CINXE.COM

Louis Moresi | The Australian National University - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Louis Moresi | The Australian National University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="QMe2jlnJMez7ElpaEGSgebkmr7UQBPn7TnmEXXtkxr36kGSsCQw5VIUD3GopXR_QdLjMqQKV8JUcctxQUoibUw" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi","image":"https://0.academia-photos.com/3377561/1137877/1425710/s200_louis.moresi.jpg","sameAs":[]},"dateCreated":"2013-02-26T07:04:57-08:00","dateModified":"2024-10-19T18:14:44-07:00","name":"Louis Moresi","description":".","image":"https://0.academia-photos.com/3377561/1137877/1425710/s200_louis.moresi.jpg","thumbnailUrl":"https://0.academia-photos.com/3377561/1137877/1425710/s65_louis.moresi.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/3377561/1137877/1425710/s200_louis.moresi.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/124086428/Texture_alignement_in_simple_shear"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-d1941ab08e91e29ee143084c4749da4aaffa350a2ac6eec2306b1d7a352d911a.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="louis moresi" /> <meta name="description" content="Louis Moresi, The Australian National University: 141 Followers, 50 Following, 154 Research papers. Research interests: Geosciences, Finite Element Methods,…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '6ef822d7e766f9161c56b2e45cc17c9d5b7d9468'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13945,"monthly_visitors":"136 million","monthly_visitor_count":136579771,"monthly_visitor_count_in_millions":136,"user_count":285138193,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1742193502000); window.Aedu.timeDifference = new Date().getTime() - 1742193502000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-948be8fa2cdf77e0edc9d37d89e2ceac6298a9cec36b295126fe6066d89fe4f6.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-3f0732fc165186a3e70d3de1b749e1a47b279db87e2188a19da2a0c42b75cab9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://anu-au.academia.edu/LouisMoresi" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e1d575982904827f1397a4a8ee10c2382667df3df47448516361b995ce9464bd.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi","photo":"https://0.academia-photos.com/3377561/1137877/1425710/s65_louis.moresi.jpg","has_photo":true,"department":{"id":3622,"name":"Research School of Earth Sciences","url":"https://anu-au.academia.edu/Departments/Research_School_of_Earth_Sciences/Documents","university":{"id":458,"name":"The Australian National University","url":"https://anu-au.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":70524,"name":"Geosciences","url":"https://www.academia.edu/Documents/in/Geosciences"},{"id":2377,"name":"Finite Element Methods","url":"https://www.academia.edu/Documents/in/Finite_Element_Methods"},{"id":15947,"name":"Geodynamics","url":"https://www.academia.edu/Documents/in/Geodynamics"},{"id":23047,"name":"Fracture Mechanics","url":"https://www.academia.edu/Documents/in/Fracture_Mechanics"},{"id":70916,"name":"Earthquakes","url":"https://www.academia.edu/Documents/in/Earthquakes"},{"id":317,"name":"Fractal Geometry","url":"https://www.academia.edu/Documents/in/Fractal_Geometry"},{"id":34520,"name":"Damage Mechanics","url":"https://www.academia.edu/Documents/in/Damage_Mechanics"},{"id":243849,"name":"Damage Zones","url":"https://www.academia.edu/Documents/in/Damage_Zones"},{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing"},{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"},{"id":2549,"name":"Hydrology","url":"https://www.academia.edu/Documents/in/Hydrology"},{"id":1419,"name":"Structural Geology","url":"https://www.academia.edu/Documents/in/Structural_Geology"},{"id":10769,"name":"Tectonics","url":"https://www.academia.edu/Documents/in/Tectonics"},{"id":44747,"name":"Plate Tectonics","url":"https://www.academia.edu/Documents/in/Plate_Tectonics"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://anu-au.academia.edu/LouisMoresi&quot;,&quot;location&quot;:&quot;/LouisMoresi&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;anu-au.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/LouisMoresi&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-d466dc19-61b8-40c5-9a5e-8b920c882c5a"></div> <div id="ProfileCheckPaperUpdate-react-component-d466dc19-61b8-40c5-9a5e-8b920c882c5a"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Louis Moresi" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/3377561/1137877/1425710/s200_louis.moresi.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Louis Moresi</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://anu-au.academia.edu/">The Australian National University</a>, <a class="u-tcGrayDarker" href="https://anu-au.academia.edu/Departments/Research_School_of_Earth_Sciences/Documents">Research School of Earth Sciences</a>, <span class="u-tcGrayDarker">Faculty Member</span></div><div><a class="u-tcGrayDarker" href="https://unimelb.academia.edu/">University of Melbourne</a>, <a class="u-tcGrayDarker" href="https://unimelb.academia.edu/Departments/School_of_Earth_Sciences/Documents">School of Earth Sciences</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Louis" data-follow-user-id="3377561" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="3377561"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">141</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">50</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">16</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/LouisMoresi/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">.<br /><b>Address:&nbsp;</b>Research School of Earth Sciences<br />The Australian National University<br />Canberra<br />Australia<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://saic.academia.edu/JElkins"><img class="profile-avatar u-positionAbsolute" alt="James Elkins" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/15483/5205/5067/s200_james.elkins.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://saic.academia.edu/JElkins">James Elkins</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">School of the Art Institute of Chicago</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://oxford.academia.edu/JamesMarrow"><img class="profile-avatar u-positionAbsolute" alt="James Marrow" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/25517/8282/1309874/s200_james.marrow.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://oxford.academia.edu/JamesMarrow">James Marrow</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Oxford</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ens.academia.edu/NicolasColtice"><img class="profile-avatar u-positionAbsolute" alt="Nicolas Coltice" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/76505/21165/1097058/s200_nicolas.coltice.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ens.academia.edu/NicolasColtice">Nicolas Coltice</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">École Normale Supérieure</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://duke.academia.edu/MaurizioForte"><img class="profile-avatar u-positionAbsolute" alt="Maurizio Forte" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/85311/23778/1878336/s200_maurizio.forte.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://duke.academia.edu/MaurizioForte">Maurizio Forte</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Duke University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ksu.academia.edu/DavidSeamon"><img class="profile-avatar u-positionAbsolute" alt="David Seamon" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/93547/25922/29662134/s200_david.seamon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ksu.academia.edu/DavidSeamon">David Seamon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kansas State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uppsala.academia.edu/HeminKoyi"><img class="profile-avatar u-positionAbsolute" alt="Hemin Koyi" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/102248/28141/11213115/s200_hemin.koyi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uppsala.academia.edu/HeminKoyi">Hemin Koyi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Uppsala University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://hacettepe.academia.edu/BORAYILDIRIM"><img class="profile-avatar u-positionAbsolute" alt="BORA YILDIRIM" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/120927/32441/3249412/s200_bora.yildirim.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://hacettepe.academia.edu/BORAYILDIRIM">BORA YILDIRIM</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Hacettepe University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cria.academia.edu/ArmandoMarquesGuedes"><img class="profile-avatar u-positionAbsolute" alt="Armando Marques-Guedes" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/134181/3401094/148494125/s200_armando.marques-guedes.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cria.academia.edu/ArmandoMarquesGuedes">Armando Marques-Guedes</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">UNL - New University of Lisbon</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://pacifica.academia.edu/KathrynLaFeversEvans"><img class="profile-avatar u-positionAbsolute" alt="Kathryn LaFevers Evans, Three Eagles" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/142669/37830/14848396/s200_kathryn_lafevers.evans_three_eagles.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://pacifica.academia.edu/KathrynLaFeversEvans">Kathryn LaFevers Evans, Three Eagles</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Pacifica Graduate Institute</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://usal.academia.edu/GabrielGutierrezAlonso"><img class="profile-avatar u-positionAbsolute" alt="Gabriel Gutierrez-Alonso" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/175637/822125/1022101/s200_gabriel.gutierrez-alonso.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://usal.academia.edu/GabrielGutierrezAlonso">Gabriel Gutierrez-Alonso</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Salamanca</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="3377561">View All (14)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="3377561" href="https://www.academia.edu/Documents/in/Finite_Element_Methods"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://anu-au.academia.edu/LouisMoresi&quot;,&quot;location&quot;:&quot;/LouisMoresi&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;anu-au.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/LouisMoresi&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Finite Element Methods&quot;]}" data-trace="false" data-dom-id="Pill-react-component-062a6405-028b-4a2e-9a77-fed5dba93df9"></div> <div id="Pill-react-component-062a6405-028b-4a2e-9a77-fed5dba93df9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="3377561" href="https://www.academia.edu/Documents/in/Fracture_Mechanics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Fracture Mechanics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b46410b8-39b6-432f-a0d5-0548ffcf6366"></div> <div id="Pill-react-component-b46410b8-39b6-432f-a0d5-0548ffcf6366"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="3377561" href="https://www.academia.edu/Documents/in/Fractal_Geometry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Fractal Geometry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5415d3a8-ece2-42f7-b186-cbc4b51249f2"></div> <div id="Pill-react-component-5415d3a8-ece2-42f7-b186-cbc4b51249f2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="3377561" href="https://www.academia.edu/Documents/in/Damage_Mechanics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Damage Mechanics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9d1b07e6-43ca-478a-84ca-83e763039716"></div> <div id="Pill-react-component-9d1b07e6-43ca-478a-84ca-83e763039716"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="3377561" href="https://www.academia.edu/Documents/in/Earth_Sciences"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Earth Sciences&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5adb098b-16e8-44a0-ad82-e9332aed0f22"></div> <div id="Pill-react-component-5adb098b-16e8-44a0-ad82-e9332aed0f22"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="left-most js-UserInfo-social-cv" data-broccoli-component="user-info.cv-button" data-click-track="profile-user-info-cv" data-cv-filename="LMCV-Unimelb.pdf" data-placement="top" data-toggle="tooltip" href="/LouisMoresi/CurriculumVitae"><button class="ds2-5-text-link ds2-5-text-link--small" style="font-size: 20px; letter-spacing: 0.8px"><span class="ds2-5-text-link__content">CV</span></button></li><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>152</span>&nbsp;<span class="ds2-5-body-sm-bold">Papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Conference-Papers" data-toggle="tab" href="#conferencepapers" role="tab" title="Conference Papers"><span>2</span>&nbsp;<span class="ds2-5-body-sm-bold">Conference Papers</span></a></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Louis Moresi</h3></div><div class="js-work-strip profile--work_container" data-work-id="124086428"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086428/Texture_alignement_in_simple_shear"><img alt="Research paper thumbnail of Texture alignement in simple shear" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086428/Texture_alignement_in_simple_shear">Texture alignement in simple shear</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (interna...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [[1]].</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086428"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086428"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086428; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086428]").text(description); $(".js-view-count[data-work-id=124086428]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086428; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086428']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086428]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086428,"title":"Texture alignement in simple shear","translated_title":"","metadata":{"abstract":"We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [[1]].","publication_date":{"day":2,"month":6,"year":2003,"errors":{}}},"translated_abstract":"We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [[1]].","internal_url":"https://www.academia.edu/124086428/Texture_alignement_in_simple_shear","translated_internal_url":"","created_at":"2024-09-22T17:08:45.739-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Texture_alignement_in_simple_shear","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [[1]].","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2161,"name":"Microstructure","url":"https://www.academia.edu/Documents/in/Microstructure"},{"id":37333,"name":"Anisotropy","url":"https://www.academia.edu/Documents/in/Anisotropy"},{"id":118445,"name":"Stiffness","url":"https://www.academia.edu/Documents/in/Stiffness"},{"id":819047,"name":"Simple shear","url":"https://www.academia.edu/Documents/in/Simple_shear"},{"id":2353926,"name":"Isotropy","url":"https://www.academia.edu/Documents/in/Isotropy"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086427"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086427/Viscoelastic_formulation_for_modeling_of_plate_tectonics"><img alt="Research paper thumbnail of Viscoelastic formulation for modeling of plate tectonics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086427/Viscoelastic_formulation_for_modeling_of_plate_tectonics">Viscoelastic formulation for modeling of plate tectonics</a></div><div class="wp-workCard_item"><span>CRC Press eBooks</span><span>, Jun 18, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086427"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086427"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086427; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086427]").text(description); $(".js-view-count[data-work-id=124086427]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086427; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086427']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086427]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086427,"title":"Viscoelastic formulation for modeling of plate tectonics","translated_title":"","metadata":{"publisher":"Informa","publication_date":{"day":18,"month":6,"year":2021,"errors":{}},"publication_name":"CRC Press eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086427/Viscoelastic_formulation_for_modeling_of_plate_tectonics","translated_internal_url":"","created_at":"2024-09-22T17:08:45.514-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Viscoelastic_formulation_for_modeling_of_plate_tectonics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":1327,"name":"Convection","url":"https://www.academia.edu/Documents/in/Convection"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":44747,"name":"Plate Tectonics","url":"https://www.academia.edu/Documents/in/Plate_Tectonics"}],"urls":[{"id":44783474,"url":"https://doi.org/10.1201/9781003210931-46"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086426"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086426/Discrete_and_continuum_modelling_of_granular_materials"><img alt="Research paper thumbnail of Discrete and continuum modelling of granular materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086426/Discrete_and_continuum_modelling_of_granular_materials">Discrete and continuum modelling of granular materials</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086426"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086426"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086426; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086426]").text(description); $(".js-view-count[data-work-id=124086426]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086426; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086426']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086426]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086426,"title":"Discrete and continuum modelling of granular materials","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/124086426/Discrete_and_continuum_modelling_of_granular_materials","translated_internal_url":"","created_at":"2024-09-22T17:08:45.254-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Discrete_and_continuum_modelling_of_granular_materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":11016,"name":"Discrete Element Method","url":"https://www.academia.edu/Documents/in/Discrete_Element_Method"},{"id":23042,"name":"Finite Element","url":"https://www.academia.edu/Documents/in/Finite_Element"},{"id":115333,"name":"Analogy","url":"https://www.academia.edu/Documents/in/Analogy"},{"id":223263,"name":"Particle in Cell","url":"https://www.academia.edu/Documents/in/Particle_in_Cell"},{"id":232264,"name":"Silo","url":"https://www.academia.edu/Documents/in/Silo"},{"id":382329,"name":"Granular Material","url":"https://www.academia.edu/Documents/in/Granular_Material"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":44783473,"url":"https://doi.org/10.1007/978-3-642-57018-6_9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086425"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086425/An_overview_of_numerical_methods_for_earth_simulations"><img alt="Research paper thumbnail of An overview of numerical methods for earth simulations" class="work-thumbnail" src="https://attachments.academia-assets.com/118375437/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086425/An_overview_of_numerical_methods_for_earth_simulations">An overview of numerical methods for earth simulations</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Geological simulation problems are distinct from engineering problems in having a strongly evolvi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Geological simulation problems are distinct from engineering problems in having a strongly evolving geometry which is often developed through non-linear interaction between structure and rheology. Engineering simulation codes are therefore often, by design, unsuitable for geological applications. We summarize the important features of a small number of numerical methods which have been developed with geological and geotechnical simulations in mind, summarize the advantages and disadvantages of some of these methods and introduce the sorts of problems for which each method is best suited.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9542d3d68e79cbc991f04692cd5b1c5d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375437,&quot;asset_id&quot;:124086425,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375437/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086425"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086425"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086425; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086425]").text(description); $(".js-view-count[data-work-id=124086425]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086425; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086425']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9542d3d68e79cbc991f04692cd5b1c5d" } } $('.js-work-strip[data-work-id=124086425]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086425,"title":"An overview of numerical methods for earth simulations","translated_title":"","metadata":{"grobid_abstract":"Geological simulation problems are distinct from engineering problems in having a strongly evolving geometry which is often developed through non-linear interaction between structure and rheology. Engineering simulation codes are therefore often, by design, unsuitable for geological applications. We summarize the important features of a small number of numerical methods which have been developed with geological and geotechnical simulations in mind, summarize the advantages and disadvantages of some of these methods and introduce the sorts of problems for which each method is best suited.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"grobid_abstract_attachment_id":118375437},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086425/An_overview_of_numerical_methods_for_earth_simulations","translated_internal_url":"","created_at":"2024-09-22T17:08:45.016-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375437,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375437/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/118375437/download_file","bulk_download_file_name":"An_overview_of_numerical_methods_for_ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375437/document-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DAn_overview_of_numerical_methods_for_ear.pdf\u0026Expires=1741733761\u0026Signature=ad8l3JQIEeIPrEWnithNRUapmJcZ3tEfuicO430ozLmctYYasM-kHOnoplCFmKNGvTd4SJpVHvToledY3JU9LnHc0hkzy7sC7theQRKD6fnQm6Xm2x7VCizcHiGWMvKqNESS0AlFG5q~x3GkdmB~MIlfFkC6DVX6Hyib0QQYVb7afRBi9Bt4v8oXkUyasMvIlhEt3t7ovhRzIgk40ASvCw7HNV21vxpIZkQpkTMJ0gTw1axRQxsSULdgD4BmmZ3nEPP6AZX1ndKnPaf8BPd~7fnBGSLPifzZ0vnkekwHMvLmVZ0PlGoCzyXNMmKhev0rQZ4L~o31Tw~96BvYCGVjVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_overview_of_numerical_methods_for_earth_simulations","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Geological simulation problems are distinct from engineering problems in having a strongly evolving geometry which is often developed through non-linear interaction between structure and rheology. Engineering simulation codes are therefore often, by design, unsuitable for geological applications. We summarize the important features of a small number of numerical methods which have been developed with geological and geotechnical simulations in mind, summarize the advantages and disadvantages of some of these methods and introduce the sorts of problems for which each method is best suited.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375437,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375437/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/118375437/download_file","bulk_download_file_name":"An_overview_of_numerical_methods_for_ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375437/document-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DAn_overview_of_numerical_methods_for_ear.pdf\u0026Expires=1741733761\u0026Signature=ad8l3JQIEeIPrEWnithNRUapmJcZ3tEfuicO430ozLmctYYasM-kHOnoplCFmKNGvTd4SJpVHvToledY3JU9LnHc0hkzy7sC7theQRKD6fnQm6Xm2x7VCizcHiGWMvKqNESS0AlFG5q~x3GkdmB~MIlfFkC6DVX6Hyib0QQYVb7afRBi9Bt4v8oXkUyasMvIlhEt3t7ovhRzIgk40ASvCw7HNV21vxpIZkQpkTMJ0gTw1axRQxsSULdgD4BmmZ3nEPP6AZX1ndKnPaf8BPd~7fnBGSLPifzZ0vnkekwHMvLmVZ0PlGoCzyXNMmKhev0rQZ4L~o31Tw~96BvYCGVjVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375438/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/118375438/download_file","bulk_download_file_name":"An_overview_of_numerical_methods_for_ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375438/document-libre.pdf?1727057334=\u0026response-content-disposition=attachment%3B+filename%3DAn_overview_of_numerical_methods_for_ear.pdf\u0026Expires=1741733761\u0026Signature=GmqOBI2wsG2FXAUJPCH22HJNZIfU-~E2klXMnGyhG5i6GW-mCwzv3eMxejtQc1kSYziOBsYyNNm8O4AvelshtKmmqIZSsBr9OGf5SmSUiVTfw6JfLasBYDrTh06wCraR7Yc8-O4CIVP3bkuGk52tWX7AzoyeW6uOSn9IdIksqSj2rKkzcJ3Yj2Qp89uTBs1vnsrgP3P2vdoUaMwhDWIW7XY5ZZZ~-hi1FIlTeUl4Ctxs71DQRUFQhQE084YPj66e-xerJXGjxcS8ZY2q32UGR-~5IUMd8tO~7jai8m2VYlMujU4zuTCyVtHUJyk-~-oIEfnuhhOEaazlZNQ3E7PAAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":44783472,"url":"https://hal.archives-ouvertes.fr/hal-01007866/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086424"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086424/Anisotropic_Viscous_Models_Mohr_Coulomb_Failure"><img alt="Research paper thumbnail of Anisotropic, Viscous Models ... Mohr Coulomb Failure" class="work-thumbnail" src="https://attachments.academia-assets.com/118375440/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086424/Anisotropic_Viscous_Models_Mohr_Coulomb_Failure">Anisotropic, Viscous Models ... Mohr Coulomb Failure</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e9f484aaff8a7490ba53d916a71b5ec3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375440,&quot;asset_id&quot;:124086424,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375440/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086424"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086424"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086424; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086424]").text(description); $(".js-view-count[data-work-id=124086424]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086424; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086424']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e9f484aaff8a7490ba53d916a71b5ec3" } } $('.js-work-strip[data-work-id=124086424]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086424,"title":"Anisotropic, Viscous Models ... Mohr Coulomb Failure","translated_title":"","metadata":{"publisher":"figshare","ai_abstract":"This research tackles the implementation of a Mohr-Coulomb failure model within a code designed for mantle convection issues associated with large-scale crustal deformation. By employing an orthotropic viscous rheology that varies viscosity based on the shear conditions, the study introduces mechanisms to accommodate strain weakening and failure history while complying with the yield criteria. Key comparisons between von Mises and Mohr-Coulomb criteria are provided through various deformation examples, underscoring the model's applicability to both 2D and 3D scenarios.","ai_title_tag":"Viscous Mohr-Coulomb Model for Deformation","publication_date":{"day":16,"month":12,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086424/Anisotropic_Viscous_Models_Mohr_Coulomb_Failure","translated_internal_url":"","created_at":"2024-09-22T17:08:44.789-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375440,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375440/thumbnails/1.jpg","file_name":"MoresiEtAlPoster.pdf","download_url":"https://www.academia.edu/attachments/118375440/download_file","bulk_download_file_name":"Anisotropic_Viscous_Models_Mohr_Coulomb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375440/MoresiEtAlPoster-libre.pdf?1727057384=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Viscous_Models_Mohr_Coulomb.pdf\u0026Expires=1741733761\u0026Signature=DLIiFSYx6Y5dQoFkDodTq5BGg0lnIB6ynn76U6ZwRj4HrC4Ygs1YjCCEw0L39b4Gg3qC5vH8jVJgXVJWdOCqfvDPBYEDHJLQdGHEZ54pDjC2HY6cBLmYyaBYrzM4~2rg42lOPcedJAUf-cTZ57O-yhV5kTKFyaDO9yr9ifhuEwn8C9H7mwrLnh8Cfn2BTumSzuRMgqGEW-avhjfIWBJpiTaEaG3M3ub8pIyuxZyVRnkH17WemEZNiyTu3JZnpGBZI22D4B1fnzG~ZGHXMIpx5fCHPHhSkrIvCnTkBs1fIexsLr-mo8Pam8F8zYJtkHu1yJ4rUKAR5El3~JG0t9m5jg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anisotropic_Viscous_Models_Mohr_Coulomb_Failure","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375440,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375440/thumbnails/1.jpg","file_name":"MoresiEtAlPoster.pdf","download_url":"https://www.academia.edu/attachments/118375440/download_file","bulk_download_file_name":"Anisotropic_Viscous_Models_Mohr_Coulomb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375440/MoresiEtAlPoster-libre.pdf?1727057384=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Viscous_Models_Mohr_Coulomb.pdf\u0026Expires=1741733761\u0026Signature=DLIiFSYx6Y5dQoFkDodTq5BGg0lnIB6ynn76U6ZwRj4HrC4Ygs1YjCCEw0L39b4Gg3qC5vH8jVJgXVJWdOCqfvDPBYEDHJLQdGHEZ54pDjC2HY6cBLmYyaBYrzM4~2rg42lOPcedJAUf-cTZ57O-yhV5kTKFyaDO9yr9ifhuEwn8C9H7mwrLnh8Cfn2BTumSzuRMgqGEW-avhjfIWBJpiTaEaG3M3ub8pIyuxZyVRnkH17WemEZNiyTu3JZnpGBZI22D4B1fnzG~ZGHXMIpx5fCHPHhSkrIvCnTkBs1fIexsLr-mo8Pam8F8zYJtkHu1yJ4rUKAR5El3~JG0t9m5jg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375439,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375439/thumbnails/1.jpg","file_name":"MoresiEtAlPoster.pdf","download_url":"https://www.academia.edu/attachments/118375439/download_file","bulk_download_file_name":"Anisotropic_Viscous_Models_Mohr_Coulomb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375439/MoresiEtAlPoster-libre.pdf?1727057385=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Viscous_Models_Mohr_Coulomb.pdf\u0026Expires=1741733761\u0026Signature=FeD4AQAL~I8Bb3JcjY3ASsjwc4-P75cd9OfaJILJ5byn5IjPmQLFQ9OcCoZiIE-NVUp8ChHGjVqUO7HrsV~ySvFks6xQWoBCLwWJI31RMay4pbziEcl0vVnAMorwlFOjWwL5ol-kXGY7eKdxV9QxhPpdMNWMT1VCdy8sCv0GOlx4QUREKnmxUDoy10W4JsKvFbsBLC909ZatPQNNWJ9pfcJy0ycg2PV3l~JJgkOPYFkIbmQdj5KyYsbcaUCQDPMokWvM8OLFAgLzs6UjiKw8mYjdFHuUaSPMdg6v3LZYD8-tNLZT3DdlfFLBydQ4r8wy~OJLoFTuzPJ8zyGuCbHgPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":44783471,"url":"https://s3-eu-west-1.amazonaws.com/pfigshare-u-files/20204601/MoresiEtAlPoster.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086423"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086423/Underworldcode_Underworld1_Final_Version_Of_Uw1"><img alt="Research paper thumbnail of Underworldcode/Underworld1: Final Version Of Uw1" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086423/Underworldcode_Underworld1_Final_Version_Of_Uw1">Underworldcode/Underworld1: Final Version Of Uw1</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please cite the following paper: Moresi, L., Moresi, L. N., S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, W. Appelbe, H. B. Muhlhaus, Mühlhaus (2007), Computational approaches to studying non-linear dynamics of the crust and mantle, Physics of the Earth and Planetary Interiors, 163(1-4), 69–82, doi:10.1016/j.pepi.2007.06.009. There is a DOI for the UW1 code itself: DOI: 10.5281/zenodo.1445812</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086423"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086423"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086423; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086423]").text(description); $(".js-view-count[data-work-id=124086423]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086423; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086423']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086423]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086423,"title":"Underworldcode/Underworld1: Final Version Of Uw1","translated_title":"","metadata":{"abstract":"Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please cite the following paper: Moresi, L., Moresi, L. N., S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, W. Appelbe, H. B. Muhlhaus, Mühlhaus (2007), Computational approaches to studying non-linear dynamics of the crust and mantle, Physics of the Earth and Planetary Interiors, 163(1-4), 69–82, doi:10.1016/j.pepi.2007.06.009. There is a DOI for the UW1 code itself: DOI: 10.5281/zenodo.1445812","publisher":"Zenodo","publication_date":{"day":4,"month":10,"year":2018,"errors":{}}},"translated_abstract":"Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please cite the following paper: Moresi, L., Moresi, L. N., S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, W. Appelbe, H. B. Muhlhaus, Mühlhaus (2007), Computational approaches to studying non-linear dynamics of the crust and mantle, Physics of the Earth and Planetary Interiors, 163(1-4), 69–82, doi:10.1016/j.pepi.2007.06.009. There is a DOI for the UW1 code itself: DOI: 10.5281/zenodo.1445812","internal_url":"https://www.academia.edu/124086423/Underworldcode_Underworld1_Final_Version_Of_Uw1","translated_internal_url":"","created_at":"2024-09-22T17:08:44.628-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Underworldcode_Underworld1_Final_Version_Of_Uw1","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please cite the following paper: Moresi, L., Moresi, L. N., S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, W. Appelbe, H. B. Muhlhaus, Mühlhaus (2007), Computational approaches to studying non-linear dynamics of the crust and mantle, Physics of the Earth and Planetary Interiors, 163(1-4), 69–82, doi:10.1016/j.pepi.2007.06.009. There is a DOI for the UW1 code itself: DOI: 10.5281/zenodo.1445812","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086422"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086422/A_particle_in_cell_formulation_for_large_deformation_in_Cosserat_continua"><img alt="Research paper thumbnail of A particle-in-cell formulation for large deformation in Cosserat continua" class="work-thumbnail" src="https://attachments.academia-assets.com/118375461/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086422/A_particle_in_cell_formulation_for_large_deformation_in_Cosserat_continua">A particle-in-cell formulation for large deformation in Cosserat continua</a></div><div class="wp-workCard_item"><span>Bifurcation and Localisation Theory in Geomechanics</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a new approach to modeling of granular flows using a combination of Cosserat theory fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a new approach to modeling of granular flows using a combination of Cosserat theory for granular material and a particle-in-cell finite element method capable of handle extremely large material deformation. Benchmarking against analytical solutions highlights the strengths and weaknesses of the method. We demonstrate one application of the method in modeling the discharge of granular material from a silo.