CINXE.COM
Joost Joosten - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Joost Joosten - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="pgPzsmuEUNGgxnfb2AD0JiISAMqNsGCDj+4YwmYyo5yRt2vwWJAvMQpqQeJb5ZDFjRxBJdOg1d0TM9nEEyENWw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="joost joosten" /> <meta name="description" content="Joost Joosten: 15 Followers, 7 Following, 153 Research papers. Research interests: Theoretical biology, Theory Of Computation, and Artificial Life." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '48654d67e5106e06fb1e5c9a356c302510d6cfee'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15279,"monthly_visitors":"124 million","monthly_visitor_count":124494275,"monthly_visitor_count_in_millions":124,"user_count":278992849,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1734499970000); window.Aedu.timeDifference = new Date().getTime() - 1734499970000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-772ddef14990ef25ff745ff7a68e1f5d083987771af2b9046e5dd4ece84c9e02.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-8ced32df41cb1a30061eaa13a8fe865a252f94d76a6a6a05ea0ba77c04f53a96.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/JoostJoosten" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-77c1bbdf640d3ab9a9b87cd905f5a36d6e6aeca610cba7e42bc42af726770bbb.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":26977,"name":"Theoretical biology","url":"https://www.academia.edu/Documents/in/Theoretical_biology"},{"id":423,"name":"Theory Of Computation","url":"https://www.academia.edu/Documents/in/Theory_Of_Computation"},{"id":5457,"name":"Artificial Life","url":"https://www.academia.edu/Documents/in/Artificial_Life"},{"id":14981,"name":"Cellular Automata","url":"https://www.academia.edu/Documents/in/Cellular_Automata"},{"id":34960,"name":"Emergence","url":"https://www.academia.edu/Documents/in/Emergence"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/JoostJoosten","location":"/JoostJoosten","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/JoostJoosten","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-53ada996-1a32-40d9-b559-65673b9624d6"></div> <div id="ProfileCheckPaperUpdate-react-component-53ada996-1a32-40d9-b559-65673b9624d6"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Joost Joosten</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Joost" data-follow-user-id="51116229" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="51116229"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">15</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">7</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">2</p></div></a><a href="/JoostJoosten/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51116229" href="https://www.academia.edu/Documents/in/Theoretical_biology"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/JoostJoosten","location":"/JoostJoosten","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/JoostJoosten","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Theoretical biology"]}" data-trace="false" data-dom-id="Pill-react-component-7983c2bd-0225-4fe5-91f3-e7b00e0bdea7"></div> <div id="Pill-react-component-7983c2bd-0225-4fe5-91f3-e7b00e0bdea7"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51116229" href="https://www.academia.edu/Documents/in/Theory_Of_Computation"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Theory Of Computation"]}" data-trace="false" data-dom-id="Pill-react-component-1b1828ba-7473-4bca-9cf2-cd7e936ec90b"></div> <div id="Pill-react-component-1b1828ba-7473-4bca-9cf2-cd7e936ec90b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51116229" href="https://www.academia.edu/Documents/in/Artificial_Life"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Artificial Life"]}" data-trace="false" data-dom-id="Pill-react-component-2c4be87d-ceeb-4c4f-88b5-67d66ddf0570"></div> <div id="Pill-react-component-2c4be87d-ceeb-4c4f-88b5-67d66ddf0570"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51116229" href="https://www.academia.edu/Documents/in/Cellular_Automata"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Cellular Automata"]}" data-trace="false" data-dom-id="Pill-react-component-89984ca8-c6b2-4a2a-ba83-b9e1ef9e5d5d"></div> <div id="Pill-react-component-89984ca8-c6b2-4a2a-ba83-b9e1ef9e5d5d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="51116229" href="https://www.academia.edu/Documents/in/Emergence"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Emergence"]}" data-trace="false" data-dom-id="Pill-react-component-153442e8-d371-4e6e-bdd6-08838f36a054"></div> <div id="Pill-react-component-153442e8-d371-4e6e-bdd6-08838f36a054"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Joost Joosten</h3></div><div class="js-work-strip profile--work_container" data-work-id="117255568"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255568/Models_of_transfinite_provability_logic"><img alt="Research paper thumbnail of Models of transfinite provability logic" class="work-thumbnail" src="https://attachments.academia-assets.com/113160845/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255568/Models_of_transfinite_provability_logic">Models of transfinite provability logic</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 21, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each ξ < Λ. Thes...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each ξ < Λ. These represent provability predicates of increasing strength. Although GLPΛ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted GLP 0 ω. Later, Icard defined a topological model for GLP 0 ω which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary Λ. More generally, for each Θ, Λ we build a Kripke model I Θ Λ and a topological model T Θ Λ , and show that GLP 0 Λ is sound for both of these structures, as well as complete, provided Θ is large enough.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ccab0998f8ce1b611bd0f14a44f29f2d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160845,"asset_id":117255568,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160845/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255568"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255568"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255568; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255568]").text(description); $(".js-view-count[data-work-id=117255568]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255568; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255568']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255568, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ccab0998f8ce1b611bd0f14a44f29f2d" } } $('.js-work-strip[data-work-id=117255568]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255568,"title":"Models of transfinite provability logic","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each ξ \u003c Λ. These represent provability predicates of increasing strength. Although GLPΛ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted GLP 0 ω. Later, Icard defined a topological model for GLP 0 ω which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary Λ. More generally, for each Θ, Λ we build a Kripke model I Θ Λ and a topological model T Θ Λ , and show that GLP 0 Λ is sound for both of these structures, as well as complete, provided Θ is large enough.","publication_date":{"day":21,"month":4,"year":2012,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160845},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255568/Models_of_transfinite_provability_logic","translated_internal_url":"","created_at":"2024-04-08T22:47:53.064-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160845,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160845/thumbnails/1.jpg","file_name":"1204.4837.pdf","download_url":"https://www.academia.edu/attachments/113160845/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Models_of_transfinite_provability_logic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160845/1204.4837-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DModels_of_transfinite_provability_logic.pdf\u0026Expires=1734503568\u0026Signature=PoWoWeuWkD8h1MtfDIZ-t3qpcZdmDnTqOey~D8iJkh9tK~k6MKIj9ILeUsIFsvhNAZnGmAxv6nsqNBUYU-ZDwsd9-wz2y20mpetJZC2VRrsiHOk89NWzdRnQyBe~qw02rzdbxUsWQrPFa1aArAL54CNEHJsPMSg8m4ofxU1bmK7WaD1deCGjkhyVJzUR3~LL3YrX5Uh1wu0Thg3vFw2SAajONoGI6xMcj4vgKIMJD1clXqQstKFCnDPkx~PK8GydRtCkbu8rJz1CGTjaBV-0YzJUvn6t1e2L~inOG~OJAFdGxE-wBZTcdQJWUwCs4ICJ1U7fHIK1d3cK9QFwj~-HQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Models_of_transfinite_provability_logic","translated_slug":"","page_count":23,"language":"en","content_type":"Work","summary":"For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each ξ \u003c Λ. These represent provability predicates of increasing strength. Although GLPΛ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted GLP 0 ω. Later, Icard defined a topological model for GLP 0 ω which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary Λ. More generally, for each Θ, Λ we build a Kripke model I Θ Λ and a topological model T Θ Λ , and show that GLP 0 Λ is sound for both of these structures, as well as complete, provided Θ is large enough.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160845,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160845/thumbnails/1.jpg","file_name":"1204.4837.pdf","download_url":"https://www.academia.edu/attachments/113160845/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Models_of_transfinite_provability_logic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160845/1204.4837-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DModels_of_transfinite_provability_logic.pdf\u0026Expires=1734503568\u0026Signature=PoWoWeuWkD8h1MtfDIZ-t3qpcZdmDnTqOey~D8iJkh9tK~k6MKIj9ILeUsIFsvhNAZnGmAxv6nsqNBUYU-ZDwsd9-wz2y20mpetJZC2VRrsiHOk89NWzdRnQyBe~qw02rzdbxUsWQrPFa1aArAL54CNEHJsPMSg8m4ofxU1bmK7WaD1deCGjkhyVJzUR3~LL3YrX5Uh1wu0Thg3vFw2SAajONoGI6xMcj4vgKIMJD1clXqQstKFCnDPkx~PK8GydRtCkbu8rJz1CGTjaBV-0YzJUvn6t1e2L~inOG~OJAFdGxE-wBZTcdQJWUwCs4ICJ1U7fHIK1d3cK9QFwj~-HQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":3785923,"name":"Lambda","url":"https://www.academia.edu/Documents/in/Lambda"}],"urls":[{"id":40954489,"url":"https://arxiv.org/pdf/1204.4837"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255567/FV_Time_a_formally_verified_Coq_library"><img alt="Research paper thumbnail of FV Time: a formally verified Coq library" class="work-thumbnail" src="https://attachments.academia-assets.com/113160844/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255567/FV_Time_a_formally_verified_Coq_library">FV Time: a formally verified Coq library</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Sep 28, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">FV Time is a small-scale verification project developed in the Coq proof assistant using the Math...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">FV Time is a small-scale verification project developed in the Coq proof assistant using the Mathematical Components libraries. It is a library for managing conversions between time formats (UTC and timestamps), as well as commonly used functions for time arithmetic. As a library for time conversions, its novelty is the implementation of leap seconds, which are part of the UTC standard but usually not implemented in existing libraries. Since the verified functions of FV Time are reasonably simple yet non-trivial, it nicely illustrates our methodology for verifying software with Coq. In this paper we present a description of the project, emphasizing the main problems faced while developing the library, as well as some general-purpose solutions that were produced as by-products and may be used in other verification projects. These include a refinement package between proof-oriented MathComp numbers and computation-oriented primitive numbers from the Coq standard library, as well as a set of tactics to automatically prove certain decidable statements over finite ranges through brute-force computation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8958427699dd6b5efabae86cdca2bfa5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160844,"asset_id":117255567,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160844/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255567]").text(description); $(".js-view-count[data-work-id=117255567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255567, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8958427699dd6b5efabae86cdca2bfa5" } } $('.js-work-strip[data-work-id=117255567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255567,"title":"FV Time: a formally verified Coq library","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"FV Time is a small-scale verification project developed in the Coq proof assistant using the Mathematical Components libraries. It is a library for managing conversions between time formats (UTC and timestamps), as well as commonly used functions for time arithmetic. As a library for time conversions, its novelty is the implementation of leap seconds, which are part of the UTC standard but usually not implemented in existing libraries. Since the verified functions of FV Time are reasonably simple yet non-trivial, it nicely illustrates our methodology for verifying software with Coq. In this paper we present a description of the project, emphasizing the main problems faced while developing the library, as well as some general-purpose solutions that were produced as by-products and may be used in other verification projects. These include a refinement package between proof-oriented MathComp numbers and computation-oriented primitive numbers from the Coq standard library, as well as a set of tactics to automatically prove certain decidable statements over finite ranges through brute-force computation.","publication_date":{"day":28,"month":9,"year":2022,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160844},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255567/FV_Time_a_formally_verified_Coq_library","translated_internal_url":"","created_at":"2024-04-08T22:47:52.614-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160844,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160844/thumbnails/1.jpg","file_name":"2209.14227.pdf","download_url":"https://www.academia.edu/attachments/113160844/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"FV_Time_a_formally_verified_Coq_library.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160844/2209.14227-libre.pdf?1712648417=\u0026response-content-disposition=attachment%3B+filename%3DFV_Time_a_formally_verified_Coq_library.pdf\u0026Expires=1734503569\u0026Signature=fVxWUsUn5owMn3dR9IHKNtoYqI~x2rjsvEmZB49tJVwtT0SOgnCWG9wzJsT8Zz6qqaZDOfyRwXYSZKKmaZxh8~MN8iW~fGxP5gU67UqAZgMmfQUMWfjjvg~JWiBwt7NyWn1zdeOy3ZPN3F98Cu1TvDtsuLQZxvoYh4X2ssF9sxv-ditUtalaGFthepkd9f0T-DG-HpwjUNS9EOeueT5tLdB7fCCLDwFET5ayFDcukuZmSg-gsdFE3FY8EcklutGDr-oBUxsJkJbH3GubQNAxvjqJ4Mnhf9XJ1-MWYLDdBrQtgilT-MR9A6xUnreM-jm4zmLNEXZCbvyW3pep6~Kqtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"FV_Time_a_formally_verified_Coq_library","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"FV Time is a small-scale verification project developed in the Coq proof assistant using the Mathematical Components libraries. It is a library for managing conversions between time formats (UTC and timestamps), as well as commonly used functions for time arithmetic. As a library for time conversions, its novelty is the implementation of leap seconds, which are part of the UTC standard but usually not implemented in existing libraries. Since the verified functions of FV Time are reasonably simple yet non-trivial, it nicely illustrates our methodology for verifying software with Coq. In this paper we present a description of the project, emphasizing the main problems faced while developing the library, as well as some general-purpose solutions that were produced as by-products and may be used in other verification projects. These include a refinement package between proof-oriented MathComp numbers and computation-oriented primitive numbers from the Coq standard library, as well as a set of tactics to automatically prove certain decidable statements over finite ranges through brute-force computation.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160844,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160844/thumbnails/1.jpg","file_name":"2209.14227.pdf","download_url":"https://www.academia.edu/attachments/113160844/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"FV_Time_a_formally_verified_Coq_library.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160844/2209.14227-libre.pdf?1712648417=\u0026response-content-disposition=attachment%3B+filename%3DFV_Time_a_formally_verified_Coq_library.pdf\u0026Expires=1734503569\u0026Signature=fVxWUsUn5owMn3dR9IHKNtoYqI~x2rjsvEmZB49tJVwtT0SOgnCWG9wzJsT8Zz6qqaZDOfyRwXYSZKKmaZxh8~MN8iW~fGxP5gU67UqAZgMmfQUMWfjjvg~JWiBwt7NyWn1zdeOy3ZPN3F98Cu1TvDtsuLQZxvoYh4X2ssF9sxv-ditUtalaGFthepkd9f0T-DG-HpwjUNS9EOeueT5tLdB7fCCLDwFET5ayFDcukuZmSg-gsdFE3FY8EcklutGDr-oBUxsJkJbH3GubQNAxvjqJ4Mnhf9XJ1-MWYLDdBrQtgilT-MR9A6xUnreM-jm4zmLNEXZCbvyW3pep6~Kqtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":59487,"name":"Computation","url":"https://www.academia.edu/Documents/in/Computation"},{"id":310878,"name":"Proof assistant","url":"https://www.academia.edu/Documents/in/Proof_assistant"},{"id":1489478,"name":"Programming language","url":"https://www.academia.edu/Documents/in/Programming_language"}],"urls":[{"id":40954488,"url":"http://arxiv.org/pdf/2209.14227"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255566/Provability_and_interpretability_logics_with_restricted_realizations"><img alt="Research paper thumbnail of Provability and interpretability logics with restricted realizations" class="work-thumbnail" src="https://attachments.academia-assets.com/113160839/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255566/Provability_and_interpretability_logics_with_restricted_realizations">Provability and interpretability logics with restricted realizations</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jun 18, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The provability logic of a theory T is the set of modal formulas, which under any arithmetical re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The provability logic of a theory T is the set of modal formulas, which under any arithmetical realization are provable in T. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set Γ. We make an analogous modification for interpretability logics. This is a paper from 2012. We first studied provability logics with restricted realizations, and show that for various natural candidates of theory T and restriction set Γ, where each sentence in Γ has a well understood (meta)-mathematical content in T , the result is the logic of linear frames. However, for the theory Primitive Recursive Arithmetic (PRA), we define a fragment that gives rise to a more interesting provability logic, by capitalizing on the well-studied relationship between PRA and IΣ 1. We then study interpretability logics, obtaining some upper bounds for IL(PRA), whose characterization remains a major open question in interpretability logic. Again this upper bound is closely relatively to linear frames. The technique is also applied to yield the non-trivial result that IL(PRA) ⊂ ILM. 2 Σ 1-sound is sufficient here. 3 There is a paper by de Jongh, Jumelet and Montagna [22] where an alternative proof of Solovay's theorem is given. In that proof, using the diagonal lemma, one finds some sentences with the required properties rather than defining the sentences and then proving the necessary properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2340e2da9c542979420e6cba10d100b8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160839,"asset_id":117255566,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160839/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255566]").text(description); $(".js-view-count[data-work-id=117255566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255566, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2340e2da9c542979420e6cba10d100b8" } } $('.js-work-strip[data-work-id=117255566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255566,"title":"Provability and interpretability logics with restricted realizations","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"The provability logic of a theory T is the set of modal formulas, which under any arithmetical realization are provable in T. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set Γ. We make an analogous modification for interpretability logics. This is a paper from 2012. We first studied provability logics with restricted realizations, and show that for various natural candidates of theory T and restriction set Γ, where each sentence in Γ has a well understood (meta)-mathematical content in T , the result is the logic of linear frames. However, for the theory Primitive Recursive Arithmetic (PRA), we define a fragment that gives rise to a more interesting provability logic, by capitalizing on the well-studied relationship between PRA and IΣ 1. We then study interpretability logics, obtaining some upper bounds for IL(PRA), whose characterization remains a major open question in interpretability logic. Again this upper bound is closely relatively to linear frames. The technique is also applied to yield the non-trivial result that IL(PRA) ⊂ ILM. 2 Σ 1-sound is sufficient here. 3 There is a paper by de Jongh, Jumelet and Montagna [22] where an alternative proof of Solovay's theorem is given. In that proof, using the diagonal lemma, one finds some sentences with the required properties rather than defining the sentences and then proving the necessary properties.","publication_date":{"day":18,"month":6,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160839},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255566/Provability_and_interpretability_logics_with_restricted_realizations","translated_internal_url":"","created_at":"2024-04-08T22:47:52.198-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160839/thumbnails/1.jpg","file_name":"2006.pdf","download_url":"https://www.academia.edu/attachments/113160839/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Provability_and_interpretability_logics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160839/2006-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DProvability_and_interpretability_logics.pdf\u0026Expires=1734503569\u0026Signature=WW1dP1s4X0-W3f-toxQXlR7pwCqVGE8G-Dmn5hz5TRQvRztof~WiQ9sUg0DYIAGPoELQPIM64G6ORPJfmTLisrUPX3ScTuMyjnUolQtNcF88k3rQTJclsemrOpShj0qvhgcbhXDnwg0HCjZBhmcz0JexxFHIvzzmqo5xnOI~Wf-Wz-sIcBaemCt56OL~Y6VztPxUSxLU8cJq~ilsAlEABz1HEaMepJF2GKA5vkhlkDVEBmrCw7ucE~0NTIVjQuHBWtnnlyCIGomtCmIdMHj0XspuLymn8A097-iHrX6JeRzt2Wtr1CnLD3yTeqZeOxsZnH5F312gmOHj5qcpI6N1vA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Provability_and_interpretability_logics_with_restricted_realizations","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":"The provability logic of a theory T is the set of modal formulas, which under any arithmetical realization are provable in T. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set Γ. We make an analogous modification for interpretability logics. This is a paper from 2012. We first studied provability logics with restricted realizations, and show that for various natural candidates of theory T and restriction set Γ, where each sentence in Γ has a well understood (meta)-mathematical content in T , the result is the logic of linear frames. However, for the theory Primitive Recursive Arithmetic (PRA), we define a fragment that gives rise to a more interesting provability logic, by capitalizing on the well-studied relationship between PRA and IΣ 1. We then study interpretability logics, obtaining some upper bounds for IL(PRA), whose characterization remains a major open question in interpretability logic. Again this upper bound is closely relatively to linear frames. The technique is also applied to yield the non-trivial result that IL(PRA) ⊂ ILM. 2 Σ 1-sound is sufficient here. 3 There is a paper by de Jongh, Jumelet and Montagna [22] where an alternative proof of Solovay's theorem is given. In that proof, using the diagonal lemma, one finds some sentences with the required properties rather than defining the sentences and then proving the necessary properties.