CINXE.COM

Search results for: antimicrobial assay

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: antimicrobial assay</title> <meta name="description" content="Search results for: antimicrobial assay"> <meta name="keywords" content="antimicrobial assay"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="antimicrobial assay" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="antimicrobial assay"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1896</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: antimicrobial assay</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1896</span> Antioxidant and Antimicrobial Properties of Twenty Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Krimat">S. Krimat</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Dob"> T. Dob</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lamari"> L. Lamari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Metidji"> H. Metidji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate the antioxidant and antimicrobial activity of hydromethanolic extract of selected Algerian medicinal flora. The antioxidant activity of extract was evaluated in terms of radical scavenging potential (DPPH) and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was tested against five microorganisms Pseu-domonas aeruginosa Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Candida albicans. The results showed that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50 = 4.60 μg/ml), while Populus trimula had the highest antioxidant activity in β-carotene/linolaic acid assay. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. The results indicate that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algerian%20medicinal%20plants" title="Algerian medicinal plants">Algerian medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20diffusion%20method" title=" disc diffusion method"> disc diffusion method</a> </p> <a href="https://publications.waset.org/abstracts/53185/antioxidant-and-antimicrobial-properties-of-twenty-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1895</span> An Alternative Antimicrobial Approach to Fight Bacterial Pathogens from Phellinus linteus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Techaoei">S. Techaoei</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jarmkom"> K. Jarmkom</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Eakwaropas"> P. Eakwaropas</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Khobjai"> W. Khobjai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research was focused on investigating <em>in</em> <em>vitro</em> antimicrobial activity of <em>Phellinus linteus</em> fruiting body extracts on <em>Pseudomonas aeruginosa</em>, <em>Escherichia coli</em>, <em>Staphylococcus aureus</em> and Methicillin-resistant <em>Staphylococcus aureus</em>. <em>Phellinus linteus</em> fruiting body was extracted with ethanol and ethyl acetate and was vaporized. The disc diffusion assay was used to assess antimicrobial activity against tested bacterial strains. Primary screening of chemical profile of crude extract was determined by using thin layer chromatography. The positive control and the negative control were used as erythromycin and dimethyl sulfoxide, respectively. Initial screening of <em>Phellinus linteus</em> crude extract with the disc diffusion assay demonstrated that only ethanol had greater antimicrobial activity against <em>Pseudomonas aeruginosa</em>, <em>Escherichia coli</em>, <em>Staphylococcus aureus</em> and Methicillin-resistant <em>Staphylococcus aureus</em>. The MIC assay showed that the lower MIC was observed with 0.5 mg/ml of <em>Pseudomonas aeruginosa</em> and Methicillin-resistant <em>Staphylococcus aureus</em> and 0.25 mg/ml. of <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, respectively. TLC chemical profile of extract was represented at R<sub>f</sub> &asymp; 0.71-0.76. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title="Staphylococcus aureus">Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Phellinus%20linteus" title=" Phellinus linteus"> Phellinus linteus</a>, <a href="https://publications.waset.org/abstracts/search?q=Methicillin-resistant%20Staphylococcus%20aureus" title=" Methicillin-resistant Staphylococcus aureus"> Methicillin-resistant Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/61558/an-alternative-antimicrobial-approach-to-fight-bacterial-pathogens-from-phellinus-linteus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1894</span> Prevalence and Evaluation of Antimicrobial Activity of Dodonaea viscosa Extract and Antibacterial Agents against Salmonella spp. Isolated from Poultry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shayma%20Munqith%20Al-Baker">Shayma Munqith Al-Baker</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadhl%20Ahmed%20Saeed%20Al-Gasha%E2%80%99a"> Fadhl Ahmed Saeed Al-Gasha’a</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Hamid%20Hanash"> Samira Hamid Hanash</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ali%20Al-Hazmi"> Ahmed Ali Al-Hazmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 200 samples (180 fecal materials and 20 organ samples) were collected from (5 different poultry farms, 10 local poultry shops, 5 houses poultry, 5 Eggs stores shops and 5 hand slaughters centers) in Ibb city, Yemen, 2014. According to morphological, cultural, as well as biochemical characterization and serological tests, 59 29.5% isolates were identified as Salmonella spp. and all Salmonella isolates were categorized by serotype, which comprised of, 37 62.71% Salmonella Typhimurium serovar, 21 35.59%. Salmonella Enteritidis serovar and 11.69% Salmonella Heidelberg serovar. Antibiotic sensitivity test was done for bacterial isolates and the results showed there were clear differences in antibiotic resistant. Antimicrobial susceptibility of the isolates varies as follows: Ofloxacin 79.66%, Ciprofloxacin 67.80%, Colistin 59.32% and Gentamycin 52.54%. All of isolates were resistant to Erythromycin, Penicillin and Lincomycin. Antibacterial activity was done for both aqueous and ethanol extracts of Dodonaea viscosa plant by using well and disc diffusion assay. The results indicated that well diffusion assay had best results than disc diffusion assay, the highest inhibition zone was 22 mm for well diffusion and 15 mm for disc diffusion assay, the results observed that ethanol extract had best antibacterial effect than aqueous extract which the percentage of bacterial isolates affected with ethanol extract was 71.19% comparing with aqueous extract 28.81% by using disc diffusion assay, while the percentage of bacterial isolates affected with ethanol extract was 88.13% comparing with aqueous extract 52.54% by using will diffusion assay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20spp" title="Salmonella spp">Salmonella spp</a>, <a href="https://publications.waset.org/abstracts/search?q=Dodonaea%20viscosa" title=" Dodonaea viscosa"> Dodonaea viscosa</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20and%20salmonellosis" title=" antimicrobial and salmonellosis"> antimicrobial and salmonellosis</a> </p> <a href="https://publications.waset.org/abstracts/26871/prevalence-and-evaluation-of-antimicrobial-activity-of-dodonaea-viscosa-extract-and-antibacterial-agents-against-salmonella-spp-isolated-from-poultry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1893</span> Antioxidant Activity of the Methanolic Extract and Antimicrobial Activity of the Essential Oil of Rosmarinus officinalis L. Grown in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Belkacem">Nassim Belkacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Azzam"> Amina Azzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Haouchine"> Dalila Haouchine</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahina%20Bennacer"> Kahina Bennacer</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Soufit"> Samira Soufit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To evaluate the antioxidant activity of the methanolic extract along with the antimicrobial activity of the essential oil of the aerial