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20e624f6e914d761dd7aeefe6acce3b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375461,&quot;asset_id&quot;:124086422,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375461/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086422"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086422]").text(description); $(".js-view-count[data-work-id=124086422]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086422']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20e624f6e914d761dd7aeefe6acce3b5" } } $('.js-work-strip[data-work-id=124086422]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086422,"title":"A particle-in-cell formulation for large deformation in Cosserat continua","translated_title":"","metadata":{"publisher":"CRC Press","ai_title_tag":"Modeling Granular Flows with Cosserat Theory","grobid_abstract":"We present a new approach to modeling of granular flows using a combination of Cosserat theory for granular material and a particle-in-cell finite element method capable of handle extremely large material deformation. Benchmarking against analytical solutions highlights the strengths and weaknesses of the method. We demonstrate one application of the method in modeling the discharge of granular material from a silo.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Bifurcation and Localisation Theory in Geomechanics","grobid_abstract_attachment_id":118375461},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086422/A_particle_in_cell_formulation_for_large_deformation_in_Cosserat_continua","translated_internal_url":"","created_at":"2024-09-22T17:08:44.473-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375461/thumbnails/1.jpg","file_name":"IWBLDufour1999_201.pdf","download_url":"https://www.academia.edu/attachments/118375461/download_file","bulk_download_file_name":"A_particle_in_cell_formulation_for_large.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375461/IWBLDufour1999_201-libre.pdf?1727057328=\u0026response-content-disposition=attachment%3B+filename%3DA_particle_in_cell_formulation_for_large.pdf\u0026Expires=1741733761\u0026Signature=fQGMfEzL71VJSdTFMPYq63l2iue4GR9nB2iN1EFaijvSuqmQfV-G2gX4KgT2jN2nJc4lX3YBRAgAh4TfCysWsphHSmoCrTpSSu1LuGIDwOP06Rdsco2Gvhx6vCu6jcVKaQAa9cj5nd7yh2dXMyLe4XbzbSr9bQQLbFWBi6v8NWaQs0OJmM0zK17JrPXNq8jSpAH6Pm6bQWoZCEZUUWd-zcHIUOOkFeYexyaf1jyVjEOVPRhG4Evw-bVAi6-bOZpM349iB3Jj8cas1scxImfa~R1W4~w6r0vs3Dn7P3LVVGWJJ6G9t4KSRhWnQ65zNsmmHIQEOX0GDBYpCrkcJTUYgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_particle_in_cell_formulation_for_large_deformation_in_Cosserat_continua","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"We present a new approach to modeling of granular flows using a combination of Cosserat theory for granular material and a particle-in-cell finite element method capable of handle extremely large material deformation. Benchmarking against analytical solutions highlights the strengths and weaknesses of the method. We demonstrate one application of the method in modeling the discharge of granular material from a silo.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375461/thumbnails/1.jpg","file_name":"IWBLDufour1999_201.pdf","download_url":"https://www.academia.edu/attachments/118375461/download_file","bulk_download_file_name":"A_particle_in_cell_formulation_for_large.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375461/IWBLDufour1999_201-libre.pdf?1727057328=\u0026response-content-disposition=attachment%3B+filename%3DA_particle_in_cell_formulation_for_large.pdf\u0026Expires=1741733761\u0026Signature=fQGMfEzL71VJSdTFMPYq63l2iue4GR9nB2iN1EFaijvSuqmQfV-G2gX4KgT2jN2nJc4lX3YBRAgAh4TfCysWsphHSmoCrTpSSu1LuGIDwOP06Rdsco2Gvhx6vCu6jcVKaQAa9cj5nd7yh2dXMyLe4XbzbSr9bQQLbFWBi6v8NWaQs0OJmM0zK17JrPXNq8jSpAH6Pm6bQWoZCEZUUWd-zcHIUOOkFeYexyaf1jyVjEOVPRhG4Evw-bVAi6-bOZpM349iB3Jj8cas1scxImfa~R1W4~w6r0vs3Dn7P3LVVGWJJ6G9t4KSRhWnQ65zNsmmHIQEOX0GDBYpCrkcJTUYgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":232264,"name":"Silo","url":"https://www.academia.edu/Documents/in/Silo"},{"id":382329,"name":"Granular Material","url":"https://www.academia.edu/Documents/in/Granular_Material"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086421"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086421/The_Global_Consequences_of_a_Weaker_Asthenospheric_Sub_Layer_on_Plate_and_Trench_Motions_at_Subduction_Zones"><img alt="Research paper thumbnail of The Global Consequences of a Weaker Asthenospheric Sub-Layer on Plate and Trench Motions at Subduction Zones" class="work-thumbnail" src="https://attachments.academia-assets.com/118375435/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086421/The_Global_Consequences_of_a_Weaker_Asthenospheric_Sub_Layer_on_Plate_and_Trench_Motions_at_Subduction_Zones">The Global Consequences of a Weaker Asthenospheric Sub-Layer on Plate and Trench Motions at Subduction Zones</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="129f1691d8b41032c802f305bedcb897" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375435,&quot;asset_id&quot;:124086421,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375435/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086421"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086421"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086421; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086421]").text(description); $(".js-view-count[data-work-id=124086421]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086421; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086421']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "129f1691d8b41032c802f305bedcb897" } } $('.js-work-strip[data-work-id=124086421]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086421,"title":"The Global Consequences of a Weaker Asthenospheric Sub-Layer on Plate and Trench Motions at Subduction Zones","translated_title":"","metadata":{"ai_abstract":"A range of recent geophysical studies have revealed a thin layer at the lithosphere-asthenosphere boundary (LAB) beneath subducting oceanic plates, associated with ultra-low seismic velocity and high electrical conductivity, indicating it is weaker than the underlying asthenosphere. However, its global implications for subduction zone dynamics remain unclear. This research employs 2D and 3D visco-elastic-plastic numerical models to analyze the effects of this weaker sub-asthenospheric layer on slab morphology, dip angles, and plate/trench motions, concluding that its presence significantly influences plate dynamics and enhances compatibility with observed natural phenomena, as demonstrated by a regime diagram correlating lithospheric stiffness, slab deformation, and subduction partitioning, with implications for global subduction dynamics.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086421/The_Global_Consequences_of_a_Weaker_Asthenospheric_Sub_Layer_on_Plate_and_Trench_Motions_at_Subduction_Zones","translated_internal_url":"","created_at":"2024-09-22T17:08:44.252-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375435/thumbnails/1.jpg","file_name":"EGU2019-15730.pdf","download_url":"https://www.academia.edu/attachments/118375435/download_file","bulk_download_file_name":"The_Global_Consequences_of_a_Weaker_Asth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375435/EGU2019-15730-libre.pdf?1727057331=\u0026response-content-disposition=attachment%3B+filename%3DThe_Global_Consequences_of_a_Weaker_Asth.pdf\u0026Expires=1741733761\u0026Signature=G24rDpb2jom31pM-b27Qpbh3DvKhlL1wpFLDYzFF9AQzAVCwR3b~gr7Je1tWQ2Ay0tIiUoDvM2prqk0I81CJTFGayYyucCDr-37967FdcHj8ZRvmm2pC4XnHPCOa4x-ElRrpafPrsaP~1RB4kn0QuUuBC-jSULU66yyVbg7P-kR2nOu6IzKjcBeY~SklgJ1VsMn9DsVB9IxEF3u8wr-gEUtqhTOHxknc7bkDix4j8NxmL1o1j2qXO-q06dY5L0blihgR~PNLSlNQY-ol4JGvMPRLz0XXfVlxkq~HnxIvJV3X5qxhaDcd2LHupKddSI9j54pbKucUSzt9AfOhSzojuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Global_Consequences_of_a_Weaker_Asthenospheric_Sub_Layer_on_Plate_and_Trench_Motions_at_Subduction_Zones","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375435/thumbnails/1.jpg","file_name":"EGU2019-15730.pdf","download_url":"https://www.academia.edu/attachments/118375435/download_file","bulk_download_file_name":"The_Global_Consequences_of_a_Weaker_Asth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375435/EGU2019-15730-libre.pdf?1727057331=\u0026response-content-disposition=attachment%3B+filename%3DThe_Global_Consequences_of_a_Weaker_Asth.pdf\u0026Expires=1741733761\u0026Signature=G24rDpb2jom31pM-b27Qpbh3DvKhlL1wpFLDYzFF9AQzAVCwR3b~gr7Je1tWQ2Ay0tIiUoDvM2prqk0I81CJTFGayYyucCDr-37967FdcHj8ZRvmm2pC4XnHPCOa4x-ElRrpafPrsaP~1RB4kn0QuUuBC-jSULU66yyVbg7P-kR2nOu6IzKjcBeY~SklgJ1VsMn9DsVB9IxEF3u8wr-gEUtqhTOHxknc7bkDix4j8NxmL1o1j2qXO-q06dY5L0blihgR~PNLSlNQY-ol4JGvMPRLz0XXfVlxkq~HnxIvJV3X5qxhaDcd2LHupKddSI9j54pbKucUSzt9AfOhSzojuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375436,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375436/thumbnails/1.jpg","file_name":"EGU2019-15730.pdf","download_url":"https://www.academia.edu/attachments/118375436/download_file","bulk_download_file_name":"The_Global_Consequences_of_a_Weaker_Asth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375436/EGU2019-15730-libre.pdf?1727057337=\u0026response-content-disposition=attachment%3B+filename%3DThe_Global_Consequences_of_a_Weaker_Asth.pdf\u0026Expires=1741733761\u0026Signature=QRr~5U9yFQmyWom5FRDmKNLhTHDrkXuoKa4c83ofDiOUCvTeQN~94GwVxXaUROyWPAPsiV1E4MxZjFfGoSACVfiFEA5q0eVt5zRHfTT9r54l3mx5I4rwKuvNSY-JWIqBOjFBjSKtzKUwM1pqBx4baLSxIFEtz1Qlv3hpK9I9NH8oPxeyBUQ6tKJnZTAx3L3um97rTmgbu0~UFucgVouC2NJYzk5H8~GyTRakimreJD6JuzeuFngIEknz-96rhZmYJ~uRHeYGmFT~t-nqfViz6xVja5O9mvFHsgZErApYY7NljKw6Oy4vbDEWsuNbEEY4wqEQd4-EMmh4urxVuT-Qfw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":668253,"name":"Lithosphere","url":"https://www.academia.edu/Documents/in/Lithosphere"}],"urls":[{"id":44783470,"url":"https://meetingorganizer.copernicus.org/EGU2019/EGU2019-15730.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086420"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086420/The_Impact_of_a_Very_Weak_and_Thin_Upper_Asthenosphere_on_Subduction_Motions"><img alt="Research paper thumbnail of The Impact of a Very Weak and Thin Upper Asthenosphere on Subduction Motions" class="work-thumbnail" src="https://attachments.academia-assets.com/118375469/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086420/The_Impact_of_a_Very_Weak_and_Thin_Upper_Asthenosphere_on_Subduction_Motions">The Impact of a Very Weak and Thin Upper Asthenosphere on Subduction Motions</a></div><div class="wp-workCard_item"><span>Geophysical Research Letters</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recent geophysical observations report the presence of a very weak and thin upper asthenosphere u...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recent geophysical observations report the presence of a very weak and thin upper asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench migrations are significantly slower than plate convergence rates. We use numerical models to assess the role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This mechanism provides a novel and alternative explanation for the slow rates of trench migration and fast‐moving plates observed globally at natural subduction zones.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="84a705041d19b514078cb7073a096819" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375469,&quot;asset_id&quot;:124086420,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375469/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086420"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086420"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086420; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086420]").text(description); $(".js-view-count[data-work-id=124086420]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086420; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086420']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "84a705041d19b514078cb7073a096819" } } $('.js-work-strip[data-work-id=124086420]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086420,"title":"The Impact of a Very Weak and Thin Upper Asthenosphere on Subduction Motions","translated_title":"","metadata":{"abstract":"Recent geophysical observations report the presence of a very weak and thin upper asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench migrations are significantly slower than plate convergence rates. We use numerical models to assess the role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This mechanism provides a novel and alternative explanation for the slow rates of trench migration and fast‐moving plates observed globally at natural subduction zones.","publisher":"American Geophysical Union (AGU)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Geophysical Research Letters"},"translated_abstract":"Recent geophysical observations report the presence of a very weak and thin upper asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench migrations are significantly slower than plate convergence rates. We use numerical models to assess the role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This mechanism provides a novel and alternative explanation for the slow rates of trench migration and fast‐moving plates observed globally at natural subduction zones.","internal_url":"https://www.academia.edu/124086420/The_Impact_of_a_Very_Weak_and_Thin_Upper_Asthenosphere_on_Subduction_Motions","translated_internal_url":"","created_at":"2024-09-22T17:08:44.005-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375469/thumbnails/1.jpg","file_name":"01_Carluccio_The_Impact_of_a_Very_Weak_and_2019.pdf","download_url":"https://www.academia.edu/attachments/118375469/download_file","bulk_download_file_name":"The_Impact_of_a_Very_Weak_and_Thin_Upper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375469/01_Carluccio_The_Impact_of_a_Very_Weak_and_2019-libre.pdf?1727057338=\u0026response-content-disposition=attachment%3B+filename%3DThe_Impact_of_a_Very_Weak_and_Thin_Upper.pdf\u0026Expires=1741733762\u0026Signature=RUBC5xUa6Q81RwLqh7xOLUMA8v7DG6CktxH5xaicbXMUkdhJGcc3CBsnWZjl3V-wHRfNHZ2r1wfi-QATxBikhCIgiNK4QSqEqzDftH5yh1BrNXDwUaj6JfH5uZAA93XcerOaiuvTz5drWcPzGCgruvSrVRdcOdp-FxTd47MuQ5H2tkg2ozaUstNXQL4snRV4ZC7YVNYDMQiNrtp3AbFt79YBosfGjW5Y-0giO2eWfvYjhDrNhy2MfQ0RYHM0as5dRTS4sRxpTtapfWuOyCIntbQEmwmwK8pvwnVuwwn65Wne1WMNy36MNuClXt3lLjqUts6nEGC9PqZ8I1d6wxevFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Impact_of_a_Very_Weak_and_Thin_Upper_Asthenosphere_on_Subduction_Motions","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Recent geophysical observations report the presence of a very weak and thin upper asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench migrations are significantly slower than plate convergence rates. We use numerical models to assess the role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This mechanism provides a novel and alternative explanation for the slow rates of trench migration and fast‐moving plates observed globally at natural subduction zones.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375469/thumbnails/1.jpg","file_name":"01_Carluccio_The_Impact_of_a_Very_Weak_and_2019.pdf","download_url":"https://www.academia.edu/attachments/118375469/download_file","bulk_download_file_name":"The_Impact_of_a_Very_Weak_and_Thin_Upper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375469/01_Carluccio_The_Impact_of_a_Very_Weak_and_2019-libre.pdf?1727057338=\u0026response-content-disposition=attachment%3B+filename%3DThe_Impact_of_a_Very_Weak_and_Thin_Upper.pdf\u0026Expires=1741733762\u0026Signature=RUBC5xUa6Q81RwLqh7xOLUMA8v7DG6CktxH5xaicbXMUkdhJGcc3CBsnWZjl3V-wHRfNHZ2r1wfi-QATxBikhCIgiNK4QSqEqzDftH5yh1BrNXDwUaj6JfH5uZAA93XcerOaiuvTz5drWcPzGCgruvSrVRdcOdp-FxTd47MuQ5H2tkg2ozaUstNXQL4snRV4ZC7YVNYDMQiNrtp3AbFt79YBosfGjW5Y-0giO2eWfvYjhDrNhy2MfQ0RYHM0as5dRTS4sRxpTtapfWuOyCIntbQEmwmwK8pvwnVuwwn65Wne1WMNy36MNuClXt3lLjqUts6nEGC9PqZ8I1d6wxevFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":13883,"name":"Seismology","url":"https://www.academia.edu/Documents/in/Seismology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":2684230,"name":"Asthenosphere","url":"https://www.academia.edu/Documents/in/Asthenosphere"},{"id":3695481,"name":"Convergent boundary","url":"https://www.academia.edu/Documents/in/Convergent_boundary"}],"urls":[{"id":44783469,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL085212"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086419"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086419/Contrasted_East_Asia_and_South_America_tectonics_driven_by_deep_mantle_flow"><img alt="Research paper thumbnail of Contrasted East Asia and South America tectonics driven by deep mantle flow" class="work-thumbnail" src="https://attachments.academia-assets.com/118375460/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086419/Contrasted_East_Asia_and_South_America_tectonics_driven_by_deep_mantle_flow">Contrasted East Asia and South America tectonics driven by deep mantle flow</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d7dc02b8353e2d89059655ca7db52841" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375460,&quot;asset_id&quot;:124086419,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375460/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086419"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086419"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086419; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086419]").text(description); $(".js-view-count[data-work-id=124086419]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086419; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086419']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d7dc02b8353e2d89059655ca7db52841" } } $('.js-work-strip[data-work-id=124086419]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086419,"title":"Contrasted East Asia and South America tectonics driven by deep mantle flow","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Earth and Planetary Science Letters"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086419/Contrasted_East_Asia_and_South_America_tectonics_driven_by_deep_mantle_flow","translated_internal_url":"","created_at":"2024-09-22T17:08:43.775-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375460,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375460/thumbnails/1.jpg","file_name":"1-s2.0-S0012821X19302298-mmc1.docx","download_url":"https://www.academia.edu/attachments/118375460/download_file","bulk_download_file_name":"Contrasted_East_Asia_and_South_America_t.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375460/1-s2.0-S0012821X19302298-mmc1.docx?1727050263=\u0026response-content-disposition=attachment%3B+filename%3DContrasted_East_Asia_and_South_America_t.docx\u0026Expires=1741733762\u0026Signature=YJ~TdBt8NNwaSIW8UMGiHEZJIY0wkGmoLJgN9XgRkf4lNs6dxQqfhHVWxDFYnIXo~k~k76nykL2cXoDvoTt8xmxXgTb4VgG45Lsu1G0pCoRYWt8xLQjUQ7~phyXix6157zRP5BAB0sFQdJ~4SlhIGTdCtZdAgkzb-Gpjz9QUUarKKLL8bUFG1w3ggtJWpCfMCDM9eu~TtOJ9dG-f9HqiQnmNGTJyyUfmPsvX9IiHPjexAYquZXaZDhRq2hruiXxViK--FhhCrrsc-AHxy38GQ8maB78GxfdYQn9MnpScGbTiQTFo3NUvdRxqVlm8arP0ahnZ88P~55tP~cXE4QT4Fg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Contrasted_East_Asia_and_South_America_tectonics_driven_by_deep_mantle_flow","translated_slug":"","page_count":34,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375460,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375460/thumbnails/1.jpg","file_name":"1-s2.0-S0012821X19302298-mmc1.docx","download_url":"https://www.academia.edu/attachments/118375460/download_file","bulk_download_file_name":"Contrasted_East_Asia_and_South_America_t.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375460/1-s2.0-S0012821X19302298-mmc1.docx?1727050263=\u0026response-content-disposition=attachment%3B+filename%3DContrasted_East_Asia_and_South_America_t.docx\u0026Expires=1741733762\u0026Signature=YJ~TdBt8NNwaSIW8UMGiHEZJIY0wkGmoLJgN9XgRkf4lNs6dxQqfhHVWxDFYnIXo~k~k76nykL2cXoDvoTt8xmxXgTb4VgG45Lsu1G0pCoRYWt8xLQjUQ7~phyXix6157zRP5BAB0sFQdJ~4SlhIGTdCtZdAgkzb-Gpjz9QUUarKKLL8bUFG1w3ggtJWpCfMCDM9eu~TtOJ9dG-f9HqiQnmNGTJyyUfmPsvX9IiHPjexAYquZXaZDhRq2hruiXxViK--FhhCrrsc-AHxy38GQ8maB78GxfdYQn9MnpScGbTiQTFo3NUvdRxqVlm8arP0ahnZ88P~55tP~cXE4QT4Fg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":5470,"name":"East Asia","url":"https://www.academia.edu/Documents/in/East_Asia"},{"id":10769,"name":"Tectonics","url":"https://www.academia.edu/Documents/in/Tectonics"},{"id":44747,"name":"Plate Tectonics","url":"https://www.academia.edu/Documents/in/Plate_Tectonics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"}],"urls":[{"id":44783468,"url":"https://api.elsevier.com/content/article/PII:S0012821X19302298?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086418"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086418/Long_lived_transcontinental_sediment_transport_pathways_of_East_Gondwana"><img alt="Research paper thumbnail of Long-lived transcontinental sediment transport pathways of East Gondwana" class="work-thumbnail" src="https://attachments.academia-assets.com/118375459/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086418/Long_lived_transcontinental_sediment_transport_pathways_of_East_Gondwana">Long-lived transcontinental sediment transport pathways of East Gondwana</a></div><div class="wp-workCard_item"><span>Geology</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Few modern sediment dispersal pathways predate the breakup of Pangea. This suggests that river li...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Few modern sediment dispersal pathways predate the breakup of Pangea. This suggests that river lifespan can be controlled by continental assembly and dispersal cycles, with the longest-lived river systems present during supercontinent regimes. Based on the strikingly similar age spectra and Hf isotopic array extracted from Paleozoic to early Mesozoic sedimentary sequences from the Paleo-Tethyan margin basins, we argue that a long-lived supercontinental-scale system, with headwaters originating in Antarctica, flowed northward to finally debouch on the margin with the Paleo-Tethys Ocean. Channel-belt thickness scaling relationships, which provide an estimate of drainage area, support the notion that this was a supercontinental-scale system. Sediments were eroded from Proterozoic orogenic belts and flanked resistant kernels of Archean cratons. Remnants of this system, which can still be traced today as topographic lows, controlled post-breakup drainage patterns in Gondwanan fragments in Western Australia. We conclude that supercontinental regimes allow sediment dispersal systems to be long-lived, as they provide both an abundant sediment supply, due to erosion of large-scale, collision-related internal mountain systems, and a stable, large-scale configuration that lasts until breakup.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d899db986f232857c9994fb57ada529" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375459,&quot;asset_id&quot;:124086418,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375459/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086418"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086418]").text(description); $(".js-view-count[data-work-id=124086418]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086418']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d899db986f232857c9994fb57ada529" } } $('.js-work-strip[data-work-id=124086418]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086418,"title":"Long-lived transcontinental sediment transport pathways of East Gondwana","translated_title":"","metadata":{"publisher":"Geological Society of America","grobid_abstract":"Few modern sediment dispersal pathways predate the breakup of Pangea. This suggests that river lifespan can be controlled by continental assembly and dispersal cycles, with the longest-lived river systems present during supercontinent regimes. Based on the strikingly similar age spectra and Hf isotopic array extracted from Paleozoic to early Mesozoic sedimentary sequences from the Paleo-Tethyan margin basins, we argue that a long-lived supercontinental-scale system, with headwaters originating in Antarctica, flowed northward to finally debouch on the margin with the Paleo-Tethys Ocean. Channel-belt thickness scaling relationships, which provide an estimate of drainage area, support the notion that this was a supercontinental-scale system. Sediments were eroded from Proterozoic orogenic belts and flanked resistant kernels of Archean cratons. Remnants of this system, which can still be traced today as topographic lows, controlled post-breakup drainage patterns in Gondwanan fragments in Western Australia. We conclude that supercontinental regimes allow sediment dispersal systems to be long-lived, as they provide both an abundant sediment supply, due to erosion of large-scale, collision-related internal mountain systems, and a stable, large-scale configuration that lasts until breakup.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Geology","grobid_abstract_attachment_id":118375459},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086418/Long_lived_transcontinental_sediment_transport_pathways_of_East_Gondwana","translated_internal_url":"","created_at":"2024-09-22T17:08:43.534-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375459,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375459/thumbnails/1.jpg","file_name":"513.pdf","download_url":"https://www.academia.edu/attachments/118375459/download_file","bulk_download_file_name":"Long_lived_transcontinental_sediment_tra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375459/513-libre.pdf?1727057327=\u0026response-content-disposition=attachment%3B+filename%3DLong_lived_transcontinental_sediment_tra.pdf\u0026Expires=1741733762\u0026Signature=W7WTgMvr6h3bLbtkj5jWdn0hJbDbLkpyhEx0jdZ1J3PDL4FSj3YRG9kaVGiG1AtjTRPWwZ72QPHZarHedoJgZ9ZleRoqVBBwAIJxfwNhQFiEIlCjpmfOTwGQ8psP0PvC9hCVuh1wTg0mGiPeJPJ-QhtcoZN4ojbLpCJuCpE0~TqDMaQLC7StfO6Mza7TfXJuWPahf~T8kkLA6wwWaWYk7lq3OUoJ6L~lqdYnJ8KYLQfzfKODXT79DUdE9bNycYCe6~kx7uhi2LLU05S9P9qeu4HrWIokik2Qt0MrlA-~i7ECdm0QnglbSeMe7~wpFlijvItFmxQiNDETgkyIn276NQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Long_lived_transcontinental_sediment_transport_pathways_of_East_Gondwana","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Few modern sediment dispersal pathways predate the breakup of Pangea. This suggests that river lifespan can be controlled by continental assembly and dispersal cycles, with the longest-lived river systems present during supercontinent regimes. Based on the strikingly similar age spectra and Hf isotopic array extracted from Paleozoic to early Mesozoic sedimentary sequences from the Paleo-Tethyan margin basins, we argue that a long-lived supercontinental-scale system, with headwaters originating in Antarctica, flowed northward to finally debouch on the margin with the Paleo-Tethys Ocean. Channel-belt thickness scaling relationships, which provide an estimate of drainage area, support the notion that this was a supercontinental-scale system. Sediments were eroded from Proterozoic orogenic belts and flanked resistant kernels of Archean cratons. Remnants of this system, which can still be traced today as topographic lows, controlled post-breakup drainage patterns in Gondwanan fragments in Western Australia. We conclude that supercontinental regimes allow sediment dispersal systems to be long-lived, as they provide both an abundant sediment supply, due to erosion of large-scale, collision-related internal mountain systems, and a stable, large-scale configuration that lasts until breakup.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375459,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375459/thumbnails/1.jpg","file_name":"513.pdf","download_url":"https://www.academia.edu/attachments/118375459/download_file","bulk_download_file_name":"Long_lived_transcontinental_sediment_tra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375459/513-libre.pdf?1727057327=\u0026response-content-disposition=attachment%3B+filename%3DLong_lived_transcontinental_sediment_tra.pdf\u0026Expires=1741733762\u0026Signature=W7WTgMvr6h3bLbtkj5jWdn0hJbDbLkpyhEx0jdZ1J3PDL4FSj3YRG9kaVGiG1AtjTRPWwZ72QPHZarHedoJgZ9ZleRoqVBBwAIJxfwNhQFiEIlCjpmfOTwGQ8psP0PvC9hCVuh1wTg0mGiPeJPJ-QhtcoZN4ojbLpCJuCpE0~TqDMaQLC7StfO6Mza7TfXJuWPahf~T8kkLA6wwWaWYk7lq3OUoJ6L~lqdYnJ8KYLQfzfKODXT79DUdE9bNycYCe6~kx7uhi2LLU05S9P9qeu4HrWIokik2Qt0MrlA-~i7ECdm0QnglbSeMe7~wpFlijvItFmxQiNDETgkyIn276NQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":70354,"name":"Mesozoic","url":"https://www.academia.edu/Documents/in/Mesozoic"},{"id":78101,"name":"Proterozoic","url":"https://www.academia.edu/Documents/in/Proterozoic"},{"id":78133,"name":"Gondwana","url":"https://www.academia.edu/Documents/in/Gondwana"},{"id":113501,"name":"Sediment transport","url":"https://www.academia.edu/Documents/in/Sediment_transport"},{"id":192294,"name":"Sediment","url":"https://www.academia.edu/Documents/in/Sediment"},{"id":319883,"name":"Supercontinent","url":"https://www.academia.edu/Documents/in/Supercontinent"},{"id":469741,"name":"Craton","url":"https://www.academia.edu/Documents/in/Craton"},{"id":531003,"name":"Denudation","url":"https://www.academia.edu/Documents/in/Denudation"},{"id":620328,"name":"Sediment Transport","url":"https://www.academia.edu/Documents/in/Sediment_Transport-5"},{"id":1567560,"name":"Sedimentary Rock","url":"https://www.academia.edu/Documents/in/Sedimentary_Rock"}],"urls":[{"id":44783467,"url":"https://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G45915.1/4678016/g45915.