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160839/thumbnails/1.jpg","file_name":"2006.pdf","download_url":"https://www.academia.edu/attachments/113160839/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Provability_and_interpretability_logics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160839/2006-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DProvability_and_interpretability_logics.pdf\u0026Expires=1734503569\u0026Signature=WW1dP1s4X0-W3f-toxQXlR7pwCqVGE8G-Dmn5hz5TRQvRztof~WiQ9sUg0DYIAGPoELQPIM64G6ORPJfmTLisrUPX3ScTuMyjnUolQtNcF88k3rQTJclsemrOpShj0qvhgcbhXDnwg0HCjZBhmcz0JexxFHIvzzmqo5xnOI~Wf-Wz-sIcBaemCt56OL~Y6VztPxUSxLU8cJq~ilsAlEABz1HEaMepJF2GKA5vkhlkDVEBmrCw7ucE~0NTIVjQuHBWtnnlyCIGomtCmIdMHj0XspuLymn8A097-iHrX6JeRzt2Wtr1CnLD3yTeqZeOxsZnH5F312gmOHj5qcpI6N1vA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160840,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160840/thumbnails/1.jpg","file_name":"2006.pdf","download_url":"https://www.academia.edu/attachments/113160840/download_file","bulk_download_file_name":"Provability_and_interpretability_logics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160840/2006-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DProvability_and_interpretability_logics.pdf\u0026Expires=1734503569\u0026Signature=WXim9vAAH5t~r4zm06HgR6F8N2IOnq-xcGH2ueP0KrrtUkqKDKV3hmahuYePBNa9TxSuf8ragqUStSTKh9eO4uv5WMwT~i9XEIP-133AnxfOKDWPSmNct-22RXmPMlbJrye4GUEKOtZnJKdlJthmv0MOcJvgUA59KSO4ccMNxR4KxditWCZ-M5fHpy6om8U~9ULvsrfkF46Co1lfKRltmqFpn0e8sLqIcbB2dHCNb3-iaNma4cForBB~B0ZC2VAmAdixRMpLMuY8rTbmGygTGQFJhmc7WrAZiCuDkdqOyKSjjgQvnrIztMfRbqZu0Sjfz6OCTeHR7QzqPy4Hada15g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954487,"url":"https://arxiv.org/pdf/2006.10539"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255565"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255565/A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories"><img alt="Research paper thumbnail of A new principle in the interpretability logic of all reasonable arithmetical theories" class="work-thumbnail" src="https://attachments.academia-assets.com/113160838/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255565/A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories">A new principle in the interpretability logic of all reasonable arithmetical theories</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 15, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The interpretability logic of a mathematical theory describes the structural behavior of interpre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The interpretability logic of a mathematical theory describes the structural behavior of interpretations over that theory. Different theories have different logics. This paper revolves around the question what logic describes the behavior that is present in all theories with a minimum amount of arithmetic; the intersection over all such theories so to say. We denote this target logic by IL(All). In this paper we present a new principle R in IL(All). We show that R does not follow from the logic ILP0W * that contains all previously known principles. This is done by providing a modal incompleteness proof of ILP0W * : showing that R follows semantically but not syntactically from ILP0W *. Apart from giving the incompleteness proof by elementary methods, we also sketch how to work with so-called Generalized Veltman Semantics as to establish incompleteness. To this extent, a new version of this Generalized Veltman Semantics is defined and studied. Moreover, for the important principles the frame correspondences are calculated. After the modal results it is shown that the new principle R is indeed valid in any arithmetically theory. The proof employs some elementary results on definable cuts in arithmetical theories. 1 Technically speaking the property of so-called essential reflexivity is sufficient. A theory is</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="70d7d5870e4bd7a943ba77b7db1e0338" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160838,"asset_id":117255565,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160838/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255565"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255565"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255565; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255565]").text(description); $(".js-view-count[data-work-id=117255565]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255565; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255565']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255565, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "70d7d5870e4bd7a943ba77b7db1e0338" } } $('.js-work-strip[data-work-id=117255565]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255565,"title":"A new principle in the interpretability logic of all reasonable arithmetical theories","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"The interpretability logic of a mathematical theory describes the structural behavior of interpretations over that theory. Different theories have different logics. This paper revolves around the question what logic describes the behavior that is present in all theories with a minimum amount of arithmetic; the intersection over all such theories so to say. We denote this target logic by IL(All). In this paper we present a new principle R in IL(All). We show that R does not follow from the logic ILP0W * that contains all previously known principles. This is done by providing a modal incompleteness proof of ILP0W * : showing that R follows semantically but not syntactically from ILP0W *. Apart from giving the incompleteness proof by elementary methods, we also sketch how to work with so-called Generalized Veltman Semantics as to establish incompleteness. To this extent, a new version of this Generalized Veltman Semantics is defined and studied. Moreover, for the important principles the frame correspondences are calculated. After the modal results it is shown that the new principle R is indeed valid in any arithmetically theory. The proof employs some elementary results on definable cuts in arithmetical theories. 1 Technically speaking the property of so-called essential reflexivity is sufficient. A theory is","publication_date":{"day":15,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160838},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255565/A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories","translated_internal_url":"","created_at":"2024-04-08T22:47:51.701-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160838,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160838/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160838/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_principle_in_the_interpretability.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160838/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DA_new_principle_in_the_interpretability.pdf\u0026Expires=1734503569\u0026Signature=Gba8HD-FS4BXwg1rcDtweIpCM3pg0HcorIOv-6h6y68sGq2nJsXVIOjdU0c4mp5WLOJ9Hv0y4Mel-oVlP6UHCw0i36~bMz06P8LmV1nHMoP7KHcI5xkLGvUn43Pziwk3EukoddkrHggjChiGBFR58bmwhl-N3PtQrTAj2umtuouFETrelRMHo1eIJNl4YXrFsQB1qNbeAKs5vYG61WaoU7JdN2v63DMZntZ3X296Sq7qsRgxEegUawriXHX1aqz2zHTpRqgiMpNV7zklgsfYE4PPOVVvV8Qg1qJR7jdcj3d3KGIPb6KpWE4RX9IGncsZZUtM~NUPoeGYgHqrArynaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"The interpretability logic of a mathematical theory describes the structural behavior of interpretations over that theory. Different theories have different logics. This paper revolves around the question what logic describes the behavior that is present in all theories with a minimum amount of arithmetic; the intersection over all such theories so to say. We denote this target logic by IL(All). In this paper we present a new principle R in IL(All). We show that R does not follow from the logic ILP0W * that contains all previously known principles. This is done by providing a modal incompleteness proof of ILP0W * : showing that R follows semantically but not syntactically from ILP0W *. Apart from giving the incompleteness proof by elementary methods, we also sketch how to work with so-called Generalized Veltman Semantics as to establish incompleteness. To this extent, a new version of this Generalized Veltman Semantics is defined and studied. Moreover, for the important principles the frame correspondences are calculated. After the modal results it is shown that the new principle R is indeed valid in any arithmetically theory. The proof employs some elementary results on definable cuts in arithmetical theories. 1 Technically speaking the property of so-called essential reflexivity is sufficient. A theory is","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160838,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160838/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160838/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_principle_in_the_interpretability.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160838/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DA_new_principle_in_the_interpretability.pdf\u0026Expires=1734503569\u0026Signature=Gba8HD-FS4BXwg1rcDtweIpCM3pg0HcorIOv-6h6y68sGq2nJsXVIOjdU0c4mp5WLOJ9Hv0y4Mel-oVlP6UHCw0i36~bMz06P8LmV1nHMoP7KHcI5xkLGvUn43Pziwk3EukoddkrHggjChiGBFR58bmwhl-N3PtQrTAj2umtuouFETrelRMHo1eIJNl4YXrFsQB1qNbeAKs5vYG61WaoU7JdN2v63DMZntZ3X296Sq7qsRgxEegUawriXHX1aqz2zHTpRqgiMpNV7zklgsfYE4PPOVVvV8Qg1qJR7jdcj3d3KGIPb6KpWE4RX9IGncsZZUtM~NUPoeGYgHqrArynaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160837,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160837/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160837/download_file","bulk_download_file_name":"A_new_principle_in_the_interpretability.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160837/2004-libre.pdf?1712648423=\u0026response-content-disposition=attachment%3B+filename%3DA_new_principle_in_the_interpretability.pdf\u0026Expires=1734503569\u0026Signature=DQwbgA-3EOSH7f560BigUD9iHfJJUwfBeBDvhEE4o3nwczgk2qEHo69h964NQ0zgFTse9ClQHHARCFBXb2tNrI5tdA-vYYpsRZNyDkUmqc1z4Yl7vANerqcE~P-P-wvfT~c48A1afFxdPvdGVbe3gcN9fJjjPtBVOLnG4Wl1mJnWWbOXOYdjFW6QgtH5gACsq~Pi473uMb-8gbVKGZkkJnkHN4GCpbG7AhlGkNZlUIepfdXGAGM3g~0DP5SxLPN596VdFDl-VoJCxpEoOJMjIWSdXjQY6L3dAYw2pec9KgVjCVk850Txu5IwN5zL8FMKpjocQlVy1Ze8ruQku7VmNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":361,"name":"Modal Logic","url":"https://www.academia.edu/Documents/in/Modal_Logic"},{"id":499193,"name":"Sketch","url":"https://www.academia.edu/Documents/in/Sketch"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954486,"url":"http://arxiv.org/pdf/2004.06902"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255564"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255564/To_drive_or_not_to_drive_A_logical_and_computational_analysis_of_European_transport_regulations"><img alt="Research paper thumbnail of To drive or not to drive: A logical and computational analysis of European transport regulations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255564/To_drive_or_not_to_drive_A_logical_and_computational_analysis_of_European_transport_regulations">To drive or not to drive: A logical and computational analysis of European transport regulations</a></div><div class="wp-workCard_item"><span>Information & Computation</span><span>, Nov 1, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper analyses a selection of articles from European transport regulations that con...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper analyses a selection of articles from European transport regulations that contain algorithmic information, but may be problematic to implement. We focus on issues regarding the interpretation of tachograph data and requirements on weekly rest periods. We first show that the interpretation of data prescribed by these regulations is highly sensitive to minor variations in input, such that near-identical driving patterns may be regarded both as lawful and as unlawful. We then show that the content of the regulation may be represented in mondadic second order logic, but argue that a more computationally tame fragment would be preferrable for applications. As a case study we consider its representation in linear temporal logic, but show that a representation of the legislation requires formulas of unfeasible complexity, if at all possible.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255564"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255564"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255564; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255564]").text(description); $(".js-view-count[data-work-id=117255564]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255564; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255564']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255564, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117255564]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255564,"title":"To drive or not to drive: A logical and computational analysis of European transport regulations","translated_title":"","metadata":{"abstract":"Abstract This paper analyses a selection of articles from European transport regulations that contain algorithmic information, but may be problematic to implement. We focus on issues regarding the interpretation of tachograph data and requirements on weekly rest periods. We first show that the interpretation of data prescribed by these regulations is highly sensitive to minor variations in input, such that near-identical driving patterns may be regarded both as lawful and as unlawful. We then show that the content of the regulation may be represented in mondadic second order logic, but argue that a more computationally tame fragment would be preferrable for applications. As a case study we consider its representation in linear temporal logic, but show that a representation of the legislation requires formulas of unfeasible complexity, if at all possible.","publisher":"Academic Press","publication_date":{"day":1,"month":11,"year":2020,"errors":{}},"publication_name":"Information \u0026 Computation"},"translated_abstract":"Abstract This paper analyses a selection of articles from European transport regulations that contain algorithmic information, but may be problematic to implement. We focus on issues regarding the interpretation of tachograph data and requirements on weekly rest periods. We first show that the interpretation of data prescribed by these regulations is highly sensitive to minor variations in input, such that near-identical driving patterns may be regarded both as lawful and as unlawful. We then show that the content of the regulation may be represented in mondadic second order logic, but argue that a more computationally tame fragment would be preferrable for applications. As a case study we consider its representation in linear temporal logic, but show that a representation of the legislation requires formulas of unfeasible complexity, if at all possible.","internal_url":"https://www.academia.edu/117255564/To_drive_or_not_to_drive_A_logical_and_computational_analysis_of_European_transport_regulations","translated_internal_url":"","created_at":"2024-04-08T22:47:51.306-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"To_drive_or_not_to_drive_A_logical_and_computational_analysis_of_European_transport_regulations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract This paper analyses a selection of articles from European transport regulations that contain algorithmic information, but may be problematic to implement. We focus on issues regarding the interpretation of tachograph data and requirements on weekly rest periods. We first show that the interpretation of data prescribed by these regulations is highly sensitive to minor variations in input, such that near-identical driving patterns may be regarded both as lawful and as unlawful. We then show that the content of the regulation may be represented in mondadic second order logic, but argue that a more computationally tame fragment would be preferrable for applications. As a case study we consider its representation in linear temporal logic, but show that a representation of the legislation requires formulas of unfeasible complexity, if at all possible.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":88815,"name":"Legislation","url":"https://www.academia.edu/Documents/in/Legislation"},{"id":1193633,"name":"Logical Analysis","url":"https://www.academia.edu/Documents/in/Logical_Analysis"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"}],"urls":[{"id":40954485,"url":"https://doi.org/10.1016/j.ic.2020.104636"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255563"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255563/The_closed_fragment_of_the_interpretability_logic_of_PRA_with_a_constant_for_I%CE%A31"><img alt="Research paper thumbnail of The closed fragment of the interpretability logic of PRA with a constant for IΣ1" class="work-thumbnail" src="https://attachments.academia-assets.com/113160833/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255563/The_closed_fragment_of_the_interpretability_logic_of_PRA_with_a_constant_for_I%CE%A31">The closed fragment of the interpretability logic of PRA with a constant for IΣ1</a></div><div class="wp-workCard_item"><span>Logic group preprint series</span><span>, Feb 1, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20f36ef8fb9b5137d315033a1aff4245" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160833,"asset_id":117255563,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160833/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255563"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255563"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255563; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255563]").text(description); $(".js-view-count[data-work-id=117255563]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255563; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255563']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255563, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20f36ef8fb9b5137d315033a1aff4245" } } $('.js-work-strip[data-work-id=117255563]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255563,"title":"The closed fragment of the interpretability logic of PRA with a constant for IΣ1","translated_title":"","metadata":{"publisher":"Cambridge University Press","publication_date":{"day":1,"month":2,"year":2003,"errors":{}},"publication_name":"Logic group preprint series"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255563/The_closed_fragment_of_the_interpretability_logic_of_PRA_with_a_constant_for_I%CE%A31","translated_internal_url":"","created_at":"2024-04-08T22:47:50.893-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160833,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160833/thumbnails/1.jpg","file_name":"preprint218.pdf","download_url":"https://www.academia.edu/attachments/113160833/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_closed_fragment_of_the_interpretabil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160833/preprint218-libre.pdf?1712648444=\u0026response-content-disposition=attachment%3B+filename%3DThe_closed_fragment_of_the_interpretabil.pdf\u0026Expires=1734503569\u0026Signature=gQW5uFS46cc9Rg4ZGPt3J4azbVXsrUj6Q1hK6SKWZM3FSwAJjTV1ZgXHjgzHDXJVI~i7DnZ8cJ-MZ8KjOiemkJ6URIgrwrt4k9jvdKnA7qpKBcqzMp9FWzkAQJeLwNa638FCoShZCrZMj1F8kAr9duHWAEvLp~cfteG-WnCqZivbloi~geq1nl7JE60zJZZNY6Qh99T1yV0xVlfbPsG20wIv5ZkVIUyiumKIF2JfS3CXrTUR69k8pK4QdXazR60opoIwQYVUP-A0unh7vbfg0rv7x8nsVlbzbqfZQ6kLAhRZmdG4EQsj4qG1OD~cLSXXvH3ZGN~tDi-L1mZ6ZoJb5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_closed_fragment_of_the_interpretability_logic_of_PRA_with_a_constant_for_IΣ1","translated_slug":"","page_count":47,"language":"en","content_type":"Work","summary":null,"owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160833,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160833/thumbnails/1.jpg","file_name":"preprint218.pdf","download_url":"https://www.academia.edu/attachments/113160833/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_closed_fragment_of_the_interpretabil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160833/preprint218-libre.pdf?1712648444=\u0026response-content-disposition=attachment%3B+filename%3DThe_closed_fragment_of_the_interpretabil.pdf\u0026Expires=1734503569\u0026Signature=gQW5uFS46cc9Rg4ZGPt3J4azbVXsrUj6Q1hK6SKWZM3FSwAJjTV1ZgXHjgzHDXJVI~i7DnZ8cJ-MZ8KjOiemkJ6URIgrwrt4k9jvdKnA7qpKBcqzMp9FWzkAQJeLwNa638FCoShZCrZMj1F8kAr9duHWAEvLp~cfteG-WnCqZivbloi~geq1nl7JE60zJZZNY6Qh99T1yV0xVlfbPsG20wIv5ZkVIUyiumKIF2JfS3CXrTUR69k8pK4QdXazR60opoIwQYVUP-A0unh7vbfg0rv7x8nsVlbzbqfZQ6kLAhRZmdG4EQsj4qG1OD~cLSXXvH3ZGN~tDi-L1mZ6ZoJb5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954484,"url":"https://dspace.library.uu.nl/bitstream/1874/27023/1/preprint218.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255562"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255562/Model_checking_in_the_Foundations_of_Algorithmic_Law_and_the_Case_of_Regulation_561"><img alt="Research paper thumbnail of Model-checking in the Foundations of Algorithmic Law and the Case of Regulation 561" class="work-thumbnail" src="https://attachments.academia-assets.com/113160836/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255562/Model_checking_in_the_Foundations_of_Algorithmic_Law_and_the_Case_of_Regulation_561">Model-checking in the Foundations of Algorithmic Law and the Case of Regulation 561</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 11, 2023</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We discuss model-checking problems as formal models of algorithmic law. Specifically, we ask for ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We discuss model-checking problems as formal models of algorithmic law. Specifically, we ask for an algorithmically tractable general purpose model-checking problem that naturally models the European transport Regulation 561 ([49]), and discuss the reaches and limits of a version of discrete time stopwatch automata.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="719f3ccd10e2df562ed03ab72aa6e5b9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160836,"asset_id":117255562,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160836/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255562"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255562"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255562; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255562]").text(description); $(".js-view-count[data-work-id=117255562]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255562; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255562']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255562, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "719f3ccd10e2df562ed03ab72aa6e5b9" } } $('.js-work-strip[data-work-id=117255562]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255562,"title":"Model-checking in the Foundations of Algorithmic Law and the Case of Regulation 561","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"We discuss model-checking problems as formal models of algorithmic law. Specifically, we ask for an algorithmically tractable general purpose model-checking problem that naturally models the European transport Regulation 561 ([49]), and discuss the reaches and limits of a version of discrete time stopwatch automata.","publication_date":{"day":11,"month":7,"year":2023,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160836},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255562/Model_checking_in_the_Foundations_of_Algorithmic_Law_and_the_Case_of_Regulation_561","translated_internal_url":"","created_at":"2024-04-08T22:47:50.405-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160836,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160836/thumbnails/1.jpg","file_name":"2307.05658.pdf","download_url":"https://www.academia.edu/attachments/113160836/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Model_checking_in_the_Foundations_of_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160836/2307.05658-libre.pdf?1712648430=\u0026response-content-disposition=attachment%3B+filename%3DModel_checking_in_the_Foundations_of_Alg.pdf\u0026Expires=1734503569\u0026Signature=gbW~WQnZxnAN8ew1FDcGJzzpFoj7UsZZfw6IxkZ8sfq6SVv6Ko1l6AxjkaTZkqGNN9YvO9zSA6MYtTw6VodpmEpV2ImsrdDzVvtYOpvxaXngqLTiPA-~Q92KJ~YDyiYPx4wt~PokxHQ4Znh0mIR2xIFH6bN77HkbfpBo9kbfKZ51dEvmsFCZnq0IOBCVwZlGLMUGGDjbtYPKxXhFSg2HePC3T9cO6iW3KqNQrVxJN9jOQBEUjBPbYL4T0tA7ZzQEB3YwrPUcczLzfh~EnO0Krkp6F2ybsrnMkDr9InhUKZiEaWhLd7DsinG1P81M1xZBG6crrE3Vtt229LksVROJnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Model_checking_in_the_Foundations_of_Algorithmic_Law_and_the_Case_of_Regulation_561","translated_slug":"","page_count":38,"language":"en","content_type":"Work","summary":"We discuss model-checking problems as formal models of algorithmic law. Specifically, we ask for an algorithmically tractable general purpose model-checking problem that naturally models the European transport Regulation 561 ([49]), and discuss the reaches and limits of a version of discrete time stopwatch automata.