parts of Rosmarinus officinalis L. collected in the region of Bejaia (northern center of Algeria). Materials and methods: The polyphenols and flavonoids contents of the methanolic extract were measured. The antioxidant activity was evaluated using two methods: the ABTS method and DPPH assay. The antimicrobial activity was studied by the agar diffusion method against five bacterial strains (Three Gram positive strains and two Gram negative strains) and one fungus. Results: The total polyphenol and flavonoid content was about 43.8 mg gallic acid equivalent per gram (GA Eq/g) and 7.04 mg quercetin equivalent per gram (Q Eq/g), respectively. In the ABTS assay, the rosemary extract has shown an inhibition of 98.02% at the concentration of 500ug/ml with a half maximal inhibitory concentration value (IC50) of 194.92ug/ml. The results of DPPH assay have shown that the rosemary extract has an inhibition of 94.67 % with an IC50 value of 17.87ug/ml, which is lower than that of Butylhydroxyanisol (BHA) about 6.03ug/ml and ascorbic acid about 1.24μg/ml. The yield in essential oil of rosemary obtained by hydrodistillation was 1.42%. Based on the determination of the diameter of inhibition, different antimicrobial activity of the essential oil was revealed against the six tested microbes. Escherichia coli from the University Hospital (UH), Streptococcus aureus (UH) and Pseudomonas aeruginosa ATCC have a minimum inhibitory concentration value (MIC) of 62.5µl/ml. However, Bacillus sp (UH) and Staphylococcus aureus ATCC have an MIC value of 125μl/ml. The inhibition zone against Candida sp was about 24 mm. The aromatograms showed that the essential oil of rosemary exercises an antifungal activity more important than the antibacterial one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosmarinus%20officinalis%20L." title="Rosmarinus officinalis L.">Rosmarinus officinalis L.</a>, <a href="https://publications.waset.org/abstracts/search?q=maceration" title=" maceration"> maceration</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/22071/antioxidant-activity-of-the-methanolic-extract-and-antimicrobial-activity-of-the-essential-oil-of-rosmarinus-officinalis-l-grown-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1892</span> The Effect of Solution pH of Chitosan on Antimicrobial Properties of Nylon 6,6 Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nil%C3%BCfer%20Y%C4%B1ld%C4%B1z%20Varan">Nilüfer Yıldız Varan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The antimicrobial activities of chitosan against various bacteria and fungi are well known, and the antimicrobial activity of chitosan depends on pH. This study investigates the antimicrobial activity at different pH levels. Nylon 6,6 fabrics were treated with different chitosan solutions. Additionally, samples were treated also in basic conditions to see the antimicrobial activities. AATCC Test Method 100 was followed to evaluate the antimicrobial activity using Staphylococcus aureus ATCC 6538 test inoculum. The pH of the chitosan solutions was controlled below 6.5 since chitosan shows its antimicrobial activity only in acidic conditions because of its poor solubility above 6.5. In basic conditions, the samples did not show any antimicrobial activity. It appears from SEM images that the bonded chitosan in the structures exists. In acidic media (ph < 6.5), all samples showed antimicrobial activity. No correlation was found between pH levels and antimicrobial activity in acidic media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%206" title=" nylon 6"> nylon 6</a>, <a href="https://publications.waset.org/abstracts/search?q=6" title="6">6</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking" title=" crosslinking"> crosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stability" title=" pH stability"> pH stability</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/74096/the-effect-of-solution-ph-of-chitosan-on-antimicrobial-properties-of-nylon-66-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1891</span> Recent Advancements and Future Trends in the Development of Antimicrobial Edible Films for Food Preservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raana%20Babadi%20Fathipour">Raana Babadi Fathipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food packaging plays a crucial role in protecting food from unwanted external factors. Antibacterial edible films are a promising option for food packaging due to their biodegradability, environmental friendliness, and safety. This paper reviews recent research progress on antimicrobial edible films, focusing on those made from polysaccharides, proteins, and lipids. Polysaccharides and proteins are the primary components of antimicrobial edible films, while lipids primarily serve as plasticizers and carriers for active substances in composite films. For instance, second-generation liposomes have shown great potential as carriers for antimicrobial substances and other bioactive compounds due to their exceptional stability. Furthermore, this paper analyzes recent advancements and future trends in antimicrobial edible films. One promising direction is the integration of antimicrobial edible film materials with delivery systems, such as nanoemulsion and microencapsulation technologies, to ensure stable loading of bioactive substances. Another emerging area of interest is the development of smart and active packaging that allows consumers to assess the freshness of food products without opening the package. pH-sensitive films and smart fluorescent "on-off" sensors for humidity are currently being explored as materials for smart and active packaging to monitor food product freshness, with further exploration anticipated in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20edible%20film" title="antimicrobial edible film">antimicrobial edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent" title=" antimicrobial agent"> antimicrobial agent</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay" title=" antimicrobial assay"> antimicrobial assay</a> </p> <a href="https://publications.waset.org/abstracts/176779/recent-advancements-and-future-trends-in-the-development-of-antimicrobial-edible-films-for-food-preservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1890</span> Antibacterial and Antioxidant Activities of Artemisia herba-alba Asso Essential Oil Growing in M’sila (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Meliani">Asma Meliani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lakehal"> S. Lakehal</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Benrebiha"> F. Z. Benrebiha</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Chaouia"> C. Chaouia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing interest in phytochemicals as new source of natural antioxidant and antimicrobial agents. Plants essential oils have come more into the focus of phytomedicine. Many researchers have reported various biological and/or pharmacological properties of Artemisia herba alba Asso essential oil. The present study describes antimicrobial and antioxidant properties of Artemisia herba alba Asso essential oil. Artemisia herba alba Asso essential oil obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (M’sila) was analyzed by GC-MS. The essential oil yield of the study was 0.7%. The major components were found to be camphor, chrysanthenone et 1,8-cineole. The antimicrobial activity of the essential oil was tested against four bacteria (Gram-negative and Gram-positive) and three fungi using the diffusion method and by determining the inhibition zone. The oil was found to have significant antibacterial activity. In addition, antioxidant activity was determined by 1, 1-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric reducing (FRAP) assay and β-carotene bleaching test, and high activity was found for Artemisia herba-alba oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20herba-alba" title="Artemisia herba-alba">Artemisia herba-alba</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/15986/antibacterial-and-antioxidant-activities-of-artemisia-herba-alba-asso-essential-oil-growing-in-msila-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1889</span> Antibacterial