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086417"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086417/The_influence_of_carbonate_platform_interactions_with_subduction_zone_volcanism_on_palaeo_atmospheric_CO_sub_2_sub_since_the_Devonian"><img alt="Research paper thumbnail of The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO&lt;sub&gt;2&lt;/sub&gt; since the Devonian" class="work-thumbnail" src="https://attachments.academia-assets.com/118375433/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086417/The_influence_of_carbonate_platform_interactions_with_subduction_zone_volcanism_on_palaeo_atmospheric_CO_sub_2_sub_since_the_Devonian">The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO&lt;sub&gt;2&lt;/sub&gt; since the Devonian</a></div><div class="wp-workCard_item"><span>Climate of the Past</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The CO 2 liberated along subduction zones through intrusive/extrusive magmatic activity and the r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The CO 2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO 2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO 2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and carbonate platforms. This study investigates the contribution of carbonate-intersecting subduction zones (CISZs) to palaeo-atmospheric CO 2 levels over the past 410 million years by integrating a plate motion and plate boundary evolution model with carbonate platform development through time. Our model of carbonate platform development has the potential to capture a broader range of degassing mechanisms than approaches that only account for continental arcs. Continuous and cross-wavelet analyses as well as wavelet coherence are used to evaluate trends between the evolving lengths of carbonate-intersecting subduction zones, noncarbonate-intersecting subduction zones and global subduction zones, and are examined for periodic, linked behaviour with the proxy CO 2 record between 410 Ma and the present. Wavelet analysis reveals significant linked periodic behaviour between 60 and 40 Ma, when CISZ lengths are relatively high and are correlated with peaks in palaeoatmospheric CO 2 , characterised by a 32-48 Myr periodicity and a ∼ 8-12 Myr lag of CO 2 peaks following CISZ length peaks. The linked behaviour suggests that the relative abundance of CISZs played a role in affecting global climate during the Palaeogene. In the 200-100 Ma period, peaks in CISZ lengths align with peaks in palaeo-atmospheric CO 2 , but CISZ lengths alone cannot be determined as the cause of a warmer Cretaceous-Jurassic climate. Nevertheless, across the majority of the Phanerozoic, feedback mechanisms between the geosphere, atmosphere and biosphere likely played dominant roles in modulating climate. Our modelled subduction zone lengths and carbonate-intersecting subduction zone lengths approximate magmatic activity through time, and can be used as input into fully coupled models of CO 2 flux between deep and shallow carbon reservoirs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5201b735df050664ce40504993e1593e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375433,&quot;asset_id&quot;:124086417,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375433/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086417"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086417"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086417; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086417]").text(description); $(".js-view-count[data-work-id=124086417]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086417; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086417']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5201b735df050664ce40504993e1593e" } } $('.js-work-strip[data-work-id=124086417]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086417,"title":"The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO\u003csub\u003e2\u003c/sub\u003e since the Devonian","translated_title":"","metadata":{"publisher":"Copernicus GmbH","ai_title_tag":"Impact of Carbonate Platforms on CO₂ over Time","grobid_abstract":"The CO 2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO 2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO 2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and carbonate platforms. This study investigates the contribution of carbonate-intersecting subduction zones (CISZs) to palaeo-atmospheric CO 2 levels over the past 410 million years by integrating a plate motion and plate boundary evolution model with carbonate platform development through time. Our model of carbonate platform development has the potential to capture a broader range of degassing mechanisms than approaches that only account for continental arcs. Continuous and cross-wavelet analyses as well as wavelet coherence are used to evaluate trends between the evolving lengths of carbonate-intersecting subduction zones, noncarbonate-intersecting subduction zones and global subduction zones, and are examined for periodic, linked behaviour with the proxy CO 2 record between 410 Ma and the present. Wavelet analysis reveals significant linked periodic behaviour between 60 and 40 Ma, when CISZ lengths are relatively high and are correlated with peaks in palaeoatmospheric CO 2 , characterised by a 32-48 Myr periodicity and a ∼ 8-12 Myr lag of CO 2 peaks following CISZ length peaks. The linked behaviour suggests that the relative abundance of CISZs played a role in affecting global climate during the Palaeogene. In the 200-100 Ma period, peaks in CISZ lengths align with peaks in palaeo-atmospheric CO 2 , but CISZ lengths alone cannot be determined as the cause of a warmer Cretaceous-Jurassic climate. Nevertheless, across the majority of the Phanerozoic, feedback mechanisms between the geosphere, atmosphere and biosphere likely played dominant roles in modulating climate. Our modelled subduction zone lengths and carbonate-intersecting subduction zone lengths approximate magmatic activity through time, and can be used as input into fully coupled models of CO 2 flux between deep and shallow carbon reservoirs.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Climate of the Past","grobid_abstract_attachment_id":118375433},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086417/The_influence_of_carbonate_platform_interactions_with_subduction_zone_volcanism_on_palaeo_atmospheric_CO_sub_2_sub_since_the_Devonian","translated_internal_url":"","created_at":"2024-09-22T17:08:43.295-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375433/thumbnails/1.jpg","file_name":"cp-14-857-2018.pdf","download_url":"https://www.academia.edu/attachments/118375433/download_file","bulk_download_file_name":"The_influence_of_carbonate_platform_inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375433/cp-14-857-2018-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_carbonate_platform_inte.pdf\u0026Expires=1741733762\u0026Signature=LLxoFZcN7E4Sbc4YLhRW5i0-jLmw97QQHwL1v48SE3376nXbnveqhgpQUCz6FZOHWz8x60W0YsyHRMRE9IVsax3KNTrckRm~BaGdzNYkkHt630y-NwbdULlkgSCrsOEWSne-QygDjV2AjdzAmCYP7DaSJaLC7dqh5vfOHcP9eCo6eVPa1054C1pef9uD~s8pIOYx4tVvMc6EtgEvcv03dAxwxFDL30Cx3k6nAxTFjy-In1sGBQHGSUHtVmEgm3XcuNagrQQcKaK9An00vUSxR1~GER3iWR07RFdDcqkArZJCLaqyzd7kD5iDpOCL3DFjQzbKnnpLIwG4Kn9J47FQfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_influence_of_carbonate_platform_interactions_with_subduction_zone_volcanism_on_palaeo_atmospheric_CO_sub_2_sub_since_the_Devonian","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"The CO 2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO 2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO 2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and carbonate platforms. This study investigates the contribution of carbonate-intersecting subduction zones (CISZs) to palaeo-atmospheric CO 2 levels over the past 410 million years by integrating a plate motion and plate boundary evolution model with carbonate platform development through time. Our model of carbonate platform development has the potential to capture a broader range of degassing mechanisms than approaches that only account for continental arcs. Continuous and cross-wavelet analyses as well as wavelet coherence are used to evaluate trends between the evolving lengths of carbonate-intersecting subduction zones, noncarbonate-intersecting subduction zones and global subduction zones, and are examined for periodic, linked behaviour with the proxy CO 2 record between 410 Ma and the present. Wavelet analysis reveals significant linked periodic behaviour between 60 and 40 Ma, when CISZ lengths are relatively high and are correlated with peaks in palaeoatmospheric CO 2 , characterised by a 32-48 Myr periodicity and a ∼ 8-12 Myr lag of CO 2 peaks following CISZ length peaks. The linked behaviour suggests that the relative abundance of CISZs played a role in affecting global climate during the Palaeogene. In the 200-100 Ma period, peaks in CISZ lengths align with peaks in palaeo-atmospheric CO 2 , but CISZ lengths alone cannot be determined as the cause of a warmer Cretaceous-Jurassic climate. Nevertheless, across the majority of the Phanerozoic, feedback mechanisms between the geosphere, atmosphere and biosphere likely played dominant roles in modulating climate. Our modelled subduction zone lengths and carbonate-intersecting subduction zone lengths approximate magmatic activity through time, and can be used as input into fully coupled models of CO 2 flux between deep and shallow carbon reservoirs.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375433/thumbnails/1.jpg","file_name":"cp-14-857-2018.pdf","download_url":"https://www.academia.edu/attachments/118375433/download_file","bulk_download_file_name":"The_influence_of_carbonate_platform_inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375433/cp-14-857-2018-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_carbonate_platform_inte.pdf\u0026Expires=1741733762\u0026Signature=LLxoFZcN7E4Sbc4YLhRW5i0-jLmw97QQHwL1v48SE3376nXbnveqhgpQUCz6FZOHWz8x60W0YsyHRMRE9IVsax3KNTrckRm~BaGdzNYkkHt630y-NwbdULlkgSCrsOEWSne-QygDjV2AjdzAmCYP7DaSJaLC7dqh5vfOHcP9eCo6eVPa1054C1pef9uD~s8pIOYx4tVvMc6EtgEvcv03dAxwxFDL30Cx3k6nAxTFjy-In1sGBQHGSUHtVmEgm3XcuNagrQQcKaK9An00vUSxR1~GER3iWR07RFdDcqkArZJCLaqyzd7kD5iDpOCL3DFjQzbKnnpLIwG4Kn9J47FQfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375434,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375434/thumbnails/1.jpg","file_name":"cp-14-857-2018.pdf","download_url":"https://www.academia.edu/attachments/118375434/download_file","bulk_download_file_name":"The_influence_of_carbonate_platform_inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375434/cp-14-857-2018-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_carbonate_platform_inte.pdf\u0026Expires=1741733762\u0026Signature=fp3Y~AWZz481QLUpWIHKkzJhShR8HYLanRCYzjFaXD1gnrfa2-aOK-bjXUbMLJTS0QkNlhnwP41B4ynthlYRi~3qdSRtyPITJgy72KDe9KIqF0msH1DXRmCptSAoEjef0PXcjrEc-lGjsDfeuUKYTUWYXnvSXT1BUYhSM7TJAQ9~9poBFfQw8xdSoHWkwb7iP0~eU2PdfLA9Tf92hagZLujQEoFG1wrqepa3Zwc6~Yw6RIwQ1EyZa~-TVKil1tV~geIBRdpzJIuWF608-QbKLph5m7AA9kU0i6qPxNHmWa-JQD9wJrELe3mpFAG5XrZAopLIDh4bK7VyWEhKdRzImQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":91258,"name":"Carbonate","url":"https://www.academia.edu/Documents/in/Carbonate"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"}],"urls":[{"id":44783466,"url":"https://cp.copernicus.org/articles/14/857/2018/cp-14-857-2018.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086416"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086416/Modelling_of_Non_coaxial_Viscoplastic_Deformation_in_Geodynamics"><img alt="Research paper thumbnail of Modelling of Non-coaxial Viscoplastic Deformation in Geodynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/118375458/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086416/Modelling_of_Non_coaxial_Viscoplastic_Deformation_in_Geodynamics">Modelling of Non-coaxial Viscoplastic Deformation in Geodynamics</a></div><div class="wp-workCard_item"><span>Journal of Civil Engineering and Architecture</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The formation of shear bands for time and length scales appropriate for deformation processes in ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The formation of shear bands for time and length scales appropriate for deformation processes in the upper Lithosphere is investigated in plane strain finite element simulations under predominantly uniaxial extension and compression, respectively. The direction of gravity is assumed orthogonal to the extension/compression axis. Mathematically, the formation of shear zones may be explained as a consequence of changes in the type of the governing model equations. Such changes or bifurcations depend strongly on the details of the constitutive relationships such as strain softening, thermal or chemical effects, associated or non-associated-coaxial or non-coaxial flow rules. Here we focus on strain softening and coaxial and non-coaxial flow rules. In the simulations, we consider an initially rectangular domain with the dimensions L 0 , H 0 in the horizontal, vertical directions, respectively. The domain is extended or compressed by prescribing a uniform, horizontal velocity field along one of the vertical boundaries while keeping the opposite boundary fixed. An important global descriptor of the deformation process is the relationship between the horizontal stress resultant (average horizontal stress) and the strain ln(L/L 0), where L is the deformed length of the domain. The main goal of this paper is to investigate key factors influencing the phenomenology of the localization process such as flow rule, coaxial, non-coaxial and strain softening. Different origins of the mesh sensitivity of deformations involving localization are also investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="faf7799852306299a2aa6030c14eac69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375458,&quot;asset_id&quot;:124086416,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375458/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086416"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086416"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086416; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086416]").text(description); $(".js-view-count[data-work-id=124086416]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086416; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086416']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "faf7799852306299a2aa6030c14eac69" } } $('.js-work-strip[data-work-id=124086416]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086416,"title":"Modelling of Non-coaxial Viscoplastic Deformation in Geodynamics","translated_title":"","metadata":{"publisher":"David Publishing Company","ai_title_tag":"Viscoplastic Deformation in Lithosphere Modeling","grobid_abstract":"The formation of shear bands for time and length scales appropriate for deformation processes in the upper Lithosphere is investigated in plane strain finite element simulations under predominantly uniaxial extension and compression, respectively. The direction of gravity is assumed orthogonal to the extension/compression axis. Mathematically, the formation of shear zones may be explained as a consequence of changes in the type of the governing model equations. Such changes or bifurcations depend strongly on the details of the constitutive relationships such as strain softening, thermal or chemical effects, associated or non-associated-coaxial or non-coaxial flow rules. Here we focus on strain softening and coaxial and non-coaxial flow rules. In the simulations, we consider an initially rectangular domain with the dimensions L 0 , H 0 in the horizontal, vertical directions, respectively. The domain is extended or compressed by prescribing a uniform, horizontal velocity field along one of the vertical boundaries while keeping the opposite boundary fixed. An important global descriptor of the deformation process is the relationship between the horizontal stress resultant (average horizontal stress) and the strain ln(L/L 0), where L is the deformed length of the domain. The main goal of this paper is to investigate key factors influencing the phenomenology of the localization process such as flow rule, coaxial, non-coaxial and strain softening. Different origins of the mesh sensitivity of deformations involving localization are also investigated.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Journal of Civil Engineering and Architecture","grobid_abstract_attachment_id":118375458},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086416/Modelling_of_Non_coaxial_Viscoplastic_Deformation_in_Geodynamics","translated_internal_url":"","created_at":"2024-09-22T17:08:43.112-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375458,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375458/thumbnails/1.jpg","file_name":"UQ349124_OA.pdf","download_url":"https://www.academia.edu/attachments/118375458/download_file","bulk_download_file_name":"Modelling_of_Non_coaxial_Viscoplastic_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375458/UQ349124_OA-libre.pdf?1727057327=\u0026response-content-disposition=attachment%3B+filename%3DModelling_of_Non_coaxial_Viscoplastic_De.pdf\u0026Expires=1741733762\u0026Signature=LkPoD95op11WYqyxiYSXebA-dCauKX1fM~LCK7H9q28f~U6LtN8VQEdufLTbbqrA~1rHYHDPMLCdlX7Qd9rNrnlIwEhB0imATqbBi~a5wy2cQwVxkT6r73Um7uQDWplus1Ahc1HjzRKuKgn3B88VqNPpGBg4r0Uesv~lx7sUoAIpm-D2gpbm0ZsDKANQf48KuDZ1P-SjkVlW-fthKblTPbB4q4xCrlOtNNkfUcEXo51hfDA4WlThwHALPItIC4Rq2c95VUM4~omD612al1cheatzNjE7ac6knzZ3XvsZgZGtAzkSgcVnoq6nkNWahX~DiXsVt4-0V7~VoASEC7ESBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modelling_of_Non_coaxial_Viscoplastic_Deformation_in_Geodynamics","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The formation of shear bands for time and length scales appropriate for deformation processes in the upper Lithosphere is investigated in plane strain finite element simulations under predominantly uniaxial extension and compression, respectively. The direction of gravity is assumed orthogonal to the extension/compression axis. Mathematically, the formation of shear zones may be explained as a consequence of changes in the type of the governing model equations. Such changes or bifurcations depend strongly on the details of the constitutive relationships such as strain softening, thermal or chemical effects, associated or non-associated-coaxial or non-coaxial flow rules. Here we focus on strain softening and coaxial and non-coaxial flow rules. In the simulations, we consider an initially rectangular domain with the dimensions L 0 , H 0 in the horizontal, vertical directions, respectively. The domain is extended or compressed by prescribing a uniform, horizontal velocity field along one of the vertical boundaries while keeping the opposite boundary fixed. An important global descriptor of the deformation process is the relationship between the horizontal stress resultant (average horizontal stress) and the strain ln(L/L 0), where L is the deformed length of the domain. The main goal of this paper is to investigate key factors influencing the phenomenology of the localization process such as flow rule, coaxial, non-coaxial and strain softening. Different origins of the mesh sensitivity of deformations involving localization are also investigated.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375458,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375458/thumbnails/1.jpg","file_name":"UQ349124_OA.pdf","download_url":"https://www.academia.edu/attachments/118375458/download_file","bulk_download_file_name":"Modelling_of_Non_coaxial_Viscoplastic_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375458/UQ349124_OA-libre.pdf?1727057327=\u0026response-content-disposition=attachment%3B+filename%3DModelling_of_Non_coaxial_Viscoplastic_De.pdf\u0026Expires=1741733762\u0026Signature=LkPoD95op11WYqyxiYSXebA-dCauKX1fM~LCK7H9q28f~U6LtN8VQEdufLTbbqrA~1rHYHDPMLCdlX7Qd9rNrnlIwEhB0imATqbBi~a5wy2cQwVxkT6r73Um7uQDWplus1Ahc1HjzRKuKgn3B88VqNPpGBg4r0Uesv~lx7sUoAIpm-D2gpbm0ZsDKANQf48KuDZ1P-SjkVlW-fthKblTPbB4q4xCrlOtNNkfUcEXo51hfDA4WlThwHALPItIC4Rq2c95VUM4~omD612al1cheatzNjE7ac6knzZ3XvsZgZGtAzkSgcVnoq6nkNWahX~DiXsVt4-0V7~VoASEC7ESBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2381,"name":"Viscoplasticity","url":"https://www.academia.edu/Documents/in/Viscoplasticity"},{"id":15947,"name":"Geodynamics","url":"https://www.academia.edu/Documents/in/Geodynamics"},{"id":841115,"name":"Civil Engineering and Architecture","url":"https://www.academia.edu/Documents/in/Civil_Engineering_and_Architecture"},{"id":1741014,"name":"Water Softening","url":"https://www.academia.edu/Documents/in/Water_Softening"},{"id":2402053,"name":"Coaxial","url":"https://www.academia.edu/Documents/in/Coaxial"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086415/Arc_volcanism_carbonate_platform_evolution_and_palaeo_atmospheric_CO_and_lt_sub_and_gt_2_and_lt_sub_and_gt_Components_and_interactions_in_the_deep_carbon_cycle"><img alt="Research paper thumbnail of Arc volcanism, carbonate platform evolution and palaeo-atmospheric CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;: Components and interactions in the deep carbon cycle" class="work-thumbnail" src="https://attachments.academia-assets.com/118375431/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086415/Arc_volcanism_carbonate_platform_evolution_and_palaeo_atmospheric_CO_and_lt_sub_and_gt_2_and_lt_sub_and_gt_Components_and_interactions_in_the_deep_carbon_cycle">Arc volcanism, carbonate platform evolution and palaeo-atmospheric CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;: Components and interactions in the deep carbon cycle</a></div><div class="wp-workCard_item"><span>Climate of the Past Discussions</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Carbon dioxide (CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;) liberated at arc volcanoes that intersect buried carb...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Carbon dioxide (CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;) liberated at arc volcanoes that intersect buried carbonate platforms plays a larger role in influencing atmospheric CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; than those active margins lacking buried carbonate platforms. This study investigates the contribution of carbonate-intersecting arc activity on palaeo-atmospheric CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; levels over the past 410 million years by integrating a plate motion model with an evolving carbonate platform development model. Our modelled subduction zone lengths and carbonate-intersecting arc lengths approximate arc activity with time, and can be used as input into fully-coupled models of CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; flux between deep and shallow reservoirs. Continuous and cross-wavelet as well as wavelet coherence analyses were used to evaluate trends between carbonate-intersecting arc activity, non-carbonate-intersecting arc activity and total global subduction zone lengths and the proxy-CO&amp;lt;sub&amp;gt;2&amp;lt;...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c605b78fb65ca47689e5194806e5a291" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375431,&quot;asset_id&quot;:124086415,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375431/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086415]").text(description); $(".js-view-count[data-work-id=124086415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c605b78fb65ca47689e5194806e5a291" } } $('.js-work-strip[data-work-id=124086415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086415,"title":"Arc volcanism, carbonate platform evolution and palaeo-atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt;: Components and interactions in the deep carbon cycle","translated_title":"","metadata":{"abstract":"Carbon dioxide (CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt;) liberated at arc volcanoes that intersect buried carbonate platforms plays a larger role in influencing atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; than those active margins lacking buried carbonate platforms. This study investigates the contribution of carbonate-intersecting arc activity on palaeo-atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; levels over the past 410 million years by integrating a plate motion model with an evolving carbonate platform development model. Our modelled subduction zone lengths and carbonate-intersecting arc lengths approximate arc activity with time, and can be used as input into fully-coupled models of CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flux between deep and shallow reservoirs. Continuous and cross-wavelet as well as wavelet coherence analyses were used to evaluate trends between carbonate-intersecting arc activity, non-carbonate-intersecting arc activity and total global subduction zone lengths and the proxy-CO\u0026lt;sub\u0026gt;2\u0026lt;...","publisher":"Copernicus GmbH","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Climate of the Past Discussions"},"translated_abstract":"Carbon dioxide (CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt;) liberated at arc volcanoes that intersect buried carbonate platforms plays a larger role in influencing atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; than those active margins lacking buried carbonate platforms. This study investigates the contribution of carbonate-intersecting arc activity on palaeo-atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; levels over the past 410 million years by integrating a plate motion model with an evolving carbonate platform development model. Our modelled subduction zone lengths and carbonate-intersecting arc lengths approximate arc activity with time, and can be used as input into fully-coupled models of CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flux between deep and shallow reservoirs. Continuous and cross-wavelet as well as wavelet coherence analyses were used to evaluate trends between carbonate-intersecting arc activity, non-carbonate-intersecting arc activity and total global subduction zone lengths and the proxy-CO\u0026lt;sub\u0026gt;2\u0026lt;...","internal_url":"https://www.academia.edu/124086415/Arc_volcanism_carbonate_platform_evolution_and_palaeo_atmospheric_CO_and_lt_sub_and_gt_2_and_lt_sub_and_gt_Components_and_interactions_in_the_deep_carbon_cycle","translated_internal_url":"","created_at":"2024-09-22T17:08:42.871-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375431/thumbnails/1.jpg","file_name":"cp-2017-112.pdf","download_url":"https://www.academia.edu/attachments/118375431/download_file","bulk_download_file_name":"Arc_volcanism_carbonate_platform_evoluti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375431/cp-2017-112-libre.pdf?1727057354=\u0026response-content-disposition=attachment%3B+filename%3DArc_volcanism_carbonate_platform_evoluti.pdf\u0026Expires=1741733762\u0026Signature=bd9ZrlfkLd~hQbaqCAqSSAkV42pVPnwPdnlQgl3jOmTyqBbzLIX~4VagtXS5oBoefn2E-TnuMC9HxlhP-ZHsobjKbmuR-RbB60TCduR9e7mrCIM35OFJZnBelMcdomJXvSM0pNzKGDNhVZSSQT3llPQQ8xLG3rJRldjeDwnKu3pcdInW2s-pcWQnl5Qj4OXrtCX4MQS6RybnDv9T17Vff~TOmfaZ4PD9wCzmfH9prrhSdQn17nYqeMPC-7VVhfM0NOxxD5AP85jiVe~Or-pz~4fHxloiYzhfP08jqGehq4hiQSnsh5PVdwta9~DB7UpGiOD7GgaKf095nD49nqL5uQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Arc_volcanism_carbonate_platform_evolution_and_palaeo_atmospheric_CO_and_lt_sub_and_gt_2_and_lt_sub_and_gt_Components_and_interactions_in_the_deep_carbon_cycle","translated_slug":"","page_count":34,"language":"en","content_type":"Work","summary":"Carbon dioxide (CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt;) liberated at arc volcanoes that intersect buried carbonate platforms plays a larger role in influencing atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; than those active margins lacking buried carbonate platforms. This study investigates the contribution of carbonate-intersecting arc activity on palaeo-atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; levels over the past 410 million years by integrating a plate motion model with an evolving carbonate platform development model. Our modelled subduction zone lengths and carbonate-intersecting arc lengths approximate arc activity with time, and can be used as input into fully-coupled models of CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flux between deep and shallow reservoirs. Continuous and cross-wavelet as well as wavelet coherence analyses were used to evaluate trends between carbonate-intersecting arc activity, non-carbonate-intersecting arc activity and total global subduction zone lengths and the proxy-CO\u0026lt;sub\u0026gt;2\u0026lt;...","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375431/thumbnails/1.jpg","file_name":"cp-2017-112.pdf","download_url":"https://www.academia.edu/attachments/118375431/download_file","bulk_download_file_name":"Arc_volcanism_carbonate_platform_evoluti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375431/cp-2017-112-libre.pdf?1727057354=\u0026response-content-disposition=attachment%3B+filename%3DArc_volcanism_carbonate_platform_evoluti.pdf\u0026Expires=1741733762\u0026Signature=bd9ZrlfkLd~hQbaqCAqSSAkV42pVPnwPdnlQgl3jOmTyqBbzLIX~4VagtXS5oBoefn2E-TnuMC9HxlhP-ZHsobjKbmuR-RbB60TCduR9e7mrCIM35OFJZnBelMcdomJXvSM0pNzKGDNhVZSSQT3llPQQ8xLG3rJRldjeDwnKu3pcdInW2s-pcWQnl5Qj4OXrtCX4MQS6RybnDv9T17Vff~TOmfaZ4PD9wCzmfH9prrhSdQn17nYqeMPC-7VVhfM0NOxxD5AP85jiVe~Or-pz~4fHxloiYzhfP08jqGehq4hiQSnsh5PVdwta9~DB7UpGiOD7GgaKf095nD49nqL5uQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375432/thumbnails/1.jpg","file_name":"cp-2017-112.pdf","download_url":"https://www.academia.edu/attachments/118375432/download_file","bulk_download_file_name":"Arc_volcanism_carbonate_platform_evoluti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375432/cp-2017-112-libre.pdf?1727057356=\u0026response-content-disposition=attachment%3B+filename%3DArc_volcanism_carbonate_platform_evoluti.pdf\u0026Expires=1741733762\u0026Signature=LC74qjroFq9wbWIfiS25ZTcTONMRncNdfDWw6uLPr8xp-sb9d9d56ptFPp1tu~Xxm0fE2x56W178jZirHJixv3yD5hAiNYsrXqFxBoSiPvSiereRlPiCu5BT92jnC3iooBRqmBnjRja~aXRCwNc0xZZh1TOivigTnlI4ivOFm4IQuxu7FuUGcBEEa7e-fpaPpqKozhDYh35NNJ6xTBRH7BGhAzCGF1u~Rd4AZrMI-LesJ4LX-HPq8iCP9anbYqwF7avPH-7XQUnQGlVvqxnV2gt8uwZQ5nkIq-G7nPvhgiAxUUJkFL-zyiNptpmYr7m0L8Wx8gSBnKRevPjHQh6lWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":14719,"name":"Carbon Cycle","url":"https://www.academia.edu/Documents/in/Carbon_Cycle"},{"id":91258,"name":"Carbonate","url":"https://www.academia.edu/Documents/in/Carbonate"}],"urls":[{"id":44783465,"url":"https://www.clim-past-discuss.net/cp-2017-112/cp-2017-112.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086414/A_window_for_plate_tectonics_in_terrestrial_planet_evolution"><img alt="Research paper thumbnail of A window for plate tectonics in terrestrial planet evolution?" class="work-thumbnail" src="https://attachments.academia-assets.com/118375455/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086414/A_window_for_plate_tectonics_in_terrestrial_planet_evolution">A window for plate tectonics in terrestrial planet evolution?</a></div><div class="wp-workCard_item"><span>Physics of the Earth and Planetary Interiors</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The tectonic regime of a planet depends critically on the contributions of basal and internal hea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The tectonic regime of a planet depends critically on the contributions of basal and internal heating to the planetary mantle, and how these evolve through time. We use viscoplastic mantle convection simulations, with evolving core-mantle boundary temperatures, and radiogenic heat decay, to explore how these factors affect tectonic regime over the lifetime of a planet. The simulations demonstrate (i) hot, mantle conditions, coming out of a magma ocean phase of evolution, can produce a &#39;&#39;hot&quot; stagnant-lid regime, whilst a cooler post magma ocean mantle may begin in a plate tectonic regime; (ii) planets may evolve from an initial hot stagnant-lid condition, through an episodic regime lasting 1-3 Gyr, into a plate-tectonic regime, and finally into a cold, senescent stagnant lid regime after $10 Gyr of evolution, as heat production and basal temperatures wane; and (iii) the thermal state of the post magma ocean mantle, which effectively sets the initial conditions for the sub-solidus mantle convection phase of planetary evolution, is one of the most sensitive parameters affecting planetary evolution-systems with exactly the same physical parameters may exhibit completely different tectonics depending on the initial state employed. Estimates of the early Earth&#39;s temperatures suggest Earth may have begun in a hot stagnant lid mode, evolving into an episodic regime throughout most of the Archaean, before finally passing into a plate tectonic regime. The implication of these results is that, for many cases, plate tectonics may be a phase in planetary evolution between hot and cold stagnant states, rather than an end-member.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="95e0db087e9756c1b470ba49335db554" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375455,&quot;asset_id&quot;:124086414,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375455/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086414]").text(description); $(".js-view-count[data-work-id=124086414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "95e0db087e9756c1b470ba49335db554" } } $('.js-work-strip[data-work-id=124086414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086414,"title":"A window for plate tectonics in terrestrial planet evolution?","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Evolving Tectonic Regimes in Planetary Evolution Dynamics","grobid_abstract":"The tectonic regime of a planet depends critically on the contributions of basal and internal heating to the planetary mantle, and how these evolve through time. We use viscoplastic mantle convection simulations, with evolving core-mantle boundary temperatures, and radiogenic heat decay, to explore how these factors affect tectonic regime over the lifetime of a planet. The simulations demonstrate (i) hot, mantle conditions, coming out of a magma ocean phase of evolution, can produce a ''hot\" stagnant-lid regime, whilst a cooler post magma ocean mantle may begin in a plate tectonic regime; (ii) planets may evolve from an initial hot stagnant-lid condition, through an episodic regime lasting 1-3 Gyr, into a plate-tectonic regime, and finally into a cold, senescent stagnant lid regime after $10 Gyr of evolution, as heat production and basal temperatures wane; and (iii) the thermal state of the post magma ocean mantle, which effectively sets the initial conditions for the sub-solidus mantle convection phase of planetary evolution, is one of the most sensitive parameters affecting planetary evolution-systems with exactly the same physical parameters may exhibit completely different tectonics depending on the initial state employed. Estimates of the early Earth's temperatures suggest Earth may have begun in a hot stagnant lid mode, evolving into an episodic regime throughout most of the Archaean, before finally passing into a plate tectonic regime. The implication of these results is that, for many cases, plate tectonics may be a phase in planetary evolution between hot and cold stagnant states, rather than an end-member.