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160836,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160836/thumbnails/1.jpg","file_name":"2307.05658.pdf","download_url":"https://www.academia.edu/attachments/113160836/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Model_checking_in_the_Foundations_of_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160836/2307.05658-libre.pdf?1712648430=\u0026response-content-disposition=attachment%3B+filename%3DModel_checking_in_the_Foundations_of_Alg.pdf\u0026Expires=1734503569\u0026Signature=gbW~WQnZxnAN8ew1FDcGJzzpFoj7UsZZfw6IxkZ8sfq6SVv6Ko1l6AxjkaTZkqGNN9YvO9zSA6MYtTw6VodpmEpV2ImsrdDzVvtYOpvxaXngqLTiPA-~Q92KJ~YDyiYPx4wt~PokxHQ4Znh0mIR2xIFH6bN77HkbfpBo9kbfKZ51dEvmsFCZnq0IOBCVwZlGLMUGGDjbtYPKxXhFSg2HePC3T9cO6iW3KqNQrVxJN9jOQBEUjBPbYL4T0tA7ZzQEB3YwrPUcczLzfh~EnO0Krkp6F2ybsrnMkDr9InhUKZiEaWhLd7DsinG1P81M1xZBG6crrE3Vtt229LksVROJnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160835,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160835/thumbnails/1.jpg","file_name":"2307.05658.pdf","download_url":"https://www.academia.edu/attachments/113160835/download_file","bulk_download_file_name":"Model_checking_in_the_Foundations_of_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160835/2307.05658-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DModel_checking_in_the_Foundations_of_Alg.pdf\u0026Expires=1734503569\u0026Signature=O5Gh1K7kyQ8SoCLOctbRP9oCku5MCclPZhOE3Wl~IqH0nGIs6g09YbOK5sGplEGUrhxXMF2gHwLNT~9SGTsGVWxaiSSku1st41iClgLO5LhUms656Ie7x5ibsABHTFMIneR4eGbBK97gKoJYDcZ-hGx19kQnyGddlAj1PqHoURsssBxSzKIkoL-nvWeSDRVJpISKwQLmysWuZ8a-feo-L8PMJ4TM-UCgNc~qryBKK4UgRbDAoz6ng3~89a0yIoGK3CHQKg-XtQl6zAsj4vUvwzv-D9iqzAgmzu7OU-mB8mbTWcjhJf5YcNOT56hIpuoO0a1VUvf~R6enNJGwDThLTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2203,"name":"Model Checking","url":"https://www.academia.edu/Documents/in/Model_Checking"},{"id":1029330,"name":"Automaton","url":"https://www.academia.edu/Documents/in/Automaton"},{"id":2176940,"name":"Stopwatch","url":"https://www.academia.edu/Documents/in/Stopwatch"}],"urls":[{"id":40954483,"url":"https://arxiv.org/pdf/2307.05658"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255561"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255561/Propositional_proof_systems_and_fast_consistency_provers"><img alt="Research paper thumbnail of Propositional proof systems and fast consistency provers" class="work-thumbnail" src="https://attachments.academia-assets.com/113160834/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255561/Propositional_proof_systems_and_fast_consistency_provers">Propositional proof systems and fast consistency provers</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 11, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A fast consistency prover is a consistent poly-time axiomatized theory that has short proofs of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A fast consistency prover is a consistent poly-time axiomatized theory that has short proofs of the finite consistency statements of any other poly-time axiomatized theory. Krajíček and Pudlák proved in [5] that the existence of an optimal propositional proof system is equivalent to the existence of a fast consistency prover. It is an easy observation that NP = coNP implies the existence of a fast consistency prover. The reverse implication is an open question. In this paper we define the notion of an unlikely fast consistency prover and prove that its existence is equivalent to NP = coNP. Next it is proved that fast consistency provers do not exist if one considers RE axiomatized theories rather than theories with an axiom set that is recognizable in polynomial time.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5dd9e92ac299786aabd3fde7ead597b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160834,"asset_id":117255561,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160834/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255561"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255561"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255561; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255561]").text(description); $(".js-view-count[data-work-id=117255561]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255561; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255561']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255561, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5dd9e92ac299786aabd3fde7ead597b2" } } $('.js-work-strip[data-work-id=117255561]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255561,"title":"Propositional proof systems and fast consistency provers","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"A fast consistency prover is a consistent poly-time axiomatized theory that has short proofs of the finite consistency statements of any other poly-time axiomatized theory. Krajíček and Pudlák proved in [5] that the existence of an optimal propositional proof system is equivalent to the existence of a fast consistency prover. It is an easy observation that NP = coNP implies the existence of a fast consistency prover. The reverse implication is an open question. In this paper we define the notion of an unlikely fast consistency prover and prove that its existence is equivalent to NP = coNP. Next it is proved that fast consistency provers do not exist if one considers RE axiomatized theories rather than theories with an axiom set that is recognizable in polynomial time.","publication_date":{"day":11,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160834},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255561/Propositional_proof_systems_and_fast_consistency_provers","translated_internal_url":"","created_at":"2024-04-08T22:47:49.796-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160834,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160834/thumbnails/1.jpg","file_name":"2004.05431.pdf","download_url":"https://www.academia.edu/attachments/113160834/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Propositional_proof_systems_and_fast_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160834/2004.05431-libre.pdf?1712648420=\u0026response-content-disposition=attachment%3B+filename%3DPropositional_proof_systems_and_fast_con.pdf\u0026Expires=1734503569\u0026Signature=J7elWXjbAX79ymUcwzOcB0P8zU~ykUVW45QHKn4IUMX27yO9tr30rD7EZuu4Vd3NxwsAdoleOBIqP1pvwWjuVITLM0Ry4d4X-~QMPnCQnKu-WUc5TI6k9Rm63LvIRLnjWy1MX0pem~oSViCOdKlsKUGzTyqHGY1DZDO-jR8iZJ9K~U7q24HusNSb2nb1DP9tqcyIH5bmzOlMv6hLoLms2O4Y48AHTL1S0ubG8Bh23fpKHpnheY6i2Je1k2rCxdQ8FXqLyOc2DE5FTnH9gYrWrwjveZ53~MHUeRvexElyQfLqjKORKdgIIKq~X9qa2B5cl-ohyQ~DENbE4ni1la6ANA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Propositional_proof_systems_and_fast_consistency_provers","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"A fast consistency prover is a consistent poly-time axiomatized theory that has short proofs of the finite consistency statements of any other poly-time axiomatized theory. Krajíček and Pudlák proved in [5] that the existence of an optimal propositional proof system is equivalent to the existence of a fast consistency prover. It is an easy observation that NP = coNP implies the existence of a fast consistency prover. The reverse implication is an open question. In this paper we define the notion of an unlikely fast consistency prover and prove that its existence is equivalent to NP = coNP. Next it is proved that fast consistency provers do not exist if one considers RE axiomatized theories rather than theories with an axiom set that is recognizable in polynomial time.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160834,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160834/thumbnails/1.jpg","file_name":"2004.05431.pdf","download_url":"https://www.academia.edu/attachments/113160834/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Propositional_proof_systems_and_fast_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160834/2004.05431-libre.pdf?1712648420=\u0026response-content-disposition=attachment%3B+filename%3DPropositional_proof_systems_and_fast_con.pdf\u0026Expires=1734503569\u0026Signature=J7elWXjbAX79ymUcwzOcB0P8zU~ykUVW45QHKn4IUMX27yO9tr30rD7EZuu4Vd3NxwsAdoleOBIqP1pvwWjuVITLM0Ry4d4X-~QMPnCQnKu-WUc5TI6k9Rm63LvIRLnjWy1MX0pem~oSViCOdKlsKUGzTyqHGY1DZDO-jR8iZJ9K~U7q24HusNSb2nb1DP9tqcyIH5bmzOlMv6hLoLms2O4Y48AHTL1S0ubG8Bh23fpKHpnheY6i2Je1k2rCxdQ8FXqLyOc2DE5FTnH9gYrWrwjveZ53~MHUeRvexElyQfLqjKORKdgIIKq~X9qa2B5cl-ohyQ~DENbE4ni1la6ANA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":165651,"name":"Proof Complexity","url":"https://www.academia.edu/Documents/in/Proof_Complexity"},{"id":201339,"name":"Axiom","url":"https://www.academia.edu/Documents/in/Axiom"},{"id":1778352,"name":"Mathematical Proof","url":"https://www.academia.edu/Documents/in/Mathematical_Proof"},{"id":3114893,"name":"Polynomial Time","url":"https://www.academia.edu/Documents/in/Polynomial_Time"}],"urls":[{"id":40954482,"url":"http://arxiv.org/pdf/2004.05431"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255560"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255560/The_closed_fragment_of_IL_is_PSPACE_hard"><img alt="Research paper thumbnail of The closed fragment of IL is PSPACE hard" class="work-thumbnail" src="https://attachments.academia-assets.com/113160831/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255560/The_closed_fragment_of_IL_is_PSPACE_hard">The closed fragment of IL is PSPACE hard</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 14, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we consider IL0, the closed fragment of the basic interpretability logic IL. We sho...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we consider IL0, the closed fragment of the basic interpretability logic IL. We show that we can translate GL1, the one variable fragment of Gödel-Löb's provabilty logic GL, into IL0. Invoking a result on the PSPACE completeness of GL1 we obtain the PSPACE hardness of IL0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0607c4c7c17be7f393fe803373214002" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160831,"asset_id":117255560,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160831/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255560"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255560"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255560; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255560]").text(description); $(".js-view-count[data-work-id=117255560]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255560; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255560']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255560, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0607c4c7c17be7f393fe803373214002" } } $('.js-work-strip[data-work-id=117255560]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255560,"title":"The closed fragment of IL is PSPACE hard","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"In this paper we consider IL0, the closed fragment of the basic interpretability logic IL. We show that we can translate GL1, the one variable fragment of Gödel-Löb's provabilty logic GL, into IL0. Invoking a result on the PSPACE completeness of GL1 we obtain the PSPACE hardness of IL0.","publication_date":{"day":14,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160831},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255560/The_closed_fragment_of_IL_is_PSPACE_hard","translated_internal_url":"","created_at":"2024-04-08T22:47:49.326-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160831,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160831/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160831/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_closed_fragment_of_IL_is_PSPACE_hard.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160831/2004-libre.pdf?1712648418=\u0026response-content-disposition=attachment%3B+filename%3DThe_closed_fragment_of_IL_is_PSPACE_hard.pdf\u0026Expires=1734503569\u0026Signature=YI3HsPtC291h1x1SUKls14E0nA8B0at22bRIkuiPPbv7fZOpCC09eJxmAbk38DLOJJS1WajhYjF1UZzk3CcELIdS24kpvGkR0ol0XZMvxjU8k-Htiu1J~JzGdZSrMzI1KSjywCLV9H~htDRoYnEdslnHc8w8fjph3D9fCP5mdbw5qSe3kiCVtOtKXvoSezmoxgQ1LrfnIJFrlNhaTiiEwUr4r3R3qe4VKWe8SHBbhGHVc02acNhVHF8upv8XIJzudzUNvSLxaxGji8XJQ5xwTJqE7bhMoZg75syyo1m6qN2UOh69l1nmTnnzwVuFJhbaM~PBa4NJGP4XEV9iVZxbbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_closed_fragment_of_IL_is_PSPACE_hard","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"In this paper we consider IL0, the closed fragment of the basic interpretability logic IL. We show that we can translate GL1, the one variable fragment of Gödel-Löb's provabilty logic GL, into IL0. Invoking a result on the PSPACE completeness of GL1 we obtain the PSPACE hardness of IL0.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160831,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160831/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160831/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_closed_fragment_of_IL_is_PSPACE_hard.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160831/2004-libre.pdf?1712648418=\u0026response-content-disposition=attachment%3B+filename%3DThe_closed_fragment_of_IL_is_PSPACE_hard.pdf\u0026Expires=1734503569\u0026Signature=YI3HsPtC291h1x1SUKls14E0nA8B0at22bRIkuiPPbv7fZOpCC09eJxmAbk38DLOJJS1WajhYjF1UZzk3CcELIdS24kpvGkR0ol0XZMvxjU8k-Htiu1J~JzGdZSrMzI1KSjywCLV9H~htDRoYnEdslnHc8w8fjph3D9fCP5mdbw5qSe3kiCVtOtKXvoSezmoxgQ1LrfnIJFrlNhaTiiEwUr4r3R3qe4VKWe8SHBbhGHVc02acNhVHF8upv8XIJzudzUNvSLxaxGji8XJQ5xwTJqE7bhMoZg75syyo1m6qN2UOh69l1nmTnnzwVuFJhbaM~PBa4NJGP4XEV9iVZxbbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":64561,"name":"Computer Software","url":"https://www.academia.edu/Documents/in/Computer_Software"}],"urls":[{"id":40954481,"url":"http://arxiv.org/pdf/2004.06398"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255559"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255559/Proceedings_Machines_Computations_and_Universality_2013"><img alt="Research paper thumbnail of Proceedings Machines, Computations and Universality 2013" class="work-thumbnail" src="https://attachments.academia-assets.com/113160881/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255559/Proceedings_Machines_Computations_and_Universality_2013">Proceedings Machines, Computations and Universality 2013</a></div><div class="wp-workCard_item"><span>Electronic proceedings in theoretical computer science</span><span>, Sep 4, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bf25fda7cc6896bdc915aaa232232486" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160881,"asset_id":117255559,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160881/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255559"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255559"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255559; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255559]").text(description); $(".js-view-count[data-work-id=117255559]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255559; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255559']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255559, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bf25fda7cc6896bdc915aaa232232486" } } $('.js-work-strip[data-work-id=117255559]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255559,"title":"Proceedings Machines, Computations and Universality 2013","translated_title":"","metadata":{"publisher":"Open Publishing Association","ai_abstract":"This paper investigates the relationship between the fractal dimension of small one-way infinite Turing machines (TMs) and their runtime complexity. By analyzing the space-time diagrams of TMs with two and three states using a binary tape alphabet, it establishes that a TM runs in linear time if and only if its fractal dimension is 2, while dimensions of 1 correspond to super-polynomial time under certain conditions. The findings suggest a deep connection between computational and geometrical complexity measures.","publication_date":{"day":4,"month":9,"year":2013,"errors":{}},"publication_name":"Electronic proceedings in theoretical computer science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255559/Proceedings_Machines_Computations_and_Universality_2013","translated_internal_url":"","created_at":"2024-04-08T22:47:48.887-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160881/thumbnails/1.jpg","file_name":"256d91fdb5c778b1043cc2dbf9d1cf1528c2.pdf","download_url":"https://www.academia.edu/attachments/113160881/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proceedings_Machines_Computations_and_Un.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160881/256d91fdb5c778b1043cc2dbf9d1cf1528c2-libre.pdf?1712648403=\u0026response-content-disposition=attachment%3B+filename%3DProceedings_Machines_Computations_and_Un.pdf\u0026Expires=1734503569\u0026Signature=TKpvKMl6F2c4ia1XFXk2udPD3v~xzaBY6UBLtYvWclQyC5K~HyRA~MFIqMUP8~CPetlV274RB4bmU~ZOe8pInMLbt5omYDd9Wzm5OHbGvh-P7MvVS9kpW7XKfymgEd8pATSFbfLaOJ4FbnPNto85~c42QorVH7uXxeKcSxmtp4F990zyn~nXIjwZq4ZECcH2iAbNHT9hhaHm~hvSmxF2yNdDHri80KWOkGvyLUDO0CrJoGTJeSCsmsCpAUpFMlpdqChEnnAoINhc6xTXc-vqsArdLqNECD4OLluc5rfYfTyVEvBiaHN8ZwuZrBMidN47fhfsswR0mmgP27uqhljUww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Proceedings_Machines_Computations_and_Universality_2013","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":null,"owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160881/thumbnails/1.jpg","file_name":"256d91fdb5c778b1043cc2dbf9d1cf1528c2.pdf","download_url":"https://www.academia.edu/attachments/113160881/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proceedings_Machines_Computations_and_Un.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160881/256d91fdb5c778b1043cc2dbf9d1cf1528c2-libre.pdf?1712648403=\u0026response-content-disposition=attachment%3B+filename%3DProceedings_Machines_Computations_and_Un.pdf\u0026Expires=1734503569\u0026Signature=TKpvKMl6F2c4ia1XFXk2udPD3v~xzaBY6UBLtYvWclQyC5K~HyRA~MFIqMUP8~CPetlV274RB4bmU~ZOe8pInMLbt5omYDd9Wzm5OHbGvh-P7MvVS9kpW7XKfymgEd8pATSFbfLaOJ4FbnPNto85~c42QorVH7uXxeKcSxmtp4F990zyn~nXIjwZq4ZECcH2iAbNHT9hhaHm~hvSmxF2yNdDHri80KWOkGvyLUDO0CrJoGTJeSCsmsCpAUpFMlpdqChEnnAoINhc6xTXc-vqsArdLqNECD4OLluc5rfYfTyVEvBiaHN8ZwuZrBMidN47fhfsswR0mmgP27uqhljUww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":59487,"name":"Computation","url":"https://www.academia.edu/Documents/in/Computation"},{"id":127270,"name":"Microcontroller","url":"https://www.academia.edu/Documents/in/Microcontroller"},{"id":349061,"name":"Turing machine","url":"https://www.academia.edu/Documents/in/Turing_machine"},{"id":1250591,"name":"Universal Turing Machine","url":"https://www.academia.edu/Documents/in/Universal_Turing_Machine"}],"urls":[{"id":40954480,"url":"https://doi.org/10.4204/eptcs.128.9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255558"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255558/Hyperations_Veblen_progressions_and_transfinite_iterations_of_ordinal_functions"><img alt="Research paper thumbnail of Hyperations, Veblen progressions and transfinite iterations of ordinal functions" class="work-thumbnail" src="https://attachments.academia-assets.com/113160830/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255558/Hyperations_Veblen_progressions_and_transfinite_iterations_of_ordinal_functions">Hyperations, Veblen progressions and transfinite iterations of ordinal functions</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, May 9, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteratio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteration of ordinal functions. Hyperations are iterations of normal functions. Unlike iteration by pointwise convergence, hyperation preserves normality. The hyperation f ξ ξ∈On of a normal function f is a sequence of normal functions so that f 0 = id, f 1 = f and for all α, β we have that f α+β = f α f β. These conditions do not determine f α uniquely; in addition, we require that f α α∈On be minimal in an appropriate sense. We study hyperations systematically and show that they are a natural refinement of Veblen progressions. Next, we define cohyperations, very similar to hyperations except that they are left-additive: given α, β, f α+β = f β f α. Cohyperations iterate initial functions which are functions that map initial segments to initial segments. We systematically study co-hyperations and see how they can be employed to define left inverses to hyperations. Hyperations provide an alternative presentation of Veblen progressions and can be useful where a more fine-grained analysis of such sequences is called for. They are very amenable to algebraic manipulation and hence are convenient to work with. Cohyperations, meanwhile, give a novel way to describe slowly increasing functions as often appear, for example, in proof theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a5c1a501ba107f8d1568dee4be4c5184" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160830,"asset_id":117255558,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160830/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255558"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255558]").text(description); $(".js-view-count[data-work-id=117255558]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255558']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255558, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a5c1a501ba107f8d1568dee4be4c5184" } } $('.js-work-strip[data-work-id=117255558]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255558,"title":"Hyperations, Veblen progressions and transfinite iterations of ordinal functions","translated_title":"","metadata":{"publisher":"Cornell University","ai_title_tag":"Hyperations and Cohyperations of Ordinal Functions","grobid_abstract":"In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteration of ordinal functions. Hyperations are iterations of normal functions. Unlike iteration by pointwise convergence, hyperation preserves normality. The hyperation f ξ ξ∈On of a normal function f is a sequence of normal functions so that f 0 = id, f 1 = f and for all α, β we have that f α+β = f α f β. These conditions do not determine f α uniquely; in addition, we require that f α α∈On be minimal in an appropriate sense. We study hyperations systematically and show that they are a natural refinement of Veblen progressions. Next, we define cohyperations, very similar to hyperations except that they are left-additive: given α, β, f α+β = f β f α. Cohyperations iterate initial functions which are functions that map initial segments to initial segments. We systematically study co-hyperations and see how they can be employed to define left inverses to hyperations. Hyperations provide an alternative presentation of Veblen progressions and can be useful where a more fine-grained analysis of such sequences is called for. They are very amenable to algebraic manipulation and hence are convenient to work with. Cohyperations, meanwhile, give a novel way to describe slowly increasing functions as often appear, for example, in proof theory.","publication_date":{"day":9,"month":5,"year":2012,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160830},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255558/Hyperations_Veblen_progressions_and_transfinite_iterations_of_ordinal_functions","translated_internal_url":"","created_at":"2024-04-08T22:47:48.317-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160830/thumbnails/1.jpg","file_name":"1205.pdf","download_url":"https://www.academia.edu/attachments/113160830/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hyperations_Veblen_progressions_and_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160830/1205-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DHyperations_Veblen_progressions_and_tran.pdf\u0026Expires=1734503569\u0026Signature=HJ9tgL~fdfMlDOJf6J0qeun9Xo4x-LZGT9KViXkoSgG87Btc3ib0XSvJdRJJsUkHwpXhy0c18pXqEnHeaffyIWPCoYt5TWs4vZLrMOiEKpURfStEFYQsPI8~vmabh5ZPNwaoyYYdfnqgGvBn3382RmokFsCknJnPhvsPEFG6~DByimWFVTDAk29lK1bIYQkH5aVEn9W2bOefgcnM0Hn9ojUK4yN-qln5EWdq0cnn8WmzcepXwPDxkiq9c2ZiKtlZ8fkeLSG0i~EsmtXmMC26XuGgWKvvVoQaF7q-3t9heJZdyb9rTkaA65GrNeNBu2y3SMidq5JOYlROcAhLSMMHZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hyperations_Veblen_progressions_and_transfinite_iterations_of_ordinal_functions","translated_slug":"","page_count":29,"language":"en","content_type":"Work","summary":"In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteration of ordinal functions. Hyperations are iterations of normal functions. Unlike iteration by pointwise convergence, hyperation preserves normality. The hyperation f ξ ξ∈On of a normal function f is a sequence of normal functions so that f 0 = id, f 1 = f and for all α, β we have that f α+β = f α f β. These conditions do not determine f α uniquely; in addition, we require that f α α∈On be minimal in an appropriate sense. We study hyperations systematically and show that they are a natural refinement of Veblen progressions. Next, we define cohyperations, very similar to hyperations except that they are left-additive: given α, β, f α+β = f β f α. Cohyperations iterate initial functions which are functions that map initial segments to initial segments. We systematically study co-hyperations and see how they can be employed to define left inverses to hyperations. Hyperations provide an alternative presentation of Veblen progressions and can be useful where a more fine-grained analysis of such sequences is called for. They are very amenable to algebraic manipulation and hence are convenient to work with. Cohyperations, meanwhile, give a novel way to describe slowly increasing functions as often appear, for example, in proof theory.