and Antioxidant Properties of Artemisia herba-alba Asso Essential Oil Growing in M’sila, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Meliani">Asma Meliani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lakehal"> S. Lakehal</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Benrebiha"> F. Z. Benrebiha</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Chaouia"> C. Chaouia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing interest in phytochemicals as new source of natural antioxidant and antimicrobial agents. Plants essential oils have come more into the focus of phytomedicine. Many researchers have reported various biological and/or pharmacological properties of Artemisia herba alba Asso essential oil. The present study describes antimicrobial and antioxidant properties of Artemisia herba alba Asso essential oil. Artemisia herba alba Asso essential oil obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (M’sila) was analyzed by GC-MS. The essential oil yield of the study was 0.7 %. The major components were found to be camphor, chrysanthenone et 1,8-cineole. The antimicrobial activity of the essential oil was tested against four bacteria (Gram-negative and Gram-positive) and one fungi using the diffusion method and by determining the inhibition zone. The oil was found to have significant antibacterial activity. In addition, antioxidant activity was determined by 1,1-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric reducing (FRAP) assay and β-carotene bleaching test, and high activity was found for Artemisia herba-alba oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20herba-alba" title="Artemisia herba-alba">Artemisia herba-alba</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/18124/antibacterial-and-antioxidant-properties-of-artemisia-herba-alba-asso-essential-oil-growing-in-msila-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1888</span> Discerning of Antimicrobial Potential of Phenylpropanoic Acid Derived Oxadiazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Fuloria">Neeraj Kumar Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivkanya%20Fuloria"> Shivkanya Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20%20Singh"> Amit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2-Phenyl propionic acid and oxadiazoles possess antimicrobial potential. 2-Phenyl propane hydrazide (1), on cyclization with aromatic acids offered 2-aryl-5-(1-phenylethyl)-1,3,4-oxadiazole derivatives (1A-E). The PPA derived oxadiazoles were characterized by elemental analysis and spectral studies. The compounds were screened for antimicrobial potential. The compound 1D bearing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to a certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the PPA derived oxadiazoles enhanced their antimicrobial potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=imines" title=" imines"> imines</a>, <a href="https://publications.waset.org/abstracts/search?q=oxadiazoles" title=" oxadiazoles"> oxadiazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=PPA" title=" PPA"> PPA</a> </p> <a href="https://publications.waset.org/abstracts/67533/discerning-of-antimicrobial-potential-of-phenylpropanoic-acid-derived-oxadiazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1887</span> Comparison of Phenolic and Urushiol Contents of Different Parts of Rhus verniciflua and Their Antimicrobial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Jang">Jae Young Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Hoon%20Ahn"> Jong Hoon Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Woong%20Lim"> Jae-Woong Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=So%20Young%20Kang"> So Young Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi%20Kyeong%20Lee"> Mi Kyeong Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rhus verniciflua is commonly known as a lacquer tree in Korea. Stem barks of R. verniciflua have been used as an immunostimulator in traditional medicine. It contains phenolic compounds and is known for diverse biological activities such as antioxidant and antimicrobial activity. However, it also causes allergic dermatitis due to urushiols derivatives. For the development of active natural resources with less toxicity, the content of phenolic compounds and urushiols of different parts of R. verniciflua such as stem barks, lignum and leaves were quantitated by colorimetric assay and HPLC analysis. The urushiols content were the highest in stem barks, and followed by leaves. The lignum contained trace amount of urushiols. The phenolic contents, however, were the most abundant in lignum, and followed by leaves and stem barks. These results clear showed that the content of urushiols and phenolic differs depending on the parts of R. verniciflua. Antimicrobial activity of different parts of R. verniciflua against fish pathogenic bacteria was also investigated using Edwardsiella tarda. Lignum of R. verniciflua was the most effective in antimicrobial activity against E. tarda and phenolic constituents are suggested to be active constituents for activity. Taken together, phenolic compounds are responsible for antimicrobial activity of R. verniciflua. The lignum of R. verniciflua contains high content of phenolic compounds with less urushiols, which suggests efficient antimicrobial activity with less toxicity. Therefore, lignum of R. verniciflua are suggested as good sources for antimicrobial activity against fish bacterial diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=different%20parts" title="different parts">different parts</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhus%20verniciflua" title=" Rhus verniciflua"> Rhus verniciflua</a>, <a href="https://publications.waset.org/abstracts/search?q=urushiols" title=" urushiols "> urushiols </a> </p> <a href="https://publications.waset.org/abstracts/56183/comparison-of-phenolic-and-urushiol-contents-of-different-parts-of-rhus-verniciflua-and-their-antimicrobial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1886</span> Isolation of Antimicrobial Compounds from Marine Sponge Neopetrosia exigua</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Qaralleh">Haitham Qaralleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Z.%20Idid"> Syed Z. Idid</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahbudin%20Saad"> Shahbudin Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Deny%20Susanti"> Deny Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Althunibat"> Osama Althunibat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to isolate the active antimicrobial compounds from Neopetrosia exigua using bio-guided assay isolation against Staphylococcus aureus. N. exigua was extracted using methanol and subjected to liquid-liquid extraction using solvents with different polarity (n-hexane, carbon tetrachloride, dichloromethane, n-butanol and water). Purification of the active components of n-butanol and dichloromethane fractions was done using Sephadex LH-20 and reverse phase chromatography. Based on the biological guided fractionation results, dichloromethane and n-butanol fractions showed the highest antimicrobial activity. Purification of the active components of n-butanol and dichloromethane fractions yielded three compounds. The structure of the isolated compounds were elucidated and found to be 5-hydroxy-1H-indole-3-carboxylic acid methyl ester, cyclo-1`-demethylcystalgerone and avarol derivative. Avarol was showed potent bactericidal effect against S. aureus. N. exigua appears to be rich source of natural antimicrobial agents. Further studies are needed to investigate the mode of action of these compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=avarol" title=" avarol"> avarol</a>, <a href="https://publications.waset.org/abstracts/search?q=Neopetrosia%20exigua" title=" Neopetrosia exigua"> Neopetrosia exigua</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/10115/isolation-of-antimicrobial-compounds-from-marine-sponge-neopetrosia-exigua" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1885</span> Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahid-ul-Islam">Shahid-ul-Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Faqeer%20Mohammad"> Faqeer Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annatto" title="annatto">annatto</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agents" title=" antimicrobial agents"> antimicrobial agents</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20textiles" title=" green textiles "> green textiles </a> </p> <a href="https://publications.waset.org/abstracts/42793/colorful-textiles-with-antimicrobial-property-using-natural-dyes-as-effective-green-finishing-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1884</span> Chemical Analysis, Antioxidant Activity and Antimicrobial Activity of Isolated Compounds and Essential Oil from Callistemon citrinus Leaf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20M.