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Physics of the Earth and Planetary Interiors","grobid_abstract_attachment_id":118375455},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086414/A_window_for_plate_tectonics_in_terrestrial_planet_evolution","translated_internal_url":"","created_at":"2024-09-22T17:08:42.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375455,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375455/thumbnails/1.jpg","file_name":"1-s2.0-S0031920116300280-main.pdf","download_url":"https://www.academia.edu/attachments/118375455/download_file","bulk_download_file_name":"A_window_for_plate_tectonics_in_terrestr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375455/1-s2.0-S0031920116300280-main-libre.pdf?1727057329=\u0026response-content-disposition=attachment%3B+filename%3DA_window_for_plate_tectonics_in_terrestr.pdf\u0026Expires=1741733762\u0026Signature=Tn1XepHGIbHMQh1~AQLLEJ-ueIYIUUYDuBOpHDjPO1MzaYigIw899BNDN6i3rRor0E5ZR1VvJZ3kiZx4qoxBmK8EABtQlZD9zfh07EwABDjmLwGJ3kIt6Mu7Pg5OBXZ37AUOkIG~yStjGscj7cW7s43JiJhRSZvhJE~bAILgXDMAhU5-ObO0GQSiQrQXYXsJ0d7yuJ0d2rtcNjArRtXSzzdiM28KVp-t0xUy85UEdy~fesGDIsgeRc2nSPvy2ZT3Jj1CMZsgOk8ZxLTIVZsNC34niax57EqngnfDxVdnyH~SVb55B-cOea9VwwrkRq6OH9A~PqUH-PNsdz33DK~Xtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_window_for_plate_tectonics_in_terrestrial_planet_evolution","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"The tectonic regime of a planet depends critically on the contributions of basal and internal heating to the planetary mantle, and how these evolve through time. We use viscoplastic mantle convection simulations, with evolving core-mantle boundary temperatures, and radiogenic heat decay, to explore how these factors affect tectonic regime over the lifetime of a planet. The simulations demonstrate (i) hot, mantle conditions, coming out of a magma ocean phase of evolution, can produce a ''hot\" stagnant-lid regime, whilst a cooler post magma ocean mantle may begin in a plate tectonic regime; (ii) planets may evolve from an initial hot stagnant-lid condition, through an episodic regime lasting 1-3 Gyr, into a plate-tectonic regime, and finally into a cold, senescent stagnant lid regime after $10 Gyr of evolution, as heat production and basal temperatures wane; and (iii) the thermal state of the post magma ocean mantle, which effectively sets the initial conditions for the sub-solidus mantle convection phase of planetary evolution, is one of the most sensitive parameters affecting planetary evolution-systems with exactly the same physical parameters may exhibit completely different tectonics depending on the initial state employed. Estimates of the early Earth's temperatures suggest Earth may have begun in a hot stagnant lid mode, evolving into an episodic regime throughout most of the Archaean, before finally passing into a plate tectonic regime. The implication of these results is that, for many cases, plate tectonics may be a phase in planetary evolution between hot and cold stagnant states, rather than an end-member.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375455,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375455/thumbnails/1.jpg","file_name":"1-s2.0-S0031920116300280-main.pdf","download_url":"https://www.academia.edu/attachments/118375455/download_file","bulk_download_file_name":"A_window_for_plate_tectonics_in_terrestr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375455/1-s2.0-S0031920116300280-main-libre.pdf?1727057329=\u0026response-content-disposition=attachment%3B+filename%3DA_window_for_plate_tectonics_in_terrestr.pdf\u0026Expires=1741733762\u0026Signature=Tn1XepHGIbHMQh1~AQLLEJ-ueIYIUUYDuBOpHDjPO1MzaYigIw899BNDN6i3rRor0E5ZR1VvJZ3kiZx4qoxBmK8EABtQlZD9zfh07EwABDjmLwGJ3kIt6Mu7Pg5OBXZ37AUOkIG~yStjGscj7cW7s43JiJhRSZvhJE~bAILgXDMAhU5-ObO0GQSiQrQXYXsJ0d7yuJ0d2rtcNjArRtXSzzdiM28KVp-t0xUy85UEdy~fesGDIsgeRc2nSPvy2ZT3Jj1CMZsgOk8ZxLTIVZsNC34niax57EqngnfDxVdnyH~SVb55B-cOea9VwwrkRq6OH9A~PqUH-PNsdz33DK~Xtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":10769,"name":"Tectonics","url":"https://www.academia.edu/Documents/in/Tectonics"},{"id":44747,"name":"Plate Tectonics","url":"https://www.academia.edu/Documents/in/Plate_Tectonics"},{"id":268407,"name":"Planet","url":"https://www.academia.edu/Documents/in/Planet"}],"urls":[{"id":44783464,"url":"https://api.elsevier.com/content/article/PII:S0031920116300280?httpAccept=text/plain"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086413"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086413/Texture_alignment_in_shimple_shear"><img alt="Research paper thumbnail of Texture alignment in shimple shear" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086413/Texture_alignment_in_shimple_shear">Texture alignment in shimple shear</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computational Science</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086413"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086413"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086413; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086413]").text(description); $(".js-view-count[data-work-id=124086413]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086413; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086413']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086413]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086413,"title":"Texture alignment in shimple shear","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Lecture Notes in Computational Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086413/Texture_alignment_in_shimple_shear","translated_internal_url":"","created_at":"2024-09-22T17:08:41.901-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Texture_alignment_in_shimple_shear","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[],"urls":[{"id":44783463,"url":"http://espace.library.uq.edu.au/view/UQ:67679"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086411"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086411/Anisotropic_Convection_Model_for_the_Earth_s_Mantle"><img alt="Research paper thumbnail of Anisotropic Convection Model for the Earth’s Mantle" class="work-thumbnail" src="https://attachments.academia-assets.com/118375452/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086411/Anisotropic_Convection_Model_for_the_Earth_s_Mantle">Anisotropic Convection Model for the Earth’s Mantle</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has origi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Mühlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector-the director-of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (<a href="http://www.cmis.csiro.au/Fastflo/" rel="nofollow">www.cmis.csiro.au/Fastflo/</a>). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8]and secondly to study the numerical performance of Eulerian (Fastflo)-and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc9d9151f42569da3999ef96183e46b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375452,&quot;asset_id&quot;:124086411,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375452/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086411"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086411"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086411; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086411]").text(description); $(".js-view-count[data-work-id=124086411]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086411; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086411']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc9d9151f42569da3999ef96183e46b5" } } $('.js-work-strip[data-work-id=124086411]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086411,"title":"Anisotropic Convection Model for the Earth’s Mantle","translated_title":"","metadata":{"grobid_abstract":"The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Mühlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector-the director-of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8]and secondly to study the numerical performance of Eulerian (Fastflo)-and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":118375452},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086411/Anisotropic_Convection_Model_for_the_Earth_s_Mantle","translated_internal_url":"","created_at":"2024-09-22T17:08:41.682-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375452/thumbnails/1.jpg","file_name":"10.1007_2F3-540-44863-2_77.pdf","download_url":"https://www.academia.edu/attachments/118375452/download_file","bulk_download_file_name":"Anisotropic_Convection_Model_for_the_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375452/10.1007_2F3-540-44863-2_77-libre.pdf?1727057333=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Convection_Model_for_the_Ear.pdf\u0026Expires=1741733762\u0026Signature=Bx5dica2ghfuvtOSlAtYwhj0NAj69s1wdDjlsnANaTLJ6lEL-9T2of9WgULUx3qkBp08WW1AQeAWzorqEwOHJf4OZ0qhyC8LoPSA5ZhJQ~sihH5RHXCOTi8QJREqJ9c3U5UJsN7CgVLcC8ntgo-emf~pWVoYtSnzCD~1VL7u7BEvnRHMkv1pw1X4hrl5Jwdh4FDaniLs~JmV5JwtNZ7gwcQvzczRh1yikQVYOMTlbOd7FFHyAs3qowvabr65OZ0Vmnu3IiSnFRUO7VIcBeoPVtiko~dNW9aWs9hXSOJfm1JCVfHx3Z1H~qs9cminSvih9Zb4OiM54A~7nKCnIdJQ~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anisotropic_Convection_Model_for_the_Earth_s_Mantle","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Mühlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector-the director-of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8]and secondly to study the numerical performance of Eulerian (Fastflo)-and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375452/thumbnails/1.jpg","file_name":"10.1007_2F3-540-44863-2_77.pdf","download_url":"https://www.academia.edu/attachments/118375452/download_file","bulk_download_file_name":"Anisotropic_Convection_Model_for_the_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375452/10.1007_2F3-540-44863-2_77-libre.pdf?1727057333=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Convection_Model_for_the_Ear.pdf\u0026Expires=1741733762\u0026Signature=Bx5dica2ghfuvtOSlAtYwhj0NAj69s1wdDjlsnANaTLJ6lEL-9T2of9WgULUx3qkBp08WW1AQeAWzorqEwOHJf4OZ0qhyC8LoPSA5ZhJQ~sihH5RHXCOTi8QJREqJ9c3U5UJsN7CgVLcC8ntgo-emf~pWVoYtSnzCD~1VL7u7BEvnRHMkv1pw1X4hrl5Jwdh4FDaniLs~JmV5JwtNZ7gwcQvzczRh1yikQVYOMTlbOd7FFHyAs3qowvabr65OZ0Vmnu3IiSnFRUO7VIcBeoPVtiko~dNW9aWs9hXSOJfm1JCVfHx3Z1H~qs9cminSvih9Zb4OiM54A~7nKCnIdJQ~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":17100,"name":"Theoretical Computer Science","url":"https://www.academia.edu/Documents/in/Theoretical_Computer_Science"},{"id":37333,"name":"Anisotropy","url":"https://www.academia.edu/Documents/in/Anisotropy"},{"id":84734,"name":"Existence","url":"https://www.academia.edu/Documents/in/Existence"},{"id":104786,"name":"Rock","url":"https://www.academia.edu/Documents/in/Rock"},{"id":202157,"name":"Mantle Convection","url":"https://www.academia.edu/Documents/in/Mantle_Convection"},{"id":419833,"name":"WAve","url":"https://www.academia.edu/Documents/in/WAve"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":1135792,"name":"Layers","url":"https://www.academia.edu/Documents/in/Layers"},{"id":2353926,"name":"Isotropy","url":"https://www.academia.edu/Documents/in/Isotropy"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086410"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086410/Large_Scale_Shear_Banding_in_Extension"><img alt="Research paper thumbnail of Large Scale Shear Banding in Extension" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086410/Large_Scale_Shear_Banding_in_Extension">Large Scale Shear Banding in Extension</a></div><div class="wp-workCard_item"><span>Springer Series in Geomechanics and Geoengineering</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We firs...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We first outline the consitituve relations. The deformation and localization process is illustrated by results of large deformation finite element simulations on a rectangular domain in extension for different constitutive models. We also show the variation of the average horizontal stress (stress resultant) conjugate</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086410"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086410"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086410; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086410]").text(description); $(".js-view-count[data-work-id=124086410]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086410; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086410']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086410]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086410,"title":"Large Scale Shear Banding in Extension","translated_title":"","metadata":{"abstract":"In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We first outline the consitituve relations. The deformation and localization process is illustrated by results of large deformation finite element simulations on a rectangular domain in extension for different constitutive models. We also show the variation of the average horizontal stress (stress resultant) conjugate","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Springer Series in Geomechanics and Geoengineering"},"translated_abstract":"In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We first outline the consitituve relations. The deformation and localization process is illustrated by results of large deformation finite element simulations on a rectangular domain in extension for different constitutive models. We also show the variation of the average horizontal stress (stress resultant) conjugate","internal_url":"https://www.academia.edu/124086410/Large_Scale_Shear_Banding_in_Extension","translated_internal_url":"","created_at":"2024-09-22T17:08:40.478-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Large_Scale_Shear_Banding_in_Extension","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We first outline the consitituve relations. The deformation and localization process is illustrated by results of large deformation finite element simulations on a rectangular domain in extension for different constitutive models. We also show the variation of the average horizontal stress (stress resultant) conjugate","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":15947,"name":"Geodynamics","url":"https://www.academia.edu/Documents/in/Geodynamics"},{"id":45677,"name":"Shear bands","url":"https://www.academia.edu/Documents/in/Shear_bands"},{"id":158589,"name":"Strain Measurement","url":"https://www.academia.edu/Documents/in/Strain_Measurement"},{"id":174932,"name":"Large Deformation Mechanics","url":"https://www.academia.edu/Documents/in/Large_Deformation_Mechanics"},{"id":254893,"name":"Finite element simulation","url":"https://www.academia.edu/Documents/in/Finite_element_simulation"},{"id":303571,"name":"Compressibility","url":"https://www.academia.edu/Documents/in/Compressibility"},{"id":410412,"name":"Equation of Motion","url":"https://www.academia.edu/Documents/in/Equation_of_Motion"},{"id":590692,"name":"Mesh Sensitivity","url":"https://www.academia.edu/Documents/in/Mesh_Sensitivity"},{"id":593682,"name":"Constitutive model","url":"https://www.academia.edu/Documents/in/Constitutive_model"},{"id":758278,"name":"Large Scale","url":"https://www.academia.edu/Documents/in/Large_Scale"},{"id":1170984,"name":"Shear Banding","url":"https://www.academia.edu/Documents/in/Shear_Banding"},{"id":1231330,"name":"Constitutive Equation","url":"https://www.academia.edu/Documents/in/Constitutive_Equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086409"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086409/Instabilities_across_the_Scales_Simple_Models_for_Shear_Banding_Plate_Subduction_and_Mantle_Convection_in_Geodynamics"><img alt="Research paper thumbnail of Instabilities across the Scales: Simple Models for Shear Banding, Plate Subduction and Mantle Convection in Geodynamics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086409/Instabilities_across_the_Scales_Simple_Models_for_Shear_Banding_Plate_Subduction_and_Mantle_Convection_in_Geodynamics">Instabilities across the Scales: Simple Models for Shear Banding, Plate Subduction and Mantle Convection in Geodynamics</a></div><div class="wp-workCard_item"><span>Mechanics Down Under</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Earth shows different modes of deformation in response to thermal or gravitational driving fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Earth shows different modes of deformation in response to thermal or gravitational driving forces. The bulk mantle convects like a viscous fluid on the global scale, while the lithosphere is broken into several plates. They show little internal deformation, but change their shapes and relative positions. Oceanic plate material is generated at divergent margins and recycled into the mantle at subduction zones, on a regional scale. The buoyant continental crust resists subduction and develops meter-scale shear bands during deformation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086409"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086409"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086409; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086409]").text(description); $(".js-view-count[data-work-id=124086409]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086409; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086409']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086409]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086409,"title":"Instabilities across the Scales: Simple Models for Shear Banding, Plate Subduction and Mantle Convection in Geodynamics","translated_title":"","metadata":{"abstract":"The Earth shows different modes of deformation in response to thermal or gravitational driving forces. The bulk mantle convects like a viscous fluid on the global scale, while the lithosphere is broken into several plates. They show little internal deformation, but change their shapes and relative positions. Oceanic plate material is generated at divergent margins and recycled into the mantle at subduction zones, on a regional scale. The buoyant continental crust resists subduction and develops meter-scale shear bands during deformation.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Mechanics Down Under"},"translated_abstract":"The Earth shows different modes of deformation in response to thermal or gravitational driving forces. The bulk mantle convects like a viscous fluid on the global scale, while the lithosphere is broken into several plates. They show little internal deformation, but change their shapes and relative positions. Oceanic plate material is generated at divergent margins and recycled into the mantle at subduction zones, on a regional scale. The buoyant continental crust resists subduction and develops meter-scale shear bands during deformation.","internal_url":"https://www.academia.edu/124086409/Instabilities_across_the_Scales_Simple_Models_for_Shear_Banding_Plate_Subduction_and_Mantle_Convection_in_Geodynamics","translated_internal_url":"","created_at":"2024-09-22T17:08:40.321-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Instabilities_across_the_Scales_Simple_Models_for_Shear_Banding_Plate_Subduction_and_Mantle_Convection_in_Geodynamics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The Earth shows different modes of deformation in response to thermal or gravitational driving forces. The bulk mantle convects like a viscous fluid on the global scale, while the lithosphere is broken into several plates. They show little internal deformation, but change their shapes and relative positions. Oceanic plate material is generated at divergent margins and recycled into the mantle at subduction zones, on a regional scale. The buoyant continental crust resists subduction and develops meter-scale shear bands during deformation.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":15947,"name":"Geodynamics","url":"https://www.academia.edu/Documents/in/Geodynamics"},{"id":32984,"name":"Mechanics of Materials","url":"https://www.academia.edu/Documents/in/Mechanics_of_Materials"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":202157,"name":"Mantle Convection","url":"https://www.academia.edu/Documents/in/Mantle_Convection"},{"id":284025,"name":"Shear Zone","url":"https://www.academia.edu/Documents/in/Shear_Zone"},{"id":668253,"name":"Lithosphere","url":"https://www.academia.edu/Documents/in/Lithosphere"},{"id":819047,"name":"Simple shear","url":"https://www.academia.edu/Documents/in/Simple_shear"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086408"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086408/Elasticity_yielding_and_episodicity_in_simple_models_of_mantle_convection"><img alt="Research paper thumbnail of Elasticity, yielding and episodicity in simple models of mantle convection" class="work-thumbnail" src="https://attachments.academia-assets.com/118375454/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086408/Elasticity_yielding_and_episodicity_in_simple_models_of_mantle_convection">Elasticity, yielding and episodicity in simple models of mantle convection</a></div><div class="wp-workCard_item"><span>Pure and Applied Geophysics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We explore the implications of refinements in the mechanical description of planetary constituent...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We explore the implications of refinements in the mechanical description of planetary constituents on the convection modes predicted by finite element simulations. The refinements consist in the inclusion of incremental elasticity, plasticity (yield ing) and multiple simultaneous creep mechanisms in addition to the usual visco-plastic models employed in the context of unified plate-mantle models. The main emphasis of this paper rests on the constitutive and computational formulation of the model. We apply a consistent incremental formulation of the non-linear governing equations avoiding the computationally expensive iterations that are otherwise necessary to handle the onset of plastic yield. In connection with episodic convection simulations, we point out the strong dependency of the results on the choice of the initial temperature distribution. Our results also indicate that the inclusion of elasticity in the constitutive relationships lowers the mechanical energy associated with subduction events.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="18e3d48084d6e845a88709d27786c446" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375454,&quot;asset_id&quot;:124086408,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375454/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086408"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086408"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086408; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086408]").text(description); $(".js-view-count[data-work-id=124086408]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086408; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086408']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "18e3d48084d6e845a88709d27786c446" } } $('.js-work-strip[data-work-id=124086408]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086408,"title":"Elasticity, yielding and episodicity in simple models of mantle convection","translated_title":"","metadata":{"ai_title_tag":"Elasticity and Yielding in Mantle Convection","grobid_abstract":"We explore the implications of refinements in the mechanical description of planetary constituents on the convection modes predicted by finite element simulations. The refinements consist in the inclusion of incremental elasticity, plasticity (yield ing) and multiple simultaneous creep mechanisms in addition to the usual visco-plastic models employed in the context of unified plate-mantle models. The main emphasis of this paper rests on the constitutive and computational formulation of the model. We apply a consistent incremental formulation of the non-linear governing equations avoiding the computationally expensive iterations that are otherwise necessary to handle the onset of plastic yield. In connection with episodic convection simulations, we point out the strong dependency of the results on the choice of the initial temperature distribution. Our results also indicate that the inclusion of elasticity in the constitutive relationships lowers the mechanical energy associated with subduction events.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Pure and Applied Geophysics","grobid_abstract_attachment_id":118375454},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086408/Elasticity_yielding_and_episodicity_in_simple_models_of_mantle_convection","translated_internal_url":"","created_at":"2024-09-22T17:08:40.164-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375454,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375454/thumbnails/1.jpg","file_name":"paper-R6.pdf","download_url":"https://www.academia.edu/attachments/118375454/download_file","bulk_download_file_name":"Elasticity_yielding_and_episodicity_in_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375454/paper-R6-libre.pdf?1727057335=\u0026response-content-disposition=attachment%3B+filename%3DElasticity_yielding_and_episodicity_in_s.pdf\u0026Expires=1741733762\u0026Signature=aSfoiglXITHxreBBylAcBfggHzZbsQI27ldsaIB~X4dpUa-KmmbYEqf8auJNYfXMhVUJ2aB~1fsMw2sOXBAhfZH8uCNaZg4IJ-3TghOyGE661WSTof-V3sna5qwEL-QSnzRfNLAoKss8QjIRfdqccEDjsigSinex85b0tflM~xCeSBS2bVAZYuKFaUcAN2uD85z40E~uPodVZ2KWPSPmiGMPWtoDQPfWNK3l2HTvGhdgdMHhItJTKBW9FoXDHwncJOzgeWHJtgl4LYDdFbA67f7eTVkZV6L8212CtTZwgIYbWdPkYn~kIaseMznBgxC11ooBzME2IHQEoLHvdICkcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Elasticity_yielding_and_episodicity_in_simple_models_of_mantle_convection","translated_slug":"","page_count":28,"language":"en","content_type":"Work","summary":"We explore the implications of refinements in the mechanical description of planetary constituents on the convection modes predicted by finite element simulations. The refinements consist in the inclusion of incremental elasticity, plasticity (yield ing) and multiple simultaneous creep mechanisms in addition to the usual visco-plastic models employed in the context of unified plate-mantle models. The main emphasis of this paper rests on the constitutive and computational formulation of the model. We apply a consistent incremental formulation of the non-linear governing equations avoiding the computationally expensive iterations that are otherwise necessary to handle the onset of plastic yield. In connection with episodic convection simulations, we point out the strong dependency of the results on the choice of the initial temperature distribution. Our results also indicate that the inclusion of elasticity in the constitutive relationships lowers the mechanical energy associated with subduction events.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375454,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375454/thumbnails/1.jpg","file_name":"paper-R6.pdf","download_url":"https://www.academia.edu/attachments/118375454/download_file","bulk_download_file_name":"Elasticity_yielding_and_episodicity_in_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375454/paper-R6-libre.pdf?1727057335=\u0026response-content-disposition=attachment%3B+filename%3DElasticity_yielding_and_episodicity_in_s.pdf\u0026Expires=1741733762\u0026Signature=aSfoiglXITHxreBBylAcBfggHzZbsQI27ldsaIB~X4dpUa-KmmbYEqf8auJNYfXMhVUJ2aB~1fsMw2sOXBAhfZH8uCNaZg4IJ-3TghOyGE661WSTof-V3sna5qwEL-QSnzRfNLAoKss8QjIRfdqccEDjsigSinex85b0tflM~xCeSBS2bVAZYuKFaUcAN2uD85z40E~uPodVZ2KWPSPmiGMPWtoDQPfWNK3l2HTvGhdgdMHhItJTKBW9FoXDHwncJOzgeWHJtgl4LYDdFbA67f7eTVkZV6L8212CtTZwgIYbWdPkYn~kIaseMznBgxC11ooBzME2IHQEoLHvdICkcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":1419,"name":"Structural Geology","url":"https://www.academia.edu/Documents/in/Structural_Geology"},{"id":2380,"name":"Plasticity","url":"https://www.academia.edu/Documents/in/Plasticity"},{"id":48636,"name":"Simulation","url":"https://www.academia.edu/Documents/in/Simulation"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":56351,"name":"Creep","url":"https://www.academia.edu/Documents/in/Creep"},{"id":58013,"name":"Geotectonics","url":"https://www.academia.edu/Documents/in/Geotectonics"},{"id":111222,"name":"Earthquake Seismology","url":"https://www.academia.edu/Documents/in/Earthquake_Seismology"},{"id":202157,"name":"Mantle Convection","url":"https://www.academia.edu/Documents/in/Mantle_Convection"},{"id":307241,"name":"Ex","url":"https://www.academia.edu/Documents/in/Ex"},{"id":479906,"name":"Fluid Physics","url":"https://www.academia.edu/Documents/in/Fluid_Physics"},{"id":788181,"name":"Pure and Applied Geophysics","url":"https://www.academia.edu/Documents/in/Pure_and_Applied_Geophysics"},{"id":990849,"name":"Mathematical Software","url":"https://www.academia.edu/Documents/in/Mathematical_Software"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="419004" id="papers"><div class="js-work-strip profile--work_container" data-work-id="124086428"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086428/Texture_alignement_in_simple_shear"><img alt="Research paper thumbnail of Texture alignement in simple shear" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086428/Texture_alignement_in_simple_shear">Texture alignement in simple shear</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (interna...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [[1]].