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160830/thumbnails/1.jpg","file_name":"1205.pdf","download_url":"https://www.academia.edu/attachments/113160830/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hyperations_Veblen_progressions_and_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160830/1205-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DHyperations_Veblen_progressions_and_tran.pdf\u0026Expires=1734503569\u0026Signature=HJ9tgL~fdfMlDOJf6J0qeun9Xo4x-LZGT9KViXkoSgG87Btc3ib0XSvJdRJJsUkHwpXhy0c18pXqEnHeaffyIWPCoYt5TWs4vZLrMOiEKpURfStEFYQsPI8~vmabh5ZPNwaoyYYdfnqgGvBn3382RmokFsCknJnPhvsPEFG6~DByimWFVTDAk29lK1bIYQkH5aVEn9W2bOefgcnM0Hn9ojUK4yN-qln5EWdq0cnn8WmzcepXwPDxkiq9c2ZiKtlZ8fkeLSG0i~EsmtXmMC26XuGgWKvvVoQaF7q-3t9heJZdyb9rTkaA65GrNeNBu2y3SMidq5JOYlROcAhLSMMHZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":40954479,"url":"http://arxiv.org/pdf/1205.2036"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255557"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255557/Hidden_variables_simulating_quantum_contextuality_increasingly_violate_the_Holevo_bound"><img alt="Research paper thumbnail of Hidden variables simulating quantum contextuality increasingly violate the Holevo bound" class="work-thumbnail" src="https://attachments.academia-assets.com/113160828/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255557/Hidden_variables_simulating_quantum_contextuality_increasingly_violate_the_Holevo_bound">Hidden variables simulating quantum contextuality increasingly violate the Holevo bound</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 10, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we approach some questions about quantum contextuality with tools from formal logic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we approach some questions about quantum contextuality with tools from formal logic. In particular, we consider an experiment associated with the Peres-Mermin square. The language of all possible sequences of outcomes of the experiment is classified in the Chomsky hierarchy and seen to be a regular language. Next, we make the rather evident observation that a finite set of hidden finite valued variables can never account for indeterminism in an ideally isolated repeatable experiment. We see that, when the language of possible outcomes of the experiment is regular, as is the case with the Peres-Mermin square, the amount of binary-valued hidden variables needed to de-randomize the model for all sequences of experiments up to length n grows as bad as it could be: linearly in n. We introduce a very abstract model of machine that simulates nature in a particular sense. A lower-bound on the number of memory states of such machines is proved if they were to simulate the experiment that corresponds to the Peres-Mermin square. Moreover, the proof of this lower bound is seen to scale to a certain generalization of the Peres-Mermin square. For this scaled experiment it is seen that the Holevo bound is violated and that the degree of violation increases uniformly.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c56f7d83bd0581c93beb69f418783f34" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160828,"asset_id":117255557,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160828/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255557"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255557"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255557; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255557]").text(description); $(".js-view-count[data-work-id=117255557]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255557; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255557']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255557, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c56f7d83bd0581c93beb69f418783f34" } } $('.js-work-strip[data-work-id=117255557]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255557,"title":"Hidden variables simulating quantum contextuality increasingly violate the Holevo bound","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"In this paper we approach some questions about quantum contextuality with tools from formal logic. In particular, we consider an experiment associated with the Peres-Mermin square. The language of all possible sequences of outcomes of the experiment is classified in the Chomsky hierarchy and seen to be a regular language. Next, we make the rather evident observation that a finite set of hidden finite valued variables can never account for indeterminism in an ideally isolated repeatable experiment. We see that, when the language of possible outcomes of the experiment is regular, as is the case with the Peres-Mermin square, the amount of binary-valued hidden variables needed to de-randomize the model for all sequences of experiments up to length n grows as bad as it could be: linearly in n. We introduce a very abstract model of machine that simulates nature in a particular sense. A lower-bound on the number of memory states of such machines is proved if they were to simulate the experiment that corresponds to the Peres-Mermin square. Moreover, the proof of this lower bound is seen to scale to a certain generalization of the Peres-Mermin square. For this scaled experiment it is seen that the Holevo bound is violated and that the degree of violation increases uniformly.","publication_date":{"day":10,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160828},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255557/Hidden_variables_simulating_quantum_contextuality_increasingly_violate_the_Holevo_bound","translated_internal_url":"","created_at":"2024-04-08T22:47:47.785-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160828,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160828/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160828/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hidden_variables_simulating_quantum_cont.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160828/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DHidden_variables_simulating_quantum_cont.pdf\u0026Expires=1734503569\u0026Signature=Ic2S9XfSpZc1xt~mY3JRbVkYY2NxVTmLexuKrMmpp7NczDPUy7LEZS39K7hCJwA~UCXj-W6Ujs37sQeftcfo6QMXcI4r3WYOK~Q86AF9T1z-jicTQs4Pqlg0WbYH90GzCQI~bmZa6hmBRomN4YN0Q4RYmuJ90oAWg6U6z3X9P~NJRK9ZOrgFfe~p74jeCB7uMLY6pl2IN9if0kKH-XUsoGzAezX~orUDhLloK8eHtw0-4zSJLAF3UyUB3feZsQmDdmckC3vPqCcJajCY~BvevhPlTQwGcX8mpF5mIHH0QhbD~fke67KGP3q2DDX5-lXZxQHB9fgZ8jZ8gurT-VKcVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hidden_variables_simulating_quantum_contextuality_increasingly_violate_the_Holevo_bound","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"In this paper we approach some questions about quantum contextuality with tools from formal logic. In particular, we consider an experiment associated with the Peres-Mermin square. The language of all possible sequences of outcomes of the experiment is classified in the Chomsky hierarchy and seen to be a regular language. Next, we make the rather evident observation that a finite set of hidden finite valued variables can never account for indeterminism in an ideally isolated repeatable experiment. We see that, when the language of possible outcomes of the experiment is regular, as is the case with the Peres-Mermin square, the amount of binary-valued hidden variables needed to de-randomize the model for all sequences of experiments up to length n grows as bad as it could be: linearly in n. We introduce a very abstract model of machine that simulates nature in a particular sense. A lower-bound on the number of memory states of such machines is proved if they were to simulate the experiment that corresponds to the Peres-Mermin square. Moreover, the proof of this lower bound is seen to scale to a certain generalization of the Peres-Mermin square. For this scaled experiment it is seen that the Holevo bound is violated and that the degree of violation increases uniformly.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160828,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160828/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160828/download_file?st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hidden_variables_simulating_quantum_cont.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160828/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DHidden_variables_simulating_quantum_cont.pdf\u0026Expires=1734503569\u0026Signature=Ic2S9XfSpZc1xt~mY3JRbVkYY2NxVTmLexuKrMmpp7NczDPUy7LEZS39K7hCJwA~UCXj-W6Ujs37sQeftcfo6QMXcI4r3WYOK~Q86AF9T1z-jicTQs4Pqlg0WbYH90GzCQI~bmZa6hmBRomN4YN0Q4RYmuJ90oAWg6U6z3X9P~NJRK9ZOrgFfe~p74jeCB7uMLY6pl2IN9if0kKH-XUsoGzAezX~orUDhLloK8eHtw0-4zSJLAF3UyUB3feZsQmDdmckC3vPqCcJajCY~BvevhPlTQwGcX8mpF5mIHH0QhbD~fke67KGP3q2DDX5-lXZxQHB9fgZ8jZ8gurT-VKcVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160829,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160829/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160829/download_file","bulk_download_file_name":"Hidden_variables_simulating_quantum_cont.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160829/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DHidden_variables_simulating_quantum_cont.pdf\u0026Expires=1734503569\u0026Signature=GVq6BeZztFH7dGmiEnRVB48-mNnKC8RrVtW3Ky9735fW7KqBmAOljcVAPkTVdg3jAbzG25X9hXz~9skMZBJmH-XT83Nbgba7ozCwqcLyuC72aDz2zP-2H~J9WBDnB1M9cXlE7i1~LaZ4Hix~uimogASO63LzbRoNBpgiHmqXZxvLn9Q1O4VySe-DDU6E6HyPjQxcVahpUM2T1RMODpBpvaDnGxmMz1geEi0J10fD8mausUJg9JFBjE5uSxN2-AYAhH-YQmnyRy6BGZtlkpLwIguX9~E-GR1~6GLHEo-aHrO-CYd7mwxWpt8cduPEY7CAJDzP43dcEISxnPtuzt0Lgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":54284,"name":"Generalization","url":"https://www.academia.edu/Documents/in/Generalization"},{"id":69262,"name":"Quantum","url":"https://www.academia.edu/Documents/in/Quantum"},{"id":774681,"name":"Indeterminism","url":"https://www.academia.edu/Documents/in/Indeterminism"}],"urls":[{"id":40954478,"url":"http://arxiv.org/pdf/2004.10654"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255556"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255556/The_interpretability_logic_of_all_reasonable_arithmetical_theories"><img alt="Research paper thumbnail of The interpretability logic of all reasonable arithmetical theories" class="work-thumbnail" src="https://attachments.academia-assets.com/113160827/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255556/The_interpretability_logic_of_all_reasonable_arithmetical_theories">The interpretability logic of all reasonable arithmetical theories</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 27, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper from 2000 is a presentation of a status quaestionis at that tiime, to wit of the probl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper from 2000 is a presentation of a status quaestionis at that tiime, to wit of the problem of the interpretability logic of all reasonable arithmetical theories. We present both the arithmetical side and the modal side of the question.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b3641056bb1dd4798e5f29f5f773f71c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160827,"asset_id":117255556,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160827/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255556"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255556"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255556; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255556]").text(description); $(".js-view-count[data-work-id=117255556]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255556; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255556']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255556, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b3641056bb1dd4798e5f29f5f773f71c" } } $('.js-work-strip[data-work-id=117255556]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255556,"title":"The interpretability logic of all reasonable arithmetical theories","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper from 2000 is a presentation of a status quaestionis at that tiime, to wit of the problem of the interpretability logic of all reasonable arithmetical theories. We present both the arithmetical side and the modal side of the question.","publication_date":{"day":27,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160827},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255556/The_interpretability_logic_of_all_reasonable_arithmetical_theories","translated_internal_url":"","created_at":"2024-04-08T22:47:47.420-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160827,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160827/thumbnails/1.jpg","file_name":"2004.12685.pdf","download_url":"https://www.academia.edu/attachments/113160827/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_interpretability_logic_of_all_reason.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160827/2004.12685-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DThe_interpretability_logic_of_all_reason.pdf\u0026Expires=1734503570\u0026Signature=AADMyZV27uz3yoGd2wZOqL11tDdNGq7C~SgXbsd7PUiwWGwQFyOyW1C0tJx8FTWjpoYzKJ-30krnLeYkDR7zaXpaEIxKjIzBSEjfWVYk998fKQhbKWpQ1EWwMgtfxpp7ZqqmvhSGGl65FrfhxAyLMLzVt3zKly2lRPFefwwYsHIjX8whxHP-HeviCcmKyZJ5zu2qAdzcubFze97QnZTn3nw541BwC5P2IF~H1mtK3jB1M~Zgzt1oXOulzGcg8QDPFyol4nFouwMw0CZTS1em2v5Fis7NYF88Sq2jvtqShYsvcUDlIm4I81iaXyvLZbVmVvPOHOkiVnJitdrTxiZFYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_interpretability_logic_of_all_reasonable_arithmetical_theories","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"This paper from 2000 is a presentation of a status quaestionis at that tiime, to wit of the problem of the interpretability logic of all reasonable arithmetical theories. We present both the arithmetical side and the modal side of the question.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160827,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160827/thumbnails/1.jpg","file_name":"2004.12685.pdf","download_url":"https://www.academia.edu/attachments/113160827/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_interpretability_logic_of_all_reason.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160827/2004.12685-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DThe_interpretability_logic_of_all_reason.pdf\u0026Expires=1734503570\u0026Signature=AADMyZV27uz3yoGd2wZOqL11tDdNGq7C~SgXbsd7PUiwWGwQFyOyW1C0tJx8FTWjpoYzKJ-30krnLeYkDR7zaXpaEIxKjIzBSEjfWVYk998fKQhbKWpQ1EWwMgtfxpp7ZqqmvhSGGl65FrfhxAyLMLzVt3zKly2lRPFefwwYsHIjX8whxHP-HeviCcmKyZJ5zu2qAdzcubFze97QnZTn3nw541BwC5P2IF~H1mtK3jB1M~Zgzt1oXOulzGcg8QDPFyol4nFouwMw0CZTS1em2v5Fis7NYF88Sq2jvtqShYsvcUDlIm4I81iaXyvLZbVmVvPOHOkiVnJitdrTxiZFYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160824,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160824/thumbnails/1.jpg","file_name":"2004.12685.pdf","download_url":"https://www.academia.edu/attachments/113160824/download_file","bulk_download_file_name":"The_interpretability_logic_of_all_reason.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160824/2004.12685-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DThe_interpretability_logic_of_all_reason.pdf\u0026Expires=1734503570\u0026Signature=HM3QleZ7AEssPfsbk5PT~lw3vaQRlpDUXFsAZtBeRkD2r0Jy1BzTMra11YyJGGOY2ZcDbYpaejpV9f1jkXBgDAsrI-N8QjwM3xxi6~~JcFBGYqexMr9b9s7lUeHN454lRJSKo3hAFIsw5GdMYzoIZTtqGn~XIVMR91wVxqkPrKujB-nWiVPLE3I9CMCU6fSLZGiOV-0Idk1ahN1b09CqN6ONrx9tlr8mbCXCWWbIn5OBwTI4jpQ-hBajYdvQqcFpu-02gkfboU57xBkU98cxwp63vCZmlrnhgQSc4GYCPHKzzr3sKSusHrUuaD3rEkLfCv9cf-j5bf8QsE-KJrZclA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":361,"name":"Modal Logic","url":"https://www.academia.edu/Documents/in/Modal_Logic"},{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy"},{"id":33207,"name":"Primary","url":"https://www.academia.edu/Documents/in/Primary"},{"id":124170,"name":"Secondary","url":"https://www.academia.edu/Documents/in/Secondary"},{"id":129770,"name":"Key words","url":"https://www.academia.edu/Documents/in/Key_words"},{"id":131903,"name":"Arithmetic","url":"https://www.academia.edu/Documents/in/Arithmetic"},{"id":1190966,"name":"F","url":"https://www.academia.edu/Documents/in/F"},{"id":1194168,"name":"B","url":"https://www.academia.edu/Documents/in/B"},{"id":2599989,"name":"interpretations","url":"https://www.academia.edu/Documents/in/interpretations"},{"id":2652480,"name":"Wijsbegeerte","url":"https://www.academia.edu/Documents/in/Wijsbegeerte"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954477,"url":"https://arxiv.org/pdf/2004.12685.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255554"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255554/Self_Provers_and_Sigma_1_Sentences"><img alt="Research paper thumbnail of Self Provers and $\Sigma_1$ Sentences" class="work-thumbnail" src="https://attachments.academia-assets.com/113160825/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255554/Self_Provers_and_Sigma_1_Sentences">Self Provers and $\Sigma_1$ Sentences</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 15, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper is the second in a series of three papers. All three papers deal with interpretability...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper is the second in a series of three papers. All three papers deal with interpretability logics and related matters. In the first paper a construction method was exposed to obtain models of these logics. Using this method, we obtained some completeness results, some already known, and some new. In this paper, we will set the construction method to work to obtain more results. First, the modal completeness of the logic ILM is proved using the construction method. This is not a new result, but by using our new proof we can obtain new results. Among these new results are some admissible rules for ILM and GL. Moreover, the new proof will be used to classify all the essentially ∆1 and also all the essentially Σ1 formulas of ILM. Closely related to essentially Σ1 sentences are the so-called self provers. A self-prover is a formula ϕ which implies its own provability, that is ϕ → ✷ϕ. Each formula ϕ will generate a self prover ϕ ∧ ✷ϕ. We will use the construction method to characterize those sentences of GL that generate a self prover that is trivial in the sense that it is Σ1.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="101cda4e41613d9149509b220b95cb48" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160825,"asset_id":117255554,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160825/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255554"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255554"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255554; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255554]").text(description); $(".js-view-count[data-work-id=117255554]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255554; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255554']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255554, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "101cda4e41613d9149509b220b95cb48" } } $('.js-work-strip[data-work-id=117255554]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255554,"title":"Self Provers and $\\Sigma_1$ Sentences","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper is the second in a series of three papers. All three papers deal with interpretability logics and related matters. In the first paper a construction method was exposed to obtain models of these logics. Using this method, we obtained some completeness results, some already known, and some new. In this paper, we will set the construction method to work to obtain more results. First, the modal completeness of the logic ILM is proved using the construction method. This is not a new result, but by using our new proof we can obtain new results. Among these new results are some admissible rules for ILM and GL. Moreover, the new proof will be used to classify all the essentially ∆1 and also all the essentially Σ1 formulas of ILM. Closely related to essentially Σ1 sentences are the so-called self provers. A self-prover is a formula ϕ which implies its own provability, that is ϕ → ✷ϕ. Each formula ϕ will generate a self prover ϕ ∧ ✷ϕ. We will use the construction method to characterize those sentences of GL that generate a self prover that is trivial in the sense that it is Σ1.","publication_date":{"day":15,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160825},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255554/Self_Provers_and_Sigma_1_Sentences","translated_internal_url":"","created_at":"2024-04-08T22:47:46.935-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160825/thumbnails/1.jpg","file_name":"2004.06934.pdf","download_url":"https://www.academia.edu/attachments/113160825/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_Provers_and_Sigma_1_Sentences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160825/2004.06934-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Provers_and_Sigma_1_Sentences.pdf\u0026Expires=1734503570\u0026Signature=OESYgeaL6FieqT0Rsa3og7AAIquN7I2le69g6ox84AIWR-bRVIUEZNmjoF7OaRypuApZL~y8vrvRMDmgW-261Tkw-0Nh4ZHyhTrsWXTfSuDaPbc54lRb7Gpj~aHfkNbaZmzR6R615FNV-5b0NZO5j3wS1T97YJZZFwa16T5~UPTJyvMYwLZktRC0VxxzFqCYYYkiGYxH9wkIe96pgvRDos5CT7s1ooUVygZC4miDf9JEuMx71F0f26lstXA6AabD1ulOqt4uKdnLv-beeBJA5y~0eXLSkqo~7nmMHqRVYKesFl-lRs3f78kAT2V07cuwoPi4Xd8UxRD~Lmtr6g6~-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_Provers_and_Sigma_1_Sentences","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"This paper is the second in a series of three papers. All three papers deal with interpretability logics and related matters. In the first paper a construction method was exposed to obtain models of these logics. Using this method, we obtained some completeness results, some already known, and some new. In this paper, we will set the construction method to work to obtain more results. First, the modal completeness of the logic ILM is proved using the construction method. This is not a new result, but by using our new proof we can obtain new results. Among these new results are some admissible rules for ILM and GL. Moreover, the new proof will be used to classify all the essentially ∆1 and also all the essentially Σ1 formulas of ILM. Closely related to essentially Σ1 sentences are the so-called self provers. A self-prover is a formula ϕ which implies its own provability, that is ϕ → ✷ϕ. Each formula ϕ will generate a self prover ϕ ∧ ✷ϕ. We will use the construction method to characterize those sentences of GL that generate a self prover that is trivial in the sense that it is Σ1.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160825/thumbnails/1.jpg","file_name":"2004.06934.pdf","download_url":"https://www.academia.edu/attachments/113160825/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_Provers_and_Sigma_1_Sentences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160825/2004.06934-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Provers_and_Sigma_1_Sentences.pdf\u0026Expires=1734503570\u0026Signature=OESYgeaL6FieqT0Rsa3og7AAIquN7I2le69g6ox84AIWR-bRVIUEZNmjoF7OaRypuApZL~y8vrvRMDmgW-261Tkw-0Nh4ZHyhTrsWXTfSuDaPbc54lRb7Gpj~aHfkNbaZmzR6R615FNV-5b0NZO5j3wS1T97YJZZFwa16T5~UPTJyvMYwLZktRC0VxxzFqCYYYkiGYxH9wkIe96pgvRDos5CT7s1ooUVygZC4miDf9JEuMx71F0f26lstXA6AabD1ulOqt4uKdnLv-beeBJA5y~0eXLSkqo~7nmMHqRVYKesFl-lRs3f78kAT2V07cuwoPi4Xd8UxRD~Lmtr6g6~-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160826,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160826/thumbnails/1.jpg","file_name":"2004.06934.pdf","download_url":"https://www.academia.edu/attachments/113160826/download_file","bulk_download_file_name":"Self_Provers_and_Sigma_1_Sentences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160826/2004.06934-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Provers_and_Sigma_1_Sentences.pdf\u0026Expires=1734503570\u0026Signature=eeeX4~bZM~b6CnU7ZQ-gb~8WBDiaCFnMTf6sn2QbU6yc9iQJWCMUD16Jsd~VL2VbhKylcRuUcJq8PLV7HBRFqMJjN5xKii58k5UWMz3nPOg156g-s305jd5gsQwo9QbcqicNzisPZDnWUEdt7f4~YlJqxuFJvQz4~21bwoRe7mgQMd6jODdnuGPPEjQQQ3wV2NGvfThKcaaYxcKW5e349~3zKc8DF9h1K7amO18SrwnaRsRBLiwrIXlOsFhVZ81Lm7r4uFz8HLIIkwLx3RfNI9jHJKGyUXRAQpzhSpke0rtANZedKdn~3ML06Qu2Yx0SBI50MgKAetMV03s3aFm-cQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics"},{"id":362034,"name":"Sigma","url":"https://www.academia.edu/Documents/in/Sigma"}],"urls":[{"id":40954476,"url":"https://arxiv.org/pdf/2004.06934.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255553"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255553/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic"><img alt="Research paper thumbnail of Pi^0_1 ordinal analysis beyond first order arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/113160822/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255553/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic">Pi^0_1 ordinal analysis beyond first order arithmetic</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 11, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we give an overview of an essential part of a Π 0 1 ordinal analysis of Peano Arith...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we give an overview of an essential part of a Π 0 1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev ([3]). This analysis is mainly performed within the polymodal provability logic GLPω. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="822ce121f73ec72f6010f649afc3af4a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160822,"asset_id":117255553,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160822/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255553"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255553"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255553; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255553]").text(description); $(".js-view-count[data-work-id=117255553]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255553; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255553']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255553, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "822ce121f73ec72f6010f649afc3af4a" } } $('.js-work-strip[data-work-id=117255553]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255553,"title":"Pi^0_1 ordinal analysis beyond first order arithmetic","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"In this paper we give an overview of an essential part of a Π 0 1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev ([3]). This analysis is mainly performed within the polymodal provability logic GLPω. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","publication_date":{"day":11,"month":12,"year":2012,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160822},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255553/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic","translated_internal_url":"","created_at":"2024-04-08T22:47:46.606-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160822,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160822/thumbnails/1.jpg","file_name":"1212.pdf","download_url":"https://www.academia.edu/attachments/113160822/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160822/1212-libre.pdf?1712648418=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=Bl-TOy12CD5l3OenV5EAfw-dC1bgOjK0Nkvwre2bT1ZPZIoII5knoNslRt9EENYrQSzzrD05xGParlJa3hLIG~D0saHMbyKszNJopBSh8EHPttAou4YaFLezTxbdj5UnanYFjwav-OBIK2jwnnaF9uKOncMWJp7Peh3rMNgoPOsiAEpGHo1vHOWNcUn3dXcbCqOEnQvcIGTO4kD1O7~sJF7FV-zdDz0WfLs6sJnduCKmPX6MaKkDKOYtQmfEHjYLE-WdE9Xu3E-KxAVt~ojM8FFJwPAs65Yw63D8Urz6IZ9aUDKQWxifFOYOIcHKUSZY~T5Ad0feTj21Cd~owcv26A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In this paper we give an overview of an essential part of a Π 0 1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev ([3]). This analysis is mainly performed within the polymodal provability logic GLPω. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160822,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160822/thumbnails/1.jpg","file_name":"1212.pdf","download_url":"https://www.academia.edu/attachments/113160822/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160822/1212-libre.pdf?1712648418=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=Bl-TOy12CD5l3OenV5EAfw-dC1bgOjK0Nkvwre2bT1ZPZIoII5knoNslRt9EENYrQSzzrD05xGParlJa3hLIG~D0saHMbyKszNJopBSh8EHPttAou4YaFLezTxbdj5UnanYFjwav-OBIK2jwnnaF9uKOncMWJp7Peh3rMNgoPOsiAEpGHo1vHOWNcUn3dXcbCqOEnQvcIGTO4kD1O7~sJF7FV-zdDz0WfLs6sJnduCKmPX6MaKkDKOYtQmfEHjYLE-WdE9Xu3E-KxAVt~ojM8FFJwPAs65Yw63D8Urz6IZ9aUDKQWxifFOYOIcHKUSZY~T5Ad0feTj21Cd~owcv26A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160823/thumbnails/1.jpg","file_name":"1212.pdf","download_url":"https://www.academia.edu/attachments/113160823/download_file","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160823/1212-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=OqH0gsoPGBGru~cKjbvSbFZZ~t9DGBk5Pwdz9jfLtIVYnZOmcHsfbAg7Z4ri2sG-5s~liQa9xlAz7Xh7PQBAkFPqyWGwEDdTl5Xqs9Ywg9s~GTjVWNfVjghMhW~lJ6QLtHu9qQkWliOqTiq~q1gMcKMK0w66HEf3ZXN42o0u2z25rUTddsKTAmQ7ipm-6vFx-Ai-lH3iIgkewUqKvNumMWP8OFs-dpe-DkZL2am-Y1~7A23QERdnIXlPCeSf7Q1A~46QP9gn3j4tPRBOKuP0EFZluXWYHwL2C5~ZUi3LvOL2hmxtsYxbHDDOpVkuQ63qBhL0~noshZF9mPRt13g55g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":14193,"name":"Philosophy of Property","url":"https://www.academia.edu/Documents/in/Philosophy_of_Property"},{"id":131903,"name":"Arithmetic","url":"https://www.academia.edu/Documents/in/Arithmetic"},{"id":141209,"name":"Second Order Arithmetic","url":"https://www.academia.edu/Documents/in/Second_Order_Arithmetic"}],"urls":[{"id":40954475,"url":"https://arxiv.org/pdf/1212.2395"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255552"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255552/Turing_Taylor_expansions_for_arithmetic_theories"><img alt="Research paper thumbnail of Turing-Taylor expansions for arithmetic theories" class="work-thumbnail" src="https://attachments.academia-assets.com/113160820/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255552/Turing_Taylor_expansions_for_arithmetic_theories">Turing-Taylor expansions for arithmetic theories</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 17, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Turing progressions have been often used to measure the proof-theoretic strength of mathematical ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you "hit" the target theory. Turing progressions based on n-provability give rise to a Πn+1 proof-theoretic ordinal |U | Π 0 n+1. As such, to each theory U we can assign the sequence of corresponding Πn+1 ordinals |U |n n>0. We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev's universal model for the closed fragment of the polymodal provability logic GLPω. In particular, we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expansion will define a unique point in Ignatiev's model.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="14878adc903a910752ac7686f77551d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160820,"asset_id":117255552,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160820/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255552"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255552"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255552; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255552]").text(description); $(".js-view-count[data-work-id=117255552]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255552; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255552']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255552, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "14878adc903a910752ac7686f77551d3" } } $('.js-work-strip[data-work-id=117255552]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255552,"title":"Turing-Taylor expansions for arithmetic theories","translated_title":"","metadata":{"publisher":"Cornell University","ai_title_tag":"Turing-Taylor Expansions and Peano Arithmetic Theories","grobid_abstract":"Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you \"hit\" the target theory. Turing progressions based on n-provability give rise to a Πn+1 proof-theoretic ordinal |U | Π 0 n+1. As such, to each theory U we can assign the sequence of corresponding Πn+1 ordinals |U |n n\u003e0. We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev's universal model for the closed fragment of the polymodal provability logic GLPω. In particular, we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expansion will define a unique point in Ignatiev's model.","publication_date":{"day":17,"month":4,"year":2014,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160820},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255552/Turing_Taylor_expansions_for_arithmetic_theories","translated_internal_url":"","created_at":"2024-04-08T22:47:46.013-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160820,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160820/thumbnails/1.jpg","file_name":"1404.4483.pdf","download_url":"https://www.academia.edu/attachments/113160820/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Turing_Taylor_expansions_for_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160820/1404.4483-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DTuring_Taylor_expansions_for_arithmetic.pdf\u0026Expires=1734503570\u0026Signature=PQTyn5MP5q-PhPPzxJx~3HQC2F9heQgXIxk0oMb2ckNRrv5GMg2haJPLMps6RvYuj2QgiugFMi7XgL7EFvJgU8t-1-Xd960ugWvAqhJAPNmBMq8c2ayDDGqdQuFDvOpPA4aEFyxJ1CrVTy2mIts5jKpfGAACtlfFFFnMr0Afm6ZMQClp1wKIc~yVm4UhFI~z0Pmoa38fIjAucDzMfF8fEIQjWXkwy1a3krjP0Q6C27uXN6Ld6au0drwmofB0JqTMAKpR64KqqwCgXVtWazK86JCGX2QbhBx14JVxyXVPS4HnKx-vIHdDzCFu2Ki1OjY9gxesVt7VVcjdnRcH-BBZxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Turing_Taylor_expansions_for_arithmetic_theories","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you \"hit\" the target theory. Turing progressions based on n-provability give rise to a Πn+1 proof-theoretic ordinal |U | Π 0 n+1. As such, to each theory U we can assign the sequence of corresponding Πn+1 ordinals |U |n n\u003e0. We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev's universal model for the closed fragment of the polymodal provability logic GLPω. In particular, we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expansion will define a unique point in Ignatiev's model.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160820,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160820/thumbnails/1.jpg","file_name":"1404.4483.pdf","download_url":"https://www.academia.edu/attachments/113160820/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Turing_Taylor_expansions_for_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160820/1404.4483-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DTuring_Taylor_expansions_for_arithmetic.pdf\u0026Expires=1734503570\u0026Signature=PQTyn5MP5q-PhPPzxJx~3HQC2F9heQgXIxk0oMb2ckNRrv5GMg2haJPLMps6RvYuj2QgiugFMi7XgL7EFvJgU8t-1-Xd960ugWvAqhJAPNmBMq8c2ayDDGqdQuFDvOpPA4aEFyxJ1CrVTy2mIts5jKpfGAACtlfFFFnMr0Afm6ZMQClp1wKIc~yVm4UhFI~z0Pmoa38fIjAucDzMfF8fEIQjWXkwy1a3krjP0Q6C27uXN6Ld6au0drwmofB0JqTMAKpR64KqqwCgXVtWazK86JCGX2QbhBx14JVxyXVPS4HnKx-vIHdDzCFu2Ki1OjY9gxesVt7VVcjdnRcH-BBZxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160821/thumbnails/1.jpg","file_name":"1404.4483.pdf","download_url":"https://www.academia.edu/attachments/113160821/download_file","bulk_download_file_name":"Turing_Taylor_expansions_for_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160821/1404.4483-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DTuring_Taylor_expansions_for_arithmetic.pdf\u0026Expires=1734503570\u0026Signature=UyAHkw9S5eorWqKmnNsBw-3uYId42u0pXwee9-mqhuICruHVVG4hdB3-b9pkgG58L-l7D7KkxQXFxAe7gJ6daGMUhrNLyClO0Q7rvoQeD7C1HqQBrDWotKKrEPD~LbLJfBWnOww5xM6pvxfaPmYfKtV72EbLjdDR4ORvLU~STky7WNhYSdX80Yu1jIa3KsT3gtvg6AS8ONZq4cFbM8SGYU3BtAUTaSxHsT9owgVq49KO1xjI3kQlr~k5VfpEGTJPK3vbdC-t6EARXYVL07KtninZv81bPN7zGhgKXc4O6qjxxy6z532wIwz7Qx~vx94KcKe43SVcB2EUGq16wqcu7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":75000,"name":"Philosophy and Religious Studies","url":"https://www.academia.edu/Documents/in/Philosophy_and_Religious_Studies"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":141209,"name":"Second Order Arithmetic","url":"https://www.academia.edu/Documents/in/Second_Order_Arithmetic"},{"id":318452,"name":"Turing","url":"https://www.academia.edu/Documents/in/Turing"}],"urls":[{"id":40954474,"url":"https://arxiv.org/pdf/1404.4483"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255551/Interpretability_in_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_display_inline_overflow_scroll_mml_mstyle_mathvariant_normal_mml_mi_PRA_mml_mi_mml_mstyle_mml_math_"><img alt="Research paper thumbnail of Interpretability in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mstyle mathvariant="normal"><mml:mi>PRA</mml:mi></mml:mstyle></mml:math>" class="work-thumbnail" src="https://attachments.academia-assets.com/113160880/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255551/Interpretability_in_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_display_inline_overflow_scroll_mml_mstyle_mathvariant_normal_mml_mi_PRA_mml_mi_mml_mstyle_mml_math_">Interpretability in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mstyle mathvariant="normal"><mml:mi>PRA</mml:mi></mml:mstyle></mml:math></a></div><div class="wp-workCard_item"><span>Annals of Pure and Applied Logic</span><span>, Nov 1, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article appeared in a journal published by Elsevier. The attached copy is furnished to the a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="179811a70e7cb66c6cc80d5ff692ddae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160880,"asset_id":117255551,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160880/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255551]").text(description); $(".js-view-count[data-work-id=117255551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "179811a70e7cb66c6cc80d5ff692ddae" } } $('.js-work-strip[data-work-id=117255551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255551,"title":"Interpretability in \u003cmml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" altimg=\"si1.gif\" display=\"inline\" overflow=\"scroll\"\u003e\u003cmml:mstyle mathvariant=\"normal\"\u003e\u003cmml:mi\u003ePRA\u003c/mml:mi\u003e\u003c/mml:mstyle\u003e\u003c/mml:math\u003e","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Interpretability in PRA","grobid_abstract":"This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:","publication_date":{"day":1,"month":11,"year":2009,"errors":{}},"publication_name":"Annals of Pure and Applied Logic","grobid_abstract_attachment_id":113160880},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255551/Interpretability_in_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_display_inline_overflow_scroll_mml_mstyle_mathvariant_normal_mml_mi_PRA_mml_mi_mml_mstyle_mml_math_","translated_internal_url":"","created_at":"2024-04-08T22:47:45.452-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160880,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160880/thumbnails/1.jpg","file_name":"APAL1949.pdf","download_url":"https://www.academia.edu/attachments/113160880/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interpretability_in_mml_math_xmlns_mml_h.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160880/APAL1949-libre.pdf?1712648408=\u0026response-content-disposition=attachment%3B+filename%3DInterpretability_in_mml_math_xmlns_mml_h.pdf\u0026Expires=1734503570\u0026Signature=KIUpf~U0tK8mVebHhNSGxQgUwkE6-5LVHHZOBjttDhpcSdZeFkic8CmxIZ7irfUm5IXVmDzICRAlv3iLHMeGA73EjfdxQ2cDJYiTiBSLFkx9PWfaC1i8dYDN5awUaDYiotbxGRvBaiGN9z7QKF1us0KdYIe40n9RnFNfXXzaN1KP90kqAuG9Mn6d4GON-j-9wHgl93o6Y5WrYvF82AZWxgR2lI1CipbRw3wZLwmPlNRvUWytLkkyyGDwwc4vtXOTELY7MlWQAwTO1b5I3-O4ATRiBbndiikCguy9MghDAbJ-dclzoXQVH55xNb6ZHpR4qtNV61ANYO4XlVaEKVdwUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interpretability_in_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_display_inline_overflow_scroll_mml_mstyle_mathvariant_normal_mml_mi_PRA_mml_mi_mml_mstyle_mml_math_","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160880,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160880/thumbnails/1.jpg","file_name":"APAL1949.pdf","download_url":"https://www.academia.edu/attachments/113160880/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interpretability_in_mml_math_xmlns_mml_h.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160880/APAL1949-libre.pdf?1712648408=\u0026response-content-disposition=attachment%3B+filename%3DInterpretability_in_mml_math_xmlns_mml_h.pdf\u0026Expires=1734503570\u0026Signature=KIUpf~U0tK8mVebHhNSGxQgUwkE6-5LVHHZOBjttDhpcSdZeFkic8CmxIZ7irfUm5IXVmDzICRAlv3iLHMeGA73EjfdxQ2cDJYiTiBSLFkx9PWfaC1i8dYDN5awUaDYiotbxGRvBaiGN9z7QKF1us0KdYIe40n9RnFNfXXzaN1KP90kqAuG9Mn6d4GON-j-9wHgl93o6Y5WrYvF82AZWxgR2lI1CipbRw3wZLwmPlNRvUWytLkkyyGDwwc4vtXOTELY7MlWQAwTO1b5I3-O4ATRiBbndiikCguy9MghDAbJ-dclzoXQVH55xNb6ZHpR4qtNV61ANYO4XlVaEKVdwUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":361,"name":"Modal Logic","url":"https://www.academia.edu/Documents/in/Modal_Logic"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954473,"url":"https://doi.org/10.1016/j.apal.2009.05.012"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255550"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255550/On_the_Necessity_of_Complexity"><img alt="Research paper thumbnail of On the Necessity of Complexity" class="work-thumbnail" src="https://attachments.academia-assets.com/113160879/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255550/On_the_Necessity_of_Complexity">On the Necessity of Complexity</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wolfram's Principle of Computational Equivalence (PCE) implies that universal complexity abounds ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wolfram's Principle of Computational Equivalence (PCE) implies that universal complexity abounds in nature. This paper comprises three sections. In the first section we consider the question why there are so many universal phenomena around. So, in a sense, we seek a driving force behind the PCE if any. We postulate a principle GNS that we call the Generalized Natural Selection principle that together with the Church-Turing thesis is seen to be equivalent in a sense to a weak version of PCE. In the second section we ask the question why we do not observe any phenomena that are complex but not-universal. We choose a cognitive setting to embark on this question and make some analogies with formal logic. In the third and final section we report on a case study where we see rich structures arise everywhere.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="301b0db0cb3187d627554706d6736254" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160879,"asset_id":117255550,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160879/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255550"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255550"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255550; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255550]").text(description); $(".js-view-count[data-work-id=117255550]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255550; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255550']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255550, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "301b0db0cb3187d627554706d6736254" } } $('.js-work-strip[data-work-id=117255550]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255550,"title":"On the Necessity of Complexity","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"Wolfram's Principle of Computational Equivalence (PCE) implies that universal complexity abounds in nature. This paper comprises three sections. In the first section we consider the question why there are so many universal phenomena around. So, in a sense, we seek a driving force behind the PCE if any. We postulate a principle GNS that we call the Generalized Natural Selection principle that together with the Church-Turing thesis is seen to be equivalent in a sense to a weak version of PCE. In the second section we ask the question why we do not observe any phenomena that are complex but not-universal. We choose a cognitive setting to embark on this question and make some analogies with formal logic. In the third and final section we report on a case study where we see rich structures arise everywhere.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Springer eBooks","grobid_abstract_attachment_id":113160879},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255550/On_the_Necessity_of_Complexity","translated_internal_url":"","created_at":"2024-04-08T22:47:45.130-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160879,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160879/thumbnails/1.jpg","file_name":"1211.1878v1.pdf","download_url":"https://www.academia.edu/attachments/113160879/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Necessity_of_Complexity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160879/1211.1878v1-libre.pdf?1712648408=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Necessity_of_Complexity.pdf\u0026Expires=1734503570\u0026Signature=JBDBdYavJuYOU2QRsRRNlzr2n7hmnZezxNQh2Tv2x1eJZPGcDsgk68-tO0tgx4XYUCB~yo3i68GBpOIKhKapouaQiELsJI3N3obM4jJM5xMK~7Vi2a0VX7CsUFBTeEnrxd3iJzEYVwatgew~Ma1C0mHr~oAq24uB7DTDw7Nc5RFif3KDGiY~1FiQruSRxFBqnXcYFKQ62rBtod3krT6Tj7H71V7CXmMSedduCZhPjFnY110gQH4KlP72ur4Dg5VLNlzvt3ZWwZ5o-gAOkwiqU104djnEOPCOUs7eIZQeBdJ8bz4tBS1YKqRwjTUHAj65RU8wasl~2GVwk8yei40R8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Necessity_of_Complexity","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Wolfram's Principle of Computational Equivalence (PCE) implies that universal complexity abounds in nature. This paper comprises three sections. In the first section we consider the question why there are so many universal phenomena around. So, in a sense, we seek a driving force behind the PCE if any. We postulate a principle GNS that we call the Generalized Natural Selection principle that together with the Church-Turing thesis is seen to be equivalent in a sense to a weak version of PCE. In the second section we ask the question why we do not observe any phenomena that are complex but not-universal. We choose a cognitive setting to embark on this question and make some analogies with formal logic. In the third and final section we report on a case study where we see rich structures arise everywhere.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160879,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160879/thumbnails/1.jpg","file_name":"1211.1878v1.pdf","download_url":"https://www.academia.edu/attachments/113160879/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Necessity_of_Complexity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160879/1211.1878v1-libre.pdf?1712648408=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Necessity_of_Complexity.pdf\u0026Expires=1734503570\u0026Signature=JBDBdYavJuYOU2QRsRRNlzr2n7hmnZezxNQh2Tv2x1eJZPGcDsgk68-tO0tgx4XYUCB~yo3i68GBpOIKhKapouaQiELsJI3N3obM4jJM5xMK~7Vi2a0VX7CsUFBTeEnrxd3iJzEYVwatgew~Ma1C0mHr~oAq24uB7DTDw7Nc5RFif3KDGiY~1FiQruSRxFBqnXcYFKQ62rBtod3krT6Tj7H71V7CXmMSedduCZhPjFnY110gQH4KlP72ur4Dg5VLNlzvt3ZWwZ5o-gAOkwiqU104djnEOPCOUs7eIZQeBdJ8bz4tBS1YKqRwjTUHAj65RU8wasl~2GVwk8yei40R8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":318452,"name":"Turing","url":"https://www.academia.edu/Documents/in/Turing"},{"id":349061,"name":"Turing machine","url":"https://www.academia.edu/Documents/in/Turing_machine"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":40954472,"url":"https://doi.org/10.1007/978-3-642-35482-3_2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255549"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255549/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic"><img alt="Research paper thumbnail of Pi^0_1 ordinal analysis beyond first order arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/113160819/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255549/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic">Pi^0_1 ordinal analysis beyond first order arithmetic</a></div><div class="wp-workCard_item"><span>arXiv: Logic</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev. This analysis is mainly performed within the polymodal provability logic GLP. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="462ec27b7c81472e38dfedd041181832" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160819,"asset_id":117255549,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160819/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255549"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255549"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255549; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255549]").text(description); $(".js-view-count[data-work-id=117255549]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255549; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255549']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255549, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "462ec27b7c81472e38dfedd041181832" } } $('.js-work-strip[data-work-id=117255549]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255549,"title":"Pi^0_1 ordinal analysis beyond first order arithmetic","translated_title":"","metadata":{"abstract":"In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev. This analysis is mainly performed within the polymodal provability logic GLP. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"arXiv: Logic"},"translated_abstract":"In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev. This analysis is mainly performed within the polymodal provability logic GLP. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","internal_url":"https://www.academia.edu/117255549/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic","translated_internal_url":"","created_at":"2024-04-08T22:47:43.903-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160819/thumbnails/1.jpg","file_name":"1212.2395v1.pdf","download_url":"https://www.academia.edu/attachments/113160819/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160819/1212.2395v1-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=XlV5mgoFTdhxgPMK3Dv6-Y7PhMD0IsDpRC2LA5ZBYQB~wiuY93dwUn4e8vXZmMmTQn2zan0lezJqD1W4PIeHtqZAtXHRahXo6xNjrJFVluWOnVa0EsY8dwzMwc0HwTJshwPvSjVT~9EAYohbBmzIqhIqmoJScZP4gptAh8G5zobrhNHELtPg3Ktb3XpJfp-EAuyYv7sZ78AU63FzWgr2K6hpvLc0fcm-KFjloEyW38eCBsUz3QSaa2hDj60~lnUtmBJbp6m7VU9oSTBCspWysXquKM0978AzqOOYHTAEvmJMsTVl82ysPSFXYYibFUo9p4WLBtO-~dyNwRSgW54IpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev. This analysis is mainly performed within the polymodal provability logic GLP. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160819/thumbnails/1.jpg","file_name":"1212.2395v1.pdf","download_url":"https://www.academia.edu/attachments/113160819/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160819/1212.2395v1-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=XlV5mgoFTdhxgPMK3Dv6-Y7PhMD0IsDpRC2LA5ZBYQB~wiuY93dwUn4e8vXZmMmTQn2zan0lezJqD1W4PIeHtqZAtXHRahXo6xNjrJFVluWOnVa0EsY8dwzMwc0HwTJshwPvSjVT~9EAYohbBmzIqhIqmoJScZP4gptAh8G5zobrhNHELtPg3Ktb3XpJfp-EAuyYv7sZ78AU63FzWgr2K6hpvLc0fcm-KFjloEyW38eCBsUz3QSaa2hDj60~lnUtmBJbp6m7VU9oSTBCspWysXquKM0978AzqOOYHTAEvmJMsTVl82ysPSFXYYibFUo9p4WLBtO-~dyNwRSgW54IpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":14193,"name":"Philosophy of Property","url":"https://www.academia.edu/Documents/in/Philosophy_of_Property"},{"id":131903,"name":"Arithmetic","url":"https://www.academia.edu/Documents/in/Arithmetic"},{"id":141209,"name":"Second Order Arithmetic","url":"https://www.academia.edu/Documents/in/Second_Order_Arithmetic"}],"urls":[{"id":40954471,"url":"https://arxiv.org/pdf/1212.2395v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113504400"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113504400/The_Worm_Calculus"><img alt="Research paper thumbnail of The Worm Calculus" class="work-thumbnail" src="https://attachments.academia-assets.com/110446587/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113504400/The_Worm_Calculus">The Worm Calculus</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Mar 28, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fca8d87990bffbb5d43d4db34ae33f63" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110446587,"asset_id":113504400,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110446587/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113504400"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113504400"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113504400; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113504400]").text(description); $(".js-view-count[data-work-id=113504400]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113504400; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113504400']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113504400, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fca8d87990bffbb5d43d4db34ae33f63" } } $('.js-work-strip[data-work-id=113504400]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113504400,"title":"The Worm Calculus","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":28,"month":3,"year":2018,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113504400/The_Worm_Calculus","translated_internal_url":"","created_at":"2024-01-14T20:57:18.603-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110446587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110446587/thumbnails/1.jpg","file_name":"1803.10543.pdf","download_url":"https://www.academia.edu/attachments/110446587/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Worm_Calculus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110446587/1803.10543-libre.pdf?1705297030=\u0026response-content-disposition=attachment%3B+filename%3DThe_Worm_Calculus.pdf\u0026Expires=1734503570\u0026Signature=IgrYmLYBxBd8AvgWa-SFEcikLyZ9v8emXsAP-OxrRRG2H4T7EwLYI7MvJnW-EaEkdo26vcSkHj65kBdI7YztYj9M-4OpjG9y4jBkl9DiYx0b4xNX7Jk80lwFKOuVuFmTrrAjjeforvIzcSZcUlqMx1iNffJAn0x~tWY51rF5bQ9JQB-HAt-95ydlz4gXXBJDdjy1ZyNZXFIFhz4TUJxoq6EwptwFsZnB6Yw189y3c0eYPmVsa0Dyi9nDwzaTMrm1S5U58BbVgDTzkQkPTEKOvfIEK6L6DztQLARWJwjWajcJKaghhc0mdphU1fo6X7ogIwFxOLPftyM-Y07oTaj6hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Worm_Calculus","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":null,"owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":110446587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110446587/thumbnails/1.jpg","file_name":"1803.10543.pdf","download_url":"https://www.academia.edu/attachments/110446587/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Worm_Calculus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110446587/1803.10543-libre.pdf?1705297030=\u0026response-content-disposition=attachment%3B+filename%3DThe_Worm_Calculus.pdf\u0026Expires=1734503570\u0026Signature=IgrYmLYBxBd8AvgWa-SFEcikLyZ9v8emXsAP-OxrRRG2H4T7EwLYI7MvJnW-EaEkdo26vcSkHj65kBdI7YztYj9M-4OpjG9y4jBkl9DiYx0b4xNX7Jk80lwFKOuVuFmTrrAjjeforvIzcSZcUlqMx1iNffJAn0x~tWY51rF5bQ9JQB-HAt-95ydlz4gXXBJDdjy1ZyNZXFIFhz4TUJxoq6EwptwFsZnB6Yw189y3c0eYPmVsa0Dyi9nDwzaTMrm1S5U58BbVgDTzkQkPTEKOvfIEK6L6DztQLARWJwjWajcJKaghhc0mdphU1fo6X7ogIwFxOLPftyM-Y07oTaj6hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":361,"name":"Modal Logic","url":"https://www.academia.edu/Documents/in/Modal_Logic"},{"id":368005,"name":"Propositional Calculus","url":"https://www.academia.edu/Documents/in/Propositional_Calculus"},{"id":371994,"name":"Dental Calculus","url":"https://www.academia.edu/Documents/in/Dental_Calculus"}],"urls":[{"id":38574289,"url":"http://arxiv.org/pdf/1803.10543"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="6223647" id="papers"><div class="js-work-strip profile--work_container" data-work-id="117255568"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255568/Models_of_transfinite_provability_logic"><img alt="Research paper thumbnail of Models of transfinite provability logic" class="work-thumbnail" src="https://attachments.academia-assets.com/113160845/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255568/Models_of_transfinite_provability_logic">Models of transfinite provability logic</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 21, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each ξ < Λ. Thes...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each ξ < Λ. These represent provability predicates of increasing strength. Although GLPΛ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted GLP 0 ω. Later, Icard defined a topological model for GLP 0 ω which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary Λ. More generally, for each Θ, Λ we build a Kripke model I Θ Λ and a topological model T Θ Λ , and show that GLP 0 Λ is sound for both of these structures, as well as complete, provided Θ is large enough.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ccab0998f8ce1b611bd0f14a44f29f2d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160845,"asset_id":117255568,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160845/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255568"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255568"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255568; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255568]").text(description); $(".js-view-count[data-work-id=117255568]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255568; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255568']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255568, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ccab0998f8ce1b611bd0f14a44f29f2d" } } $('.js-work-strip[data-work-id=117255568]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255568,"title":"Models of transfinite provability logic","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each ξ \u003c Λ. These represent provability predicates of increasing strength. Although GLPΛ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted GLP 0 ω. Later, Icard defined a topological model for GLP 0 ω which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary Λ. More generally, for each Θ, Λ we build a Kripke model I Θ Λ and a topological model T Θ Λ , and show that GLP 0 Λ is sound for both of these structures, as well as complete, provided Θ is large enough.","publication_date":{"day":21,"month":4,"year":2012,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160845},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255568/Models_of_transfinite_provability_logic","translated_internal_url":"","created_at":"2024-04-08T22:47:53.064-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160845,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160845/thumbnails/1.jpg","file_name":"1204.4837.pdf","download_url":"https://www.academia.edu/attachments/113160845/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Models_of_transfinite_provability_logic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160845/1204.4837-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DModels_of_transfinite_provability_logic.pdf\u0026Expires=1734503568\u0026Signature=PoWoWeuWkD8h1MtfDIZ-t3qpcZdmDnTqOey~D8iJkh9tK~k6MKIj9ILeUsIFsvhNAZnGmAxv6nsqNBUYU-ZDwsd9-wz2y20mpetJZC2VRrsiHOk89NWzdRnQyBe~qw02rzdbxUsWQrPFa1aArAL54CNEHJsPMSg8m4ofxU1bmK7WaD1deCGjkhyVJzUR3~LL3YrX5Uh1wu0Thg3vFw2SAajONoGI6xMcj4vgKIMJD1clXqQstKFCnDPkx~PK8GydRtCkbu8rJz1CGTjaBV-0YzJUvn6t1e2L~inOG~OJAFdGxE-wBZTcdQJWUwCs4ICJ1U7fHIK1d3cK9QFwj~-HQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Models_of_transfinite_provability_logic","translated_slug":"","page_count":23,"language":"en","content_type":"Work","summary":"For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each ξ \u003c Λ. These represent provability predicates of increasing strength. Although GLPΛ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted GLP 0 ω. Later, Icard defined a topological model for GLP 0 ω which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary Λ. More generally, for each Θ, Λ we build a Kripke model I Θ Λ and a topological model T Θ Λ , and show that GLP 0 Λ is sound for both of these structures, as well as complete, provided Θ is large enough.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160845,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160845/thumbnails/1.jpg","file_name":"1204.4837.pdf","download_url":"https://www.academia.edu/attachments/113160845/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Models_of_transfinite_provability_logic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160845/1204.4837-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DModels_of_transfinite_provability_logic.pdf\u0026Expires=1734503568\u0026Signature=PoWoWeuWkD8h1MtfDIZ-t3qpcZdmDnTqOey~D8iJkh9tK~k6MKIj9ILeUsIFsvhNAZnGmAxv6nsqNBUYU-ZDwsd9-wz2y20mpetJZC2VRrsiHOk89NWzdRnQyBe~qw02rzdbxUsWQrPFa1aArAL54CNEHJsPMSg8m4ofxU1bmK7WaD1deCGjkhyVJzUR3~LL3YrX5Uh1wu0Thg3vFw2SAajONoGI6xMcj4vgKIMJD1clXqQstKFCnDPkx~PK8GydRtCkbu8rJz1CGTjaBV-0YzJUvn6t1e2L~inOG~OJAFdGxE-wBZTcdQJWUwCs4ICJ1U7fHIK1d3cK9QFwj~-HQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":3785923,"name":"Lambda","url":"https://www.academia.edu/Documents/in/Lambda"}],"urls":[{"id":40954489,"url":"https://arxiv.org/pdf/1204.4837"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255567/FV_Time_a_formally_verified_Coq_library"><img alt="Research paper thumbnail of FV Time: a formally verified Coq library" class="work-thumbnail" src="https://attachments.academia-assets.com/113160844/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255567/FV_Time_a_formally_verified_Coq_library">FV Time: a formally verified Coq library</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Sep 28, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">FV Time is a small-scale verification project developed in the Coq proof assistant using the Math...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">FV Time is a small-scale verification project developed in the Coq proof assistant using the Mathematical Components libraries. It is a library for managing conversions between time formats (UTC and timestamps), as well as commonly used functions for time arithmetic. As a library for time conversions, its novelty is the implementation of leap seconds, which are part of the UTC standard but usually not implemented in existing libraries. Since the verified functions of FV Time are reasonably simple yet non-trivial, it nicely illustrates our methodology for verifying software with Coq. In this paper we present a description of the project, emphasizing the main problems faced while developing the library, as well as some general-purpose solutions that were produced as by-products and may be used in other verification projects. These include a refinement package between proof-oriented MathComp numbers and computation-oriented primitive numbers from the Coq standard library, as well as a set of tactics to automatically prove certain decidable statements over finite ranges through brute-force computation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8958427699dd6b5efabae86cdca2bfa5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160844,"asset_id":117255567,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160844/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255567]").text(description); $(".js-view-count[data-work-id=117255567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255567, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8958427699dd6b5efabae86cdca2bfa5" } } $('.js-work-strip[data-work-id=117255567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255567,"title":"FV Time: a formally verified Coq library","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"FV Time is a small-scale verification project developed in the Coq proof assistant using the Mathematical Components libraries. It is a library for managing conversions between time formats (UTC and timestamps), as well as commonly used functions for time arithmetic. As a library for time conversions, its novelty is the implementation of leap seconds, which are part of the UTC standard but usually not implemented in existing libraries. Since the verified functions of FV Time are reasonably simple yet non-trivial, it nicely illustrates our methodology for verifying software with Coq. In this paper we present a description of the project, emphasizing the main problems faced while developing the library, as well as some general-purpose solutions that were produced as by-products and may be used in other verification projects. These include a refinement package between proof-oriented MathComp numbers and computation-oriented primitive numbers from the Coq standard library, as well as a set of tactics to automatically prove certain decidable statements over finite ranges through brute-force computation.","publication_date":{"day":28,"month":9,"year":2022,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160844},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255567/FV_Time_a_formally_verified_Coq_library","translated_internal_url":"","created_at":"2024-04-08T22:47:52.614-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160844,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160844/thumbnails/1.jpg","file_name":"2209.14227.pdf","download_url":"https://www.academia.edu/attachments/113160844/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"FV_Time_a_formally_verified_Coq_library.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160844/2209.14227-libre.pdf?1712648417=\u0026response-content-disposition=attachment%3B+filename%3DFV_Time_a_formally_verified_Coq_library.pdf\u0026Expires=1734503569\u0026Signature=fVxWUsUn5owMn3dR9IHKNtoYqI~x2rjsvEmZB49tJVwtT0SOgnCWG9wzJsT8Zz6qqaZDOfyRwXYSZKKmaZxh8~MN8iW~fGxP5gU67UqAZgMmfQUMWfjjvg~JWiBwt7NyWn1zdeOy3ZPN3F98Cu1TvDtsuLQZxvoYh4X2ssF9sxv-ditUtalaGFthepkd9f0T-DG-HpwjUNS9EOeueT5tLdB7fCCLDwFET5ayFDcukuZmSg-gsdFE3FY8EcklutGDr-oBUxsJkJbH3GubQNAxvjqJ4Mnhf9XJ1-MWYLDdBrQtgilT-MR9A6xUnreM-jm4zmLNEXZCbvyW3pep6~Kqtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"FV_Time_a_formally_verified_Coq_library","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"FV Time is a small-scale verification project developed in the Coq proof assistant using the Mathematical Components libraries. It is a library for managing conversions between time formats (UTC and timestamps), as well as commonly used functions for time arithmetic. As a library for time conversions, its novelty is the implementation of leap seconds, which are part of the UTC standard but usually not implemented in existing libraries. Since the verified functions of FV Time are reasonably simple yet non-trivial, it nicely illustrates our methodology for verifying software with Coq. In this paper we present a description of the project, emphasizing the main problems faced while developing the library, as well as some general-purpose solutions that were produced as by-products and may be used in other verification projects. These include a refinement package between proof-oriented MathComp numbers and computation-oriented primitive numbers from the Coq standard library, as well as a set of tactics to automatically prove certain decidable statements over finite ranges through brute-force computation.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160844,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160844/thumbnails/1.jpg","file_name":"2209.14227.pdf","download_url":"https://www.academia.edu/attachments/113160844/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"FV_Time_a_formally_verified_Coq_library.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160844/2209.14227-libre.pdf?1712648417=\u0026response-content-disposition=attachment%3B+filename%3DFV_Time_a_formally_verified_Coq_library.pdf\u0026Expires=1734503569\u0026Signature=fVxWUsUn5owMn3dR9IHKNtoYqI~x2rjsvEmZB49tJVwtT0SOgnCWG9wzJsT8Zz6qqaZDOfyRwXYSZKKmaZxh8~MN8iW~fGxP5gU67UqAZgMmfQUMWfjjvg~JWiBwt7NyWn1zdeOy3ZPN3F98Cu1TvDtsuLQZxvoYh4X2ssF9sxv-ditUtalaGFthepkd9f0T-DG-HpwjUNS9EOeueT5tLdB7fCCLDwFET5ayFDcukuZmSg-gsdFE3FY8EcklutGDr-oBUxsJkJbH3GubQNAxvjqJ4Mnhf9XJ1-MWYLDdBrQtgilT-MR9A6xUnreM-jm4zmLNEXZCbvyW3pep6~Kqtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":59487,"name":"Computation","url":"https://www.academia.edu/Documents/in/Computation"},{"id":310878,"name":"Proof assistant","url":"https://www.academia.edu/Documents/in/Proof_assistant"},{"id":1489478,"name":"Programming language","url":"https://www.academia.edu/Documents/in/Programming_language"}],"urls":[{"id":40954488,"url":"http://arxiv.org/pdf/2209.14227"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255566/Provability_and_interpretability_logics_with_restricted_realizations"><img alt="Research paper thumbnail of Provability and interpretability logics with restricted realizations" class="work-thumbnail" src="https://attachments.academia-assets.com/113160839/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255566/Provability_and_interpretability_logics_with_restricted_realizations">Provability and interpretability logics with restricted realizations</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jun 18, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The provability logic of a theory T is the set of modal formulas, which under any arithmetical re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The provability logic of a theory T is the set of modal formulas, which under any arithmetical realization are provable in T. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set Γ. We make an analogous modification for interpretability logics. This is a paper from 2012. We first studied provability logics with restricted realizations, and show that for various natural candidates of theory T and restriction set Γ, where each sentence in Γ has a well understood (meta)-mathematical content in T , the result is the logic of linear frames. However, for the theory Primitive Recursive Arithmetic (PRA), we define a fragment that gives rise to a more interesting provability logic, by capitalizing on the well-studied relationship between PRA and IΣ 1. We then study interpretability logics, obtaining some upper bounds for IL(PRA), whose characterization remains a major open question in interpretability logic. Again this upper bound is closely relatively to linear frames. The technique is also applied to yield the non-trivial result that IL(PRA) ⊂ ILM. 2 Σ 1-sound is sufficient here. 3 There is a paper by de Jongh, Jumelet and Montagna [22] where an alternative proof of Solovay's theorem is given. In that proof, using the diagonal lemma, one finds some sentences with the required properties rather than defining the sentences and then proving the necessary properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2340e2da9c542979420e6cba10d100b8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160839,"asset_id":117255566,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160839/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255566]").text(description); $(".js-view-count[data-work-id=117255566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255566, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2340e2da9c542979420e6cba10d100b8" } } $('.js-work-strip[data-work-id=117255566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255566,"title":"Provability and interpretability logics with restricted realizations","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"The provability logic of a theory T is the set of modal formulas, which under any arithmetical realization are provable in T. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set Γ. We make an analogous modification for interpretability logics. This is a paper from 2012. We first studied provability logics with restricted realizations, and show that for various natural candidates of theory T and restriction set Γ, where each sentence in Γ has a well understood (meta)-mathematical content in T , the result is the logic of linear frames. However, for the theory Primitive Recursive Arithmetic (PRA), we define a fragment that gives rise to a more interesting provability logic, by capitalizing on the well-studied relationship between PRA and IΣ 1. We then study interpretability logics, obtaining some upper bounds for IL(PRA), whose characterization remains a major open question in interpretability logic. Again this upper bound is closely relatively to linear frames. The technique is also applied to yield the non-trivial result that IL(PRA) ⊂ ILM. 2 Σ 1-sound is sufficient here. 3 There is a paper by de Jongh, Jumelet and Montagna [22] where an alternative proof of Solovay's theorem is given. In that proof, using the diagonal lemma, one finds some sentences with the required properties rather than defining the sentences and then proving the necessary properties.","publication_date":{"day":18,"month":6,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160839},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255566/Provability_and_interpretability_logics_with_restricted_realizations","translated_internal_url":"","created_at":"2024-04-08T22:47:52.198-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160839/thumbnails/1.jpg","file_name":"2006.pdf","download_url":"https://www.academia.edu/attachments/113160839/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Provability_and_interpretability_logics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160839/2006-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DProvability_and_interpretability_logics.pdf\u0026Expires=1734503569\u0026Signature=WW1dP1s4X0-W3f-toxQXlR7pwCqVGE8G-Dmn5hz5TRQvRztof~WiQ9sUg0DYIAGPoELQPIM64G6ORPJfmTLisrUPX3ScTuMyjnUolQtNcF88k3rQTJclsemrOpShj0qvhgcbhXDnwg0HCjZBhmcz0JexxFHIvzzmqo5xnOI~Wf-Wz-sIcBaemCt56OL~Y6VztPxUSxLU8cJq~ilsAlEABz1HEaMepJF2GKA5vkhlkDVEBmrCw7ucE~0NTIVjQuHBWtnnlyCIGomtCmIdMHj0XspuLymn8A097-iHrX6JeRzt2Wtr1CnLD3yTeqZeOxsZnH5F312gmOHj5qcpI6N1vA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Provability_and_interpretability_logics_with_restricted_realizations","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":"The provability logic of a theory T is the set of modal formulas, which under any arithmetical realization are provable in T. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set Γ. We make an analogous modification for interpretability logics. This is a paper from 2012. We first studied provability logics with restricted realizations, and show that for various natural candidates of theory T and restriction set Γ, where each sentence in Γ has a well understood (meta)-mathematical content in T , the result is the logic of linear frames. However, for the theory Primitive Recursive Arithmetic (PRA), we define a fragment that gives rise to a more interesting provability logic, by capitalizing on the well-studied relationship between PRA and IΣ 1. We then study interpretability logics, obtaining some upper bounds for IL(PRA), whose characterization remains a major open question in interpretability logic. Again this upper bound is closely relatively to linear frames. The technique is also applied to yield the non-trivial result that IL(PRA) ⊂ ILM. 2 Σ 1-sound is sufficient here. 3 There is a paper by de Jongh, Jumelet and Montagna [22] where an alternative proof of Solovay's theorem is given. In that proof, using the diagonal lemma, one finds some sentences with the required properties rather than defining the sentences and then proving the necessary properties.