%20Hamed">Manal M. Hamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosad%20A.%20Ghareeb"> Mosad A. Ghareeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel-Aleem%20H.%20Abdel-Aleem"> Abdel-Aleem H. Abdel-Aleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20M.%20Saad"> Amal M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Abdel-Aziz"> Mohamed S. Abdel-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20H.%20Hadad"> Asmaa H. Hadad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural products derived from medicinal plants provide unlimited opportunities for a new medication leads because of the unmatched accessibility of chemical variation. Six compounds were isolated from the n-butanol extract of Callistemon citrinus (Family Myrtaceae), they were identified as; nepetolide (1), callislignan A (2), 6,8-dimethoxy-4,5-dimethyl-3-methyleneisochroman-1-one (3), 3-methyl-7-O-benzoyl-β-D-glucopyranoside (4), 5, 7, 3', 5'-tetrahydroxy-6, 8-di-C-methyl flavanone (5), and (2R,3R,4S,5S)-2,4-bis(4-hydroxyphenyl)-3,5-dihydroxy-tetrahydropyran (6). The isolated compounds were evaluated as antioxidant and antimicrobial agents. The antioxidant activities of the compounds were determined using DPPH-radical scavenging and total antioxidant capacity (TAC) assays. The results indicated that compound (5) was most active in its capacity to scavenge free radicals in the DPPH assay [SC50 value, 4.65 ± 0.74μg/mL] compared to the standard ascorbic acid and exhibited the highest activity in the TAC assay (610.45 ± 1.67mg AAE/g compound). The pure isolates were tested for their antimicrobial activity against four pathogenic microbial strains including Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Candida albicans. Also, the GC/MS analysis of its leaves essential oil presented nine identified compounds representing 91% of the total oil constituents. The outcomes got from this study give a reasonable justification for the medicinal uses of Callistemon citrinus plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Callistemon%20citrinus" title="Callistemon citrinus">Callistemon citrinus</a>, <a href="https://publications.waset.org/abstracts/search?q=flavanone" title=" flavanone"> flavanone</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Myrtaceae" title=" Myrtaceae"> Myrtaceae</a> </p> <a href="https://publications.waset.org/abstracts/74052/chemical-analysis-antioxidant-activity-and-antimicrobial-activity-of-isolated-compounds-and-essential-oil-from-callistemon-citrinus-leaf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1883</span> Developing Customizable Scaffolds With Antimicrobial Properties for Vascular Tissue Regeneration Using Low Temperature Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20Vig">Komal Vig</a>, <a href="https://publications.waset.org/abstracts/search?q=Syamala%20Soumyakrishnan"> Syamala Soumyakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yadav%20Baral"> Yadav Baral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bypass surgery, using the autologous vein has been one of the most effective treatments for cardiovascular diseases (CVD). More recently tissue engineering including engineered vascular grafts to synthesize blood vessels is gaining usage. Dacron and ePTFE has been employed for vascular grafts, however, these does not work well for small diameter grafts (<6 mm) due to intimal hyperplasia and thrombosis. In the present study PTFE was treated with LTP to improve the endothelialization of intimal surface of graft. Scaffolds were also modified with polyvinylpyrrolidone coated silver nanoparticles (Ag-PVP) and the antimicrobial peptides, p753 and p359. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds and cell proliferation was determined by the MTT assay. Cells attachment on scaffolds was visualized by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). X ray photoelectron spectroscopic confirmed the introduction of oxygenated functionalities from LTP air plasma. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. The KB test displayed a zone of inhibition for Ag-PVP, p753 and p359 of 19mm, 14mm, and 12mm respectively. To determine toxicity of antimicrobial agents to cells, MTT Assay was performed using HEK293 cells. MTT Assay exhibited that Ag-PVP and the peptides were non-toxic to cells at 100μg/mL and 50μg/mL, respectively. Live/dead analysis and plate count of treated bacteria exhibited bacterial inhibition on develop scaffold compared to non-treated scaffold. SEM was performed to analyze the structural changes of bacteria after treatment with antimicrobial agents. Gene expression studies were conducted on RNA from bacteria treated with Ag-PVP and peptides using qRT-PCR. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20plasma" title="low temperature plasma">low temperature plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20graft" title=" vascular graft"> vascular graft</a>, <a href="https://publications.waset.org/abstracts/search?q=HUVEC%20cells" title=" HUVEC cells"> HUVEC cells</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/151603/developing-customizable-scaffolds-with-antimicrobial-properties-for-vascular-tissue-regeneration-using-low-temperature-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1882</span> Synthesis and Antimicrobial Activity of Tolyloxy Derived Oxadiazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivkanya%20Fuloria">Shivkanya Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Fuloria"> Neeraj Kumar Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokinder%20Kumar"> Sokinder Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> m-Cresol and oxadiazoles are the potent antimicrobial moieties. 2-(m-Tolyloxy)acetohydrazide (1) on cyclization with aromatic acids yielded 2-(aryl)-5-(m-tolyloxymethyl)-1,3,4-oxadiazole (1A-E). The structures of newer oxadiazoles were confirmed by elemental and spectral analysis. The newer compounds were evaluated for their antimicrobial potential. The compound 1E containing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the tolyloxy derived oxadiazoles enhanced their antimicrobial potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=cresol" title=" cresol"> cresol</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrazide" title=" hydrazide"> hydrazide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxadiazoles" title=" oxadiazoles"> oxadiazoles</a> </p> <a href="https://publications.waset.org/abstracts/67547/synthesis-and-antimicrobial-activity-of-tolyloxy-derived-oxadiazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1881</span> Antimicrobial Activity of Seed Oil of Garlic and Moringa oleifera against Some Food-Borne Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Abdulrasheed">Mansur Abdulrasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20I.%20Hussein"> Ibrahim I. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Mubarak"> Ahmed M. Mubarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Umar"> Ahmed F. Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at evaluating the phytochemical constituents and the antimicrobial activity of the seed oil of Moringa oleifera and garlic against some selected food-borne microorganisms (Staphylococcus aureus, Escherichia coli, Salmonella spp and Pseudomonas aeruginosa) using disc diffusion method. The results of the phytochemical screening revealed differences in the presence of the phytochemicals among the extracts. Saponins were detected in both Moringa oleifera and garlic seed oil, while alkaloid and tannins were observed in seed oil of garlic. Furthermore, the antibacterial assay results show that the seed oil of Moringa oleifera was inactive against all the tested organisms, even at 100 % concentration. In contrast, garlic oil was found to be active against all the tested organisms. The highest inhibition was observed in E. coli (12 mm) at 100 % concentration, while at 20 % concentration, Salmonella Sp and P. aeruginosa showed the least inhibiton (6 mm). The antimicrobial activity of the seed oil of garlic may be attributed to its phytochemicals components which were not detected in the seed oil of Moringa oleifera. The results of this study have shown the potentials of the seed oil of garlic as an antimicrobial agent more especially in foods, by inhibiting the growth of the test organisms, which range from food-borne pathogens to food spoilage organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20borne%20pathogens" title=" food borne pathogens"> food borne pathogens</a> </p> <a href="https://publications.waset.org/abstracts/43278/antimicrobial-activity-of-seed-oil-of-garlic-and-moringa-oleifera-against-some-food-borne-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1880</span> Comparison of Antimicrobial Activity of Seed Oil of Garlic and Moringa oleifera against Some Food-Borne Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Abdulrasheed">Mansur Abdulrasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20I.%20Hussein"> Ibrahim I. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Mubarak"> Ahmed M. Mubarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Umar"> Ahmed F. Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at evaluating the phytochemical constituents and the antimicrobial activity of the seed oil of Moringa oleifera and garlic against some selected food-borne microorganisms (Staphylococcus aureus, Escherichia coli, Salmonella spp and Pseudomonas aeruginosa) using disc diffusion method. The results of the phytochemical screening revealed differences in the presence of the phytochemicals among the extracts. Saponins were detected in both Moringa oleifera and garlic seed oil, while alkaloid and tannins were observed in seed oil of garlic. Furthermore, the antibacterial assay results show that the seed oil of Moringa oleifera was inactive against all the tested organisms, even at 100 % concentration. In contrast, garlic oil was found to be active against all the tested organisms. The highest inhibition was observed in E. coli (12 mm)at 100 % concentration, while at 20 % concentration, Salmonella Sp and P. aeruginosa showed the least inhibit on (6 mm). The antimicrobial activity of the seed oil of garlic may be attributed to its phytochemicals components which were not detected in the seed oil of Moringa oleifera. The results of this study have shown the potentials of the seed oil of garlic as an antimicrobial agent more especially in foods, by inhibiting the growth of the test organisms, which range from food-borne pathogens to food spoilage organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20borne%20pathogens" title=" food borne pathogens"> food borne pathogens</a> </p> <a href="https://publications.waset.org/abstracts/46577/comparison-of-antimicrobial-activity-of-seed-oil-of-garlic-and-moringa-oleifera-against-some-food-borne-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1879</span> Physicochemical and Functional significance of Two Lychee (Litchi chinensis Sonn.) Cultivars Gola and Surakhi from Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naila%20Safdar">Naila Safdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Faria%20Riasat"> Faria Riasat</a>, <a href="https://publications.waset.org/abstracts/search?q=Azra%20Yasmin"> Azra Yasmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lychee is an emerging fruit crop in Pakistan. Two famous cultivars of lychee, Gola and Surakhi, were collected from Khanpur Orchard, Pakistan and their whole fruit (including peel, pulp and seed) was investigated for pomological features and therapeutic activities. Both cultivars differ in shape and size with Gola having large size (3.27cm length, 2.36cm width) and more flesh to seed ratio (8.65g). FTIR spectroscopy and phytochemical tests confirmed presence of different bioactive compounds like phenol, flavonoids, quinones, anthraquinones, tannins, glycosides, and alkaloids, in both lychee fruits. Atomic absorption spectroscopy indicated an increased amount of potassium, magnesium, sodium, iron, and calcium in Gola and Surakhi fruits. Small amount of trace metals, zinc and copper, were also detected in lychee fruit, while heavy metals lead, mercury, and nickel were absent. These two lychee cultivars were also screened for antitumor activity by Potato disc assay with maximum antitumor activity shown by aqueous extract of Surakhi seed (77%) followed by aqueous extract of Gola pulp (74%). Antimicrobial activity of fruit parts was checked by agar well diffusion method against six bacterial strains Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, Bacillus subtilis, Bacillus sp. MB083, and Bacillus sp. MB141. Highest antimicrobial activity was shown by methanolic extract of Gola pulp (27mm ± 0.70) and seed (19.5mm ± 0.712) against Enterococcus faecalis. DPPH scavenging assay revealed highest antioxidant activity by aqueous extract of Gola peel (98.10%) followed by n-hexane extract of Surakhi peel (97.73%). Results obtained by reducing power assay also corroborated with the results of DPPH scavenging activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20evaluation" title="antimicrobial evaluation">antimicrobial evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=antitumor%20assay" title=" antitumor assay"> antitumor assay</a>, <a href="https://publications.waset.org/abstracts/search?q=gola" title=" gola"> gola</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoconstituents" title=" phytoconstituents"> phytoconstituents</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=Surakhi" title=" Surakhi"> Surakhi</a> </p> <a href="https://publications.waset.org/abstracts/28614/physicochemical-and-functional-significance-of-two-lychee-litchi-chinensis-sonn-cultivars-gola-and-surakhi-from-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1878</span> Phytochemical Screening, Antimicrobial and Antioxidant Efficacy of the Endocarps Fruits of Argania spinosa (L.) Skeels (Sapotaceae) in Mostaganem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebaa%20H.">Sebaa H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20F."> Cherifi F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Djabeur%20Abderrezak%20M."