</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086428"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086428"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086428; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086428]").text(description); $(".js-view-count[data-work-id=124086428]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086428; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086428']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086428]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086428,"title":"Texture alignement in simple shear","translated_title":"","metadata":{"abstract":"We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [[1]].","publication_date":{"day":2,"month":6,"year":2003,"errors":{}}},"translated_abstract":"We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [[1]].","internal_url":"https://www.academia.edu/124086428/Texture_alignement_in_simple_shear","translated_internal_url":"","created_at":"2024-09-22T17:08:45.739-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Texture_alignement_in_simple_shear","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [[1]].","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2161,"name":"Microstructure","url":"https://www.academia.edu/Documents/in/Microstructure"},{"id":37333,"name":"Anisotropy","url":"https://www.academia.edu/Documents/in/Anisotropy"},{"id":118445,"name":"Stiffness","url":"https://www.academia.edu/Documents/in/Stiffness"},{"id":819047,"name":"Simple shear","url":"https://www.academia.edu/Documents/in/Simple_shear"},{"id":2353926,"name":"Isotropy","url":"https://www.academia.edu/Documents/in/Isotropy"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086427"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086427/Viscoelastic_formulation_for_modeling_of_plate_tectonics"><img alt="Research paper thumbnail of Viscoelastic formulation for modeling of plate tectonics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086427/Viscoelastic_formulation_for_modeling_of_plate_tectonics">Viscoelastic formulation for modeling of plate tectonics</a></div><div class="wp-workCard_item"><span>CRC Press eBooks</span><span>, Jun 18, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086427"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086427"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086427; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086427]").text(description); $(".js-view-count[data-work-id=124086427]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086427; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086427']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086427]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086427,"title":"Viscoelastic formulation for modeling of plate tectonics","translated_title":"","metadata":{"publisher":"Informa","publication_date":{"day":18,"month":6,"year":2021,"errors":{}},"publication_name":"CRC Press eBooks"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086427/Viscoelastic_formulation_for_modeling_of_plate_tectonics","translated_internal_url":"","created_at":"2024-09-22T17:08:45.514-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Viscoelastic_formulation_for_modeling_of_plate_tectonics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":1327,"name":"Convection","url":"https://www.academia.edu/Documents/in/Convection"},{"id":2383,"name":"Viscoelasticity","url":"https://www.academia.edu/Documents/in/Viscoelasticity"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":44747,"name":"Plate Tectonics","url":"https://www.academia.edu/Documents/in/Plate_Tectonics"}],"urls":[{"id":44783474,"url":"https://doi.org/10.1201/9781003210931-46"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086426"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086426/Discrete_and_continuum_modelling_of_granular_materials"><img alt="Research paper thumbnail of Discrete and continuum modelling of granular materials" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086426/Discrete_and_continuum_modelling_of_granular_materials">Discrete and continuum modelling of granular materials</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 2000</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086426"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086426"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086426; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086426]").text(description); $(".js-view-count[data-work-id=124086426]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086426; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086426']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086426]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086426,"title":"Discrete and continuum modelling of granular materials","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/124086426/Discrete_and_continuum_modelling_of_granular_materials","translated_internal_url":"","created_at":"2024-09-22T17:08:45.254-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Discrete_and_continuum_modelling_of_granular_materials","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":11016,"name":"Discrete Element Method","url":"https://www.academia.edu/Documents/in/Discrete_Element_Method"},{"id":23042,"name":"Finite Element","url":"https://www.academia.edu/Documents/in/Finite_Element"},{"id":115333,"name":"Analogy","url":"https://www.academia.edu/Documents/in/Analogy"},{"id":223263,"name":"Particle in Cell","url":"https://www.academia.edu/Documents/in/Particle_in_Cell"},{"id":232264,"name":"Silo","url":"https://www.academia.edu/Documents/in/Silo"},{"id":382329,"name":"Granular Material","url":"https://www.academia.edu/Documents/in/Granular_Material"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":44783473,"url":"https://doi.org/10.1007/978-3-642-57018-6_9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086425"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086425/An_overview_of_numerical_methods_for_earth_simulations"><img alt="Research paper thumbnail of An overview of numerical methods for earth simulations" class="work-thumbnail" src="https://attachments.academia-assets.com/118375437/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086425/An_overview_of_numerical_methods_for_earth_simulations">An overview of numerical methods for earth simulations</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Geological simulation problems are distinct from engineering problems in having a strongly evolvi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Geological simulation problems are distinct from engineering problems in having a strongly evolving geometry which is often developed through non-linear interaction between structure and rheology. Engineering simulation codes are therefore often, by design, unsuitable for geological applications. We summarize the important features of a small number of numerical methods which have been developed with geological and geotechnical simulations in mind, summarize the advantages and disadvantages of some of these methods and introduce the sorts of problems for which each method is best suited.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9542d3d68e79cbc991f04692cd5b1c5d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375437,&quot;asset_id&quot;:124086425,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375437/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086425"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086425"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086425; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086425]").text(description); $(".js-view-count[data-work-id=124086425]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086425; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086425']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9542d3d68e79cbc991f04692cd5b1c5d" } } $('.js-work-strip[data-work-id=124086425]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086425,"title":"An overview of numerical methods for earth simulations","translated_title":"","metadata":{"grobid_abstract":"Geological simulation problems are distinct from engineering problems in having a strongly evolving geometry which is often developed through non-linear interaction between structure and rheology. Engineering simulation codes are therefore often, by design, unsuitable for geological applications. We summarize the important features of a small number of numerical methods which have been developed with geological and geotechnical simulations in mind, summarize the advantages and disadvantages of some of these methods and introduce the sorts of problems for which each method is best suited.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"grobid_abstract_attachment_id":118375437},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086425/An_overview_of_numerical_methods_for_earth_simulations","translated_internal_url":"","created_at":"2024-09-22T17:08:45.016-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375437,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375437/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/118375437/download_file","bulk_download_file_name":"An_overview_of_numerical_methods_for_ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375437/document-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DAn_overview_of_numerical_methods_for_ear.pdf\u0026Expires=1741733761\u0026Signature=ad8l3JQIEeIPrEWnithNRUapmJcZ3tEfuicO430ozLmctYYasM-kHOnoplCFmKNGvTd4SJpVHvToledY3JU9LnHc0hkzy7sC7theQRKD6fnQm6Xm2x7VCizcHiGWMvKqNESS0AlFG5q~x3GkdmB~MIlfFkC6DVX6Hyib0QQYVb7afRBi9Bt4v8oXkUyasMvIlhEt3t7ovhRzIgk40ASvCw7HNV21vxpIZkQpkTMJ0gTw1axRQxsSULdgD4BmmZ3nEPP6AZX1ndKnPaf8BPd~7fnBGSLPifzZ0vnkekwHMvLmVZ0PlGoCzyXNMmKhev0rQZ4L~o31Tw~96BvYCGVjVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_overview_of_numerical_methods_for_earth_simulations","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Geological simulation problems are distinct from engineering problems in having a strongly evolving geometry which is often developed through non-linear interaction between structure and rheology. Engineering simulation codes are therefore often, by design, unsuitable for geological applications. We summarize the important features of a small number of numerical methods which have been developed with geological and geotechnical simulations in mind, summarize the advantages and disadvantages of some of these methods and introduce the sorts of problems for which each method is best suited.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375437,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375437/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/118375437/download_file","bulk_download_file_name":"An_overview_of_numerical_methods_for_ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375437/document-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DAn_overview_of_numerical_methods_for_ear.pdf\u0026Expires=1741733761\u0026Signature=ad8l3JQIEeIPrEWnithNRUapmJcZ3tEfuicO430ozLmctYYasM-kHOnoplCFmKNGvTd4SJpVHvToledY3JU9LnHc0hkzy7sC7theQRKD6fnQm6Xm2x7VCizcHiGWMvKqNESS0AlFG5q~x3GkdmB~MIlfFkC6DVX6Hyib0QQYVb7afRBi9Bt4v8oXkUyasMvIlhEt3t7ovhRzIgk40ASvCw7HNV21vxpIZkQpkTMJ0gTw1axRQxsSULdgD4BmmZ3nEPP6AZX1ndKnPaf8BPd~7fnBGSLPifzZ0vnkekwHMvLmVZ0PlGoCzyXNMmKhev0rQZ4L~o31Tw~96BvYCGVjVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375438/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/118375438/download_file","bulk_download_file_name":"An_overview_of_numerical_methods_for_ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375438/document-libre.pdf?1727057334=\u0026response-content-disposition=attachment%3B+filename%3DAn_overview_of_numerical_methods_for_ear.pdf\u0026Expires=1741733761\u0026Signature=GmqOBI2wsG2FXAUJPCH22HJNZIfU-~E2klXMnGyhG5i6GW-mCwzv3eMxejtQc1kSYziOBsYyNNm8O4AvelshtKmmqIZSsBr9OGf5SmSUiVTfw6JfLasBYDrTh06wCraR7Yc8-O4CIVP3bkuGk52tWX7AzoyeW6uOSn9IdIksqSj2rKkzcJ3Yj2Qp89uTBs1vnsrgP3P2vdoUaMwhDWIW7XY5ZZZ~-hi1FIlTeUl4Ctxs71DQRUFQhQE084YPj66e-xerJXGjxcS8ZY2q32UGR-~5IUMd8tO~7jai8m2VYlMujU4zuTCyVtHUJyk-~-oIEfnuhhOEaazlZNQ3E7PAAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":44783472,"url":"https://hal.archives-ouvertes.fr/hal-01007866/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086424"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086424/Anisotropic_Viscous_Models_Mohr_Coulomb_Failure"><img alt="Research paper thumbnail of Anisotropic, Viscous Models ... Mohr Coulomb Failure" class="work-thumbnail" src="https://attachments.academia-assets.com/118375440/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086424/Anisotropic_Viscous_Models_Mohr_Coulomb_Failure">Anisotropic, Viscous Models ... Mohr Coulomb Failure</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e9f484aaff8a7490ba53d916a71b5ec3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375440,&quot;asset_id&quot;:124086424,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375440/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086424"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086424"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086424; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086424]").text(description); $(".js-view-count[data-work-id=124086424]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086424; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086424']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e9f484aaff8a7490ba53d916a71b5ec3" } } $('.js-work-strip[data-work-id=124086424]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086424,"title":"Anisotropic, Viscous Models ... Mohr Coulomb Failure","translated_title":"","metadata":{"publisher":"figshare","ai_abstract":"This research tackles the implementation of a Mohr-Coulomb failure model within a code designed for mantle convection issues associated with large-scale crustal deformation. By employing an orthotropic viscous rheology that varies viscosity based on the shear conditions, the study introduces mechanisms to accommodate strain weakening and failure history while complying with the yield criteria. Key comparisons between von Mises and Mohr-Coulomb criteria are provided through various deformation examples, underscoring the model's applicability to both 2D and 3D scenarios.","ai_title_tag":"Viscous Mohr-Coulomb Model for Deformation","publication_date":{"day":16,"month":12,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086424/Anisotropic_Viscous_Models_Mohr_Coulomb_Failure","translated_internal_url":"","created_at":"2024-09-22T17:08:44.789-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375440,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375440/thumbnails/1.jpg","file_name":"MoresiEtAlPoster.pdf","download_url":"https://www.academia.edu/attachments/118375440/download_file","bulk_download_file_name":"Anisotropic_Viscous_Models_Mohr_Coulomb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375440/MoresiEtAlPoster-libre.pdf?1727057384=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Viscous_Models_Mohr_Coulomb.pdf\u0026Expires=1741733761\u0026Signature=DLIiFSYx6Y5dQoFkDodTq5BGg0lnIB6ynn76U6ZwRj4HrC4Ygs1YjCCEw0L39b4Gg3qC5vH8jVJgXVJWdOCqfvDPBYEDHJLQdGHEZ54pDjC2HY6cBLmYyaBYrzM4~2rg42lOPcedJAUf-cTZ57O-yhV5kTKFyaDO9yr9ifhuEwn8C9H7mwrLnh8Cfn2BTumSzuRMgqGEW-avhjfIWBJpiTaEaG3M3ub8pIyuxZyVRnkH17WemEZNiyTu3JZnpGBZI22D4B1fnzG~ZGHXMIpx5fCHPHhSkrIvCnTkBs1fIexsLr-mo8Pam8F8zYJtkHu1yJ4rUKAR5El3~JG0t9m5jg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anisotropic_Viscous_Models_Mohr_Coulomb_Failure","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375440,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375440/thumbnails/1.jpg","file_name":"MoresiEtAlPoster.pdf","download_url":"https://www.academia.edu/attachments/118375440/download_file","bulk_download_file_name":"Anisotropic_Viscous_Models_Mohr_Coulomb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375440/MoresiEtAlPoster-libre.pdf?1727057384=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Viscous_Models_Mohr_Coulomb.pdf\u0026Expires=1741733761\u0026Signature=DLIiFSYx6Y5dQoFkDodTq5BGg0lnIB6ynn76U6ZwRj4HrC4Ygs1YjCCEw0L39b4Gg3qC5vH8jVJgXVJWdOCqfvDPBYEDHJLQdGHEZ54pDjC2HY6cBLmYyaBYrzM4~2rg42lOPcedJAUf-cTZ57O-yhV5kTKFyaDO9yr9ifhuEwn8C9H7mwrLnh8Cfn2BTumSzuRMgqGEW-avhjfIWBJpiTaEaG3M3ub8pIyuxZyVRnkH17WemEZNiyTu3JZnpGBZI22D4B1fnzG~ZGHXMIpx5fCHPHhSkrIvCnTkBs1fIexsLr-mo8Pam8F8zYJtkHu1yJ4rUKAR5El3~JG0t9m5jg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375439,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375439/thumbnails/1.jpg","file_name":"MoresiEtAlPoster.pdf","download_url":"https://www.academia.edu/attachments/118375439/download_file","bulk_download_file_name":"Anisotropic_Viscous_Models_Mohr_Coulomb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375439/MoresiEtAlPoster-libre.pdf?1727057385=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Viscous_Models_Mohr_Coulomb.pdf\u0026Expires=1741733761\u0026Signature=FeD4AQAL~I8Bb3JcjY3ASsjwc4-P75cd9OfaJILJ5byn5IjPmQLFQ9OcCoZiIE-NVUp8ChHGjVqUO7HrsV~ySvFks6xQWoBCLwWJI31RMay4pbziEcl0vVnAMorwlFOjWwL5ol-kXGY7eKdxV9QxhPpdMNWMT1VCdy8sCv0GOlx4QUREKnmxUDoy10W4JsKvFbsBLC909ZatPQNNWJ9pfcJy0ycg2PV3l~JJgkOPYFkIbmQdj5KyYsbcaUCQDPMokWvM8OLFAgLzs6UjiKw8mYjdFHuUaSPMdg6v3LZYD8-tNLZT3DdlfFLBydQ4r8wy~OJLoFTuzPJ8zyGuCbHgPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":44783471,"url":"https://s3-eu-west-1.amazonaws.com/pfigshare-u-files/20204601/MoresiEtAlPoster.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086423"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086423/Underworldcode_Underworld1_Final_Version_Of_Uw1"><img alt="Research paper thumbnail of Underworldcode/Underworld1: Final Version Of Uw1" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086423/Underworldcode_Underworld1_Final_Version_Of_Uw1">Underworldcode/Underworld1: Final Version Of Uw1</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please cite the following paper: Moresi, L., Moresi, L. N., S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, W. Appelbe, H. B. Muhlhaus, Mühlhaus (2007), Computational approaches to studying non-linear dynamics of the crust and mantle, Physics of the Earth and Planetary Interiors, 163(1-4), 69–82, doi:10.1016/j.pepi.2007.06.009. There is a DOI for the UW1 code itself: DOI: 10.5281/zenodo.1445812</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086423"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086423"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086423; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086423]").text(description); $(".js-view-count[data-work-id=124086423]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086423; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086423']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086423]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086423,"title":"Underworldcode/Underworld1: Final Version Of Uw1","translated_title":"","metadata":{"abstract":"Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please cite the following paper: Moresi, L., Moresi, L. N., S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, W. Appelbe, H. B. Muhlhaus, Mühlhaus (2007), Computational approaches to studying non-linear dynamics of the crust and mantle, Physics of the Earth and Planetary Interiors, 163(1-4), 69–82, doi:10.1016/j.pepi.2007.06.009. There is a DOI for the UW1 code itself: DOI: 10.5281/zenodo.1445812","publisher":"Zenodo","publication_date":{"day":4,"month":10,"year":2018,"errors":{}}},"translated_abstract":"Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please cite the following paper: Moresi, L., Moresi, L. N., S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, W. Appelbe, H. B. Muhlhaus, Mühlhaus (2007), Computational approaches to studying non-linear dynamics of the crust and mantle, Physics of the Earth and Planetary Interiors, 163(1-4), 69–82, doi:10.1016/j.pepi.2007.06.009. There is a DOI for the UW1 code itself: DOI: 10.5281/zenodo.1445812","internal_url":"https://www.academia.edu/124086423/Underworldcode_Underworld1_Final_Version_Of_Uw1","translated_internal_url":"","created_at":"2024-09-22T17:08:44.628-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Underworldcode_Underworld1_Final_Version_Of_Uw1","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Legacy release of UW1. Please consider migrating to Underworld version 2 If you use UW1, please cite the following paper: Moresi, L., Moresi, L. N., S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, W. Appelbe, H. B. Muhlhaus, Mühlhaus (2007), Computational approaches to studying non-linear dynamics of the crust and mantle, Physics of the Earth and Planetary Interiors, 163(1-4), 69–82, doi:10.1016/j.pepi.2007.06.009. There is a DOI for the UW1 code itself: DOI: 10.5281/zenodo.1445812","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086422"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086422/A_particle_in_cell_formulation_for_large_deformation_in_Cosserat_continua"><img alt="Research paper thumbnail of A particle-in-cell formulation for large deformation in Cosserat continua" class="work-thumbnail" src="https://attachments.academia-assets.com/118375461/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086422/A_particle_in_cell_formulation_for_large_deformation_in_Cosserat_continua">A particle-in-cell formulation for large deformation in Cosserat continua</a></div><div class="wp-workCard_item"><span>Bifurcation and Localisation Theory in Geomechanics</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present a new approach to modeling of granular flows using a combination of Cosserat theory fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present a new approach to modeling of granular flows using a combination of Cosserat theory for granular material and a particle-in-cell finite element method capable of handle extremely large material deformation. Benchmarking against analytical solutions highlights the strengths and weaknesses of the method. We demonstrate one application of the method in modeling the discharge of granular material from a silo.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20e624f6e914d761dd7aeefe6acce3b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375461,&quot;asset_id&quot;:124086422,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375461/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086422"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086422]").text(description); $(".js-view-count[data-work-id=124086422]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086422']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20e624f6e914d761dd7aeefe6acce3b5" } } $('.js-work-strip[data-work-id=124086422]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086422,"title":"A particle-in-cell formulation for large deformation in Cosserat continua","translated_title":"","metadata":{"publisher":"CRC Press","ai_title_tag":"Modeling Granular Flows with Cosserat Theory","grobid_abstract":"We present a new approach to modeling of granular flows using a combination of Cosserat theory for granular material and a particle-in-cell finite element method capable of handle extremely large material deformation. Benchmarking against analytical solutions highlights the strengths and weaknesses of the method. We demonstrate one application of the method in modeling the discharge of granular material from a silo.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Bifurcation and Localisation Theory in Geomechanics","grobid_abstract_attachment_id":118375461},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086422/A_particle_in_cell_formulation_for_large_deformation_in_Cosserat_continua","translated_internal_url":"","created_at":"2024-09-22T17:08:44.473-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375461/thumbnails/1.jpg","file_name":"IWBLDufour1999_201.pdf","download_url":"https://www.academia.edu/attachments/118375461/download_file","bulk_download_file_name":"A_particle_in_cell_formulation_for_large.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375461/IWBLDufour1999_201-libre.pdf?1727057328=\u0026response-content-disposition=attachment%3B+filename%3DA_particle_in_cell_formulation_for_large.pdf\u0026Expires=1741733761\u0026Signature=fQGMfEzL71VJSdTFMPYq63l2iue4GR9nB2iN1EFaijvSuqmQfV-G2gX4KgT2jN2nJc4lX3YBRAgAh4TfCysWsphHSmoCrTpSSu1LuGIDwOP06Rdsco2Gvhx6vCu6jcVKaQAa9cj5nd7yh2dXMyLe4XbzbSr9bQQLbFWBi6v8NWaQs0OJmM0zK17JrPXNq8jSpAH6Pm6bQWoZCEZUUWd-zcHIUOOkFeYexyaf1jyVjEOVPRhG4Evw-bVAi6-bOZpM349iB3Jj8cas1scxImfa~R1W4~w6r0vs3Dn7P3LVVGWJJ6G9t4KSRhWnQ65zNsmmHIQEOX0GDBYpCrkcJTUYgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_particle_in_cell_formulation_for_large_deformation_in_Cosserat_continua","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"We present a new approach to modeling of granular flows using a combination of Cosserat theory for granular material and a particle-in-cell finite element method capable of handle extremely large material deformation. Benchmarking against analytical solutions highlights the strengths and weaknesses of the method. We demonstrate one application of the method in modeling the discharge of granular material from a silo.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375461/thumbnails/1.jpg","file_name":"IWBLDufour1999_201.pdf","download_url":"https://www.academia.edu/attachments/118375461/download_file","bulk_download_file_name":"A_particle_in_cell_formulation_for_large.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375461/IWBLDufour1999_201-libre.pdf?1727057328=\u0026response-content-disposition=attachment%3B+filename%3DA_particle_in_cell_formulation_for_large.pdf\u0026Expires=1741733761\u0026Signature=fQGMfEzL71VJSdTFMPYq63l2iue4GR9nB2iN1EFaijvSuqmQfV-G2gX4KgT2jN2nJc4lX3YBRAgAh4TfCysWsphHSmoCrTpSSu1LuGIDwOP06Rdsco2Gvhx6vCu6jcVKaQAa9cj5nd7yh2dXMyLe4XbzbSr9bQQLbFWBi6v8NWaQs0OJmM0zK17JrPXNq8jSpAH6Pm6bQWoZCEZUUWd-zcHIUOOkFeYexyaf1jyVjEOVPRhG4Evw-bVAi6-bOZpM349iB3Jj8cas1scxImfa~R1W4~w6r0vs3Dn7P3LVVGWJJ6G9t4KSRhWnQ65zNsmmHIQEOX0GDBYpCrkcJTUYgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":232264,"name":"Silo","url":"https://www.academia.edu/Documents/in/Silo"},{"id":382329,"name":"Granular Material","url":"https://www.academia.edu/Documents/in/Granular_Material"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086421"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086421/The_Global_Consequences_of_a_Weaker_Asthenospheric_Sub_Layer_on_Plate_and_Trench_Motions_at_Subduction_Zones"><img alt="Research paper thumbnail of The Global Consequences of a Weaker Asthenospheric Sub-Layer on Plate and Trench Motions at Subduction Zones" class="work-thumbnail" src="https://attachments.academia-assets.com/118375435/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086421/The_Global_Consequences_of_a_Weaker_Asthenospheric_Sub_Layer_on_Plate_and_Trench_Motions_at_Subduction_Zones">The Global Consequences of a Weaker Asthenospheric Sub-Layer on Plate and Trench Motions at Subduction Zones</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="129f1691d8b41032c802f305bedcb897" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375435,&quot;asset_id&quot;:124086421,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375435/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086421"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086421"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086421; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086421]").text(description); $(".js-view-count[data-work-id=124086421]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086421; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086421']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "129f1691d8b41032c802f305bedcb897" } } $('.js-work-strip[data-work-id=124086421]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086421,"title":"The Global Consequences of a Weaker Asthenospheric Sub-Layer on Plate and Trench Motions at Subduction Zones","translated_title":"","metadata":{"ai_abstract":"A range of recent geophysical studies have revealed a thin layer at the lithosphere-asthenosphere boundary (LAB) beneath subducting oceanic plates, associated with ultra-low seismic velocity and high electrical conductivity, indicating it is weaker than the underlying asthenosphere. However, its global implications for subduction zone dynamics remain unclear. This research employs 2D and 3D visco-elastic-plastic numerical models to analyze the effects of this weaker sub-asthenospheric layer on slab morphology, dip angles, and plate/trench motions, concluding that its presence significantly influences plate dynamics and enhances compatibility with observed natural phenomena, as demonstrated by a regime diagram correlating lithospheric stiffness, slab deformation, and subduction partitioning, with implications for global subduction dynamics.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086421/The_Global_Consequences_of_a_Weaker_Asthenospheric_Sub_Layer_on_Plate_and_Trench_Motions_at_Subduction_Zones","translated_internal_url":"","created_at":"2024-09-22T17:08:44.252-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375435/thumbnails/1.jpg","file_name":"EGU2019-15730.pdf","download_url":"https://www.academia.edu/attachments/118375435/download_file","bulk_download_file_name":"The_Global_Consequences_of_a_Weaker_Asth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375435/EGU2019-15730-libre.pdf?1727057331=\u0026response-content-disposition=attachment%3B+filename%3DThe_Global_Consequences_of_a_Weaker_Asth.pdf\u0026Expires=1741733761\u0026Signature=G24rDpb2jom31pM-b27Qpbh3DvKhlL1wpFLDYzFF9AQzAVCwR3b~gr7Je1tWQ2Ay0tIiUoDvM2prqk0I81CJTFGayYyucCDr-37967FdcHj8ZRvmm2pC4XnHPCOa4x-ElRrpafPrsaP~1RB4kn0QuUuBC-jSULU66yyVbg7P-kR2nOu6IzKjcBeY~SklgJ1VsMn9DsVB9IxEF3u8wr-gEUtqhTOHxknc7bkDix4j8NxmL1o1j2qXO-q06dY5L0blihgR~PNLSlNQY-ol4JGvMPRLz0XXfVlxkq~HnxIvJV3X5qxhaDcd2LHupKddSI9j54pbKucUSzt9AfOhSzojuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Global_Consequences_of_a_Weaker_Asthenospheric_Sub_Layer_on_Plate_and_Trench_Motions_at_Subduction_Zones","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375435/thumbnails/1.jpg","file_name":"EGU2019-15730.pdf","download_url":"https://www.academia.edu/attachments/118375435/download_file","bulk_download_file_name":"The_Global_Consequences_of_a_Weaker_Asth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375435/EGU2019-15730-libre.pdf?1727057331=\u0026response-content-disposition=attachment%3B+filename%3DThe_Global_Consequences_of_a_Weaker_Asth.pdf\u0026Expires=1741733761\u0026Signature=G24rDpb2jom31pM-b27Qpbh3DvKhlL1wpFLDYzFF9AQzAVCwR3b~gr7Je1tWQ2Ay0tIiUoDvM2prqk0I81CJTFGayYyucCDr-37967FdcHj8ZRvmm2pC4XnHPCOa4x-ElRrpafPrsaP~1RB4kn0QuUuBC-jSULU66yyVbg7P-kR2nOu6IzKjcBeY~SklgJ1VsMn9DsVB9IxEF3u8wr-gEUtqhTOHxknc7bkDix4j8NxmL1o1j2qXO-q06dY5L0blihgR~PNLSlNQY-ol4JGvMPRLz0XXfVlxkq~HnxIvJV3X5qxhaDcd2LHupKddSI9j54pbKucUSzt9AfOhSzojuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375436,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375436/thumbnails/1.jpg","file_name":"EGU2019-15730.pdf","download_url":"https://www.academia.edu/attachments/118375436/download_file","bulk_download_file_name":"The_Global_Consequences_of_a_Weaker_Asth.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375436/EGU2019-15730-libre.pdf?1727057337=\u0026response-content-disposition=attachment%3B+filename%3DThe_Global_Consequences_of_a_Weaker_Asth.pdf\u0026Expires=1741733761\u0026Signature=QRr~5U9yFQmyWom5FRDmKNLhTHDrkXuoKa4c83ofDiOUCvTeQN~94GwVxXaUROyWPAPsiV1E4MxZjFfGoSACVfiFEA5q0eVt5zRHfTT9r54l3mx5I4rwKuvNSY-JWIqBOjFBjSKtzKUwM1pqBx4baLSxIFEtz1Qlv3hpK9I9NH8oPxeyBUQ6tKJnZTAx3L3um97rTmgbu0~UFucgVouC2NJYzk5H8~GyTRakimreJD6JuzeuFngIEknz-96rhZmYJ~uRHeYGmFT~t-nqfViz6xVja5O9mvFHsgZErApYY7NljKw6Oy4vbDEWsuNbEEY4wqEQd4-EMmh4urxVuT-Qfw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":668253,"name":"Lithosphere","url":"https://www.academia.edu/Documents/in/Lithosphere"}],"urls":[{"id":44783470,"url":"https://meetingorganizer.copernicus.org/EGU2019/EGU2019-15730.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086420"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086420/The_Impact_of_a_Very_Weak_and_Thin_Upper_Asthenosphere_on_Subduction_Motions"><img alt="Research paper thumbnail of The Impact of a Very Weak and Thin Upper Asthenosphere on Subduction Motions" class="work-thumbnail" src="https://attachments.academia-assets.com/118375469/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086420/The_Impact_of_a_Very_Weak_and_Thin_Upper_Asthenosphere_on_Subduction_Motions">The Impact of a Very Weak and Thin Upper Asthenosphere on Subduction Motions</a></div><div class="wp-workCard_item"><span>Geophysical Research Letters</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Recent geophysical observations report the presence of a very weak and thin upper asthenosphere u...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Recent geophysical observations report the presence of a very weak and thin upper asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench migrations are significantly slower than plate convergence rates. We use numerical models to assess the role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This mechanism provides a novel and alternative explanation for the slow rates of trench migration and fast‐moving plates observed globally at natural subduction zones.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="84a705041d19b514078cb7073a096819" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375469,&quot;asset_id&quot;:124086420,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375469/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086420"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086420"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086420; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086420]").text(description); $(".js-view-count[data-work-id=124086420]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086420; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086420']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "84a705041d19b514078cb7073a096819" } } $('.js-work-strip[data-work-id=124086420]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086420,"title":"The Impact of a Very Weak and Thin Upper Asthenosphere on Subduction Motions","translated_title":"","metadata":{"abstract":"Recent geophysical observations report the presence of a very weak and thin upper asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench migrations are significantly slower than plate convergence rates. We use numerical models to assess the role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This mechanism provides a novel and alternative explanation for the slow rates of trench migration and fast‐moving plates observed globally at natural subduction zones.","publisher":"American Geophysical Union (AGU)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Geophysical Research Letters"},"translated_abstract":"Recent geophysical observations report the presence of a very weak and thin upper asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench migrations are significantly slower than plate convergence rates. We use numerical models to assess the role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This mechanism provides a novel and alternative explanation for the slow rates of trench migration and fast‐moving plates observed globally at natural subduction zones.","internal_url":"https://www.academia.edu/124086420/The_Impact_of_a_Very_Weak_and_Thin_Upper_Asthenosphere_on_Subduction_Motions","translated_internal_url":"","created_at":"2024-09-22T17:08:44.005-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375469/thumbnails/1.jpg","file_name":"01_Carluccio_The_Impact_of_a_Very_Weak_and_2019.pdf","download_url":"https://www.academia.edu/attachments/118375469/download_file","bulk_download_file_name":"The_Impact_of_a_Very_Weak_and_Thin_Upper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375469/01_Carluccio_The_Impact_of_a_Very_Weak_and_2019-libre.pdf?1727057338=\u0026response-content-disposition=attachment%3B+filename%3DThe_Impact_of_a_Very_Weak_and_Thin_Upper.pdf\u0026Expires=1741733762\u0026Signature=RUBC5xUa6Q81RwLqh7xOLUMA8v7DG6CktxH5xaicbXMUkdhJGcc3CBsnWZjl3V-wHRfNHZ2r1wfi-QATxBikhCIgiNK4QSqEqzDftH5yh1BrNXDwUaj6JfH5uZAA93XcerOaiuvTz5drWcPzGCgruvSrVRdcOdp-FxTd47MuQ5H2tkg2ozaUstNXQL4snRV4ZC7YVNYDMQiNrtp3AbFt79YBosfGjW5Y-0giO2eWfvYjhDrNhy2MfQ0RYHM0as5dRTS4sRxpTtapfWuOyCIntbQEmwmwK8pvwnVuwwn65Wne1WMNy36MNuClXt3lLjqUts6nEGC9PqZ8I1d6wxevFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Impact_of_a_Very_Weak_and_Thin_Upper_Asthenosphere_on_Subduction_Motions","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"Recent geophysical observations report the presence of a very weak and thin upper asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench migrations are significantly slower than plate convergence rates. We use numerical models to assess the role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This mechanism provides a novel and alternative explanation for the slow rates of trench migration and fast‐moving plates observed globally at natural subduction zones.