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160839/thumbnails/1.jpg","file_name":"2006.pdf","download_url":"https://www.academia.edu/attachments/113160839/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Provability_and_interpretability_logics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160839/2006-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DProvability_and_interpretability_logics.pdf\u0026Expires=1734503569\u0026Signature=WW1dP1s4X0-W3f-toxQXlR7pwCqVGE8G-Dmn5hz5TRQvRztof~WiQ9sUg0DYIAGPoELQPIM64G6ORPJfmTLisrUPX3ScTuMyjnUolQtNcF88k3rQTJclsemrOpShj0qvhgcbhXDnwg0HCjZBhmcz0JexxFHIvzzmqo5xnOI~Wf-Wz-sIcBaemCt56OL~Y6VztPxUSxLU8cJq~ilsAlEABz1HEaMepJF2GKA5vkhlkDVEBmrCw7ucE~0NTIVjQuHBWtnnlyCIGomtCmIdMHj0XspuLymn8A097-iHrX6JeRzt2Wtr1CnLD3yTeqZeOxsZnH5F312gmOHj5qcpI6N1vA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160840,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160840/thumbnails/1.jpg","file_name":"2006.pdf","download_url":"https://www.academia.edu/attachments/113160840/download_file","bulk_download_file_name":"Provability_and_interpretability_logics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160840/2006-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DProvability_and_interpretability_logics.pdf\u0026Expires=1734503569\u0026Signature=WXim9vAAH5t~r4zm06HgR6F8N2IOnq-xcGH2ueP0KrrtUkqKDKV3hmahuYePBNa9TxSuf8ragqUStSTKh9eO4uv5WMwT~i9XEIP-133AnxfOKDWPSmNct-22RXmPMlbJrye4GUEKOtZnJKdlJthmv0MOcJvgUA59KSO4ccMNxR4KxditWCZ-M5fHpy6om8U~9ULvsrfkF46Co1lfKRltmqFpn0e8sLqIcbB2dHCNb3-iaNma4cForBB~B0ZC2VAmAdixRMpLMuY8rTbmGygTGQFJhmc7WrAZiCuDkdqOyKSjjgQvnrIztMfRbqZu0Sjfz6OCTeHR7QzqPy4Hada15g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954487,"url":"https://arxiv.org/pdf/2006.10539"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255565"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255565/A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories"><img alt="Research paper thumbnail of A new principle in the interpretability logic of all reasonable arithmetical theories" class="work-thumbnail" src="https://attachments.academia-assets.com/113160838/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255565/A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories">A new principle in the interpretability logic of all reasonable arithmetical theories</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 15, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The interpretability logic of a mathematical theory describes the structural behavior of interpre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The interpretability logic of a mathematical theory describes the structural behavior of interpretations over that theory. Different theories have different logics. This paper revolves around the question what logic describes the behavior that is present in all theories with a minimum amount of arithmetic; the intersection over all such theories so to say. We denote this target logic by IL(All). In this paper we present a new principle R in IL(All). We show that R does not follow from the logic ILP0W * that contains all previously known principles. This is done by providing a modal incompleteness proof of ILP0W * : showing that R follows semantically but not syntactically from ILP0W *. Apart from giving the incompleteness proof by elementary methods, we also sketch how to work with so-called Generalized Veltman Semantics as to establish incompleteness. To this extent, a new version of this Generalized Veltman Semantics is defined and studied. Moreover, for the important principles the frame correspondences are calculated. After the modal results it is shown that the new principle R is indeed valid in any arithmetically theory. The proof employs some elementary results on definable cuts in arithmetical theories. 1 Technically speaking the property of so-called essential reflexivity is sufficient. A theory is</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="70d7d5870e4bd7a943ba77b7db1e0338" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160838,"asset_id":117255565,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160838/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255565"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255565"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255565; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255565]").text(description); $(".js-view-count[data-work-id=117255565]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255565; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255565']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255565, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "70d7d5870e4bd7a943ba77b7db1e0338" } } $('.js-work-strip[data-work-id=117255565]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255565,"title":"A new principle in the interpretability logic of all reasonable arithmetical theories","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"The interpretability logic of a mathematical theory describes the structural behavior of interpretations over that theory. Different theories have different logics. This paper revolves around the question what logic describes the behavior that is present in all theories with a minimum amount of arithmetic; the intersection over all such theories so to say. We denote this target logic by IL(All). In this paper we present a new principle R in IL(All). We show that R does not follow from the logic ILP0W * that contains all previously known principles. This is done by providing a modal incompleteness proof of ILP0W * : showing that R follows semantically but not syntactically from ILP0W *. Apart from giving the incompleteness proof by elementary methods, we also sketch how to work with so-called Generalized Veltman Semantics as to establish incompleteness. To this extent, a new version of this Generalized Veltman Semantics is defined and studied. Moreover, for the important principles the frame correspondences are calculated. After the modal results it is shown that the new principle R is indeed valid in any arithmetically theory. The proof employs some elementary results on definable cuts in arithmetical theories. 1 Technically speaking the property of so-called essential reflexivity is sufficient. A theory is","publication_date":{"day":15,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160838},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255565/A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories","translated_internal_url":"","created_at":"2024-04-08T22:47:51.701-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160838,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160838/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160838/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_principle_in_the_interpretability.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160838/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DA_new_principle_in_the_interpretability.pdf\u0026Expires=1734503569\u0026Signature=Gba8HD-FS4BXwg1rcDtweIpCM3pg0HcorIOv-6h6y68sGq2nJsXVIOjdU0c4mp5WLOJ9Hv0y4Mel-oVlP6UHCw0i36~bMz06P8LmV1nHMoP7KHcI5xkLGvUn43Pziwk3EukoddkrHggjChiGBFR58bmwhl-N3PtQrTAj2umtuouFETrelRMHo1eIJNl4YXrFsQB1qNbeAKs5vYG61WaoU7JdN2v63DMZntZ3X296Sq7qsRgxEegUawriXHX1aqz2zHTpRqgiMpNV7zklgsfYE4PPOVVvV8Qg1qJR7jdcj3d3KGIPb6KpWE4RX9IGncsZZUtM~NUPoeGYgHqrArynaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_principle_in_the_interpretability_logic_of_all_reasonable_arithmetical_theories","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"The interpretability logic of a mathematical theory describes the structural behavior of interpretations over that theory. Different theories have different logics. This paper revolves around the question what logic describes the behavior that is present in all theories with a minimum amount of arithmetic; the intersection over all such theories so to say. We denote this target logic by IL(All). In this paper we present a new principle R in IL(All). We show that R does not follow from the logic ILP0W * that contains all previously known principles. This is done by providing a modal incompleteness proof of ILP0W * : showing that R follows semantically but not syntactically from ILP0W *. Apart from giving the incompleteness proof by elementary methods, we also sketch how to work with so-called Generalized Veltman Semantics as to establish incompleteness. To this extent, a new version of this Generalized Veltman Semantics is defined and studied. Moreover, for the important principles the frame correspondences are calculated. After the modal results it is shown that the new principle R is indeed valid in any arithmetically theory. The proof employs some elementary results on definable cuts in arithmetical theories. 1 Technically speaking the property of so-called essential reflexivity is sufficient. A theory is","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160838,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160838/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160838/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_principle_in_the_interpretability.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160838/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DA_new_principle_in_the_interpretability.pdf\u0026Expires=1734503569\u0026Signature=Gba8HD-FS4BXwg1rcDtweIpCM3pg0HcorIOv-6h6y68sGq2nJsXVIOjdU0c4mp5WLOJ9Hv0y4Mel-oVlP6UHCw0i36~bMz06P8LmV1nHMoP7KHcI5xkLGvUn43Pziwk3EukoddkrHggjChiGBFR58bmwhl-N3PtQrTAj2umtuouFETrelRMHo1eIJNl4YXrFsQB1qNbeAKs5vYG61WaoU7JdN2v63DMZntZ3X296Sq7qsRgxEegUawriXHX1aqz2zHTpRqgiMpNV7zklgsfYE4PPOVVvV8Qg1qJR7jdcj3d3KGIPb6KpWE4RX9IGncsZZUtM~NUPoeGYgHqrArynaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160837,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160837/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160837/download_file","bulk_download_file_name":"A_new_principle_in_the_interpretability.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160837/2004-libre.pdf?1712648423=\u0026response-content-disposition=attachment%3B+filename%3DA_new_principle_in_the_interpretability.pdf\u0026Expires=1734503569\u0026Signature=DQwbgA-3EOSH7f560BigUD9iHfJJUwfBeBDvhEE4o3nwczgk2qEHo69h964NQ0zgFTse9ClQHHARCFBXb2tNrI5tdA-vYYpsRZNyDkUmqc1z4Yl7vANerqcE~P-P-wvfT~c48A1afFxdPvdGVbe3gcN9fJjjPtBVOLnG4Wl1mJnWWbOXOYdjFW6QgtH5gACsq~Pi473uMb-8gbVKGZkkJnkHN4GCpbG7AhlGkNZlUIepfdXGAGM3g~0DP5SxLPN596VdFDl-VoJCxpEoOJMjIWSdXjQY6L3dAYw2pec9KgVjCVk850Txu5IwN5zL8FMKpjocQlVy1Ze8ruQku7VmNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":361,"name":"Modal Logic","url":"https://www.academia.edu/Documents/in/Modal_Logic"},{"id":499193,"name":"Sketch","url":"https://www.academia.edu/Documents/in/Sketch"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954486,"url":"http://arxiv.org/pdf/2004.06902"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255564"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255564/To_drive_or_not_to_drive_A_logical_and_computational_analysis_of_European_transport_regulations"><img alt="Research paper thumbnail of To drive or not to drive: A logical and computational analysis of European transport regulations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255564/To_drive_or_not_to_drive_A_logical_and_computational_analysis_of_European_transport_regulations">To drive or not to drive: A logical and computational analysis of European transport regulations</a></div><div class="wp-workCard_item"><span>Information & Computation</span><span>, Nov 1, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper analyses a selection of articles from European transport regulations that con...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper analyses a selection of articles from European transport regulations that contain algorithmic information, but may be problematic to implement. We focus on issues regarding the interpretation of tachograph data and requirements on weekly rest periods. We first show that the interpretation of data prescribed by these regulations is highly sensitive to minor variations in input, such that near-identical driving patterns may be regarded both as lawful and as unlawful. We then show that the content of the regulation may be represented in mondadic second order logic, but argue that a more computationally tame fragment would be preferrable for applications. As a case study we consider its representation in linear temporal logic, but show that a representation of the legislation requires formulas of unfeasible complexity, if at all possible.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255564"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255564"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255564; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255564]").text(description); $(".js-view-count[data-work-id=117255564]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255564; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255564']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255564, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117255564]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255564,"title":"To drive or not to drive: A logical and computational analysis of European transport regulations","translated_title":"","metadata":{"abstract":"Abstract This paper analyses a selection of articles from European transport regulations that contain algorithmic information, but may be problematic to implement. We focus on issues regarding the interpretation of tachograph data and requirements on weekly rest periods. We first show that the interpretation of data prescribed by these regulations is highly sensitive to minor variations in input, such that near-identical driving patterns may be regarded both as lawful and as unlawful. We then show that the content of the regulation may be represented in mondadic second order logic, but argue that a more computationally tame fragment would be preferrable for applications. As a case study we consider its representation in linear temporal logic, but show that a representation of the legislation requires formulas of unfeasible complexity, if at all possible.","publisher":"Academic Press","publication_date":{"day":1,"month":11,"year":2020,"errors":{}},"publication_name":"Information \u0026 Computation"},"translated_abstract":"Abstract This paper analyses a selection of articles from European transport regulations that contain algorithmic information, but may be problematic to implement. We focus on issues regarding the interpretation of tachograph data and requirements on weekly rest periods. We first show that the interpretation of data prescribed by these regulations is highly sensitive to minor variations in input, such that near-identical driving patterns may be regarded both as lawful and as unlawful. We then show that the content of the regulation may be represented in mondadic second order logic, but argue that a more computationally tame fragment would be preferrable for applications. As a case study we consider its representation in linear temporal logic, but show that a representation of the legislation requires formulas of unfeasible complexity, if at all possible.","internal_url":"https://www.academia.edu/117255564/To_drive_or_not_to_drive_A_logical_and_computational_analysis_of_European_transport_regulations","translated_internal_url":"","created_at":"2024-04-08T22:47:51.306-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"To_drive_or_not_to_drive_A_logical_and_computational_analysis_of_European_transport_regulations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract This paper analyses a selection of articles from European transport regulations that contain algorithmic information, but may be problematic to implement. We focus on issues regarding the interpretation of tachograph data and requirements on weekly rest periods. We first show that the interpretation of data prescribed by these regulations is highly sensitive to minor variations in input, such that near-identical driving patterns may be regarded both as lawful and as unlawful. We then show that the content of the regulation may be represented in mondadic second order logic, but argue that a more computationally tame fragment would be preferrable for applications. As a case study we consider its representation in linear temporal logic, but show that a representation of the legislation requires formulas of unfeasible complexity, if at all possible.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":88815,"name":"Legislation","url":"https://www.academia.edu/Documents/in/Legislation"},{"id":1193633,"name":"Logical Analysis","url":"https://www.academia.edu/Documents/in/Logical_Analysis"},{"id":1763882,"name":"Representation Politics","url":"https://www.academia.edu/Documents/in/Representation_Politics"}],"urls":[{"id":40954485,"url":"https://doi.org/10.1016/j.ic.2020.104636"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255563"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255563/The_closed_fragment_of_the_interpretability_logic_of_PRA_with_a_constant_for_I%CE%A31"><img alt="Research paper thumbnail of The closed fragment of the interpretability logic of PRA with a constant for IΣ1" class="work-thumbnail" src="https://attachments.academia-assets.com/113160833/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255563/The_closed_fragment_of_the_interpretability_logic_of_PRA_with_a_constant_for_I%CE%A31">The closed fragment of the interpretability logic of PRA with a constant for IΣ1</a></div><div class="wp-workCard_item"><span>Logic group preprint series</span><span>, Feb 1, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="20f36ef8fb9b5137d315033a1aff4245" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160833,"asset_id":117255563,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160833/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255563"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255563"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255563; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255563]").text(description); $(".js-view-count[data-work-id=117255563]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255563; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255563']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255563, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "20f36ef8fb9b5137d315033a1aff4245" } } $('.js-work-strip[data-work-id=117255563]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255563,"title":"The closed fragment of the interpretability logic of PRA with a constant for IΣ1","translated_title":"","metadata":{"publisher":"Cambridge University Press","publication_date":{"day":1,"month":2,"year":2003,"errors":{}},"publication_name":"Logic group preprint series"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255563/The_closed_fragment_of_the_interpretability_logic_of_PRA_with_a_constant_for_I%CE%A31","translated_internal_url":"","created_at":"2024-04-08T22:47:50.893-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160833,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160833/thumbnails/1.jpg","file_name":"preprint218.pdf","download_url":"https://www.academia.edu/attachments/113160833/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_closed_fragment_of_the_interpretabil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160833/preprint218-libre.pdf?1712648444=\u0026response-content-disposition=attachment%3B+filename%3DThe_closed_fragment_of_the_interpretabil.pdf\u0026Expires=1734503569\u0026Signature=gQW5uFS46cc9Rg4ZGPt3J4azbVXsrUj6Q1hK6SKWZM3FSwAJjTV1ZgXHjgzHDXJVI~i7DnZ8cJ-MZ8KjOiemkJ6URIgrwrt4k9jvdKnA7qpKBcqzMp9FWzkAQJeLwNa638FCoShZCrZMj1F8kAr9duHWAEvLp~cfteG-WnCqZivbloi~geq1nl7JE60zJZZNY6Qh99T1yV0xVlfbPsG20wIv5ZkVIUyiumKIF2JfS3CXrTUR69k8pK4QdXazR60opoIwQYVUP-A0unh7vbfg0rv7x8nsVlbzbqfZQ6kLAhRZmdG4EQsj4qG1OD~cLSXXvH3ZGN~tDi-L1mZ6ZoJb5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_closed_fragment_of_the_interpretability_logic_of_PRA_with_a_constant_for_IΣ1","translated_slug":"","page_count":47,"language":"en","content_type":"Work","summary":null,"owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160833,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160833/thumbnails/1.jpg","file_name":"preprint218.pdf","download_url":"https://www.academia.edu/attachments/113160833/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_closed_fragment_of_the_interpretabil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160833/preprint218-libre.pdf?1712648444=\u0026response-content-disposition=attachment%3B+filename%3DThe_closed_fragment_of_the_interpretabil.pdf\u0026Expires=1734503569\u0026Signature=gQW5uFS46cc9Rg4ZGPt3J4azbVXsrUj6Q1hK6SKWZM3FSwAJjTV1ZgXHjgzHDXJVI~i7DnZ8cJ-MZ8KjOiemkJ6URIgrwrt4k9jvdKnA7qpKBcqzMp9FWzkAQJeLwNa638FCoShZCrZMj1F8kAr9duHWAEvLp~cfteG-WnCqZivbloi~geq1nl7JE60zJZZNY6Qh99T1yV0xVlfbPsG20wIv5ZkVIUyiumKIF2JfS3CXrTUR69k8pK4QdXazR60opoIwQYVUP-A0unh7vbfg0rv7x8nsVlbzbqfZQ6kLAhRZmdG4EQsj4qG1OD~cLSXXvH3ZGN~tDi-L1mZ6ZoJb5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954484,"url":"https://dspace.library.uu.nl/bitstream/1874/27023/1/preprint218.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255562"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255562/Model_checking_in_the_Foundations_of_Algorithmic_Law_and_the_Case_of_Regulation_561"><img alt="Research paper thumbnail of Model-checking in the Foundations of Algorithmic Law and the Case of Regulation 561" class="work-thumbnail" src="https://attachments.academia-assets.com/113160836/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255562/Model_checking_in_the_Foundations_of_Algorithmic_Law_and_the_Case_of_Regulation_561">Model-checking in the Foundations of Algorithmic Law and the Case of Regulation 561</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jul 11, 2023</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We discuss model-checking problems as formal models of algorithmic law. Specifically, we ask for ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We discuss model-checking problems as formal models of algorithmic law. Specifically, we ask for an algorithmically tractable general purpose model-checking problem that naturally models the European transport Regulation 561 ([49]), and discuss the reaches and limits of a version of discrete time stopwatch automata.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="719f3ccd10e2df562ed03ab72aa6e5b9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160836,"asset_id":117255562,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160836/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255562"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255562"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255562; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255562]").text(description); $(".js-view-count[data-work-id=117255562]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255562; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255562']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255562, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "719f3ccd10e2df562ed03ab72aa6e5b9" } } $('.js-work-strip[data-work-id=117255562]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255562,"title":"Model-checking in the Foundations of Algorithmic Law and the Case of Regulation 561","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"We discuss model-checking problems as formal models of algorithmic law. Specifically, we ask for an algorithmically tractable general purpose model-checking problem that naturally models the European transport Regulation 561 ([49]), and discuss the reaches and limits of a version of discrete time stopwatch automata.","publication_date":{"day":11,"month":7,"year":2023,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160836},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255562/Model_checking_in_the_Foundations_of_Algorithmic_Law_and_the_Case_of_Regulation_561","translated_internal_url":"","created_at":"2024-04-08T22:47:50.405-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160836,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160836/thumbnails/1.jpg","file_name":"2307.05658.pdf","download_url":"https://www.academia.edu/attachments/113160836/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Model_checking_in_the_Foundations_of_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160836/2307.05658-libre.pdf?1712648430=\u0026response-content-disposition=attachment%3B+filename%3DModel_checking_in_the_Foundations_of_Alg.pdf\u0026Expires=1734503569\u0026Signature=gbW~WQnZxnAN8ew1FDcGJzzpFoj7UsZZfw6IxkZ8sfq6SVv6Ko1l6AxjkaTZkqGNN9YvO9zSA6MYtTw6VodpmEpV2ImsrdDzVvtYOpvxaXngqLTiPA-~Q92KJ~YDyiYPx4wt~PokxHQ4Znh0mIR2xIFH6bN77HkbfpBo9kbfKZ51dEvmsFCZnq0IOBCVwZlGLMUGGDjbtYPKxXhFSg2HePC3T9cO6iW3KqNQrVxJN9jOQBEUjBPbYL4T0tA7ZzQEB3YwrPUcczLzfh~EnO0Krkp6F2ybsrnMkDr9InhUKZiEaWhLd7DsinG1P81M1xZBG6crrE3Vtt229LksVROJnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Model_checking_in_the_Foundations_of_Algorithmic_Law_and_the_Case_of_Regulation_561","translated_slug":"","page_count":38,"language":"en","content_type":"Work","summary":"We discuss model-checking problems as formal models of algorithmic law. Specifically, we ask for an algorithmically tractable general purpose model-checking problem that naturally models the European transport Regulation 561 ([49]), and discuss the reaches and limits of a version of discrete time stopwatch automata.