> Djabeur Abderrezak M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Argania spinosa, Sapotaceae sole representative in Algeria and Morocco; hence it is endemic in these regions. However, it is a recognised oil, forage, and timber tree highly adapted to aridity. The exploitation of the argan fruits produces considerable amounts of under or related products. These products, such as the endocarps of a fruit, recuperated after the use of kernels to extract oil. This research studies in detail the contents of total phenolic content was determined by Folin Ciocalteu reagent and Flavonoids by aluminum chloride colorimetric assay). Antioxidant activity of extracts was expressed as the percentage of DPPH radical inhibition and IC50 values (μg/mL). Antimicrobial activity evaluated using agar disk diffusion method against reference Pseudomonas aeruginosa ATTC 27453, Escherichia coli ATCC 23922. Immature endocarps showed a higher polyphenol content than mature endocarps. The total phenolic content in immature endocarps was found to vary from 983,75+ /- 0.45 to 980,1 +/- 0.43 mg gallic acid equivalents/g dry weight, whereas in mature endocarps, the polyphenol content ranged from 100,58 mg/g +/- 0.42 to 105 +/- 0.55% mg gallic acid equivalent / g dry weight. The flavonoid content was 16.5 mg equivalent catechin/g dry weight and 9.81mg equivalent catechin /g dry weight for immature and mature endocarp fruits, respectively. DPPH assay of the endocarps extract yielded a half-maximal effective concentration (IC50) value in the immature endocarps (549.33 μg/mL) than in mature endocarps (322 μg/mL). This result can be attributed to the higher phenolics and flavonoid compounds in the immature endocarps. Methanol extract of immature endocarps exhibited antibacterial activity against E.colie (inhibition zone, 11mm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assay" title=" DPPH assay"> DPPH assay</a> </p> <a href="https://publications.waset.org/abstracts/150574/phytochemical-screening-antimicrobial-and-antioxidant-efficacy-of-the-endocarps-fruits-of-argania-spinosa-l-skeels-sapotaceae-in-mostaganem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1877</span> Ethnopharmacological Analysis of Fermented Herbal Concoctions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishmael%20Ntlhamu">Ishmael Ntlhamu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Limpopo Province, the use of herbal concoctions is becoming very popular. These concoctions are claimed to be capable of treating ulcers, diabetes, certain STDs, blood cleansing, and many more types of diseases. The aim of this study was to evaluate the phytochemical composition, evaluate the pharmacological effects and consumption safety in herbal concoctions to treat various kinds of ailments in Limpopo. The concoctions were extracted with 80% acetone. Microorganisms in the concoctions were identified using the Vitek 2 compact system. Qualitative phytochemical analysis was determined using standard chemical tests and thin layer chromatography (TLC). Total polyphenol content was quantified. Antioxidant activity was quantified using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay and ferric reducing power. Antimicrobial activities were determined using a broth micro-dilution assay and bioautography. Cell viability assay was used to determine the cytotoxicity. Results showed that concoctions had antioxidant activity. Presence of different phytoconstituents was observed. Isolated microorganisms were identified as Burkholderia pseudomallei, Staphylococcus vitulimus, Enterococcus columbae, Kocuria kristanae, Staphylococcus intermedius, Cryptococcus laurenti. and Burkholderia pseudomallei (highly pathogenic). Therefore, phytochemicals prove that the concoctions can heal as the antimicrobial tests also displayed activity. Moreover, the concoctions did not exhibit cytotoxic effects. However, contaminants raise concerns, not only for consumer safety but also the quality of herbal concoctions available as part of the traditional medicinal practice in Limpopo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobials" title="antimicrobials">antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=concoctions" title=" concoctions"> concoctions</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a> </p> <a href="https://publications.waset.org/abstracts/112866/ethnopharmacological-analysis-of-fermented-herbal-concoctions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1876</span> Determination of Antimicrobial Effect and Essential Oil Composition Salvia verticillata L. Subsp. amasiaca</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanju%20Teker">Tanju Teker</a>, <a href="https://publications.waset.org/abstracts/search?q=Yener%20Tekeli%CC%87"> Yener Tekeli̇</a>, <a href="https://publications.waset.org/abstracts/search?q=Esra%20Karpuz"> Esra Karpuz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salvia species are known as medicinal plant and often used in public. The antimicrobial effects and essential oil composition of Salvia verticillata L. subsp. amasiaca were determined. The antimicrobial activity is determined by using disk diffusion method against two Gram-positive bacteria, two Gram-negative bacteria and one kind of yeast and essential oil composition was determined by GC - MS. As a result of antimicrobial analysis while sample has shown very strong antimicrobial activity against Staphylococcus aureus, moderately effective against Pseudomonas aeruginosa and low effective against Enterococcus faecalis, it has not shown antimicrobial activity against Escherichia coli and C. albicans. Trans-caryophyllene (% 35.07), germacrene-d (% 10.98) and caryopyllene oxide (% 5.81) are the main components of essential oil composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salvia" title="salvia">salvia</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/35132/determination-of-antimicrobial-effect-and-essential-oil-composition-salvia-verticillata-l-subsp-amasiaca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1875</span> Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavana%20V.%20Mohite">Bhavana V. Mohite</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20V.%20Patil"> Satish V. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitated%20culture" title="agitated culture">agitated culture</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=gluconoacetobacter%20hansenii" title=" gluconoacetobacter hansenii"> gluconoacetobacter hansenii</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/40913/bacterial-cellulose-a-new-generation-antimicrobial-wound-dressing-biomaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1874</span> Phytochemicals, Antimicrobial and Antioxidant Screening of Marine Microalgal Strain, Amphora Sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Beekrum">S. Beekrum</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Odhav"> B. Odhav</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Lalloo"> R. Lalloo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Amonsou"> E. A. Amonsou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine microalgae are rich sources of novel and biologically active metabolites; therefore they may be used in the food industry as natural food ingredients and functional foods. They have several biological applications related to health benefits, among others. The aim of the study focused on the screening of phytochemicals from Amphora sp. biomass extracts, and to examine the in vitro antioxidant and antimicrobial potential. Amphora sp. biomass was obtained from CSIR (South Africa) and methanol, hexane and water extracts were prepared. The in vitro antimicrobial effect of extracts were tested against some pathogens (Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis, Salmonella enteritidis, Escherichia coli, Pseudomonas aeruginosa and Candida albicans), using the disc diffusion assay. Qualitative analyses of phytochemicals were conducted by chemical tests. The present investigation revealed that all extracts showed relatively strong antibacterial activity against most of the tested bacteria. The highest phenolic content was found in the methanolic extract. Results of the DPPH assay showed that the biomass contained strong antioxidant capacity, 79% in the methanolic extract and 85% in the hexane extract. Extracts have displayed effectively reducing power and superoxide anion radical scavenging activity. Results of this study have highlighted potential antioxidant activity in the methanol and hexane extracts. The results of the phytochemical screening showed the presence of terpenoids and sterols with potential applications as food flavorants and functional foods, respectively. The use of Amphora sp. as a natural antioxidant source and a potential source of antibacterial compounds and phytochemicals in the food industry appears promising and should be investigated further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=cymbella" title=" cymbella"> cymbella</a> </p> <a href="https://publications.waset.org/abstracts/52747/phytochemicals-antimicrobial-and-antioxidant-screening-of-marine-microalgal-strain-amphora-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1873</span> Recovery