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375469,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375469/thumbnails/1.jpg","file_name":"01_Carluccio_The_Impact_of_a_Very_Weak_and_2019.pdf","download_url":"https://www.academia.edu/attachments/118375469/download_file","bulk_download_file_name":"The_Impact_of_a_Very_Weak_and_Thin_Upper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375469/01_Carluccio_The_Impact_of_a_Very_Weak_and_2019-libre.pdf?1727057338=\u0026response-content-disposition=attachment%3B+filename%3DThe_Impact_of_a_Very_Weak_and_Thin_Upper.pdf\u0026Expires=1741733762\u0026Signature=RUBC5xUa6Q81RwLqh7xOLUMA8v7DG6CktxH5xaicbXMUkdhJGcc3CBsnWZjl3V-wHRfNHZ2r1wfi-QATxBikhCIgiNK4QSqEqzDftH5yh1BrNXDwUaj6JfH5uZAA93XcerOaiuvTz5drWcPzGCgruvSrVRdcOdp-FxTd47MuQ5H2tkg2ozaUstNXQL4snRV4ZC7YVNYDMQiNrtp3AbFt79YBosfGjW5Y-0giO2eWfvYjhDrNhy2MfQ0RYHM0as5dRTS4sRxpTtapfWuOyCIntbQEmwmwK8pvwnVuwwn65Wne1WMNy36MNuClXt3lLjqUts6nEGC9PqZ8I1d6wxevFQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":13883,"name":"Seismology","url":"https://www.academia.edu/Documents/in/Seismology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":2684230,"name":"Asthenosphere","url":"https://www.academia.edu/Documents/in/Asthenosphere"},{"id":3695481,"name":"Convergent boundary","url":"https://www.academia.edu/Documents/in/Convergent_boundary"}],"urls":[{"id":44783469,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL085212"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086419"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086419/Contrasted_East_Asia_and_South_America_tectonics_driven_by_deep_mantle_flow"><img alt="Research paper thumbnail of Contrasted East Asia and South America tectonics driven by deep mantle flow" class="work-thumbnail" src="https://attachments.academia-assets.com/118375460/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086419/Contrasted_East_Asia_and_South_America_tectonics_driven_by_deep_mantle_flow">Contrasted East Asia and South America tectonics driven by deep mantle flow</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d7dc02b8353e2d89059655ca7db52841" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375460,&quot;asset_id&quot;:124086419,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375460/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086419"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086419"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086419; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086419]").text(description); $(".js-view-count[data-work-id=124086419]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086419; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086419']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d7dc02b8353e2d89059655ca7db52841" } } $('.js-work-strip[data-work-id=124086419]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086419,"title":"Contrasted East Asia and South America tectonics driven by deep mantle flow","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Earth and Planetary Science Letters"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086419/Contrasted_East_Asia_and_South_America_tectonics_driven_by_deep_mantle_flow","translated_internal_url":"","created_at":"2024-09-22T17:08:43.775-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375460,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375460/thumbnails/1.jpg","file_name":"1-s2.0-S0012821X19302298-mmc1.docx","download_url":"https://www.academia.edu/attachments/118375460/download_file","bulk_download_file_name":"Contrasted_East_Asia_and_South_America_t.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375460/1-s2.0-S0012821X19302298-mmc1.docx?1727050263=\u0026response-content-disposition=attachment%3B+filename%3DContrasted_East_Asia_and_South_America_t.docx\u0026Expires=1741733762\u0026Signature=YJ~TdBt8NNwaSIW8UMGiHEZJIY0wkGmoLJgN9XgRkf4lNs6dxQqfhHVWxDFYnIXo~k~k76nykL2cXoDvoTt8xmxXgTb4VgG45Lsu1G0pCoRYWt8xLQjUQ7~phyXix6157zRP5BAB0sFQdJ~4SlhIGTdCtZdAgkzb-Gpjz9QUUarKKLL8bUFG1w3ggtJWpCfMCDM9eu~TtOJ9dG-f9HqiQnmNGTJyyUfmPsvX9IiHPjexAYquZXaZDhRq2hruiXxViK--FhhCrrsc-AHxy38GQ8maB78GxfdYQn9MnpScGbTiQTFo3NUvdRxqVlm8arP0ahnZ88P~55tP~cXE4QT4Fg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Contrasted_East_Asia_and_South_America_tectonics_driven_by_deep_mantle_flow","translated_slug":"","page_count":34,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375460,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375460/thumbnails/1.jpg","file_name":"1-s2.0-S0012821X19302298-mmc1.docx","download_url":"https://www.academia.edu/attachments/118375460/download_file","bulk_download_file_name":"Contrasted_East_Asia_and_South_America_t.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375460/1-s2.0-S0012821X19302298-mmc1.docx?1727050263=\u0026response-content-disposition=attachment%3B+filename%3DContrasted_East_Asia_and_South_America_t.docx\u0026Expires=1741733762\u0026Signature=YJ~TdBt8NNwaSIW8UMGiHEZJIY0wkGmoLJgN9XgRkf4lNs6dxQqfhHVWxDFYnIXo~k~k76nykL2cXoDvoTt8xmxXgTb4VgG45Lsu1G0pCoRYWt8xLQjUQ7~phyXix6157zRP5BAB0sFQdJ~4SlhIGTdCtZdAgkzb-Gpjz9QUUarKKLL8bUFG1w3ggtJWpCfMCDM9eu~TtOJ9dG-f9HqiQnmNGTJyyUfmPsvX9IiHPjexAYquZXaZDhRq2hruiXxViK--FhhCrrsc-AHxy38GQ8maB78GxfdYQn9MnpScGbTiQTFo3NUvdRxqVlm8arP0ahnZ88P~55tP~cXE4QT4Fg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":5470,"name":"East Asia","url":"https://www.academia.edu/Documents/in/East_Asia"},{"id":10769,"name":"Tectonics","url":"https://www.academia.edu/Documents/in/Tectonics"},{"id":44747,"name":"Plate Tectonics","url":"https://www.academia.edu/Documents/in/Plate_Tectonics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"}],"urls":[{"id":44783468,"url":"https://api.elsevier.com/content/article/PII:S0012821X19302298?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086418"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086418/Long_lived_transcontinental_sediment_transport_pathways_of_East_Gondwana"><img alt="Research paper thumbnail of Long-lived transcontinental sediment transport pathways of East Gondwana" class="work-thumbnail" src="https://attachments.academia-assets.com/118375459/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086418/Long_lived_transcontinental_sediment_transport_pathways_of_East_Gondwana">Long-lived transcontinental sediment transport pathways of East Gondwana</a></div><div class="wp-workCard_item"><span>Geology</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Few modern sediment dispersal pathways predate the breakup of Pangea. This suggests that river li...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Few modern sediment dispersal pathways predate the breakup of Pangea. This suggests that river lifespan can be controlled by continental assembly and dispersal cycles, with the longest-lived river systems present during supercontinent regimes. Based on the strikingly similar age spectra and Hf isotopic array extracted from Paleozoic to early Mesozoic sedimentary sequences from the Paleo-Tethyan margin basins, we argue that a long-lived supercontinental-scale system, with headwaters originating in Antarctica, flowed northward to finally debouch on the margin with the Paleo-Tethys Ocean. Channel-belt thickness scaling relationships, which provide an estimate of drainage area, support the notion that this was a supercontinental-scale system. Sediments were eroded from Proterozoic orogenic belts and flanked resistant kernels of Archean cratons. Remnants of this system, which can still be traced today as topographic lows, controlled post-breakup drainage patterns in Gondwanan fragments in Western Australia. We conclude that supercontinental regimes allow sediment dispersal systems to be long-lived, as they provide both an abundant sediment supply, due to erosion of large-scale, collision-related internal mountain systems, and a stable, large-scale configuration that lasts until breakup.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0d899db986f232857c9994fb57ada529" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375459,&quot;asset_id&quot;:124086418,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375459/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086418"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086418]").text(description); $(".js-view-count[data-work-id=124086418]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086418']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0d899db986f232857c9994fb57ada529" } } $('.js-work-strip[data-work-id=124086418]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086418,"title":"Long-lived transcontinental sediment transport pathways of East Gondwana","translated_title":"","metadata":{"publisher":"Geological Society of America","grobid_abstract":"Few modern sediment dispersal pathways predate the breakup of Pangea. This suggests that river lifespan can be controlled by continental assembly and dispersal cycles, with the longest-lived river systems present during supercontinent regimes. Based on the strikingly similar age spectra and Hf isotopic array extracted from Paleozoic to early Mesozoic sedimentary sequences from the Paleo-Tethyan margin basins, we argue that a long-lived supercontinental-scale system, with headwaters originating in Antarctica, flowed northward to finally debouch on the margin with the Paleo-Tethys Ocean. Channel-belt thickness scaling relationships, which provide an estimate of drainage area, support the notion that this was a supercontinental-scale system. Sediments were eroded from Proterozoic orogenic belts and flanked resistant kernels of Archean cratons. Remnants of this system, which can still be traced today as topographic lows, controlled post-breakup drainage patterns in Gondwanan fragments in Western Australia. We conclude that supercontinental regimes allow sediment dispersal systems to be long-lived, as they provide both an abundant sediment supply, due to erosion of large-scale, collision-related internal mountain systems, and a stable, large-scale configuration that lasts until breakup.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Geology","grobid_abstract_attachment_id":118375459},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086418/Long_lived_transcontinental_sediment_transport_pathways_of_East_Gondwana","translated_internal_url":"","created_at":"2024-09-22T17:08:43.534-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375459,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375459/thumbnails/1.jpg","file_name":"513.pdf","download_url":"https://www.academia.edu/attachments/118375459/download_file","bulk_download_file_name":"Long_lived_transcontinental_sediment_tra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375459/513-libre.pdf?1727057327=\u0026response-content-disposition=attachment%3B+filename%3DLong_lived_transcontinental_sediment_tra.pdf\u0026Expires=1741733762\u0026Signature=W7WTgMvr6h3bLbtkj5jWdn0hJbDbLkpyhEx0jdZ1J3PDL4FSj3YRG9kaVGiG1AtjTRPWwZ72QPHZarHedoJgZ9ZleRoqVBBwAIJxfwNhQFiEIlCjpmfOTwGQ8psP0PvC9hCVuh1wTg0mGiPeJPJ-QhtcoZN4ojbLpCJuCpE0~TqDMaQLC7StfO6Mza7TfXJuWPahf~T8kkLA6wwWaWYk7lq3OUoJ6L~lqdYnJ8KYLQfzfKODXT79DUdE9bNycYCe6~kx7uhi2LLU05S9P9qeu4HrWIokik2Qt0MrlA-~i7ECdm0QnglbSeMe7~wpFlijvItFmxQiNDETgkyIn276NQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Long_lived_transcontinental_sediment_transport_pathways_of_East_Gondwana","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"Few modern sediment dispersal pathways predate the breakup of Pangea. This suggests that river lifespan can be controlled by continental assembly and dispersal cycles, with the longest-lived river systems present during supercontinent regimes. Based on the strikingly similar age spectra and Hf isotopic array extracted from Paleozoic to early Mesozoic sedimentary sequences from the Paleo-Tethyan margin basins, we argue that a long-lived supercontinental-scale system, with headwaters originating in Antarctica, flowed northward to finally debouch on the margin with the Paleo-Tethys Ocean. Channel-belt thickness scaling relationships, which provide an estimate of drainage area, support the notion that this was a supercontinental-scale system. Sediments were eroded from Proterozoic orogenic belts and flanked resistant kernels of Archean cratons. Remnants of this system, which can still be traced today as topographic lows, controlled post-breakup drainage patterns in Gondwanan fragments in Western Australia. We conclude that supercontinental regimes allow sediment dispersal systems to be long-lived, as they provide both an abundant sediment supply, due to erosion of large-scale, collision-related internal mountain systems, and a stable, large-scale configuration that lasts until breakup.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375459,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375459/thumbnails/1.jpg","file_name":"513.pdf","download_url":"https://www.academia.edu/attachments/118375459/download_file","bulk_download_file_name":"Long_lived_transcontinental_sediment_tra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375459/513-libre.pdf?1727057327=\u0026response-content-disposition=attachment%3B+filename%3DLong_lived_transcontinental_sediment_tra.pdf\u0026Expires=1741733762\u0026Signature=W7WTgMvr6h3bLbtkj5jWdn0hJbDbLkpyhEx0jdZ1J3PDL4FSj3YRG9kaVGiG1AtjTRPWwZ72QPHZarHedoJgZ9ZleRoqVBBwAIJxfwNhQFiEIlCjpmfOTwGQ8psP0PvC9hCVuh1wTg0mGiPeJPJ-QhtcoZN4ojbLpCJuCpE0~TqDMaQLC7StfO6Mza7TfXJuWPahf~T8kkLA6wwWaWYk7lq3OUoJ6L~lqdYnJ8KYLQfzfKODXT79DUdE9bNycYCe6~kx7uhi2LLU05S9P9qeu4HrWIokik2Qt0MrlA-~i7ECdm0QnglbSeMe7~wpFlijvItFmxQiNDETgkyIn276NQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":70354,"name":"Mesozoic","url":"https://www.academia.edu/Documents/in/Mesozoic"},{"id":78101,"name":"Proterozoic","url":"https://www.academia.edu/Documents/in/Proterozoic"},{"id":78133,"name":"Gondwana","url":"https://www.academia.edu/Documents/in/Gondwana"},{"id":113501,"name":"Sediment transport","url":"https://www.academia.edu/Documents/in/Sediment_transport"},{"id":192294,"name":"Sediment","url":"https://www.academia.edu/Documents/in/Sediment"},{"id":319883,"name":"Supercontinent","url":"https://www.academia.edu/Documents/in/Supercontinent"},{"id":469741,"name":"Craton","url":"https://www.academia.edu/Documents/in/Craton"},{"id":531003,"name":"Denudation","url":"https://www.academia.edu/Documents/in/Denudation"},{"id":620328,"name":"Sediment Transport","url":"https://www.academia.edu/Documents/in/Sediment_Transport-5"},{"id":1567560,"name":"Sedimentary Rock","url":"https://www.academia.edu/Documents/in/Sedimentary_Rock"}],"urls":[{"id":44783467,"url":"https://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G45915.1/4678016/g45915.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086417"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086417/The_influence_of_carbonate_platform_interactions_with_subduction_zone_volcanism_on_palaeo_atmospheric_CO_sub_2_sub_since_the_Devonian"><img alt="Research paper thumbnail of The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO&lt;sub&gt;2&lt;/sub&gt; since the Devonian" class="work-thumbnail" src="https://attachments.academia-assets.com/118375433/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086417/The_influence_of_carbonate_platform_interactions_with_subduction_zone_volcanism_on_palaeo_atmospheric_CO_sub_2_sub_since_the_Devonian">The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO&lt;sub&gt;2&lt;/sub&gt; since the Devonian</a></div><div class="wp-workCard_item"><span>Climate of the Past</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The CO 2 liberated along subduction zones through intrusive/extrusive magmatic activity and the r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The CO 2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO 2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO 2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and carbonate platforms. This study investigates the contribution of carbonate-intersecting subduction zones (CISZs) to palaeo-atmospheric CO 2 levels over the past 410 million years by integrating a plate motion and plate boundary evolution model with carbonate platform development through time. Our model of carbonate platform development has the potential to capture a broader range of degassing mechanisms than approaches that only account for continental arcs. Continuous and cross-wavelet analyses as well as wavelet coherence are used to evaluate trends between the evolving lengths of carbonate-intersecting subduction zones, noncarbonate-intersecting subduction zones and global subduction zones, and are examined for periodic, linked behaviour with the proxy CO 2 record between 410 Ma and the present. Wavelet analysis reveals significant linked periodic behaviour between 60 and 40 Ma, when CISZ lengths are relatively high and are correlated with peaks in palaeoatmospheric CO 2 , characterised by a 32-48 Myr periodicity and a ∼ 8-12 Myr lag of CO 2 peaks following CISZ length peaks. The linked behaviour suggests that the relative abundance of CISZs played a role in affecting global climate during the Palaeogene. In the 200-100 Ma period, peaks in CISZ lengths align with peaks in palaeo-atmospheric CO 2 , but CISZ lengths alone cannot be determined as the cause of a warmer Cretaceous-Jurassic climate. Nevertheless, across the majority of the Phanerozoic, feedback mechanisms between the geosphere, atmosphere and biosphere likely played dominant roles in modulating climate. Our modelled subduction zone lengths and carbonate-intersecting subduction zone lengths approximate magmatic activity through time, and can be used as input into fully coupled models of CO 2 flux between deep and shallow carbon reservoirs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5201b735df050664ce40504993e1593e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375433,&quot;asset_id&quot;:124086417,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375433/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086417"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086417"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086417; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086417]").text(description); $(".js-view-count[data-work-id=124086417]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086417; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086417']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5201b735df050664ce40504993e1593e" } } $('.js-work-strip[data-work-id=124086417]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086417,"title":"The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO\u003csub\u003e2\u003c/sub\u003e since the Devonian","translated_title":"","metadata":{"publisher":"Copernicus GmbH","ai_title_tag":"Impact of Carbonate Platforms on CO₂ over Time","grobid_abstract":"The CO 2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO 2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO 2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and carbonate platforms. This study investigates the contribution of carbonate-intersecting subduction zones (CISZs) to palaeo-atmospheric CO 2 levels over the past 410 million years by integrating a plate motion and plate boundary evolution model with carbonate platform development through time. Our model of carbonate platform development has the potential to capture a broader range of degassing mechanisms than approaches that only account for continental arcs. Continuous and cross-wavelet analyses as well as wavelet coherence are used to evaluate trends between the evolving lengths of carbonate-intersecting subduction zones, noncarbonate-intersecting subduction zones and global subduction zones, and are examined for periodic, linked behaviour with the proxy CO 2 record between 410 Ma and the present. Wavelet analysis reveals significant linked periodic behaviour between 60 and 40 Ma, when CISZ lengths are relatively high and are correlated with peaks in palaeoatmospheric CO 2 , characterised by a 32-48 Myr periodicity and a ∼ 8-12 Myr lag of CO 2 peaks following CISZ length peaks. The linked behaviour suggests that the relative abundance of CISZs played a role in affecting global climate during the Palaeogene. In the 200-100 Ma period, peaks in CISZ lengths align with peaks in palaeo-atmospheric CO 2 , but CISZ lengths alone cannot be determined as the cause of a warmer Cretaceous-Jurassic climate. Nevertheless, across the majority of the Phanerozoic, feedback mechanisms between the geosphere, atmosphere and biosphere likely played dominant roles in modulating climate. Our modelled subduction zone lengths and carbonate-intersecting subduction zone lengths approximate magmatic activity through time, and can be used as input into fully coupled models of CO 2 flux between deep and shallow carbon reservoirs.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Climate of the Past","grobid_abstract_attachment_id":118375433},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086417/The_influence_of_carbonate_platform_interactions_with_subduction_zone_volcanism_on_palaeo_atmospheric_CO_sub_2_sub_since_the_Devonian","translated_internal_url":"","created_at":"2024-09-22T17:08:43.295-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375433/thumbnails/1.jpg","file_name":"cp-14-857-2018.pdf","download_url":"https://www.academia.edu/attachments/118375433/download_file","bulk_download_file_name":"The_influence_of_carbonate_platform_inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375433/cp-14-857-2018-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_carbonate_platform_inte.pdf\u0026Expires=1741733762\u0026Signature=LLxoFZcN7E4Sbc4YLhRW5i0-jLmw97QQHwL1v48SE3376nXbnveqhgpQUCz6FZOHWz8x60W0YsyHRMRE9IVsax3KNTrckRm~BaGdzNYkkHt630y-NwbdULlkgSCrsOEWSne-QygDjV2AjdzAmCYP7DaSJaLC7dqh5vfOHcP9eCo6eVPa1054C1pef9uD~s8pIOYx4tVvMc6EtgEvcv03dAxwxFDL30Cx3k6nAxTFjy-In1sGBQHGSUHtVmEgm3XcuNagrQQcKaK9An00vUSxR1~GER3iWR07RFdDcqkArZJCLaqyzd7kD5iDpOCL3DFjQzbKnnpLIwG4Kn9J47FQfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_influence_of_carbonate_platform_interactions_with_subduction_zone_volcanism_on_palaeo_atmospheric_CO_sub_2_sub_since_the_Devonian","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"The CO 2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO 2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO 2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and carbonate platforms. This study investigates the contribution of carbonate-intersecting subduction zones (CISZs) to palaeo-atmospheric CO 2 levels over the past 410 million years by integrating a plate motion and plate boundary evolution model with carbonate platform development through time. Our model of carbonate platform development has the potential to capture a broader range of degassing mechanisms than approaches that only account for continental arcs. Continuous and cross-wavelet analyses as well as wavelet coherence are used to evaluate trends between the evolving lengths of carbonate-intersecting subduction zones, noncarbonate-intersecting subduction zones and global subduction zones, and are examined for periodic, linked behaviour with the proxy CO 2 record between 410 Ma and the present. Wavelet analysis reveals significant linked periodic behaviour between 60 and 40 Ma, when CISZ lengths are relatively high and are correlated with peaks in palaeoatmospheric CO 2 , characterised by a 32-48 Myr periodicity and a ∼ 8-12 Myr lag of CO 2 peaks following CISZ length peaks. The linked behaviour suggests that the relative abundance of CISZs played a role in affecting global climate during the Palaeogene. In the 200-100 Ma period, peaks in CISZ lengths align with peaks in palaeo-atmospheric CO 2 , but CISZ lengths alone cannot be determined as the cause of a warmer Cretaceous-Jurassic climate. Nevertheless, across the majority of the Phanerozoic, feedback mechanisms between the geosphere, atmosphere and biosphere likely played dominant roles in modulating climate. Our modelled subduction zone lengths and carbonate-intersecting subduction zone lengths approximate magmatic activity through time, and can be used as input into fully coupled models of CO 2 flux between deep and shallow carbon reservoirs.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375433/thumbnails/1.jpg","file_name":"cp-14-857-2018.pdf","download_url":"https://www.academia.edu/attachments/118375433/download_file","bulk_download_file_name":"The_influence_of_carbonate_platform_inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375433/cp-14-857-2018-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_carbonate_platform_inte.pdf\u0026Expires=1741733762\u0026Signature=LLxoFZcN7E4Sbc4YLhRW5i0-jLmw97QQHwL1v48SE3376nXbnveqhgpQUCz6FZOHWz8x60W0YsyHRMRE9IVsax3KNTrckRm~BaGdzNYkkHt630y-NwbdULlkgSCrsOEWSne-QygDjV2AjdzAmCYP7DaSJaLC7dqh5vfOHcP9eCo6eVPa1054C1pef9uD~s8pIOYx4tVvMc6EtgEvcv03dAxwxFDL30Cx3k6nAxTFjy-In1sGBQHGSUHtVmEgm3XcuNagrQQcKaK9An00vUSxR1~GER3iWR07RFdDcqkArZJCLaqyzd7kD5iDpOCL3DFjQzbKnnpLIwG4Kn9J47FQfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375434,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375434/thumbnails/1.jpg","file_name":"cp-14-857-2018.pdf","download_url":"https://www.academia.edu/attachments/118375434/download_file","bulk_download_file_name":"The_influence_of_carbonate_platform_inte.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375434/cp-14-857-2018-libre.pdf?1727057340=\u0026response-content-disposition=attachment%3B+filename%3DThe_influence_of_carbonate_platform_inte.pdf\u0026Expires=1741733762\u0026Signature=fp3Y~AWZz481QLUpWIHKkzJhShR8HYLanRCYzjFaXD1gnrfa2-aOK-bjXUbMLJTS0QkNlhnwP41B4ynthlYRi~3qdSRtyPITJgy72KDe9KIqF0msH1DXRmCptSAoEjef0PXcjrEc-lGjsDfeuUKYTUWYXnvSXT1BUYhSM7TJAQ9~9poBFfQw8xdSoHWkwb7iP0~eU2PdfLA9Tf92hagZLujQEoFG1wrqepa3Zwc6~Yw6RIwQ1EyZa~-TVKil1tV~geIBRdpzJIuWF608-QbKLph5m7AA9kU0i6qPxNHmWa-JQD9wJrELe3mpFAG5XrZAopLIDh4bK7VyWEhKdRzImQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":91258,"name":"Carbonate","url":"https://www.academia.edu/Documents/in/Carbonate"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"}],"urls":[{"id":44783466,"url":"https://cp.copernicus.org/articles/14/857/2018/cp-14-857-2018.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086416"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086416/Modelling_of_Non_coaxial_Viscoplastic_Deformation_in_Geodynamics"><img alt="Research paper thumbnail of Modelling of Non-coaxial Viscoplastic Deformation in Geodynamics" class="work-thumbnail" src="https://attachments.academia-assets.com/118375458/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086416/Modelling_of_Non_coaxial_Viscoplastic_Deformation_in_Geodynamics">Modelling of Non-coaxial Viscoplastic Deformation in Geodynamics</a></div><div class="wp-workCard_item"><span>Journal of Civil Engineering and Architecture</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The formation of shear bands for time and length scales appropriate for deformation processes in ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The formation of shear bands for time and length scales appropriate for deformation processes in the upper Lithosphere is investigated in plane strain finite element simulations under predominantly uniaxial extension and compression, respectively. The direction of gravity is assumed orthogonal to the extension/compression axis. Mathematically, the formation of shear zones may be explained as a consequence of changes in the type of the governing model equations. Such changes or bifurcations depend strongly on the details of the constitutive relationships such as strain softening, thermal or chemical effects, associated or non-associated-coaxial or non-coaxial flow rules. Here we focus on strain softening and coaxial and non-coaxial flow rules. In the simulations, we consider an initially rectangular domain with the dimensions L 0 , H 0 in the horizontal, vertical directions, respectively. The domain is extended or compressed by prescribing a uniform, horizontal velocity field along one of the vertical boundaries while keeping the opposite boundary fixed. An important global descriptor of the deformation process is the relationship between the horizontal stress resultant (average horizontal stress) and the strain ln(L/L 0), where L is the deformed length of the domain. The main goal of this paper is to investigate key factors influencing the phenomenology of the localization process such as flow rule, coaxial, non-coaxial and strain softening. Different origins of the mesh sensitivity of deformations involving localization are also investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="faf7799852306299a2aa6030c14eac69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375458,&quot;asset_id&quot;:124086416,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375458/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086416"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086416"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086416; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086416]").text(description); $(".js-view-count[data-work-id=124086416]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086416; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086416']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "faf7799852306299a2aa6030c14eac69" } } $('.js-work-strip[data-work-id=124086416]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086416,"title":"Modelling of Non-coaxial Viscoplastic Deformation in Geodynamics","translated_title":"","metadata":{"publisher":"David Publishing Company","ai_title_tag":"Viscoplastic Deformation in Lithosphere Modeling","grobid_abstract":"The formation of shear bands for time and length scales appropriate for deformation processes in the upper Lithosphere is investigated in plane strain finite element simulations under predominantly uniaxial extension and compression, respectively. The direction of gravity is assumed orthogonal to the extension/compression axis. Mathematically, the formation of shear zones may be explained as a consequence of changes in the type of the governing model equations. Such changes or bifurcations depend strongly on the details of the constitutive relationships such as strain softening, thermal or chemical effects, associated or non-associated-coaxial or non-coaxial flow rules. Here we focus on strain softening and coaxial and non-coaxial flow rules. In the simulations, we consider an initially rectangular domain with the dimensions L 0 , H 0 in the horizontal, vertical directions, respectively. The domain is extended or compressed by prescribing a uniform, horizontal velocity field along one of the vertical boundaries while keeping the opposite boundary fixed. An important global descriptor of the deformation process is the relationship between the horizontal stress resultant (average horizontal stress) and the strain ln(L/L 0), where L is the deformed length of the domain. The main goal of this paper is to investigate key factors influencing the phenomenology of the localization process such as flow rule, coaxial, non-coaxial and strain softening. Different origins of the mesh sensitivity of deformations involving localization are also investigated.