863v2-abstract-full').style.display = 'none'; document.getElementById('2209.02863v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, Open Access Journal PDF</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100110-v13 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Letters, 941, L30 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.14197">arXiv:2205.14197</a> <span> [<a href="https://arxiv.org/pdf/2205.14197">pdf</a>, <a href="https://arxiv.org/format/2205.14197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.063017">10.1103/PhysRevD.106.063017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exposing Gravitational Waves below the Quantum Shot Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Yu%2C+H">Hang Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Martynov%2C+D">Denis Martynov</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y">Yanbei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.14197v1-abstract-short" style="display: inline;"> The sensitivities of ground-based gravitational-wave (GW) detectors are limited by quantum shot noise at a few hundred Hertz and above. Nonetheless, one can use a quantum-correlation technique proposed by Martynov, et al. [Phys. Rev. A 95, 043831 (2017)] to remove the expectation value of the shot noise, thereby exposing underlying classical signals in the cross spectrum formed by cross-correlatin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14197v1-abstract-full').style.display = 'inline'; document.getElementById('2205.14197v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.14197v1-abstract-full" style="display: none;"> The sensitivities of ground-based gravitational-wave (GW) detectors are limited by quantum shot noise at a few hundred Hertz and above. Nonetheless, one can use a quantum-correlation technique proposed by Martynov, et al. [Phys. Rev. A 95, 043831 (2017)] to remove the expectation value of the shot noise, thereby exposing underlying classical signals in the cross spectrum formed by cross-correlating the two outputs in a GW interferometer's anti-symmetric port. We explore here the prospects and analyze the sensitivity of using quantum correlation to detect astrophysical GW signals. Conceptually, this technique is similar to the correlation of two different GW detectors as it utilizes the fact that a GW signal will be correlated in the two outputs but the shot noise will be uncorrelated. Quantum correlation also has its unique advantages as it requires only a single interferometer to make a detection. Therefore, quantum correlation could increase the duty cycle, enhance the search efficiency, and enable the detection of highly polarized signals. In particular, we show that quantum correlation could be especially useful for detecting post-merger remnants of binary neutron stars with both short ($< 1\,{\rm s}$) and intermediate ($\sim 10-10^4\,{\rm s}$) durations and setting upper limits on continuous emissions from unknown pulsars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14197v1-abstract-full').style.display = 'none'; document.getElementById('2205.14197v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, to be submitted to PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04523">arXiv:2204.04523</a> <span> [<a href="https://arxiv.org/pdf/2204.04523">pdf</a>, <a href="https://arxiv.org/format/2204.04523">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.042003">10.1103/PhysRevD.106.042003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04523v1-abstract-short" style="display: inline;"> We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04523v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04523v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04523v1-abstract-full" style="display: none;"> We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band $[10,2000]\rm~Hz$ have been used. No significant detection was found and 95$\%$ confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about $7.6\times 10^{-26}$ at $\simeq 142\rm~Hz$. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04523v1-abstract-full').style.display = 'none'; document.getElementById('2204.04523v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12038">arXiv:2203.12038</a> <span> [<a href="https://arxiv.org/pdf/2203.12038">pdf</a>, <a href="https://arxiv.org/format/2203.12038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB During the LIGO--Virgo Observing Run O3a </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+t+C">the CHIME/FRB Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1633 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12038v1-abstract-short" style="display: inline;"> We search for gravitational-wave transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB), during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC-1 Oct 2019 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets compact binary coal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12038v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12038v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12038v1-abstract-full" style="display: none;"> We search for gravitational-wave transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB), during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC-1 Oct 2019 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets compact binary coalescences with at least one neutron star component. A targeted search for generic gravitational-wave transients was conducted on 40 FRBs. We find no significant evidence for a gravitational-wave association in either search. Given the large uncertainties in the distances of the FRBs inferred from the dispersion measures in our sample, however, this does not conclusively exclude any progenitor models that include emission of a gravitational wave of the types searched for from any of these FRB events. We report $90\%$ confidence lower bounds on the distance to each FRB for a range of gravitational-wave progenitor models. By combining the inferred maximum distance information for each FRB with the sensitivity of the gravitational-wave searches, we set upper limits on the energy emitted through gravitational waves for a range of emission scenarios. We find values of order $10^{51}$-$10^{57}$ erg for a range of different emission models with central gravitational wave frequencies in the range 70-3560 Hz. Finally, we also found no significant coincident detection of gravitational waves with the repeater, FRB 20200120E, which is the closest known extragalactic FRB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12038v1-abstract-full').style.display = 'none'; document.getElementById('2203.12038v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 6 figures, 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100124 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07011">arXiv:2203.07011</a> <span> [<a href="https://arxiv.org/pdf/2203.07011">pdf</a>, <a href="https://arxiv.org/format/2203.07011">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac093">10.1093/ptep/ptac093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=KAGRA+Collaboration"> KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Ando%2C+M">M. Ando</a>, <a href="/search/astro-ph?searchtype=author&query=Araya%2C+A">A. Araya</a>, <a href="/search/astro-ph?searchtype=author&query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/astro-ph?searchtype=author&query=Asada%2C+H">H. Asada</a>, <a href="/search/astro-ph?searchtype=author&query=Aso%2C+Y">Y. Aso</a>, <a href="/search/astro-ph?searchtype=author&query=Bae%2C+S">S. Bae</a>, <a href="/search/astro-ph?searchtype=author&query=Bae%2C+Y">Y. Bae</a>, <a href="/search/astro-ph?searchtype=author&query=Bajpai%2C+R">R. Bajpai</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Cannon%2C+K">K. Cannon</a>, <a href="/search/astro-ph?searchtype=author&query=Cao%2C+Z">Z. Cao</a>, <a href="/search/astro-ph?searchtype=author&query=Capocasa%2C+E">E. Capocasa</a>, <a href="/search/astro-ph?searchtype=author&query=Chan%2C+M">M. Chan</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+C">C. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+D">D. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+K">K. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+C">C-Y. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Chu%2C+Y">Y-K. Chu</a>, <a href="/search/astro-ph?searchtype=author&query=Driggers%2C+J+C">J. C. Driggers</a>, <a href="/search/astro-ph?searchtype=author&query=Dwyer%2C+S+E">S. E. Dwyer</a> , et al. (193 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07011v1-abstract-short" style="display: inline;"> KAGRA, the kilometer-scale underground gravitational-wave detector, is located at Kamioka, Japan. In April 2020, an astrophysics observation was performed at the KAGRA detector in combination with the GEO 600 detector; this observation operation is called O3GK. The optical configuration in O3GK is based on a power recycled Fabry-P茅rot Michelson interferometer; all the mirrors were set at room temp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07011v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07011v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07011v1-abstract-full" style="display: none;"> KAGRA, the kilometer-scale underground gravitational-wave detector, is located at Kamioka, Japan. In April 2020, an astrophysics observation was performed at the KAGRA detector in combination with the GEO 600 detector; this observation operation is called O3GK. The optical configuration in O3GK is based on a power recycled Fabry-P茅rot Michelson interferometer; all the mirrors were set at room temperature. The duty factor of the operation was approximately 53%, and the strain sensitivity was $3\times10^{-22}~/\sqrt{\rm{Hz}}$ at 250 Hz. In addition, the binary-neutron-star (BNS) inspiral range was approximately 0.6 Mpc. The contributions of various noise sources to the sensitivity of O3GK were investigated to understand how the observation range could be improved; this study is called a "noise budget". According to our noise budget, the measured sensitivity could be approximated by adding up the effect of each noise. The sensitivity was dominated by noise from the sensors used for local controls of the vibration isolation systems, acoustic noise, shot noise, and laser frequency noise. Further, other noise sources that did not limit the sensitivity were investigated. This paper provides a detailed account of the KAGRA detector in O3GK including interferometer configuration, status, and noise budget. In addition, strategies for future sensitivity improvements such as hardware upgrades, are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07011v1-abstract-full').style.display = 'none'; document.getElementById('2203.07011v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JGW-P2113405 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01270">arXiv:2203.01270</a> <span> [<a href="https://arxiv.org/pdf/2203.01270">pdf</a>, <a href="https://arxiv.org/format/2203.01270">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac073">10.1093/ptep/ptac073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First joint observation by the underground gravitational-wave detector, KAGRA, with GEO600 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1647 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01270v2-abstract-short" style="display: inline;"> We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Germany. GEO600 and KAGRA performed a joint observing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01270v2-abstract-full').style.display = 'inline'; document.getElementById('2203.01270v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01270v2-abstract-full" style="display: none;"> We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Germany. GEO600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO--KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analysed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01270v2-abstract-full').style.display = 'none'; document.getElementById('2203.01270v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100286 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Progress of Theoretical and Experimental Physics, Volume 2022, Issue 6, 063F01 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09482">arXiv:2201.09482</a> <span> [<a href="https://arxiv.org/pdf/2201.09482">pdf</a>, <a href="https://arxiv.org/format/2201.09482">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.102002">10.1103/PhysRevD.105.102002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing Gravitational-Wave Detector Design for Squeezed Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Richardson%2C+J+W">Jonathan W. Richardson</a>, <a href="/search/astro-ph?searchtype=author&query=Pandey%2C+S">Swadha Pandey</a>, <a href="/search/astro-ph?searchtype=author&query=Bytyqi%2C+E">Edita Bytyqi</a>, <a href="/search/astro-ph?searchtype=author&query=Edo%2C+T">Tega Edo</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X. Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09482v2-abstract-short" style="display: inline;"> Achieving the quantum noise targets of third-generation detectors will require 10 dB of squeezed-light enhancement as well as megawatt laser power in the interferometer arms - both of which require unprecedented control of the internal optical losses. In this work, we present a novel optimization approach to gravitational-wave detector design aimed at maximizing the robustness to common, yet unavo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09482v2-abstract-full').style.display = 'inline'; document.getElementById('2201.09482v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09482v2-abstract-full" style="display: none;"> Achieving the quantum noise targets of third-generation detectors will require 10 dB of squeezed-light enhancement as well as megawatt laser power in the interferometer arms - both of which require unprecedented control of the internal optical losses. In this work, we present a novel optimization approach to gravitational-wave detector design aimed at maximizing the robustness to common, yet unavoidable, optical fabrication and installation errors, which have caused significant loss in Advanced LIGO. As a proof of concept, we employ these techniques to perform a two-part optimization of the LIGO A+ design. First, we optimize the arm cavities for reduced scattering loss in the presence of point absorbers, as currently limit the operating power of Advanced LIGO. Then, we optimize the signal recycling cavity for maximum squeezing performance, accounting for realistic errors in the positions and radii of curvature of the optics. Our findings suggest that these techniques can be leveraged to achieve substantially greater quantum noise performance in current and future gravitational-wave detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09482v2-abstract-full').style.display = 'none'; document.getElementById('2201.09482v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches version accepted in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO Document No. P2100184 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00697">arXiv:2201.00697</a> <span> [<a href="https://arxiv.org/pdf/2201.00697">pdf</a>, <a href="https://arxiv.org/format/2201.00697">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.102008">10.1103/PhysRevD.106.102008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00697v1-abstract-short" style="display: inline;"> We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivativ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00697v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00697v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00697v1-abstract-full" style="display: none;"> We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from $-10^{-8}$ to $10^{-9}$ Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude $h_0$ are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ${\sim}1.1\times10^{-25}$ at 95\% confidence-level. The minimum upper limit of $1.10\times10^{-25}$ is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00697v1-abstract-full').style.display = 'none'; document.getElementById('2201.00697v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 main text pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100367 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10990">arXiv:2112.10990</a> <span> [<a href="https://arxiv.org/pdf/2112.10990">pdf</a>, <a href="https://arxiv.org/format/2112.10990">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6ad0">10.3847/1538-4357/ac6ad0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1636 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10990v2-abstract-short" style="display: inline;"> Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10990v2-abstract-full').style.display = 'inline'; document.getElementById('2112.10990v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10990v2-abstract-full" style="display: none;"> Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow the frequency and frequency time-derivative of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10990v2-abstract-full').style.display = 'none'; document.getElementById('2112.10990v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 9 figures, submitted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100267 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ, 932, 133 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06861">arXiv:2112.06861</a> <span> [<a href="https://arxiv.org/pdf/2112.06861">pdf</a>, <a href="https://arxiv.org/format/2112.06861">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Tests of General Relativity with GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=de+Alarc%C3%B3n%2C+P+F">P. F. de Alarc贸n</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1657 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06861v1-abstract-short" style="display: inline;"> The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06861v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06861v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06861v1-abstract-full" style="display: none;"> The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of those detectors. We restrict our analysis to the 15 confident signals that have false alarm rates $\leq 10^{-3}\, {\rm yr}^{-1}$. In addition to signals consistent with binary black hole (BH) mergers, the new events include GW200115_042309, a signal consistent with a neutron star--BH merger. We find the residual power, after subtracting the best fit waveform from the data for each event, to be consistent with the detector noise. Additionally, we find all the post-Newtonian deformation coefficients to be consistent with the predictions from GR, with an improvement by a factor of ~2 in the -1PN parameter. We also find that the spin-induced quadrupole moments of the binary BH constituents are consistent with those of Kerr BHs in GR. We find no evidence for dispersion of GWs, non-GR modes of polarization, or post-merger echoes in the events that were analyzed. We update the bound on the mass of the graviton, at 90% credibility, to $m_g \leq 1.27 \times 10^{-23} \mathrm{eV}/c^2$. The final mass and final spin as inferred from the pre-merger and post-merger parts of the waveform are consistent with each other. The studies of the properties of the remnant BHs, including deviations of the quasi-normal mode frequencies and damping times, show consistency with the predictions of GR. In addition to considering signals individually, we also combine results from the catalog of GW signals to calculate more precise population constraints. We find no evidence in support of physics beyond GR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06861v1-abstract-full').style.display = 'none'; document.getElementById('2112.06861v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100275 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.15507">arXiv:2111.15507</a> <span> [<a href="https://arxiv.org/pdf/2111.15507">pdf</a>, <a href="https://arxiv.org/format/2111.15507">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.102001">10.1103/PhysRevD.105.102001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1647 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.15507v2-abstract-short" style="display: inline;"> This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20~Hz to 610~Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15507v2-abstract-full').style.display = 'inline'; document.getElementById('2111.15507v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.15507v2-abstract-full" style="display: none;"> This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20~Hz to 610~Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust towards possible signal frequency wanderings. Outliers from this search are followed up using two different methods, one more suitable for nearly monochromatic signals, and the other more robust towards frequency fluctuations. We do not find any evidence for such signals and set upper limits on the signal strain amplitude, the most stringent being $\approx10^{-25}$ at around 130~Hz. We interpret these upper limits as both an "exclusion region" in the boson mass/black hole mass plane and the maximum detectable distance for a given boson mass, based on an assumption of the age of the black hole/boson cloud system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15507v2-abstract-full').style.display = 'none'; document.getElementById('2111.15507v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100343 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 102001, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13106">arXiv:2111.13106</a> <span> [<a href="https://arxiv.org/pdf/2111.13106">pdf</a>, <a href="https://arxiv.org/format/2111.13106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6acf">10.3847/1538-4357/ac6acf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1672 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13106v2-abstract-short" style="display: inline;"> We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the $l=2, m=1,2$ modes with a frequency of both… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13106v2-abstract-full').style.display = 'inline'; document.getElementById('2111.13106v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13106v2-abstract-full" style="display: none;"> We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the $l=2, m=1,2$ modes with a frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was found so we present 95\% credible upper limits on the strain amplitudes $h_0$ for the single harmonic search along with limits on the pulsars' mass quadrupole moments $Q_{22}$ and ellipticities $\varepsilon$. Of the pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their electromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437\textminus4715 and J0711\textminus6830 which have spin-down ratios of 0.87 and 0.57 respectively. For nine pulsars, their spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars our limits are factors of $\sim 100$ and $\sim 20$ more constraining than their spin-down limits, respectively. For the dual harmonic searches, new limits are placed on the strain amplitudes $C_{21}$ and $C_{22}$. For 23 pulsars we also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13106v2-abstract-full').style.display = 'none'; document.getElementById('2111.13106v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100049 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03634">arXiv:2111.03634</a> <span> [<a href="https://arxiv.org/pdf/2111.03634">pdf</a>, <a href="https://arxiv.org/format/2111.03634">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> The population of merging compact binaries inferred using gravitational waves through GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03634v4-abstract-short" style="display: inline;"> We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 $\rm{Gpc^{-3} yr^{-1}}$ and 1700 $\rm{Gpc^{-3} yr^{-1}}$ and the NSBH merger rate to be between 7.8… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03634v4-abstract-full').style.display = 'inline'; document.getElementById('2111.03634v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03634v4-abstract-full" style="display: none;"> We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 $\rm{Gpc^{-3} yr^{-1}}$ and 1700 $\rm{Gpc^{-3} yr^{-1}}$ and the NSBH merger rate to be between 7.8 $\rm{Gpc^{-3}\, yr^{-1}}$ and 140 $\rm{Gpc^{-3} yr^{-1}}$ , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 $\rm{Gpc^{-3}\, yr^{-1}}$ and 44 $\rm{Gpc^{-3}\, yr^{-1}}$ at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from $1.2^{+0.1}_{-0.2} M_\odot$ to $2.0^{+0.3}_{-0.3} M_\odot$. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 $M_\odot$. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above $\sim 60 M_\odot$. The rate of BBH mergers is observed to increase with redshift at a rate proportional to $(1+z)^魏$ with $魏= 2.9^{+1.7}_{-1.8}$ for $z\lesssim 1$. Observed black hole spins are small, with half of spin magnitudes below $蠂_i \simeq 0.25$. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03634v4-abstract-full').style.display = 'none'; document.getElementById('2111.03634v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100239 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03608">arXiv:2111.03608</a> <span> [<a href="https://arxiv.org/pdf/2111.03608">pdf</a>, <a href="https://arxiv.org/format/2111.03608">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac532b">10.3847/1538-4357/ac532b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1610 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03608v1-abstract-short" style="display: inline;"> We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target bina… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03608v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03608v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03608v1-abstract-full" style="display: none;"> We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target binary mergers with at least one neutron star as short gamma-ray burst progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these gamma-ray bursts. A weighted binomial test of the combined results finds no evidence for sub-threshold gravitational wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each gamma-ray burst. Finally, we constrain the population of low luminosity short gamma-ray bursts using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03608v1-abstract-full').style.display = 'none'; document.getElementById('2111.03608v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100091 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03606">arXiv:2111.03606</a> <span> [<a href="https://arxiv.org/pdf/2111.03606">pdf</a>, <a href="https://arxiv.org/format/2111.03606">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.041039">10.1103/PhysRevX.13.041039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akcay%2C+S">S. Akcay</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03606v3-abstract-short" style="display: inline;"> The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03606v3-abstract-full').style.display = 'inline'; document.getElementById('2111.03606v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03606v3-abstract-full" style="display: none;"> The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin $p_\mathrm{astro} > 0.5$. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with $p_\mathrm{astro} > 0.5$ are consistent with gravitational-wave signals from binary black holes or neutron star-black hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron star-black hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with $p_\mathrm{astro} > 0.5$ across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03606v3-abstract-full').style.display = 'none'; document.getElementById('2111.03606v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">88 pages (10 pages author list, 31 pages main text, 1 page acknowledgements, 24 pages appendices, 22 pages bibliography), 17 figures, 16 tables. Update to match version to be published in Physical Review X. Data products available from https://gwosc.org/GWTC-3/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000318 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X; 13(4):041039; 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03604">arXiv:2111.03604</a> <span> [<a href="https://arxiv.org/pdf/2111.03604">pdf</a>, <a href="https://arxiv.org/format/2111.03604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac74bb">10.3847/1538-4357/ac74bb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on the cosmic expansion history from GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1654 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03604v2-abstract-short" style="display: inline;"> We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter $H(z)$, including its current value, the Hubble constant $H_0$. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03604v2-abstract-full').style.display = 'inline'; document.getElementById('2111.03604v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03604v2-abstract-full" style="display: none;"> We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter $H(z)$, including its current value, the Hubble constant $H_0$. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and $H(z)$. The source mass distribution displays a peak around $34\, {\rm M_\odot}$, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a $H(z)$ measurement, yielding $H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}}$ ($68\%$ credible interval) when combined with the $H_0$ measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the $H_0$ estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of $H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}}$ with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent $H_0$ studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about $H_0$) is the well-localized event GW190814. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03604v2-abstract-full').style.display = 'none'; document.getElementById('2111.03604v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 30 pages, 15 figure, 7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100185-v6 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03295">arXiv:2111.03295</a> <span> [<a href="https://arxiv.org/pdf/2111.03295">pdf</a>, <a href="https://arxiv.org/format/2111.03295">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear noise regression in gravitational-wave detectors with convolutional neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Yu%2C+H">Hang Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X. Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03295v1-abstract-short" style="display: inline;"> Currently, the sub-60 Hz sensitivity of gravitational-wave (GW) detectors like Advanced LIGO is limited by the control noises from auxiliary degrees of freedom, which nonlinearly couple to the main GW readout. One particularly promising way to tackle this contamination is to perform nonlinear noise mitigation using machine-learning-based convolutional neural networks (CNNs), which we examine in de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03295v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03295v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03295v1-abstract-full" style="display: none;"> Currently, the sub-60 Hz sensitivity of gravitational-wave (GW) detectors like Advanced LIGO is limited by the control noises from auxiliary degrees of freedom, which nonlinearly couple to the main GW readout. One particularly promising way to tackle this contamination is to perform nonlinear noise mitigation using machine-learning-based convolutional neural networks (CNNs), which we examine in detail in this study. As in many cases the noise coupling is bilinear and can be viewed as a few fast channels' outputs modulated by some slow channels, we show that we can utilize this knowledge of the physical system and adopt an explicit "slow$\times$fast" structure in the design of the CNN to enhance its performance of noise subtraction. We then examine the requirement in the signal-to-noise ratio (SNR) in both the target channel (i.e., the main GW readout) and in the auxiliary sensors in order to reduce the noise by at least a factor of a few. In the case of limited SNR in the target channel, we further demonstrate that the CNN can still reach a good performance if we adopt curriculum learning techniques, which in reality can be achieved by combining data from quiet times and those from periods with active noise injections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03295v1-abstract-full').style.display = 'none'; document.getElementById('2111.03295v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures; contribution to "Efficient AI in Particle Physics and Astrophysics" in Frontiers in Artificial Intelligence and Frontiers in Big Data</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.13437">arXiv:2110.13437</a> <span> [<a href="https://arxiv.org/pdf/2110.13437">pdf</a>, <a href="https://arxiv.org/format/2110.13437">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Global optimization of multilayer dielectric coatings for precision measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Venugopalan%2C+G">Gautam Venugopalan</a>, <a href="/search/astro-ph?searchtype=author&query=Salces-C%C3%A1rcoba%2C+F">Francisco Salces-C谩rcoba</a>, <a href="/search/astro-ph?searchtype=author&query=Arai%2C+K">Koji Arai</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X Adhikari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.13437v2-abstract-short" style="display: inline;"> We describe the design of optimized multilayer dielectric coatings for precision laser interferometry. By setting up an appropriate cost function and then using a global optimizer to find a minimum in the parameter space, we were able to realize coating designs that meet the design requirements for spectral reflectivity, thermal noise, absorption, and tolerances to coating fabrication errors. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.13437v2-abstract-full" style="display: none;"> We describe the design of optimized multilayer dielectric coatings for precision laser interferometry. By setting up an appropriate cost function and then using a global optimizer to find a minimum in the parameter space, we were able to realize coating designs that meet the design requirements for spectral reflectivity, thermal noise, absorption, and tolerances to coating fabrication errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13437v2-abstract-full').style.display = 'none'; document.getElementById('2110.13437v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updating to v2 with some minor changes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12197">arXiv:2109.12197</a> <span> [<a href="https://arxiv.org/pdf/2109.12197">pdf</a>, <a href="https://arxiv.org/format/2109.12197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.061104">10.1103/PhysRevLett.129.061104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for subsolar-mass binaries in the first half of Advanced LIGO and Virgo's third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12197v1-abstract-short" style="display: inline;"> We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12197v1-abstract-full').style.display = 'inline'; document.getElementById('2109.12197v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12197v1-abstract-full" style="display: none;"> We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio $q \geq 0.1$. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 $\mathrm{yr}^{-1}$. This implies an upper limit on the merger rate of subsolar binaries in the range $[220-24200] \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes is $f_\mathrm{PBH} \equiv 惟_\mathrm{PBH} / 惟_\mathrm{DM} \lesssim 6\%$. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at $M_\mathrm{min}=1 M_\odot$, where $f_\mathrm{DBH} \equiv 惟_\mathrm{PBH} / 惟_\mathrm{DM} \lesssim 0.003\%$. These are the tightest limits on spinning subsolar-mass binaries to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12197v1-abstract-full').style.display = 'none'; document.getElementById('2109.12197v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100163-v8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09882">arXiv:2109.09882</a> <span> [<a href="https://arxiv.org/pdf/2109.09882">pdf</a>, <a href="https://arxiv.org/format/2109.09882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> A Horizon Study for Cosmic Explorer: Science, Observatories, and Community </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Afle%2C+C">Chaitanya Afle</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S+W">Stefan W. Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Biscoveanu%2C+S">Sylvia Biscoveanu</a>, <a href="/search/astro-ph?searchtype=author&query=Borhanian%2C+S">Ssohrab Borhanian</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+D+A">Duncan A. Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y">Yanbei Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Eisenstein%2C+R">Robert Eisenstein</a>, <a href="/search/astro-ph?searchtype=author&query=Gruson%2C+A">Alexandra Gruson</a>, <a href="/search/astro-ph?searchtype=author&query=Gupta%2C+A">Anuradha Gupta</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+E+D">Evan D. Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Huxford%2C+R">Rachael Huxford</a>, <a href="/search/astro-ph?searchtype=author&query=Kamai%2C+B">Brittany Kamai</a>, <a href="/search/astro-ph?searchtype=author&query=Kashyap%2C+R">Rahul Kashyap</a>, <a href="/search/astro-ph?searchtype=author&query=Kissel%2C+J+S">Jeff S. Kissel</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Landry%2C+P">Philippe Landry</a>, <a href="/search/astro-ph?searchtype=author&query=Lenon%2C+A">Amber Lenon</a>, <a href="/search/astro-ph?searchtype=author&query=Lovelace%2C+G">Geoffrey Lovelace</a>, <a href="/search/astro-ph?searchtype=author&query=McCuller%2C+L">Lee McCuller</a>, <a href="/search/astro-ph?searchtype=author&query=Ng%2C+K+K+Y">Ken K. Y. Ng</a>, <a href="/search/astro-ph?searchtype=author&query=Nitz%2C+A+H">Alexander H. Nitz</a>, <a href="/search/astro-ph?searchtype=author&query=Read%2C+J">Jocelyn Read</a>, <a href="/search/astro-ph?searchtype=author&query=Sathyaprakash%2C+B+S">B. S. Sathyaprakash</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09882v2-abstract-short" style="display: inline;"> This Horizon Study describes a next-generation ground-based gravitational-wave observatory: Cosmic Explorer. With ten times the sensitivity of Advanced LIGO, Cosmic Explorer will push gravitational-wave astronomy towards the edge of the observable universe ($z \sim 100$). The goals of this Horizon Study are to describe and evaluate design concepts for Cosmic Explorer; to plan for the United States… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09882v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09882v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09882v2-abstract-full" style="display: none;"> This Horizon Study describes a next-generation ground-based gravitational-wave observatory: Cosmic Explorer. With ten times the sensitivity of Advanced LIGO, Cosmic Explorer will push gravitational-wave astronomy towards the edge of the observable universe ($z \sim 100$). The goals of this Horizon Study are to describe and evaluate design concepts for Cosmic Explorer; to plan for the United States' leadership in gravitational-wave astronomy; and to envisage the role of Cosmic Explorer in the international effort to build a "Third-Generation" (3G) observatory network that will make discoveries transformative across astronomy, physics, and cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09882v2-abstract-full').style.display = 'none'; document.getElementById('2109.09882v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">173 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CE-P2100003-v7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09255">arXiv:2109.09255</a> <span> [<a href="https://arxiv.org/pdf/2109.09255">pdf</a>, <a href="https://arxiv.org/format/2109.09255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.022002">10.1103/PhysRevD.105.022002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/astro-ph?searchtype=author&query=Anand%2C+C">C. Anand</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09255v2-abstract-short" style="display: inline;"> Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09255v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09255v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09255v2-abstract-full" style="display: none;"> Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the $\mathcal{J}$-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow sub-bands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per sub-band and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4$-$3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed non-astrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, $h_0^{95\%}$. The strictest constraint is $h_0^{95\%} = 4.7\times 10^{-26}$ from IGR J17062$-$6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and $r$-mode amplitude, the strictest of which are $蔚^{95\%} = 3.1\times 10^{-7}$ and $伪^{95\%} = 1.8\times 10^{-5}$ respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond X-ray pulsars to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09255v2-abstract-full').style.display = 'none'; document.getElementById('2109.09255v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 6 figures. This version contains minor typographical revisions to match published article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100221 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 022002 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08743">arXiv:2109.08743</a> <span> [<a href="https://arxiv.org/pdf/2109.08743">pdf</a>, <a href="https://arxiv.org/format/2109.08743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.241102">10.1103/PhysRevLett.127.241102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Point Absorber Limits to Future Gravitational-Wave Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jia%2C+W">W. Jia</a>, <a href="/search/astro-ph?searchtype=author&query=Yamamoto%2C+H">H. Yamamoto</a>, <a href="/search/astro-ph?searchtype=author&query=Kuns%2C+K">K. Kuns</a>, <a href="/search/astro-ph?searchtype=author&query=Effler%2C+A">A. Effler</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+M">M. Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Fritschel%2C+P">P. Fritschel</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/astro-ph?searchtype=author&query=Appert%2C+S">S. Appert</a>, <a href="/search/astro-ph?searchtype=author&query=Arai%2C+K">K. Arai</a>, <a href="/search/astro-ph?searchtype=author&query=Areeda%2C+J+S">J. S. Areeda</a>, <a href="/search/astro-ph?searchtype=author&query=Asali%2C+Y">Y. Asali</a>, <a href="/search/astro-ph?searchtype=author&query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/astro-ph?searchtype=author&query=Austin%2C+C">C. Austin</a>, <a href="/search/astro-ph?searchtype=author&query=Baer%2C+A+M">A. M. Baer</a>, <a href="/search/astro-ph?searchtype=author&query=Ball%2C+M">M. Ball</a>, <a href="/search/astro-ph?searchtype=author&query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/astro-ph?searchtype=author&query=Banagiri%2C+S">S. Banagiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barker%2C+D">D. Barker</a>, <a href="/search/astro-ph?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/astro-ph?searchtype=author&query=Bartlett%2C+J">J. Bartlett</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Betzwieser%2C+J">J. Betzwieser</a> , et al. (176 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08743v1-abstract-short" style="display: inline;"> High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08743v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08743v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08743v1-abstract-full" style="display: none;"> High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in-situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational wave detectors that support high optical power, and thus reduce quantum noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08743v1-abstract-full').style.display = 'none'; document.getElementById('2109.08743v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100331 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13796">arXiv:2107.13796</a> <span> [<a href="https://arxiv.org/pdf/2107.13796">pdf</a>, <a href="https://arxiv.org/format/2107.13796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.102001">10.1103/PhysRevD.104.102001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1605 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13796v1-abstract-short" style="display: inline;"> After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short" $ \lesssim 1~$\,s and "long" $ \gtrsim 1~$\,s duration signals, these signals are expected from a var… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13796v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13796v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13796v1-abstract-full" style="display: none;"> After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short" $ \lesssim 1~$\,s and "long" $ \gtrsim 1~$\,s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo's third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of $2~\text{--}~ 500$~s in duration and a frequency band of $24 - 2048$ Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude $h_{\mathrm{rss}}$ as a function of waveform morphology. These $h_{\mathrm{rss}}$ limits improve upon the results from the second observing run by an average factor of 1.8. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13796v1-abstract-full').style.display = 'none'; document.getElementById('2107.13796v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100063 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03701">arXiv:2107.03701</a> <span> [<a href="https://arxiv.org/pdf/2107.03701">pdf</a>, <a href="https://arxiv.org/format/2107.03701">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.122004">10.1103/PhysRevD.104.122004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1608 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03701v1-abstract-short" style="display: inline;"> This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03701v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03701v1-abstract-full" style="display: none;"> This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate-density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as $\sim$10$^{-10} M_{\odot} c^2$ in gravitational waves at $\sim$70 Hz from a distance of 10~kpc, with 50\% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f-modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03701v1-abstract-full').style.display = 'none'; document.getElementById('2107.03701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100045 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00600">arXiv:2107.00600</a> <span> [<a href="https://arxiv.org/pdf/2107.00600">pdf</a>, <a href="https://arxiv.org/format/2107.00600">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.082004">10.1103/PhysRevD.104.082004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky Search for Continuous Gravitational Waves from Isolated Neutron Stars in the Early O3 LIGO Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1566 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00600v2-abstract-short" style="display: inline;"> We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000\,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]\times10^{-8}$\,Hz/s. Such a signal could be produced by a nearby, spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Vi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00600v2-abstract-full').style.display = 'inline'; document.getElementById('2107.00600v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00600v2-abstract-full" style="display: none;"> We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000\,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]\times10^{-8}$\,Hz/s. Such a signal could be produced by a nearby, spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Virgo's third observational run, O3. No periodic gravitational wave signals are observed, and 95\%\ confidence-level (CL) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude $h_0$ are $~1.7\times10^{-25}$ near 200\,Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are $\sim6.3\times10^{-26}$. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95\%\ CL upper limits on the strain amplitude are $\sim1.\times10^{-25}$. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of $\sim$2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00600v2-abstract-full').style.display = 'none'; document.getElementById('2107.00600v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000334-v9 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 082004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15163">arXiv:2106.15163</a> <span> [<a href="https://arxiv.org/pdf/2106.15163">pdf</a>, <a href="https://arxiv.org/format/2106.15163">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac082e">10.3847/2041-8213/ac082e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of gravitational waves from two neutron star-black hole coalescences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1577 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15163v1-abstract-short" style="display: inline;"> We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo, and the second by all three LIGO-Virgo detecto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15163v1-abstract-full').style.display = 'inline'; document.getElementById('2106.15163v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15163v1-abstract-full" style="display: none;"> We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo, and the second by all three LIGO-Virgo detectors. The source of GW200105 has component masses $8.9^{+1.2}_{-1.5}\,M_\odot$ and $1.9^{+0.3}_{-0.2}\,M_\odot$, whereas the source of GW200115 has component masses $5.7^{+1.8}_{-2.1}\,M_\odot$ and $1.5^{+0.7}_{-0.3}\,M_\odot$ (all measurements quoted at the 90% credible level). The probability that the secondary's mass is below the maximal mass of a neutron star is 89%-96% and 87%-98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are $280^{+110}_{-110}$ Mpc and $300^{+150}_{-100}$ Mpc, respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain spin or tidal deformation of the secondary component for either event. We infer a NSBH merger rate density of $45^{+75}_{-33}\,\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ when assuming GW200105 and GW200115 are representative of the NSBH population, or $130^{+112}_{-69}\,\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ under the assumption of a broader distribution of component masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15163v1-abstract-full').style.display = 'none'; document.getElementById('2106.15163v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO Document P2000357 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, 915, L5 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13085">arXiv:2105.13085</a> <span> [<a href="https://arxiv.org/pdf/2105.13085">pdf</a>, <a href="https://arxiv.org/format/2105.13085">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.063030">10.1103/PhysRevD.105.063030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1605 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13085v3-abstract-short" style="display: inline;"> We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13085v3-abstract-full').style.display = 'inline'; document.getElementById('2105.13085v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13085v3-abstract-full" style="display: none;"> We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between $m_{\rm A} \sim 10^{-14}-10^{-11}$ eV/$c^2$, which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. $U(1)_{\rm B}$ dark matter. For the cross-correlation method, the best median constraint on the squared coupling is $\sim2.65\times10^{-46}$ at $m_{\rm A}\sim4.31\times10^{-13}$ eV/$c^2$; for the other analysis, the best constraint is $\sim 2.4\times 10^{-47}$ at $m_{\rm A}\sim 5.7\times 10^{-13}$ eV/$c^2$. These limits improve upon those obtained in direct dark matter detection experiments by a factor of $\sim100$ for $m_{\rm A}\sim [2-4]\times 10^{-13}$ eV/$c^2$, and are, in absolute terms, the most stringent constraint so far in a large mass range $m_A\sim$ $2\times 10^{-13}-8\times 10^{-12}$ eV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13085v3-abstract-full').style.display = 'none'; document.getElementById('2105.13085v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures; In the latest version, we integrated the changes reported in the published erratum (DOI: https://doi.org/10.1103/PhysRevD.109.089902). Essentially, we overestimated the sensitivity of the cross-correlation search to a dark photon dark matter signal and have corrected this, making the BSD limits the most stringent in this search at most dark photon masses</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100098 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 063030, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.11641">arXiv:2105.11641</a> <span> [<a href="https://arxiv.org/pdf/2105.11641">pdf</a>, <a href="https://arxiv.org/format/2105.11641">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac17ea">10.3847/1538-4357/ac17ea <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1567 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.11641v2-abstract-short" style="display: inline;"> We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a frequency band spanning from 10~… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11641v2-abstract-full').style.display = 'inline'; document.getElementById('2105.11641v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.11641v2-abstract-full" style="display: none;"> We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a frequency band spanning from 10~Hz to 2~kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95\% confidence level in sample sub-bands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and $r$-mode amplitude. The best 95\% confidence constraints placed on the signal strain are $7.7\times 10^{-26}$ and $7.8\times 10^{-26}$ near 200~Hz for the supernova remnants G39.2--0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and $r$-mode amplitude reach $\lesssim 10^{-7}$ and $ \lesssim 10^{-5}$, respectively, at frequencies above $\sim 400$~Hz for the closest supernova remnant G266.2--1.2/Vela Jr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11641v2-abstract-full').style.display = 'none'; document.getElementById('2105.11641v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://dcc.ligo.org/P2000479</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06384">arXiv:2105.06384</a> <span> [<a href="https://arxiv.org/pdf/2105.06384">pdf</a>, <a href="https://arxiv.org/format/2105.06384">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac23db">10.3847/1538-4357/ac23db <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/astro-ph?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1356 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06384v3-abstract-short" style="display: inline;"> We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run. We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06384v3-abstract-full').style.display = 'inline'; document.getElementById('2105.06384v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06384v3-abstract-full" style="display: none;"> We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run. We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; 2) how the interpretation of individual high-mass events would change if they were found to be lensed; 3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and 4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06384v3-abstract-full').style.display = 'none'; document.getElementById('2105.06384v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages and 6 figures. Accepted by the Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000400 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.01716">arXiv:2105.01716</a> <span> [<a href="https://arxiv.org/pdf/2105.01716">pdf</a>, <a href="https://arxiv.org/format/2105.01716">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ac3b99">10.1088/1361-6382/ac3b99 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Science Case for LIGO-India </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Saleem%2C+M">M. Saleem</a>, <a href="/search/astro-ph?searchtype=author&query=Rana%2C+J">Javed Rana</a>, <a href="/search/astro-ph?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/astro-ph?searchtype=author&query=Vijaykumar%2C+A">Aditya Vijaykumar</a>, <a href="/search/astro-ph?searchtype=author&query=Goyal%2C+S">Srashti Goyal</a>, <a href="/search/astro-ph?searchtype=author&query=Sachdev%2C+S">Surabhi Sachdev</a>, <a href="/search/astro-ph?searchtype=author&query=Suresh%2C+J">Jishnu Suresh</a>, <a href="/search/astro-ph?searchtype=author&query=Sudhagar%2C+S">S. Sudhagar</a>, <a href="/search/astro-ph?searchtype=author&query=Mukherjee%2C+A">Arunava Mukherjee</a>, <a href="/search/astro-ph?searchtype=author&query=Gaur%2C+G">Gurudatt Gaur</a>, <a href="/search/astro-ph?searchtype=author&query=Sathyaprakash%2C+B">Bangalore Sathyaprakash</a>, <a href="/search/astro-ph?searchtype=author&query=Pai%2C+A">Archana Pai</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Bose%2C+S">Sukanta Bose</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.01716v2-abstract-short" style="display: inline;"> The global network of gravitational-wave detectors has completed three observing runs with $\sim 50$ detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Multiple detectors operating at different parts of the globe will provide several pairs of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01716v2-abstract-full').style.display = 'inline'; document.getElementById('2105.01716v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.01716v2-abstract-full" style="display: none;"> The global network of gravitational-wave detectors has completed three observing runs with $\sim 50$ detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Multiple detectors operating at different parts of the globe will provide several pairs of interferometers with longer baselines and an increased network SNR. This will improve the sky localisation of GW events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO Global Network (LGN) in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.01716v2-abstract-full').style.display = 'none'; document.getElementById('2105.01716v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Class. Quantum Grav. 39 025004 