and Identification of Phenolic Acids in Honey Samples from Different Floral Sources of Pakistan Having Antimicrobial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samiyah%20Tasleem">Samiyah Tasleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdul%20Haq"> Muhammad Abdul Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Baqir%20Shyum%20Naqvi"> Syed Baqir Shyum Naqvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abid%20Husnain"> Muhammad Abid Husnain</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Haider%20Naqvi"> Sajjad Haider Naqvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present study was: a) to investigate the antimicrobial activity of honey samples of different floral sources of Pakistan, b) to recover the phenolic acids in them as a possible contributing factor of antimicrobial activity. Six honey samples from different floral sources, namely: Trachysperm copticum, Acacia species, Helianthus annuus, Carissa opaca, Zizyphus and Magnifera indica were used. The antimicrobial activity was investigated by the disc diffusion method against eight freshly isolated clinical isolates (Staphylococci aureus, Staphylococci epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris and Candida albicans). Antimicrobial activity of honey was compared with five commercial antibiotics, namely: doxycycline (DO-30ug/mL), oxytetracycline (OT-30ug/mL), clarithromycin (CLR–15ug/mL), moxifloxacin (MXF-5ug/mL) and nystatin (NT – 100 UT). The fractions responsible for antimicrobial activity were extracted using ethyl acetate. Solid phase extraction (SPE) was used to recover the phenolic acids of honey samples. Identification was carried out via High-Performance Liquid Chromatography (HPLC). The results indicated that antimicrobial activity was present in all honey samples and found comparable to the antibiotics used in the study. In the microbiological assay, the ethyl acetate honey extract was found to exhibit a very promising antimicrobial activity against all the microorganisms tested, indicating the existence of phenolic compounds. Six phenolic acids, namely: gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids were identified besides some unknown substance by HPLC. In conclusion, Pakistani honey samples showed a broad spectrum antibacterial and promising antifungal activity. Identification of six different phenolic acids showed that Pakistani honey samples are rich sources of phenolic compounds that could be the contributing factor of antimicrobial activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakistani%20honey" title="Pakistani honey">Pakistani honey</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Phenolic%20acids%20eg.gallic" title=" Phenolic acids eg.gallic"> Phenolic acids eg.gallic</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeic" title=" caffeic"> caffeic</a>, <a href="https://publications.waset.org/abstracts/search?q=ferulic" title=" ferulic"> ferulic</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillic" title=" vanillic"> vanillic</a>, <a href="https://publications.waset.org/abstracts/search?q=benzoic%20and%20cinnamic%20acids" title=" benzoic and cinnamic acids "> benzoic and cinnamic acids </a> </p> <a href="https://publications.waset.org/abstracts/32433/recovery-and-identification-of-phenolic-acids-in-honey-samples-from-different-floral-sources-of-pakistan-having-antimicrobial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1872</span> Investigating the Combined Medicinal Effects of Withania Somnifera (Ashwaghandha) and Murraya Koenigii (Curry Pata) in Vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Roshan">Sadia Roshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulsoom%20Sughra"> Kulsoom Sughra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazia%20Shamas"> Shazia Shamas</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamaila%20Irum"> Shamaila Irum</a>, <a href="https://publications.waset.org/abstracts/search?q=Haleema%20Sadia"> Haleema Sadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate synergistic medicinal effects of Withania somnifera (Ashwaghandha) and Murraya koenigii (Curry pata) in vitro. Antimicrobial activity was determined using the disc diffusion method against five bacterial and two fungal strains. The antioxidant activity was evaluated by the DPPH assay. The antidiabetic activity was evaluated by alpha-glucosidase inhibition assay and alpha-amylase inhibition assay. Synergistic antibacterial activity was observed against all the strains of bacteria, either Gram-positive or Gram-negative and fungi under study conditions. The maximum antibacterial activity was displayed by combined extract against E. coli i.e. 26±0.4mm. Maximum antifungal activity was shown by combined extract against Aspergillus niger, i.e., 17.3±0.5mm. The antioxidant activity of the combined extract was also significant. Alpha-glucosidase inhibition and alpha-amylase inhibition assays also showed synergism. Results indicate that Withania somnifera and Murraya koengii have medicinal properties. The combined extract of both plants is more potent than their individual extracts, suggesting that these can work in synergism. The research suggests that different plant extracts could be used in combination to increase their medicinal activities by many folds, thus giving an insight into future use of herbal medication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=withania%20somnifera" title="withania somnifera">withania somnifera</a>, <a href="https://publications.waset.org/abstracts/search?q=murraya%20koenigii" title=" murraya koenigii"> murraya koenigii</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=gram-positive%20%20bacetria" title=" gram-positive bacetria"> gram-positive bacetria</a>, <a href="https://publications.waset.org/abstracts/search?q=gram-negative%20%20bacteria" title=" gram-negative bacteria"> gram-negative bacteria</a> </p> <a href="https://publications.waset.org/abstracts/182551/investigating-the-combined-medicinal-effects-of-withania-somnifera-ashwaghandha-and-murraya-koenigii-curry-pata-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1871</span> Natural Preservatives: An Alternative for Chemical Preservative Used in Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zerrin%20Erginkaya">Zerrin Erginkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6zde%20Konuray"> Gözde Konuray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20origin%20preservatives" title="animal origin preservatives">animal origin preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20preservatives" title=" chemical preservatives"> chemical preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20preservatives" title=" herbal preservatives"> herbal preservatives</a> </p> <a href="https://publications.waset.org/abstracts/61833/natural-preservatives-an-alternative-for-chemical-preservative-used-in-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1870</span> An Attempt on Antimicrobial Studies of Lanthanide Schiff Base Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lekha%20Logu">Lekha Logu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coordination behavior of the newly synthesized Schiff base ligands, 4-bromo-2-((p-tolyl imino) methyl) phenol obtained by condensing para-toluidine with 5-bromo salicylaldehyde and N-(3,4-dichloro benzylidene)-4-methylbenzenamine obtained by condensing Para-toluidine with 3,4-dichloro benzaldehyde in ethanolic medium has been explored in this current study. The synthesized Schiff’s base ligands were complexed with lanthanide nitrate salts yielding [LnL(NO3)2(H2O)2]NO3, (Ln=Pr, Sm). Elemental analysis, conductance measurement, and spectral techniques like Nuclear Magnetic Resonance (NMR), Ultraviolet-visible (UV-Vis) and Fourier Transform Infrared (FTIR) have been used to characterize Schiff’s base ligands and their lanthanide metal complexes. An attempt has been made on these complexes for their antimicrobial activity against the gram-positive and gram-negative bacterial species like Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and fungal species like Canadida and Aspergillus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lanthanide%20complexes" title="lanthanide complexes">lanthanide complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=Schiff%27s%20base" title=" Schiff&#039;s base"> Schiff&#039;s base</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay" title=" antimicrobial assay"> antimicrobial assay</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/165837/an-attempt-on-antimicrobial-studies-of-lanthanide-schiff-base-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1869</span> Characterization and Optimization of Antimicrobial Compound/S Produced by Asperigillus Fumigatus Isolated from Monuments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20M.