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Journal of Civil Engineering and Architecture","grobid_abstract_attachment_id":118375458},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086416/Modelling_of_Non_coaxial_Viscoplastic_Deformation_in_Geodynamics","translated_internal_url":"","created_at":"2024-09-22T17:08:43.112-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375458,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375458/thumbnails/1.jpg","file_name":"UQ349124_OA.pdf","download_url":"https://www.academia.edu/attachments/118375458/download_file","bulk_download_file_name":"Modelling_of_Non_coaxial_Viscoplastic_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375458/UQ349124_OA-libre.pdf?1727057327=\u0026response-content-disposition=attachment%3B+filename%3DModelling_of_Non_coaxial_Viscoplastic_De.pdf\u0026Expires=1741733762\u0026Signature=LkPoD95op11WYqyxiYSXebA-dCauKX1fM~LCK7H9q28f~U6LtN8VQEdufLTbbqrA~1rHYHDPMLCdlX7Qd9rNrnlIwEhB0imATqbBi~a5wy2cQwVxkT6r73Um7uQDWplus1Ahc1HjzRKuKgn3B88VqNPpGBg4r0Uesv~lx7sUoAIpm-D2gpbm0ZsDKANQf48KuDZ1P-SjkVlW-fthKblTPbB4q4xCrlOtNNkfUcEXo51hfDA4WlThwHALPItIC4Rq2c95VUM4~omD612al1cheatzNjE7ac6knzZ3XvsZgZGtAzkSgcVnoq6nkNWahX~DiXsVt4-0V7~VoASEC7ESBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modelling_of_Non_coaxial_Viscoplastic_Deformation_in_Geodynamics","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The formation of shear bands for time and length scales appropriate for deformation processes in the upper Lithosphere is investigated in plane strain finite element simulations under predominantly uniaxial extension and compression, respectively. The direction of gravity is assumed orthogonal to the extension/compression axis. Mathematically, the formation of shear zones may be explained as a consequence of changes in the type of the governing model equations. Such changes or bifurcations depend strongly on the details of the constitutive relationships such as strain softening, thermal or chemical effects, associated or non-associated-coaxial or non-coaxial flow rules. Here we focus on strain softening and coaxial and non-coaxial flow rules. In the simulations, we consider an initially rectangular domain with the dimensions L 0 , H 0 in the horizontal, vertical directions, respectively. The domain is extended or compressed by prescribing a uniform, horizontal velocity field along one of the vertical boundaries while keeping the opposite boundary fixed. An important global descriptor of the deformation process is the relationship between the horizontal stress resultant (average horizontal stress) and the strain ln(L/L 0), where L is the deformed length of the domain. The main goal of this paper is to investigate key factors influencing the phenomenology of the localization process such as flow rule, coaxial, non-coaxial and strain softening. Different origins of the mesh sensitivity of deformations involving localization are also investigated.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375458,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375458/thumbnails/1.jpg","file_name":"UQ349124_OA.pdf","download_url":"https://www.academia.edu/attachments/118375458/download_file","bulk_download_file_name":"Modelling_of_Non_coaxial_Viscoplastic_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375458/UQ349124_OA-libre.pdf?1727057327=\u0026response-content-disposition=attachment%3B+filename%3DModelling_of_Non_coaxial_Viscoplastic_De.pdf\u0026Expires=1741733762\u0026Signature=LkPoD95op11WYqyxiYSXebA-dCauKX1fM~LCK7H9q28f~U6LtN8VQEdufLTbbqrA~1rHYHDPMLCdlX7Qd9rNrnlIwEhB0imATqbBi~a5wy2cQwVxkT6r73Um7uQDWplus1Ahc1HjzRKuKgn3B88VqNPpGBg4r0Uesv~lx7sUoAIpm-D2gpbm0ZsDKANQf48KuDZ1P-SjkVlW-fthKblTPbB4q4xCrlOtNNkfUcEXo51hfDA4WlThwHALPItIC4Rq2c95VUM4~omD612al1cheatzNjE7ac6knzZ3XvsZgZGtAzkSgcVnoq6nkNWahX~DiXsVt4-0V7~VoASEC7ESBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":2381,"name":"Viscoplasticity","url":"https://www.academia.edu/Documents/in/Viscoplasticity"},{"id":15947,"name":"Geodynamics","url":"https://www.academia.edu/Documents/in/Geodynamics"},{"id":841115,"name":"Civil Engineering and Architecture","url":"https://www.academia.edu/Documents/in/Civil_Engineering_and_Architecture"},{"id":1741014,"name":"Water Softening","url":"https://www.academia.edu/Documents/in/Water_Softening"},{"id":2402053,"name":"Coaxial","url":"https://www.academia.edu/Documents/in/Coaxial"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086415/Arc_volcanism_carbonate_platform_evolution_and_palaeo_atmospheric_CO_and_lt_sub_and_gt_2_and_lt_sub_and_gt_Components_and_interactions_in_the_deep_carbon_cycle"><img alt="Research paper thumbnail of Arc volcanism, carbonate platform evolution and palaeo-atmospheric CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;: Components and interactions in the deep carbon cycle" class="work-thumbnail" src="https://attachments.academia-assets.com/118375431/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086415/Arc_volcanism_carbonate_platform_evolution_and_palaeo_atmospheric_CO_and_lt_sub_and_gt_2_and_lt_sub_and_gt_Components_and_interactions_in_the_deep_carbon_cycle">Arc volcanism, carbonate platform evolution and palaeo-atmospheric CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;: Components and interactions in the deep carbon cycle</a></div><div class="wp-workCard_item"><span>Climate of the Past Discussions</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Carbon dioxide (CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;) liberated at arc volcanoes that intersect buried carb...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Carbon dioxide (CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;) liberated at arc volcanoes that intersect buried carbonate platforms plays a larger role in influencing atmospheric CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; than those active margins lacking buried carbonate platforms. This study investigates the contribution of carbonate-intersecting arc activity on palaeo-atmospheric CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; levels over the past 410 million years by integrating a plate motion model with an evolving carbonate platform development model. Our modelled subduction zone lengths and carbonate-intersecting arc lengths approximate arc activity with time, and can be used as input into fully-coupled models of CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; flux between deep and shallow reservoirs. Continuous and cross-wavelet as well as wavelet coherence analyses were used to evaluate trends between carbonate-intersecting arc activity, non-carbonate-intersecting arc activity and total global subduction zone lengths and the proxy-CO&amp;lt;sub&amp;gt;2&amp;lt;...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c605b78fb65ca47689e5194806e5a291" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375431,&quot;asset_id&quot;:124086415,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375431/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086415]").text(description); $(".js-view-count[data-work-id=124086415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c605b78fb65ca47689e5194806e5a291" } } $('.js-work-strip[data-work-id=124086415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086415,"title":"Arc volcanism, carbonate platform evolution and palaeo-atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt;: Components and interactions in the deep carbon cycle","translated_title":"","metadata":{"abstract":"Carbon dioxide (CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt;) liberated at arc volcanoes that intersect buried carbonate platforms plays a larger role in influencing atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; than those active margins lacking buried carbonate platforms. This study investigates the contribution of carbonate-intersecting arc activity on palaeo-atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; levels over the past 410 million years by integrating a plate motion model with an evolving carbonate platform development model. Our modelled subduction zone lengths and carbonate-intersecting arc lengths approximate arc activity with time, and can be used as input into fully-coupled models of CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flux between deep and shallow reservoirs. Continuous and cross-wavelet as well as wavelet coherence analyses were used to evaluate trends between carbonate-intersecting arc activity, non-carbonate-intersecting arc activity and total global subduction zone lengths and the proxy-CO\u0026lt;sub\u0026gt;2\u0026lt;...","publisher":"Copernicus GmbH","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Climate of the Past Discussions"},"translated_abstract":"Carbon dioxide (CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt;) liberated at arc volcanoes that intersect buried carbonate platforms plays a larger role in influencing atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; than those active margins lacking buried carbonate platforms. This study investigates the contribution of carbonate-intersecting arc activity on palaeo-atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; levels over the past 410 million years by integrating a plate motion model with an evolving carbonate platform development model. Our modelled subduction zone lengths and carbonate-intersecting arc lengths approximate arc activity with time, and can be used as input into fully-coupled models of CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flux between deep and shallow reservoirs. Continuous and cross-wavelet as well as wavelet coherence analyses were used to evaluate trends between carbonate-intersecting arc activity, non-carbonate-intersecting arc activity and total global subduction zone lengths and the proxy-CO\u0026lt;sub\u0026gt;2\u0026lt;...","internal_url":"https://www.academia.edu/124086415/Arc_volcanism_carbonate_platform_evolution_and_palaeo_atmospheric_CO_and_lt_sub_and_gt_2_and_lt_sub_and_gt_Components_and_interactions_in_the_deep_carbon_cycle","translated_internal_url":"","created_at":"2024-09-22T17:08:42.871-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375431/thumbnails/1.jpg","file_name":"cp-2017-112.pdf","download_url":"https://www.academia.edu/attachments/118375431/download_file","bulk_download_file_name":"Arc_volcanism_carbonate_platform_evoluti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375431/cp-2017-112-libre.pdf?1727057354=\u0026response-content-disposition=attachment%3B+filename%3DArc_volcanism_carbonate_platform_evoluti.pdf\u0026Expires=1741733762\u0026Signature=bd9ZrlfkLd~hQbaqCAqSSAkV42pVPnwPdnlQgl3jOmTyqBbzLIX~4VagtXS5oBoefn2E-TnuMC9HxlhP-ZHsobjKbmuR-RbB60TCduR9e7mrCIM35OFJZnBelMcdomJXvSM0pNzKGDNhVZSSQT3llPQQ8xLG3rJRldjeDwnKu3pcdInW2s-pcWQnl5Qj4OXrtCX4MQS6RybnDv9T17Vff~TOmfaZ4PD9wCzmfH9prrhSdQn17nYqeMPC-7VVhfM0NOxxD5AP85jiVe~Or-pz~4fHxloiYzhfP08jqGehq4hiQSnsh5PVdwta9~DB7UpGiOD7GgaKf095nD49nqL5uQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Arc_volcanism_carbonate_platform_evolution_and_palaeo_atmospheric_CO_and_lt_sub_and_gt_2_and_lt_sub_and_gt_Components_and_interactions_in_the_deep_carbon_cycle","translated_slug":"","page_count":34,"language":"en","content_type":"Work","summary":"Carbon dioxide (CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt;) liberated at arc volcanoes that intersect buried carbonate platforms plays a larger role in influencing atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; than those active margins lacking buried carbonate platforms. This study investigates the contribution of carbonate-intersecting arc activity on palaeo-atmospheric CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; levels over the past 410 million years by integrating a plate motion model with an evolving carbonate platform development model. Our modelled subduction zone lengths and carbonate-intersecting arc lengths approximate arc activity with time, and can be used as input into fully-coupled models of CO\u0026lt;sub\u0026gt;2\u0026lt;/sub\u0026gt; flux between deep and shallow reservoirs. Continuous and cross-wavelet as well as wavelet coherence analyses were used to evaluate trends between carbonate-intersecting arc activity, non-carbonate-intersecting arc activity and total global subduction zone lengths and the proxy-CO\u0026lt;sub\u0026gt;2\u0026lt;...","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375431/thumbnails/1.jpg","file_name":"cp-2017-112.pdf","download_url":"https://www.academia.edu/attachments/118375431/download_file","bulk_download_file_name":"Arc_volcanism_carbonate_platform_evoluti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375431/cp-2017-112-libre.pdf?1727057354=\u0026response-content-disposition=attachment%3B+filename%3DArc_volcanism_carbonate_platform_evoluti.pdf\u0026Expires=1741733762\u0026Signature=bd9ZrlfkLd~hQbaqCAqSSAkV42pVPnwPdnlQgl3jOmTyqBbzLIX~4VagtXS5oBoefn2E-TnuMC9HxlhP-ZHsobjKbmuR-RbB60TCduR9e7mrCIM35OFJZnBelMcdomJXvSM0pNzKGDNhVZSSQT3llPQQ8xLG3rJRldjeDwnKu3pcdInW2s-pcWQnl5Qj4OXrtCX4MQS6RybnDv9T17Vff~TOmfaZ4PD9wCzmfH9prrhSdQn17nYqeMPC-7VVhfM0NOxxD5AP85jiVe~Or-pz~4fHxloiYzhfP08jqGehq4hiQSnsh5PVdwta9~DB7UpGiOD7GgaKf095nD49nqL5uQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":118375432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375432/thumbnails/1.jpg","file_name":"cp-2017-112.pdf","download_url":"https://www.academia.edu/attachments/118375432/download_file","bulk_download_file_name":"Arc_volcanism_carbonate_platform_evoluti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375432/cp-2017-112-libre.pdf?1727057356=\u0026response-content-disposition=attachment%3B+filename%3DArc_volcanism_carbonate_platform_evoluti.pdf\u0026Expires=1741733762\u0026Signature=LC74qjroFq9wbWIfiS25ZTcTONMRncNdfDWw6uLPr8xp-sb9d9d56ptFPp1tu~Xxm0fE2x56W178jZirHJixv3yD5hAiNYsrXqFxBoSiPvSiereRlPiCu5BT92jnC3iooBRqmBnjRja~aXRCwNc0xZZh1TOivigTnlI4ivOFm4IQuxu7FuUGcBEEa7e-fpaPpqKozhDYh35NNJ6xTBRH7BGhAzCGF1u~Rd4AZrMI-LesJ4LX-HPq8iCP9anbYqwF7avPH-7XQUnQGlVvqxnV2gt8uwZQ5nkIq-G7nPvhgiAxUUJkFL-zyiNptpmYr7m0L8Wx8gSBnKRevPjHQh6lWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":14719,"name":"Carbon Cycle","url":"https://www.academia.edu/Documents/in/Carbon_Cycle"},{"id":91258,"name":"Carbonate","url":"https://www.academia.edu/Documents/in/Carbonate"}],"urls":[{"id":44783465,"url":"https://www.clim-past-discuss.net/cp-2017-112/cp-2017-112.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086414/A_window_for_plate_tectonics_in_terrestrial_planet_evolution"><img alt="Research paper thumbnail of A window for plate tectonics in terrestrial planet evolution?" class="work-thumbnail" src="https://attachments.academia-assets.com/118375455/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086414/A_window_for_plate_tectonics_in_terrestrial_planet_evolution">A window for plate tectonics in terrestrial planet evolution?</a></div><div class="wp-workCard_item"><span>Physics of the Earth and Planetary Interiors</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The tectonic regime of a planet depends critically on the contributions of basal and internal hea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The tectonic regime of a planet depends critically on the contributions of basal and internal heating to the planetary mantle, and how these evolve through time. We use viscoplastic mantle convection simulations, with evolving core-mantle boundary temperatures, and radiogenic heat decay, to explore how these factors affect tectonic regime over the lifetime of a planet. The simulations demonstrate (i) hot, mantle conditions, coming out of a magma ocean phase of evolution, can produce a &#39;&#39;hot&quot; stagnant-lid regime, whilst a cooler post magma ocean mantle may begin in a plate tectonic regime; (ii) planets may evolve from an initial hot stagnant-lid condition, through an episodic regime lasting 1-3 Gyr, into a plate-tectonic regime, and finally into a cold, senescent stagnant lid regime after $10 Gyr of evolution, as heat production and basal temperatures wane; and (iii) the thermal state of the post magma ocean mantle, which effectively sets the initial conditions for the sub-solidus mantle convection phase of planetary evolution, is one of the most sensitive parameters affecting planetary evolution-systems with exactly the same physical parameters may exhibit completely different tectonics depending on the initial state employed. Estimates of the early Earth&#39;s temperatures suggest Earth may have begun in a hot stagnant lid mode, evolving into an episodic regime throughout most of the Archaean, before finally passing into a plate tectonic regime. The implication of these results is that, for many cases, plate tectonics may be a phase in planetary evolution between hot and cold stagnant states, rather than an end-member.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="95e0db087e9756c1b470ba49335db554" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375455,&quot;asset_id&quot;:124086414,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375455/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086414]").text(description); $(".js-view-count[data-work-id=124086414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "95e0db087e9756c1b470ba49335db554" } } $('.js-work-strip[data-work-id=124086414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086414,"title":"A window for plate tectonics in terrestrial planet evolution?","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Evolving Tectonic Regimes in Planetary Evolution Dynamics","grobid_abstract":"The tectonic regime of a planet depends critically on the contributions of basal and internal heating to the planetary mantle, and how these evolve through time. We use viscoplastic mantle convection simulations, with evolving core-mantle boundary temperatures, and radiogenic heat decay, to explore how these factors affect tectonic regime over the lifetime of a planet. The simulations demonstrate (i) hot, mantle conditions, coming out of a magma ocean phase of evolution, can produce a ''hot\" stagnant-lid regime, whilst a cooler post magma ocean mantle may begin in a plate tectonic regime; (ii) planets may evolve from an initial hot stagnant-lid condition, through an episodic regime lasting 1-3 Gyr, into a plate-tectonic regime, and finally into a cold, senescent stagnant lid regime after $10 Gyr of evolution, as heat production and basal temperatures wane; and (iii) the thermal state of the post magma ocean mantle, which effectively sets the initial conditions for the sub-solidus mantle convection phase of planetary evolution, is one of the most sensitive parameters affecting planetary evolution-systems with exactly the same physical parameters may exhibit completely different tectonics depending on the initial state employed. Estimates of the early Earth's temperatures suggest Earth may have begun in a hot stagnant lid mode, evolving into an episodic regime throughout most of the Archaean, before finally passing into a plate tectonic regime. The implication of these results is that, for many cases, plate tectonics may be a phase in planetary evolution between hot and cold stagnant states, rather than an end-member.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Physics of the Earth and Planetary Interiors","grobid_abstract_attachment_id":118375455},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086414/A_window_for_plate_tectonics_in_terrestrial_planet_evolution","translated_internal_url":"","created_at":"2024-09-22T17:08:42.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375455,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375455/thumbnails/1.jpg","file_name":"1-s2.0-S0031920116300280-main.pdf","download_url":"https://www.academia.edu/attachments/118375455/download_file","bulk_download_file_name":"A_window_for_plate_tectonics_in_terrestr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375455/1-s2.0-S0031920116300280-main-libre.pdf?1727057329=\u0026response-content-disposition=attachment%3B+filename%3DA_window_for_plate_tectonics_in_terrestr.pdf\u0026Expires=1741733762\u0026Signature=Tn1XepHGIbHMQh1~AQLLEJ-ueIYIUUYDuBOpHDjPO1MzaYigIw899BNDN6i3rRor0E5ZR1VvJZ3kiZx4qoxBmK8EABtQlZD9zfh07EwABDjmLwGJ3kIt6Mu7Pg5OBXZ37AUOkIG~yStjGscj7cW7s43JiJhRSZvhJE~bAILgXDMAhU5-ObO0GQSiQrQXYXsJ0d7yuJ0d2rtcNjArRtXSzzdiM28KVp-t0xUy85UEdy~fesGDIsgeRc2nSPvy2ZT3Jj1CMZsgOk8ZxLTIVZsNC34niax57EqngnfDxVdnyH~SVb55B-cOea9VwwrkRq6OH9A~PqUH-PNsdz33DK~Xtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_window_for_plate_tectonics_in_terrestrial_planet_evolution","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"The tectonic regime of a planet depends critically on the contributions of basal and internal heating to the planetary mantle, and how these evolve through time. We use viscoplastic mantle convection simulations, with evolving core-mantle boundary temperatures, and radiogenic heat decay, to explore how these factors affect tectonic regime over the lifetime of a planet. The simulations demonstrate (i) hot, mantle conditions, coming out of a magma ocean phase of evolution, can produce a ''hot\" stagnant-lid regime, whilst a cooler post magma ocean mantle may begin in a plate tectonic regime; (ii) planets may evolve from an initial hot stagnant-lid condition, through an episodic regime lasting 1-3 Gyr, into a plate-tectonic regime, and finally into a cold, senescent stagnant lid regime after $10 Gyr of evolution, as heat production and basal temperatures wane; and (iii) the thermal state of the post magma ocean mantle, which effectively sets the initial conditions for the sub-solidus mantle convection phase of planetary evolution, is one of the most sensitive parameters affecting planetary evolution-systems with exactly the same physical parameters may exhibit completely different tectonics depending on the initial state employed. Estimates of the early Earth's temperatures suggest Earth may have begun in a hot stagnant lid mode, evolving into an episodic regime throughout most of the Archaean, before finally passing into a plate tectonic regime. The implication of these results is that, for many cases, plate tectonics may be a phase in planetary evolution between hot and cold stagnant states, rather than an end-member.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375455,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375455/thumbnails/1.jpg","file_name":"1-s2.0-S0031920116300280-main.pdf","download_url":"https://www.academia.edu/attachments/118375455/download_file","bulk_download_file_name":"A_window_for_plate_tectonics_in_terrestr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375455/1-s2.0-S0031920116300280-main-libre.pdf?1727057329=\u0026response-content-disposition=attachment%3B+filename%3DA_window_for_plate_tectonics_in_terrestr.pdf\u0026Expires=1741733762\u0026Signature=Tn1XepHGIbHMQh1~AQLLEJ-ueIYIUUYDuBOpHDjPO1MzaYigIw899BNDN6i3rRor0E5ZR1VvJZ3kiZx4qoxBmK8EABtQlZD9zfh07EwABDjmLwGJ3kIt6Mu7Pg5OBXZ37AUOkIG~yStjGscj7cW7s43JiJhRSZvhJE~bAILgXDMAhU5-ObO0GQSiQrQXYXsJ0d7yuJ0d2rtcNjArRtXSzzdiM28KVp-t0xUy85UEdy~fesGDIsgeRc2nSPvy2ZT3Jj1CMZsgOk8ZxLTIVZsNC34niax57EqngnfDxVdnyH~SVb55B-cOea9VwwrkRq6OH9A~PqUH-PNsdz33DK~Xtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":10769,"name":"Tectonics","url":"https://www.academia.edu/Documents/in/Tectonics"},{"id":44747,"name":"Plate Tectonics","url":"https://www.academia.edu/Documents/in/Plate_Tectonics"},{"id":268407,"name":"Planet","url":"https://www.academia.edu/Documents/in/Planet"}],"urls":[{"id":44783464,"url":"https://api.elsevier.com/content/article/PII:S0031920116300280?httpAccept=text/plain"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086413"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086413/Texture_alignment_in_shimple_shear"><img alt="Research paper thumbnail of Texture alignment in shimple shear" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086413/Texture_alignment_in_shimple_shear">Texture alignment in shimple shear</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computational Science</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086413"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086413"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086413; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086413]").text(description); $(".js-view-count[data-work-id=124086413]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086413; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086413']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086413]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086413,"title":"Texture alignment in shimple shear","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Lecture Notes in Computational Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086413/Texture_alignment_in_shimple_shear","translated_internal_url":"","created_at":"2024-09-22T17:08:41.901-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Texture_alignment_in_shimple_shear","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[],"urls":[{"id":44783463,"url":"http://espace.library.uq.edu.au/view/UQ:67679"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086411"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086411/Anisotropic_Convection_Model_for_the_Earth_s_Mantle"><img alt="Research paper thumbnail of Anisotropic Convection Model for the Earth’s Mantle" class="work-thumbnail" src="https://attachments.academia-assets.com/118375452/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086411/Anisotropic_Convection_Model_for_the_Earth_s_Mantle">Anisotropic Convection Model for the Earth’s Mantle</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has origi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Mühlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector-the director-of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (<a href="http://www.cmis.csiro.au/Fastflo/" rel="nofollow">www.cmis.csiro.au/Fastflo/</a>). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8]and secondly to study the numerical performance of Eulerian (Fastflo)-and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc9d9151f42569da3999ef96183e46b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375452,&quot;asset_id&quot;:124086411,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375452/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086411"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086411"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086411; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086411]").text(description); $(".js-view-count[data-work-id=124086411]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086411; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086411']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc9d9151f42569da3999ef96183e46b5" } } $('.js-work-strip[data-work-id=124086411]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086411,"title":"Anisotropic Convection Model for the Earth’s Mantle","translated_title":"","metadata":{"grobid_abstract":"The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Mühlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector-the director-of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8]and secondly to study the numerical performance of Eulerian (Fastflo)-and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":118375452},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086411/Anisotropic_Convection_Model_for_the_Earth_s_Mantle","translated_internal_url":"","created_at":"2024-09-22T17:08:41.682-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375452/thumbnails/1.jpg","file_name":"10.1007_2F3-540-44863-2_77.pdf","download_url":"https://www.academia.edu/attachments/118375452/download_file","bulk_download_file_name":"Anisotropic_Convection_Model_for_the_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375452/10.1007_2F3-540-44863-2_77-libre.pdf?1727057333=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Convection_Model_for_the_Ear.pdf\u0026Expires=1741733762\u0026Signature=Bx5dica2ghfuvtOSlAtYwhj0NAj69s1wdDjlsnANaTLJ6lEL-9T2of9WgULUx3qkBp08WW1AQeAWzorqEwOHJf4OZ0qhyC8LoPSA5ZhJQ~sihH5RHXCOTi8QJREqJ9c3U5UJsN7CgVLcC8ntgo-emf~pWVoYtSnzCD~1VL7u7BEvnRHMkv1pw1X4hrl5Jwdh4FDaniLs~JmV5JwtNZ7gwcQvzczRh1yikQVYOMTlbOd7FFHyAs3qowvabr65OZ0Vmnu3IiSnFRUO7VIcBeoPVtiko~dNW9aWs9hXSOJfm1JCVfHx3Z1H~qs9cminSvih9Zb4OiM54A~7nKCnIdJQ~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anisotropic_Convection_Model_for_the_Earth_s_Mantle","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Mühlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector-the director-of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8]and secondly to study the numerical performance of Eulerian (Fastflo)-and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375452,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375452/thumbnails/1.jpg","file_name":"10.1007_2F3-540-44863-2_77.pdf","download_url":"https://www.academia.edu/attachments/118375452/download_file","bulk_download_file_name":"Anisotropic_Convection_Model_for_the_Ear.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375452/10.1007_2F3-540-44863-2_77-libre.pdf?1727057333=\u0026response-content-disposition=attachment%3B+filename%3DAnisotropic_Convection_Model_for_the_Ear.pdf\u0026Expires=1741733762\u0026Signature=Bx5dica2ghfuvtOSlAtYwhj0NAj69s1wdDjlsnANaTLJ6lEL-9T2of9WgULUx3qkBp08WW1AQeAWzorqEwOHJf4OZ0qhyC8LoPSA5ZhJQ~sihH5RHXCOTi8QJREqJ9c3U5UJsN7CgVLcC8ntgo-emf~pWVoYtSnzCD~1VL7u7BEvnRHMkv1pw1X4hrl5Jwdh4FDaniLs~JmV5JwtNZ7gwcQvzczRh1yikQVYOMTlbOd7FFHyAs3qowvabr65OZ0Vmnu3IiSnFRUO7VIcBeoPVtiko~dNW9aWs9hXSOJfm1JCVfHx3Z1H~qs9cminSvih9Zb4OiM54A~7nKCnIdJQ~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":17100,"name":"Theoretical Computer Science","url":"https://www.academia.edu/Documents/in/Theoretical_Computer_Science"},{"id":37333,"name":"Anisotropy","url":"https://www.academia.edu/Documents/in/Anisotropy"},{"id":84734,"name":"Existence","url":"https://www.academia.edu/Documents/in/Existence"},{"id":104786,"name":"Rock","url":"https://www.academia.edu/Documents/in/Rock"},{"id":202157,"name":"Mantle Convection","url":"https://www.academia.edu/Documents/in/Mantle_Convection"},{"id":419833,"name":"WAve","url":"https://www.academia.edu/Documents/in/WAve"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":1135792,"name":"Layers","url":"https://www.academia.edu/Documents/in/Layers"},{"id":2353926,"name":"Isotropy","url":"https://www.academia.edu/Documents/in/Isotropy"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086410"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086410/Large_Scale_Shear_Banding_in_Extension"><img alt="Research paper thumbnail of Large Scale Shear Banding in Extension" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086410/Large_Scale_Shear_Banding_in_Extension">Large Scale Shear Banding in Extension</a></div><div class="wp-workCard_item"><span>Springer Series in Geomechanics and Geoengineering</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We firs...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We first outline the consitituve relations. The deformation and localization process is illustrated by results of large deformation finite element simulations on a rectangular domain in extension for different constitutive models. We also show the variation of the average horizontal stress (stress resultant) conjugate</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086410"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086410"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086410; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086410]").text(description); $(".js-view-count[data-work-id=124086410]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086410; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086410']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086410]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086410,"title":"Large Scale Shear Banding in Extension","translated_title":"","metadata":{"abstract":"In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We first outline the consitituve relations. The deformation and localization process is illustrated by results of large deformation finite element simulations on a rectangular domain in extension for different constitutive models. We also show the variation of the average horizontal stress (stress resultant) conjugate","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Springer Series in Geomechanics and Geoengineering"},"translated_abstract":"In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We first outline the consitituve relations. The deformation and localization process is illustrated by results of large deformation finite element simulations on a rectangular domain in extension for different constitutive models. We also show the variation of the average horizontal stress (stress resultant) conjugate","internal_url":"https://www.academia.edu/124086410/Large_Scale_Shear_Banding_in_Extension","translated_internal_url":"","created_at":"2024-09-22T17:08:40.478-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Large_Scale_Shear_Banding_in_Extension","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"In this paper, we will explore the role of non-coaxiality on shear banding in pure shear. We first outline the consitituve relations. The deformation and localization process is illustrated by results of large deformation finite element simulations on a rectangular domain in extension for different constitutive models. We also show the variation of the average horizontal stress (stress resultant) conjugate","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":15947,"name":"Geodynamics","url":"https://www.academia.edu/Documents/in/Geodynamics"},{"id":45677,"name":"Shear bands","url":"https://www.academia.edu/Documents/in/Shear_bands"},{"id":158589,"name":"Strain Measurement","url":"https://www.academia.edu/Documents/in/Strain_Measurement"},{"id":174932,"name":"Large Deformation Mechanics","url":"https://www.academia.edu/Documents/in/Large_Deformation_Mechanics"},{"id":254893,"name":"Finite element simulation","url":"https://www.academia.edu/Documents/in/Finite_element_simulation"},{"id":303571,"name":"Compressibility","url":"https://www.academia.edu/Documents/in/Compressibility"},{"id":410412,"name":"Equation of Motion","url":"https://www.academia.edu/Documents/in/Equation_of_Motion"},{"id":590692,"name":"Mesh Sensitivity","url":"https://www.academia.edu/Documents/in/Mesh_Sensitivity"},{"id":593682,"name":"Constitutive model","url":"https://www.academia.edu/Documents/in/Constitutive_model"},{"id":758278,"name":"Large Scale","url":"https://www.academia.edu/Documents/in/Large_Scale"},{"id":1170984,"name":"Shear Banding","url":"https://www.academia.edu/Documents/in/Shear_Banding"},{"id":1231330,"name":"Constitutive Equation","url":"https://www.academia.edu/Documents/in/Constitutive_Equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086409"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124086409/Instabilities_across_the_Scales_Simple_Models_for_Shear_Banding_Plate_Subduction_and_Mantle_Convection_in_Geodynamics"><img alt="Research paper thumbnail of Instabilities across the Scales: Simple Models for Shear Banding, Plate Subduction and Mantle Convection in Geodynamics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124086409/Instabilities_across_the_Scales_Simple_Models_for_Shear_Banding_Plate_Subduction_and_Mantle_Convection_in_Geodynamics">Instabilities across the Scales: Simple Models for Shear Banding, Plate Subduction and Mantle Convection in Geodynamics</a></div><div class="wp-workCard_item"><span>Mechanics Down Under</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Earth shows different modes of deformation in response to thermal or gravitational driving fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Earth shows different modes of deformation in response to thermal or gravitational driving forces. The bulk mantle convects like a viscous fluid on the global scale, while the lithosphere is broken into several plates. They show little internal deformation, but change their shapes and relative positions. Oceanic plate material is generated at divergent margins and recycled into the mantle at subduction zones, on a regional scale. The buoyant continental crust resists subduction and develops meter-scale shear bands during deformation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086409"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086409"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086409; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086409]").text(description); $(".js-view-count[data-work-id=124086409]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086409; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086409']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124086409]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086409,"title":"Instabilities across the Scales: Simple Models for Shear Banding, Plate Subduction and Mantle Convection in Geodynamics","translated_title":"","metadata":{"abstract":"The Earth shows different modes of deformation in response to thermal or gravitational driving forces. The bulk mantle convects like a viscous fluid on the global scale, while the lithosphere is broken into several plates. They show little internal deformation, but change their shapes and relative positions. Oceanic plate material is generated at divergent margins and recycled into the mantle at subduction zones, on a regional scale. The buoyant continental crust resists subduction and develops meter-scale shear bands during deformation.