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14417">arXiv:2104.14417</a> <span> [<a href="https://arxiv.org/pdf/2104.14417">pdf</a>, <a href="https://arxiv.org/format/2104.14417">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0d52">10.3847/1538-4357/ac0d52 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1574 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14417v2-abstract-short" style="display: inline;"> We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537-6910 using data from the LIGO-Virgo Collaboration observing run O3. PSR J0537-6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14417v2-abstract-full').style.display = 'inline'; document.getElementById('2104.14417v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14417v2-abstract-full" style="display: none;"> We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537-6910 using data from the LIGO-Virgo Collaboration observing run O3. PSR J0537-6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86-97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode driven spin-down in PSR J0537-6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14417v2-abstract-full').style.display = 'none'; document.getElementById('2104.14417v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 19 figures, accepted in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100069 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 922 71 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09438">arXiv:2104.09438</a> <span> [<a href="https://arxiv.org/pdf/2104.09438">pdf</a>, <a href="https://arxiv.org/format/2104.09438">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.062004">10.1103/PhysRevD.104.062004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Early warning of coalescing neutron-star and neutron-star-black-hole binaries from nonstationary noise background using neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Yu%2C+H">Hang Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">Rana X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Magee%2C+R">Ryan Magee</a>, <a href="/search/astro-ph?searchtype=author&query=Sachdev%2C+S">Surabhi Sachdev</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+Y">Yanbei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09438v1-abstract-short" style="display: inline;"> The success of the multi-messenger astronomy relies on gravitational-wave observatories like LIGO and Virgo to provide prompt warning of merger events involving neutron stars (including both binary neutron stars and neutron-star-black-holes), which further depends critically on the low-frequency sensitivity of LIGO as a typical binary neutron star stays in this band for minutes. However, the curre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09438v1-abstract-full').style.display = 'inline'; document.getElementById('2104.09438v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09438v1-abstract-full" style="display: none;"> The success of the multi-messenger astronomy relies on gravitational-wave observatories like LIGO and Virgo to provide prompt warning of merger events involving neutron stars (including both binary neutron stars and neutron-star-black-holes), which further depends critically on the low-frequency sensitivity of LIGO as a typical binary neutron star stays in this band for minutes. However, the current sub-60 Hz sensitivity of LIGO has not yet reached its design target and the excess noise can be more than an order of magnitude below 20 Hz. It is limited by nonlinearly coupled noises from auxiliary control loops which are also nonstationary, posing challenges to realistic early-warning pipelines. Nevertheless, machine-learning-based neural networks provide ways to simultaneously improve the low-frequency sensitivity and mitigate its nonstationarity, and detect the real-time gravitational-wave signal with a very short computational time. We propose to achieve this by inputting both the main gravitational-wave readout and key auxiliary witnesses to a compound neural network. Using simulated data with characteristic representing the real LIGO detectors, our machine-learning-based neural networks can reduce nonlinearly coupled noise by about a factor of 5 and allows a typical binary neutron star (neutron-star-black-hole) to be detected 100 s (10 s) before the merger at a distance of 40 Mpc (160 Mpc). If one can further reduce the noise to the fundamental limit, our neural networks can achieve detection out to a distance of 80 Mpc and 240 Mpc for binary neutron stars and neutron-star-black-holes, respectively. It thus demonstrates that utilizing machine-learning-based neural networks is a promising direction for the timely detection of the coalescence of electromagnetically bright LIGO/Virgo sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09438v1-abstract-full').style.display = 'none'; document.getElementById('2104.09438v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures; to be submitted to PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 062004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12248">arXiv:2101.12248</a> <span> [<a href="https://arxiv.org/pdf/2101.12248">pdf</a>, <a href="https://arxiv.org/format/2101.12248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.241102">10.1103/PhysRevLett.126.241102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1565 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12248v1-abstract-short" style="display: inline;"> We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12248v1-abstract-full').style.display = 'inline'; document.getElementById('2101.12248v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12248v1-abstract-full" style="display: none;"> We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension, $G渭$, as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models.cAdditionally, we develop and test a third model which interpolates between these two models. Our results improve upon the previous LIGO-Virgo constraints on $G渭$ by one to two orders of magnitude depending on the model which is tested. In particular, for one loop distribution model, we set the most competitive constraints to date, $G渭\lesssim 4\times 10^{-15}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12248v1-abstract-full').style.display = 'none'; document.getElementById('2101.12248v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000506 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 241102 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12130">arXiv:2101.12130</a> <span> [<a href="https://arxiv.org/pdf/2101.12130">pdf</a>, <a href="https://arxiv.org/format/2101.12130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.022004">10.1103/PhysRevD.104.022004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/astro-ph?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/astro-ph?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/astro-ph?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/astro-ph?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1566 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12130v1-abstract-short" style="display: inline;"> We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we pl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12130v1-abstract-full').style.display = 'inline'; document.getElementById('2101.12130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12130v1-abstract-full" style="display: none;"> We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density $惟_{\rm GW}\leq 5.8\times 10^{-9}$ at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20-76.6 Hz; $\leq 3.4 \times 10^{-9}$ at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20-90.6 Hz; and $\leq 3.9 \times 10^{-10}$ at 25 Hz for a spectral index of 3, in the band 20-291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries. Finally, we combine our results with observations of individual mergers andshow that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at $z \lesssim 2$ than can be achieved with individually resolved mergers alone. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12130v1-abstract-full').style.display = 'none'; document.getElementById('2101.12130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures, Abstract abridged for arxiv submission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-DCC-P2000314 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 022004 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Adhikari%2C+R+X&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>