%20Kewisha">Mohammad A. M. Kewisha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Xerophilic fungi , which are responsible for many cases of biodeterioration monuments, have been known as an interesting source of antimicrobial compounds. Sixty nine fungal strains, isolated from different localities and species inside Egyptian museums, were screened for antimicrobial activity against some bacterial species and unicellular fungi. The most potent antimicrobial activity was obtained by Asperigillus fumigatus which was identified by ITS4 ……. and showed activity against Staphylococcus aureus with 20 mm and C. albicans with18 mm of inhibition zone. Different parameters were optimized to enhance this activity. The culture grown under stationary conditions for 8 days at 30°C and pH 8 gave the best antimicrobial activity. Moreover, both starch and yeast extract showed the most suitable carbon and nitrogen sources, respectively. The antimicrobial compound was purified and subjected to spectroscopic characterization, which revealed that the antimicrobial compound might be 5,7 ethoxy, 4\,5\ methoxy isorhamnetin -3- O- galactoside. This study suggests that Aspergillus fumagates as a potential candidate offering a better scope for the production, purification and isolation of broad-spectrum antimicrobial compounds. These findings will facilitate the scale-up and further purification to ascertain the compounds responsible for antimicrobial activity, which can be exploited for the treatment of biodeterioration monuments and pharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=asperigillus%20fumigatus" title=" asperigillus fumigatus"> asperigillus fumigatus</a>, <a href="https://publications.waset.org/abstracts/search?q=Identification%20by%20ITS4" title=" Identification by ITS4"> Identification by ITS4</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=C.albicans" title=" C.albicans"> C.albicans</a> </p> <a href="https://publications.waset.org/abstracts/171668/characterization-and-optimization-of-antimicrobial-compounds-produced-by-asperigillus-fumigatus-isolated-from-monuments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1868</span> Excavation of Phylogenetically Diverse Bioactive Actinobacteria from Unexplored Regions of Sundarbans Mangrove Ecosystem for Mining of Economically Important Antimicrobial Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sohan%20Sengupta">Sohan Sengupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Pramanik"> Arnab Pramanik</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhrajyoti%20Ghosh"> Abhrajyoti Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maitree%20Bhattacharyya"> Maitree Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Newly emerged phyto-pathogens and multi drug resistance have been threating the world for last few decades. Actinomycetes, the most endowed group of microorganisms isolated from unexplored regions of the world may be the ultimate solution to these problems. Thus the aim of this study was to isolate several bioactive actinomycetes strains capable of producing antimicrobial secondary metabolite from Sundarbans, the only mangrove tiger land of the world. Fifty four actinomycetes were isolated and analyzed for antimicrobial activity against fifteen test organisms including three phytopathogens. Nine morphologically distinct and biologically active isolates were subjected to polyphasic identification study. 16s rDNA sequencing indicated eight isolates to reveal maximum similarity to the genus streptomyces, whereas one isolate presented only 93.57% similarity with Streptomyces albogriseolus NRRL B-1305T. Seventy-one carbon sources and twenty-three chemical sources utilization assay revealed their metabolic relatedness. Among these nine isolates three specific strains were found to have notably higher degree of antimicrobial potential effective in a broader range including phyto-pathogenic fungus. PCR base whole genome screen for PKS and NRPS genes, confirmed the occurrence of bio-synthetic gene cluster in some of the isolates for novel antibiotic production. Finally the strain SMS_SU21, which showed antimicrobial activity with MIC value of 0.05 mg ml-1and antioxidant activity with IC50 value of 0.242±0.33 mg ml-1 was detected to be the most potential one. True prospective of this strain was evaluated utilizing GC-MS and the bioactive compound responsible for antimicrobial activity was purified and characterized. Rare bioactive actinomycetes were isolated from unexplored heritage site. Diversity of the biosynthetic gene cluster for antimicrobial compound production has also been evaluated. Antimicrobial compound SU21-C has been identified and purified which is active against a broad range of pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinomycetes" title="actinomycetes">actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=sundarbans" title=" sundarbans"> sundarbans</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=pks%20nrps" title=" pks nrps"> pks nrps</a>, <a href="https://publications.waset.org/abstracts/search?q=phyto-pathogens" title=" phyto-pathogens"> phyto-pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/39258/excavation-of-phylogenetically-diverse-bioactive-actinobacteria-from-unexplored-regions-of-sundarbans-mangrove-ecosystem-for-mining-of-economically-important-antimicrobial-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1867</span> Drug Use Knowledge and Antimicrobial Drug Use Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pimporn%20Thongmuang">Pimporn Thongmuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The import value of antimicrobial drugs reached approximately fifteen million Baht in 2010, considered as the highest import value of all modern drugs, and this value is rising every year. Antimicrobials are considered the hazardous drugs by the Ministry of Public Health. This research was conducted in order to investigate the past knowledge of drug use and Antimicrobial drug use behavior. A total of 757 students were selected as the samples out of a population of 1,800 students. This selected students had the experience of Antimicrobial drugs use a year ago. A questionnaire was utilized in this research. The findings put on the view that knowledge gained by the students about proper use of antimicrobial drugs was not brought into practice. This suggests that the education procedure regarding drug use needs adjustment. And therefore the findings of this research are expected to be utilized as guidelines for educating people about the proper use of antimicrobial drugs. At a broader perspective, correct drug use behavior of the public may potentially reduce drug cost of the Ministry of Public Health of Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20use%20knowledge" title="drug use knowledge">drug use knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20drugs" title=" antimicrobial drugs"> antimicrobial drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20use%20behavior" title=" drug use behavior"> drug use behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a> </p> <a href="https://publications.waset.org/abstracts/3900/drug-use-knowledge-and-antimicrobial-drug-use-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=63">63</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=64">64</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10