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Mechanics Down Under"},"translated_abstract":"The Earth shows different modes of deformation in response to thermal or gravitational driving forces. The bulk mantle convects like a viscous fluid on the global scale, while the lithosphere is broken into several plates. They show little internal deformation, but change their shapes and relative positions. Oceanic plate material is generated at divergent margins and recycled into the mantle at subduction zones, on a regional scale. The buoyant continental crust resists subduction and develops meter-scale shear bands during deformation.","internal_url":"https://www.academia.edu/124086409/Instabilities_across_the_Scales_Simple_Models_for_Shear_Banding_Plate_Subduction_and_Mantle_Convection_in_Geodynamics","translated_internal_url":"","created_at":"2024-09-22T17:08:40.321-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Instabilities_across_the_Scales_Simple_Models_for_Shear_Banding_Plate_Subduction_and_Mantle_Convection_in_Geodynamics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The Earth shows different modes of deformation in response to thermal or gravitational driving forces. The bulk mantle convects like a viscous fluid on the global scale, while the lithosphere is broken into several plates. They show little internal deformation, but change their shapes and relative positions. Oceanic plate material is generated at divergent margins and recycled into the mantle at subduction zones, on a regional scale. The buoyant continental crust resists subduction and develops meter-scale shear bands during deformation.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":15947,"name":"Geodynamics","url":"https://www.academia.edu/Documents/in/Geodynamics"},{"id":32984,"name":"Mechanics of Materials","url":"https://www.academia.edu/Documents/in/Mechanics_of_Materials"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":202157,"name":"Mantle Convection","url":"https://www.academia.edu/Documents/in/Mantle_Convection"},{"id":284025,"name":"Shear Zone","url":"https://www.academia.edu/Documents/in/Shear_Zone"},{"id":668253,"name":"Lithosphere","url":"https://www.academia.edu/Documents/in/Lithosphere"},{"id":819047,"name":"Simple shear","url":"https://www.academia.edu/Documents/in/Simple_shear"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124086408"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124086408/Elasticity_yielding_and_episodicity_in_simple_models_of_mantle_convection"><img alt="Research paper thumbnail of Elasticity, yielding and episodicity in simple models of mantle convection" class="work-thumbnail" src="https://attachments.academia-assets.com/118375454/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124086408/Elasticity_yielding_and_episodicity_in_simple_models_of_mantle_convection">Elasticity, yielding and episodicity in simple models of mantle convection</a></div><div class="wp-workCard_item"><span>Pure and Applied Geophysics</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We explore the implications of refinements in the mechanical description of planetary constituent...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We explore the implications of refinements in the mechanical description of planetary constituents on the convection modes predicted by finite element simulations. The refinements consist in the inclusion of incremental elasticity, plasticity (yield ing) and multiple simultaneous creep mechanisms in addition to the usual visco-plastic models employed in the context of unified plate-mantle models. The main emphasis of this paper rests on the constitutive and computational formulation of the model. We apply a consistent incremental formulation of the non-linear governing equations avoiding the computationally expensive iterations that are otherwise necessary to handle the onset of plastic yield. In connection with episodic convection simulations, we point out the strong dependency of the results on the choice of the initial temperature distribution. Our results also indicate that the inclusion of elasticity in the constitutive relationships lowers the mechanical energy associated with subduction events.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="18e3d48084d6e845a88709d27786c446" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:118375454,&quot;asset_id&quot;:124086408,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/118375454/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124086408"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124086408"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124086408; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124086408]").text(description); $(".js-view-count[data-work-id=124086408]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124086408; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124086408']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "18e3d48084d6e845a88709d27786c446" } } $('.js-work-strip[data-work-id=124086408]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124086408,"title":"Elasticity, yielding and episodicity in simple models of mantle convection","translated_title":"","metadata":{"ai_title_tag":"Elasticity and Yielding in Mantle Convection","grobid_abstract":"We explore the implications of refinements in the mechanical description of planetary constituents on the convection modes predicted by finite element simulations. The refinements consist in the inclusion of incremental elasticity, plasticity (yield ing) and multiple simultaneous creep mechanisms in addition to the usual visco-plastic models employed in the context of unified plate-mantle models. The main emphasis of this paper rests on the constitutive and computational formulation of the model. We apply a consistent incremental formulation of the non-linear governing equations avoiding the computationally expensive iterations that are otherwise necessary to handle the onset of plastic yield. In connection with episodic convection simulations, we point out the strong dependency of the results on the choice of the initial temperature distribution. Our results also indicate that the inclusion of elasticity in the constitutive relationships lowers the mechanical energy associated with subduction events.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Pure and Applied Geophysics","grobid_abstract_attachment_id":118375454},"translated_abstract":null,"internal_url":"https://www.academia.edu/124086408/Elasticity_yielding_and_episodicity_in_simple_models_of_mantle_convection","translated_internal_url":"","created_at":"2024-09-22T17:08:40.164-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":3377561,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118375454,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375454/thumbnails/1.jpg","file_name":"paper-R6.pdf","download_url":"https://www.academia.edu/attachments/118375454/download_file","bulk_download_file_name":"Elasticity_yielding_and_episodicity_in_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375454/paper-R6-libre.pdf?1727057335=\u0026response-content-disposition=attachment%3B+filename%3DElasticity_yielding_and_episodicity_in_s.pdf\u0026Expires=1741733762\u0026Signature=aSfoiglXITHxreBBylAcBfggHzZbsQI27ldsaIB~X4dpUa-KmmbYEqf8auJNYfXMhVUJ2aB~1fsMw2sOXBAhfZH8uCNaZg4IJ-3TghOyGE661WSTof-V3sna5qwEL-QSnzRfNLAoKss8QjIRfdqccEDjsigSinex85b0tflM~xCeSBS2bVAZYuKFaUcAN2uD85z40E~uPodVZ2KWPSPmiGMPWtoDQPfWNK3l2HTvGhdgdMHhItJTKBW9FoXDHwncJOzgeWHJtgl4LYDdFbA67f7eTVkZV6L8212CtTZwgIYbWdPkYn~kIaseMznBgxC11ooBzME2IHQEoLHvdICkcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Elasticity_yielding_and_episodicity_in_simple_models_of_mantle_convection","translated_slug":"","page_count":28,"language":"en","content_type":"Work","summary":"We explore the implications of refinements in the mechanical description of planetary constituents on the convection modes predicted by finite element simulations. The refinements consist in the inclusion of incremental elasticity, plasticity (yield ing) and multiple simultaneous creep mechanisms in addition to the usual visco-plastic models employed in the context of unified plate-mantle models. The main emphasis of this paper rests on the constitutive and computational formulation of the model. We apply a consistent incremental formulation of the non-linear governing equations avoiding the computationally expensive iterations that are otherwise necessary to handle the onset of plastic yield. In connection with episodic convection simulations, we point out the strong dependency of the results on the choice of the initial temperature distribution. Our results also indicate that the inclusion of elasticity in the constitutive relationships lowers the mechanical energy associated with subduction events.","owner":{"id":3377561,"first_name":"Louis","middle_initials":null,"last_name":"Moresi","page_name":"LouisMoresi","domain_name":"anu-au","created_at":"2013-02-26T07:04:57.088-08:00","display_name":"Louis Moresi","url":"https://anu-au.academia.edu/LouisMoresi"},"attachments":[{"id":118375454,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118375454/thumbnails/1.jpg","file_name":"paper-R6.pdf","download_url":"https://www.academia.edu/attachments/118375454/download_file","bulk_download_file_name":"Elasticity_yielding_and_episodicity_in_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118375454/paper-R6-libre.pdf?1727057335=\u0026response-content-disposition=attachment%3B+filename%3DElasticity_yielding_and_episodicity_in_s.pdf\u0026Expires=1741733762\u0026Signature=aSfoiglXITHxreBBylAcBfggHzZbsQI27ldsaIB~X4dpUa-KmmbYEqf8auJNYfXMhVUJ2aB~1fsMw2sOXBAhfZH8uCNaZg4IJ-3TghOyGE661WSTof-V3sna5qwEL-QSnzRfNLAoKss8QjIRfdqccEDjsigSinex85b0tflM~xCeSBS2bVAZYuKFaUcAN2uD85z40E~uPodVZ2KWPSPmiGMPWtoDQPfWNK3l2HTvGhdgdMHhItJTKBW9FoXDHwncJOzgeWHJtgl4LYDdFbA67f7eTVkZV6L8212CtTZwgIYbWdPkYn~kIaseMznBgxC11ooBzME2IHQEoLHvdICkcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":1419,"name":"Structural Geology","url":"https://www.academia.edu/Documents/in/Structural_Geology"},{"id":2380,"name":"Plasticity","url":"https://www.academia.edu/Documents/in/Plasticity"},{"id":48636,"name":"Simulation","url":"https://www.academia.edu/Documents/in/Simulation"},{"id":48904,"name":"Elasticity","url":"https://www.academia.edu/Documents/in/Elasticity"},{"id":56351,"name":"Creep","url":"https://www.academia.edu/Documents/in/Creep"},{"id":58013,"name":"Geotectonics","url":"https://www.academia.edu/Documents/in/Geotectonics"},{"id":111222,"name":"Earthquake Seismology","url":"https://www.academia.edu/Documents/in/Earthquake_Seismology"},{"id":202157,"name":"Mantle Convection","url":"https://www.academia.edu/Documents/in/Mantle_Convection"},{"id":307241,"name":"Ex","url":"https://www.academia.edu/Documents/in/Ex"},{"id":479906,"name":"Fluid Physics","url":"https://www.academia.edu/Documents/in/Fluid_Physics"},{"id":788181,"name":"Pure and Applied Geophysics","url":"https://www.academia.edu/Documents/in/Pure_and_Applied_Geophysics"},{"id":990849,"name":"Mathematical Software","url":"https://www.academia.edu/Documents/in/Mathematical_Software"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5701604" id="conferencepapers"><div class="js-work-strip profile--work_container" data-work-id="939185"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/939185/Frameworks_for_Scientific_Programming"><img alt="Research paper thumbnail of Frameworks for Scientific Programming" class="work-thumbnail" src="https://attachments.academia-assets.com/48266343/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/939185/Frameworks_for_Scientific_Programming">Frameworks for Scientific Programming</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/LouisMoresi">Louis Moresi</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unimelb.academia.edu/PatrickSunter">Patrick Sunter</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">High-performance scientific applications are notoriously difficult and expensive to develop, main...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">High-performance scientific applications are notoriously difficult and expensive to develop, maintain, and adapt. Very little progress had been made in programmer productivity in decades. By contrast, in the business programming community massive strides have been made in productivity, through software technology including component-based programming and frameworks. Attempts to transfer this technology to the scientific community have largely been unsuccessful until recently. However, recent advances in libraries and tools and software technology mean that the elusive goal of increased high-performance scientific programming productivity may be within reach.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="788d1f5a54a9a0a56aa65fc36648edef" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48266343,&quot;asset_id&quot;:939185,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48266343/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="939185"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="939185"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 939185; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=939185]").text(description); $(".js-view-count[data-work-id=939185]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 939185; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='939185']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "788d1f5a54a9a0a56aa65fc36648edef" } } $('.js-work-strip[data-work-id=939185]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":939185,"title":"Frameworks for Scientific Programming","translated_title":"","metadata":{"location":"Gold Coast, Australia","more_info":"APAC '03: Proceedings of the APAC Conference and Exhibition on Advanced Computing, Grid Applications and eResearch","organization":"Australian Partnership for Advanced Computing","grobid_abstract":"High-performance scientific applications are notoriously difficult and expensive to develop, maintain, and adapt. Very little progress had been made in programmer productivity in decades. By contrast, in the business programming community massive strides have been made in productivity, through software technology including component-based programming and frameworks. Attempts to transfer this technology to the scientific community have largely been unsuccessful until recently. However, recent advances in libraries and tools and software technology mean that the elusive goal of increased high-performance scientific programming productivity may be within reach.","conference_end_date":{"day":2,"month":10,"year":2003,"errors":{}},"conference_start_date":{"day":29,"month":9,"year":2003,"errors":{}},"grobid_abstract_attachment_id":48266343},"translated_abstract":null,"internal_url":"https://www.academia.edu/939185/Frameworks_for_Scientific_Programming","translated_internal_url":"","created_at":"2011-09-22T00:01:28.237-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":776635,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":23282809,"work_id":939185,"tagging_user_id":776635,"tagged_user_id":12706299,"co_author_invite_id":null,"email":"b***e@gmail.com","display_order":-5,"name":"Bill Appelbe","title":"Frameworks for Scientific Programming"},{"id":23282804,"work_id":939185,"tagging_user_id":776635,"tagged_user_id":44566450,"co_author_invite_id":null,"email":"l***c@jsg.utexas.edu","display_order":-4,"name":"Luc Lavier","title":"Frameworks for Scientific Programming"},{"id":23728940,"work_id":939185,"tagging_user_id":776635,"tagged_user_id":3377561,"co_author_invite_id":null,"email":"l***i@gmail.com","affiliation":"The Australian National University","display_order":-3,"name":"Louis Moresi","title":"Frameworks for Scientific Programming"},{"id":23670711,"work_id":939185,"tagging_user_id":776635,"tagged_user_id":null,"co_author_invite_id":814261,"email":"d***y@erdw.ethz.ch","display_order":-2,"name":"David May","title":"Frameworks for Scientific Programming"},{"id":23282813,"work_id":939185,"tagging_user_id":776635,"tagged_user_id":47846117,"co_author_invite_id":null,"email":"s***e@monash.edu","display_order":-1,"name":"Steve M Quenette","title":"Frameworks for Scientific Programming"},{"id":23728958,"work_id":939185,"tagging_user_id":776635,"tagged_user_id":null,"co_author_invite_id":5288997,"email":"s***w@vpac.org","display_order":1,"name":"Siew-Ching Tan","title":"Frameworks for Scientific Programming"}],"downloadable_attachments":[{"id":48266343,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48266343/thumbnails/1.jpg","file_name":"2003-APAC-paper-Frameworks-Appelbe_et_al.pdf","download_url":"https://www.academia.edu/attachments/48266343/download_file","bulk_download_file_name":"Frameworks_for_Scientific_Programming.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48266343/2003-APAC-paper-Frameworks-Appelbe_et_al-libre.pdf?1472000556=\u0026response-content-disposition=attachment%3B+filename%3DFrameworks_for_Scientific_Programming.pdf\u0026Expires=1741733762\u0026Signature=SCy16nGplPM-L13qW1clmjrcAidrH7YQhM8z~MMAMc~-qWiO5mOc65j3iyxEaAUWK8V6prnB5TGuwHRLcUftRdj7hiqIGb0N5syyGHU84ITyJkmS0fgPcxP8wdwUqgnGikWOUKkfO7g1oHUx0yRGyf4tEBAlHioLUosG7zpzLH0uZAacBWZdhVTb2-ef6kNkVHW8SgJWxHMVOB9gM0aaQcgd0rmvLKrCfw9EGeNXhh-Y4fLUD7N8vWr322HGfsAHJSklUrWt0q-4i485t7MNxOZdQae8PhQVwu5YJy18TWWJu5y3Jp3ZfWO9yXJdu6TAoalBN3PVGwL0aMwzAHtX7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Frameworks_for_Scientific_Programming","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"High-performance scientific applications are notoriously difficult and expensive to develop, maintain, and adapt. Very little progress had been made in programmer productivity in decades. By contrast, in the business programming community massive strides have been made in productivity, through software technology including component-based programming and frameworks. Attempts to transfer this technology to the scientific community have largely been unsuccessful until recently. However, recent advances in libraries and tools and software technology mean that the elusive goal of increased high-performance scientific programming productivity may be within reach.","owner":{"id":776635,"first_name":"Patrick","middle_initials":"","last_name":"Sunter","page_name":"PatrickSunter","domain_name":"unimelb","created_at":"2011-09-21T23:55:30.676-07:00","display_name":"Patrick Sunter","url":"https://unimelb.academia.edu/PatrickSunter"},"attachments":[{"id":48266343,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48266343/thumbnails/1.jpg","file_name":"2003-APAC-paper-Frameworks-Appelbe_et_al.pdf","download_url":"https://www.academia.edu/attachments/48266343/download_file","bulk_download_file_name":"Frameworks_for_Scientific_Programming.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48266343/2003-APAC-paper-Frameworks-Appelbe_et_al-libre.pdf?1472000556=\u0026response-content-disposition=attachment%3B+filename%3DFrameworks_for_Scientific_Programming.pdf\u0026Expires=1741733762\u0026Signature=SCy16nGplPM-L13qW1clmjrcAidrH7YQhM8z~MMAMc~-qWiO5mOc65j3iyxEaAUWK8V6prnB5TGuwHRLcUftRdj7hiqIGb0N5syyGHU84ITyJkmS0fgPcxP8wdwUqgnGikWOUKkfO7g1oHUx0yRGyf4tEBAlHioLUosG7zpzLH0uZAacBWZdhVTb2-ef6kNkVHW8SgJWxHMVOB9gM0aaQcgd0rmvLKrCfw9EGeNXhh-Y4fLUD7N8vWr322HGfsAHJSklUrWt0q-4i485t7MNxOZdQae8PhQVwu5YJy18TWWJu5y3Jp3ZfWO9yXJdu6TAoalBN3PVGwL0aMwzAHtX7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="27990585"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/27990585/An_investigation_into_design_for_code_maintainability_in_HPC"><img alt="Research paper thumbnail of An investigation into design for code maintainability in HPC" class="work-thumbnail" src="https://attachments.academia-assets.com/48294727/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/27990585/An_investigation_into_design_for_code_maintainability_in_HPC">An investigation into design for code maintainability in HPC</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://anu-au.academia.edu/LouisMoresi">Louis Moresi</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://unimelb.academia.edu/PatrickSunter">Patrick Sunter</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">There are two ways to interpret a title such as &quot; A Plug-in based design for code maintainability...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">There are two ways to interpret a title such as &quot; A Plug-in based design for code maintainability in HPC &quot; , based on whether you are: through and through a HPC traditionalist, and then there is everybody else. But with realisation of computer software development cost, the commoditisation of clustering and the requirement of cross disciplinary science, scientific code evolution and maintenance for researchers is a real issue. This paper investigates what performance costs does one bare for the flexibility and maintainability of HPC software. If we can&#39;t be fully flexible, what can be? With all modern HPC platforms facilitating expected features such as dynamic libraries, concepts such as plugins can be considered. We explain how and where and why such concepts may be utilised. Then we offer two indicative examples of two very differently formulated scientific codes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="28060f574e8ea0431b416a225fef42ae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48294727,&quot;asset_id&quot;:27990585,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48294727/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="27990585"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="27990585"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 27990585; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=27990585]").text(description); $(".js-view-count[data-work-id=27990585]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 27990585; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='27990585']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "28060f574e8ea0431b416a225fef42ae" } } $('.js-work-strip[data-work-id=27990585]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":27990585,"title":"An investigation into design for code maintainability in HPC","translated_title":"","metadata":{"abstract":"There are two ways to interpret a title such as \" A Plug-in based design for code maintainability in HPC \" , based on whether you are: through and through a HPC traditionalist, and then there is everybody else. But with realisation of computer software development cost, the commoditisation of clustering and the requirement of cross disciplinary science, scientific code evolution and maintenance for researchers is a real issue. This paper investigates what performance costs does one bare for the flexibility and maintainability of HPC software. If we can't be fully flexible, what can be? With all modern HPC platforms facilitating expected features such as dynamic libraries, concepts such as plugins can be considered. We explain how and where and why such concepts may be utilised. Then we offer two indicative examples of two very differently formulated scientific codes.","location":"Melbourne, Australia","more_info":"12th Biennial Computational Techniques and Applications Conference (CTAC)","organization":"ANZIAM","conference_end_date":{"day":1,"month":10,"year":2004,"errors":{}},"conference_start_date":{"day":27,"month":9,"year":2004,"errors":{}}},"translated_abstract":"There are two ways to interpret a title such as \" A Plug-in based design for code maintainability in HPC \" , based on whether you are: through and through a HPC traditionalist, and then there is everybody else. But with realisation of computer software development cost, the commoditisation of clustering and the requirement of cross disciplinary science, scientific code evolution and maintenance for researchers is a real issue. This paper investigates what performance costs does one bare for the flexibility and maintainability of HPC software. If we can't be fully flexible, what can be? With all modern HPC platforms facilitating expected features such as dynamic libraries, concepts such as plugins can be considered. We explain how and where and why such concepts may be utilised. Then we offer two indicative examples of two very differently formulated scientific codes.","internal_url":"https://www.academia.edu/27990585/An_investigation_into_design_for_code_maintainability_in_HPC","translated_internal_url":"","created_at":"2016-08-24T17:55:01.976-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":776635,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":23701947,"work_id":27990585,"tagging_user_id":776635,"tagged_user_id":47846117,"co_author_invite_id":null,"email":"s***e@monash.edu","display_order":-5,"name":"Steve M Quenette","title":"An investigation into design for code maintainability in HPC"},{"id":23701948,"work_id":27990585,"tagging_user_id":776635,"tagged_user_id":12706299,"co_author_invite_id":null,"email":"b***e@gmail.com","display_order":-4,"name":"Bill Appelbe","title":"An investigation into design for code maintainability in HPC"},{"id":23701949,"work_id":27990585,"tagging_user_id":776635,"tagged_user_id":30636278,"co_author_invite_id":null,"email":"g***s@gps.caltech.edu","display_order":-3,"name":"Michael Gurnis","title":"An investigation into design for code maintainability in HPC"},{"id":23701950,"work_id":27990585,"tagging_user_id":776635,"tagged_user_id":null,"co_author_invite_id":5276571,"email":"f***e@gmail.com","display_order":-2,"name":"Luke Hodkinson","title":"An investigation into design for code maintainability in HPC"},{"id":23701951,"work_id":27990585,"tagging_user_id":776635,"tagged_user_id":3377561,"co_author_invite_id":null,"email":"l***i@gmail.com","affiliation":"The Australian National University","display_order":-1,"name":"Louis Moresi","title":"An investigation into design for code maintainability in HPC"}],"downloadable_attachments":[{"id":48294727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48294727/thumbnails/1.jpg","file_name":"2004-CTAC-Quenette_et_al-An_investigation_into_design_for_code_maintainabil.pdf","download_url":"https://www.academia.edu/attachments/48294727/download_file","bulk_download_file_name":"An_investigation_into_design_for_code_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48294727/2004-CTAC-Quenette_et_al-An_investigation_into_design_for_code_maintainabil-libre.pdf?1472086773=\u0026response-content-disposition=attachment%3B+filename%3DAn_investigation_into_design_for_code_ma.pdf\u0026Expires=1741733762\u0026Signature=FgvJFHN3-dvOdENAppq100ylaLRFHBDaq3jGlIcTa4dgCyArvp7juQcicRQ7t78YhnTYEg8HCVa80xI88~cShi8nnyXbFhytv~81aeDDXTOS-czmjN~Zxpd-0UHVna8LTYMgTZFlG2fERxSUDttmAXui02cIggWWWovxD71gvSNrqjyo9XNtYvyoSf1qGpmgcjpzv4tpO1U3kiqoJyetGz0cnqL6ToYveUYMoc9fGZGIJ8OvVivWcBE2iRscRgYvuzDV~aQvtLn9OffKJIqRzvjU2TaywdBb5B49K1Xd~h2-X0p~-l8Zq2qf-VooUCS-TO~CpX0mNcysMUQgklOy7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_investigation_into_design_for_code_maintainability_in_HPC","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"There are two ways to interpret a title such as \" A Plug-in based design for code maintainability in HPC \" , based on whether you are: through and through a HPC traditionalist, and then there is everybody else. But with realisation of computer software development cost, the commoditisation of clustering and the requirement of cross disciplinary science, scientific code evolution and maintenance for researchers is a real issue. This paper investigates what performance costs does one bare for the flexibility and maintainability of HPC software. If we can't be fully flexible, what can be? With all modern HPC platforms facilitating expected features such as dynamic libraries, concepts such as plugins can be considered. We explain how and where and why such concepts may be utilised. Then we offer two indicative examples of two very differently formulated scientific codes.","owner":{"id":776635,"first_name":"Patrick","middle_initials":"","last_name":"Sunter","page_name":"PatrickSunter","domain_name":"unimelb","created_at":"2011-09-21T23:55:30.676-07:00","display_name":"Patrick Sunter","url":"https://unimelb.academia.edu/PatrickSunter"},"attachments":[{"id":48294727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48294727/thumbnails/1.jpg","file_name":"2004-CTAC-Quenette_et_al-An_investigation_into_design_for_code_maintainabil.pdf","download_url":"https://www.academia.edu/attachments/48294727/download_file","bulk_download_file_name":"An_investigation_into_design_for_code_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48294727/2004-CTAC-Quenette_et_al-An_investigation_into_design_for_code_maintainabil-libre.pdf?1472086773=\u0026response-content-disposition=attachment%3B+filename%3DAn_investigation_into_design_for_code_ma.pdf\u0026Expires=1741733762\u0026Signature=FgvJFHN3-dvOdENAppq100ylaLRFHBDaq3jGlIcTa4dgCyArvp7juQcicRQ7t78YhnTYEg8HCVa80xI88~cShi8nnyXbFhytv~81aeDDXTOS-czmjN~Zxpd-0UHVna8LTYMgTZFlG2fERxSUDttmAXui02cIggWWWovxD71gvSNrqjyo9XNtYvyoSf1qGpmgcjpzv4tpO1U3kiqoJyetGz0cnqL6ToYveUYMoc9fGZGIJ8OvVivWcBE2iRscRgYvuzDV~aQvtLn9OffKJIqRzvjU2TaywdBb5B49K1Xd~h2-X0p~-l8Zq2qf-VooUCS-TO~CpX0mNcysMUQgklOy7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":443,"name":"High Performance Computing","url":"https://www.academia.edu/Documents/in/High_Performance_Computing"},{"id":449,"name":"Software Engineering","url":"https://www.academia.edu/Documents/in/Software_Engineering"},{"id":478,"name":"Scientific Computing (Computational Science)","url":"https://www.academia.edu/Documents/in/Scientific_Computing_Computational_Science_"},{"id":4672,"name":"Open Source Software","url":"https://www.academia.edu/Documents/in/Open_Source_Software"},{"id":23064,"name":"Aspect Oriented Software Development","url":"https://www.academia.edu/Documents/in/Aspect_Oriented_Software_Development"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 2 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "eeeb7fee30d64f6fda7b6ea755605a1676d58a115c121d8437823826e73ecb99", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="DFz2SzCTg8GpZyXfD_Jj4z_CfJkW0PsDeZ5kU4CREKu2CyRpYFaLedd2o-82y9xK8lwfhQRB8m0rlTxeqX1NRQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://anu-au.academia.edu/LouisMoresi" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="sQpvv--3KfFfFM9f9-m4W9O2rEwHCZTEZmOpJtaQX7cLXb2dv3IhSSEFSW_O0AfyHijPUBWYnao0aPEr_3wCWQ" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10