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160836,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160836/thumbnails/1.jpg","file_name":"2307.05658.pdf","download_url":"https://www.academia.edu/attachments/113160836/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Model_checking_in_the_Foundations_of_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160836/2307.05658-libre.pdf?1712648430=\u0026response-content-disposition=attachment%3B+filename%3DModel_checking_in_the_Foundations_of_Alg.pdf\u0026Expires=1734503569\u0026Signature=gbW~WQnZxnAN8ew1FDcGJzzpFoj7UsZZfw6IxkZ8sfq6SVv6Ko1l6AxjkaTZkqGNN9YvO9zSA6MYtTw6VodpmEpV2ImsrdDzVvtYOpvxaXngqLTiPA-~Q92KJ~YDyiYPx4wt~PokxHQ4Znh0mIR2xIFH6bN77HkbfpBo9kbfKZ51dEvmsFCZnq0IOBCVwZlGLMUGGDjbtYPKxXhFSg2HePC3T9cO6iW3KqNQrVxJN9jOQBEUjBPbYL4T0tA7ZzQEB3YwrPUcczLzfh~EnO0Krkp6F2ybsrnMkDr9InhUKZiEaWhLd7DsinG1P81M1xZBG6crrE3Vtt229LksVROJnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160835,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160835/thumbnails/1.jpg","file_name":"2307.05658.pdf","download_url":"https://www.academia.edu/attachments/113160835/download_file","bulk_download_file_name":"Model_checking_in_the_Foundations_of_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160835/2307.05658-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DModel_checking_in_the_Foundations_of_Alg.pdf\u0026Expires=1734503569\u0026Signature=O5Gh1K7kyQ8SoCLOctbRP9oCku5MCclPZhOE3Wl~IqH0nGIs6g09YbOK5sGplEGUrhxXMF2gHwLNT~9SGTsGVWxaiSSku1st41iClgLO5LhUms656Ie7x5ibsABHTFMIneR4eGbBK97gKoJYDcZ-hGx19kQnyGddlAj1PqHoURsssBxSzKIkoL-nvWeSDRVJpISKwQLmysWuZ8a-feo-L8PMJ4TM-UCgNc~qryBKK4UgRbDAoz6ng3~89a0yIoGK3CHQKg-XtQl6zAsj4vUvwzv-D9iqzAgmzu7OU-mB8mbTWcjhJf5YcNOT56hIpuoO0a1VUvf~R6enNJGwDThLTw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2203,"name":"Model Checking","url":"https://www.academia.edu/Documents/in/Model_Checking"},{"id":1029330,"name":"Automaton","url":"https://www.academia.edu/Documents/in/Automaton"},{"id":2176940,"name":"Stopwatch","url":"https://www.academia.edu/Documents/in/Stopwatch"}],"urls":[{"id":40954483,"url":"https://arxiv.org/pdf/2307.05658"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255561"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255561/Propositional_proof_systems_and_fast_consistency_provers"><img alt="Research paper thumbnail of Propositional proof systems and fast consistency provers" class="work-thumbnail" src="https://attachments.academia-assets.com/113160834/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255561/Propositional_proof_systems_and_fast_consistency_provers">Propositional proof systems and fast consistency provers</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 11, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A fast consistency prover is a consistent poly-time axiomatized theory that has short proofs of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A fast consistency prover is a consistent poly-time axiomatized theory that has short proofs of the finite consistency statements of any other poly-time axiomatized theory. Krajíček and Pudlák proved in [5] that the existence of an optimal propositional proof system is equivalent to the existence of a fast consistency prover. It is an easy observation that NP = coNP implies the existence of a fast consistency prover. The reverse implication is an open question. In this paper we define the notion of an unlikely fast consistency prover and prove that its existence is equivalent to NP = coNP. Next it is proved that fast consistency provers do not exist if one considers RE axiomatized theories rather than theories with an axiom set that is recognizable in polynomial time.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5dd9e92ac299786aabd3fde7ead597b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160834,"asset_id":117255561,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160834/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255561"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255561"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255561; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255561]").text(description); $(".js-view-count[data-work-id=117255561]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255561; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255561']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255561, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5dd9e92ac299786aabd3fde7ead597b2" } } $('.js-work-strip[data-work-id=117255561]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255561,"title":"Propositional proof systems and fast consistency provers","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"A fast consistency prover is a consistent poly-time axiomatized theory that has short proofs of the finite consistency statements of any other poly-time axiomatized theory. Krajíček and Pudlák proved in [5] that the existence of an optimal propositional proof system is equivalent to the existence of a fast consistency prover. It is an easy observation that NP = coNP implies the existence of a fast consistency prover. The reverse implication is an open question. In this paper we define the notion of an unlikely fast consistency prover and prove that its existence is equivalent to NP = coNP. Next it is proved that fast consistency provers do not exist if one considers RE axiomatized theories rather than theories with an axiom set that is recognizable in polynomial time.","publication_date":{"day":11,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160834},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255561/Propositional_proof_systems_and_fast_consistency_provers","translated_internal_url":"","created_at":"2024-04-08T22:47:49.796-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160834,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160834/thumbnails/1.jpg","file_name":"2004.05431.pdf","download_url":"https://www.academia.edu/attachments/113160834/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Propositional_proof_systems_and_fast_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160834/2004.05431-libre.pdf?1712648420=\u0026response-content-disposition=attachment%3B+filename%3DPropositional_proof_systems_and_fast_con.pdf\u0026Expires=1734503569\u0026Signature=J7elWXjbAX79ymUcwzOcB0P8zU~ykUVW45QHKn4IUMX27yO9tr30rD7EZuu4Vd3NxwsAdoleOBIqP1pvwWjuVITLM0Ry4d4X-~QMPnCQnKu-WUc5TI6k9Rm63LvIRLnjWy1MX0pem~oSViCOdKlsKUGzTyqHGY1DZDO-jR8iZJ9K~U7q24HusNSb2nb1DP9tqcyIH5bmzOlMv6hLoLms2O4Y48AHTL1S0ubG8Bh23fpKHpnheY6i2Je1k2rCxdQ8FXqLyOc2DE5FTnH9gYrWrwjveZ53~MHUeRvexElyQfLqjKORKdgIIKq~X9qa2B5cl-ohyQ~DENbE4ni1la6ANA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Propositional_proof_systems_and_fast_consistency_provers","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"A fast consistency prover is a consistent poly-time axiomatized theory that has short proofs of the finite consistency statements of any other poly-time axiomatized theory. Krajíček and Pudlák proved in [5] that the existence of an optimal propositional proof system is equivalent to the existence of a fast consistency prover. It is an easy observation that NP = coNP implies the existence of a fast consistency prover. The reverse implication is an open question. In this paper we define the notion of an unlikely fast consistency prover and prove that its existence is equivalent to NP = coNP. Next it is proved that fast consistency provers do not exist if one considers RE axiomatized theories rather than theories with an axiom set that is recognizable in polynomial time.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160834,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160834/thumbnails/1.jpg","file_name":"2004.05431.pdf","download_url":"https://www.academia.edu/attachments/113160834/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Propositional_proof_systems_and_fast_con.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160834/2004.05431-libre.pdf?1712648420=\u0026response-content-disposition=attachment%3B+filename%3DPropositional_proof_systems_and_fast_con.pdf\u0026Expires=1734503569\u0026Signature=J7elWXjbAX79ymUcwzOcB0P8zU~ykUVW45QHKn4IUMX27yO9tr30rD7EZuu4Vd3NxwsAdoleOBIqP1pvwWjuVITLM0Ry4d4X-~QMPnCQnKu-WUc5TI6k9Rm63LvIRLnjWy1MX0pem~oSViCOdKlsKUGzTyqHGY1DZDO-jR8iZJ9K~U7q24HusNSb2nb1DP9tqcyIH5bmzOlMv6hLoLms2O4Y48AHTL1S0ubG8Bh23fpKHpnheY6i2Je1k2rCxdQ8FXqLyOc2DE5FTnH9gYrWrwjveZ53~MHUeRvexElyQfLqjKORKdgIIKq~X9qa2B5cl-ohyQ~DENbE4ni1la6ANA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":165651,"name":"Proof Complexity","url":"https://www.academia.edu/Documents/in/Proof_Complexity"},{"id":201339,"name":"Axiom","url":"https://www.academia.edu/Documents/in/Axiom"},{"id":1778352,"name":"Mathematical Proof","url":"https://www.academia.edu/Documents/in/Mathematical_Proof"},{"id":3114893,"name":"Polynomial Time","url":"https://www.academia.edu/Documents/in/Polynomial_Time"}],"urls":[{"id":40954482,"url":"http://arxiv.org/pdf/2004.05431"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255560"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255560/The_closed_fragment_of_IL_is_PSPACE_hard"><img alt="Research paper thumbnail of The closed fragment of IL is PSPACE hard" class="work-thumbnail" src="https://attachments.academia-assets.com/113160831/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255560/The_closed_fragment_of_IL_is_PSPACE_hard">The closed fragment of IL is PSPACE hard</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 14, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we consider IL0, the closed fragment of the basic interpretability logic IL. We sho...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we consider IL0, the closed fragment of the basic interpretability logic IL. We show that we can translate GL1, the one variable fragment of Gödel-Löb's provabilty logic GL, into IL0. Invoking a result on the PSPACE completeness of GL1 we obtain the PSPACE hardness of IL0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0607c4c7c17be7f393fe803373214002" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160831,"asset_id":117255560,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160831/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255560"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255560"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255560; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255560]").text(description); $(".js-view-count[data-work-id=117255560]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255560; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255560']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255560, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0607c4c7c17be7f393fe803373214002" } } $('.js-work-strip[data-work-id=117255560]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255560,"title":"The closed fragment of IL is PSPACE hard","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"In this paper we consider IL0, the closed fragment of the basic interpretability logic IL. We show that we can translate GL1, the one variable fragment of Gödel-Löb's provabilty logic GL, into IL0. Invoking a result on the PSPACE completeness of GL1 we obtain the PSPACE hardness of IL0.","publication_date":{"day":14,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160831},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255560/The_closed_fragment_of_IL_is_PSPACE_hard","translated_internal_url":"","created_at":"2024-04-08T22:47:49.326-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160831,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160831/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160831/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_closed_fragment_of_IL_is_PSPACE_hard.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160831/2004-libre.pdf?1712648418=\u0026response-content-disposition=attachment%3B+filename%3DThe_closed_fragment_of_IL_is_PSPACE_hard.pdf\u0026Expires=1734503569\u0026Signature=YI3HsPtC291h1x1SUKls14E0nA8B0at22bRIkuiPPbv7fZOpCC09eJxmAbk38DLOJJS1WajhYjF1UZzk3CcELIdS24kpvGkR0ol0XZMvxjU8k-Htiu1J~JzGdZSrMzI1KSjywCLV9H~htDRoYnEdslnHc8w8fjph3D9fCP5mdbw5qSe3kiCVtOtKXvoSezmoxgQ1LrfnIJFrlNhaTiiEwUr4r3R3qe4VKWe8SHBbhGHVc02acNhVHF8upv8XIJzudzUNvSLxaxGji8XJQ5xwTJqE7bhMoZg75syyo1m6qN2UOh69l1nmTnnzwVuFJhbaM~PBa4NJGP4XEV9iVZxbbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_closed_fragment_of_IL_is_PSPACE_hard","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"In this paper we consider IL0, the closed fragment of the basic interpretability logic IL. We show that we can translate GL1, the one variable fragment of Gödel-Löb's provabilty logic GL, into IL0. Invoking a result on the PSPACE completeness of GL1 we obtain the PSPACE hardness of IL0.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160831,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160831/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160831/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_closed_fragment_of_IL_is_PSPACE_hard.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160831/2004-libre.pdf?1712648418=\u0026response-content-disposition=attachment%3B+filename%3DThe_closed_fragment_of_IL_is_PSPACE_hard.pdf\u0026Expires=1734503569\u0026Signature=YI3HsPtC291h1x1SUKls14E0nA8B0at22bRIkuiPPbv7fZOpCC09eJxmAbk38DLOJJS1WajhYjF1UZzk3CcELIdS24kpvGkR0ol0XZMvxjU8k-Htiu1J~JzGdZSrMzI1KSjywCLV9H~htDRoYnEdslnHc8w8fjph3D9fCP5mdbw5qSe3kiCVtOtKXvoSezmoxgQ1LrfnIJFrlNhaTiiEwUr4r3R3qe4VKWe8SHBbhGHVc02acNhVHF8upv8XIJzudzUNvSLxaxGji8XJQ5xwTJqE7bhMoZg75syyo1m6qN2UOh69l1nmTnnzwVuFJhbaM~PBa4NJGP4XEV9iVZxbbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"},{"id":64561,"name":"Computer Software","url":"https://www.academia.edu/Documents/in/Computer_Software"}],"urls":[{"id":40954481,"url":"http://arxiv.org/pdf/2004.06398"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255559"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255559/Proceedings_Machines_Computations_and_Universality_2013"><img alt="Research paper thumbnail of Proceedings Machines, Computations and Universality 2013" class="work-thumbnail" src="https://attachments.academia-assets.com/113160881/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255559/Proceedings_Machines_Computations_and_Universality_2013">Proceedings Machines, Computations and Universality 2013</a></div><div class="wp-workCard_item"><span>Electronic proceedings in theoretical computer science</span><span>, Sep 4, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bf25fda7cc6896bdc915aaa232232486" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160881,"asset_id":117255559,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160881/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255559"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255559"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255559; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255559]").text(description); $(".js-view-count[data-work-id=117255559]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255559; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255559']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255559, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bf25fda7cc6896bdc915aaa232232486" } } $('.js-work-strip[data-work-id=117255559]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255559,"title":"Proceedings Machines, Computations and Universality 2013","translated_title":"","metadata":{"publisher":"Open Publishing Association","ai_abstract":"This paper investigates the relationship between the fractal dimension of small one-way infinite Turing machines (TMs) and their runtime complexity. By analyzing the space-time diagrams of TMs with two and three states using a binary tape alphabet, it establishes that a TM runs in linear time if and only if its fractal dimension is 2, while dimensions of 1 correspond to super-polynomial time under certain conditions. The findings suggest a deep connection between computational and geometrical complexity measures.","publication_date":{"day":4,"month":9,"year":2013,"errors":{}},"publication_name":"Electronic proceedings in theoretical computer science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255559/Proceedings_Machines_Computations_and_Universality_2013","translated_internal_url":"","created_at":"2024-04-08T22:47:48.887-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160881/thumbnails/1.jpg","file_name":"256d91fdb5c778b1043cc2dbf9d1cf1528c2.pdf","download_url":"https://www.academia.edu/attachments/113160881/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proceedings_Machines_Computations_and_Un.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160881/256d91fdb5c778b1043cc2dbf9d1cf1528c2-libre.pdf?1712648403=\u0026response-content-disposition=attachment%3B+filename%3DProceedings_Machines_Computations_and_Un.pdf\u0026Expires=1734503569\u0026Signature=TKpvKMl6F2c4ia1XFXk2udPD3v~xzaBY6UBLtYvWclQyC5K~HyRA~MFIqMUP8~CPetlV274RB4bmU~ZOe8pInMLbt5omYDd9Wzm5OHbGvh-P7MvVS9kpW7XKfymgEd8pATSFbfLaOJ4FbnPNto85~c42QorVH7uXxeKcSxmtp4F990zyn~nXIjwZq4ZECcH2iAbNHT9hhaHm~hvSmxF2yNdDHri80KWOkGvyLUDO0CrJoGTJeSCsmsCpAUpFMlpdqChEnnAoINhc6xTXc-vqsArdLqNECD4OLluc5rfYfTyVEvBiaHN8ZwuZrBMidN47fhfsswR0mmgP27uqhljUww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Proceedings_Machines_Computations_and_Universality_2013","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":null,"owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160881,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160881/thumbnails/1.jpg","file_name":"256d91fdb5c778b1043cc2dbf9d1cf1528c2.pdf","download_url":"https://www.academia.edu/attachments/113160881/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Proceedings_Machines_Computations_and_Un.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160881/256d91fdb5c778b1043cc2dbf9d1cf1528c2-libre.pdf?1712648403=\u0026response-content-disposition=attachment%3B+filename%3DProceedings_Machines_Computations_and_Un.pdf\u0026Expires=1734503569\u0026Signature=TKpvKMl6F2c4ia1XFXk2udPD3v~xzaBY6UBLtYvWclQyC5K~HyRA~MFIqMUP8~CPetlV274RB4bmU~ZOe8pInMLbt5omYDd9Wzm5OHbGvh-P7MvVS9kpW7XKfymgEd8pATSFbfLaOJ4FbnPNto85~c42QorVH7uXxeKcSxmtp4F990zyn~nXIjwZq4ZECcH2iAbNHT9hhaHm~hvSmxF2yNdDHri80KWOkGvyLUDO0CrJoGTJeSCsmsCpAUpFMlpdqChEnnAoINhc6xTXc-vqsArdLqNECD4OLluc5rfYfTyVEvBiaHN8ZwuZrBMidN47fhfsswR0mmgP27uqhljUww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":59487,"name":"Computation","url":"https://www.academia.edu/Documents/in/Computation"},{"id":127270,"name":"Microcontroller","url":"https://www.academia.edu/Documents/in/Microcontroller"},{"id":349061,"name":"Turing machine","url":"https://www.academia.edu/Documents/in/Turing_machine"},{"id":1250591,"name":"Universal Turing Machine","url":"https://www.academia.edu/Documents/in/Universal_Turing_Machine"}],"urls":[{"id":40954480,"url":"https://doi.org/10.4204/eptcs.128.9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255558"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255558/Hyperations_Veblen_progressions_and_transfinite_iterations_of_ordinal_functions"><img alt="Research paper thumbnail of Hyperations, Veblen progressions and transfinite iterations of ordinal functions" class="work-thumbnail" src="https://attachments.academia-assets.com/113160830/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255558/Hyperations_Veblen_progressions_and_transfinite_iterations_of_ordinal_functions">Hyperations, Veblen progressions and transfinite iterations of ordinal functions</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, May 9, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteratio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteration of ordinal functions. Hyperations are iterations of normal functions. Unlike iteration by pointwise convergence, hyperation preserves normality. The hyperation f ξ ξ∈On of a normal function f is a sequence of normal functions so that f 0 = id, f 1 = f and for all α, β we have that f α+β = f α f β. These conditions do not determine f α uniquely; in addition, we require that f α α∈On be minimal in an appropriate sense. We study hyperations systematically and show that they are a natural refinement of Veblen progressions. Next, we define cohyperations, very similar to hyperations except that they are left-additive: given α, β, f α+β = f β f α. Cohyperations iterate initial functions which are functions that map initial segments to initial segments. We systematically study co-hyperations and see how they can be employed to define left inverses to hyperations. Hyperations provide an alternative presentation of Veblen progressions and can be useful where a more fine-grained analysis of such sequences is called for. They are very amenable to algebraic manipulation and hence are convenient to work with. Cohyperations, meanwhile, give a novel way to describe slowly increasing functions as often appear, for example, in proof theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a5c1a501ba107f8d1568dee4be4c5184" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160830,"asset_id":117255558,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160830/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255558"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255558]").text(description); $(".js-view-count[data-work-id=117255558]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255558']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255558, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a5c1a501ba107f8d1568dee4be4c5184" } } $('.js-work-strip[data-work-id=117255558]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255558,"title":"Hyperations, Veblen progressions and transfinite iterations of ordinal functions","translated_title":"","metadata":{"publisher":"Cornell University","ai_title_tag":"Hyperations and Cohyperations of Ordinal Functions","grobid_abstract":"In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteration of ordinal functions. Hyperations are iterations of normal functions. Unlike iteration by pointwise convergence, hyperation preserves normality. The hyperation f ξ ξ∈On of a normal function f is a sequence of normal functions so that f 0 = id, f 1 = f and for all α, β we have that f α+β = f α f β. These conditions do not determine f α uniquely; in addition, we require that f α α∈On be minimal in an appropriate sense. We study hyperations systematically and show that they are a natural refinement of Veblen progressions. Next, we define cohyperations, very similar to hyperations except that they are left-additive: given α, β, f α+β = f β f α. Cohyperations iterate initial functions which are functions that map initial segments to initial segments. We systematically study co-hyperations and see how they can be employed to define left inverses to hyperations. Hyperations provide an alternative presentation of Veblen progressions and can be useful where a more fine-grained analysis of such sequences is called for. They are very amenable to algebraic manipulation and hence are convenient to work with. Cohyperations, meanwhile, give a novel way to describe slowly increasing functions as often appear, for example, in proof theory.","publication_date":{"day":9,"month":5,"year":2012,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160830},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255558/Hyperations_Veblen_progressions_and_transfinite_iterations_of_ordinal_functions","translated_internal_url":"","created_at":"2024-04-08T22:47:48.317-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160830/thumbnails/1.jpg","file_name":"1205.pdf","download_url":"https://www.academia.edu/attachments/113160830/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hyperations_Veblen_progressions_and_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160830/1205-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DHyperations_Veblen_progressions_and_tran.pdf\u0026Expires=1734503569\u0026Signature=HJ9tgL~fdfMlDOJf6J0qeun9Xo4x-LZGT9KViXkoSgG87Btc3ib0XSvJdRJJsUkHwpXhy0c18pXqEnHeaffyIWPCoYt5TWs4vZLrMOiEKpURfStEFYQsPI8~vmabh5ZPNwaoyYYdfnqgGvBn3382RmokFsCknJnPhvsPEFG6~DByimWFVTDAk29lK1bIYQkH5aVEn9W2bOefgcnM0Hn9ojUK4yN-qln5EWdq0cnn8WmzcepXwPDxkiq9c2ZiKtlZ8fkeLSG0i~EsmtXmMC26XuGgWKvvVoQaF7q-3t9heJZdyb9rTkaA65GrNeNBu2y3SMidq5JOYlROcAhLSMMHZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hyperations_Veblen_progressions_and_transfinite_iterations_of_ordinal_functions","translated_slug":"","page_count":29,"language":"en","content_type":"Work","summary":"In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteration of ordinal functions. Hyperations are iterations of normal functions. Unlike iteration by pointwise convergence, hyperation preserves normality. The hyperation f ξ ξ∈On of a normal function f is a sequence of normal functions so that f 0 = id, f 1 = f and for all α, β we have that f α+β = f α f β. These conditions do not determine f α uniquely; in addition, we require that f α α∈On be minimal in an appropriate sense. We study hyperations systematically and show that they are a natural refinement of Veblen progressions. Next, we define cohyperations, very similar to hyperations except that they are left-additive: given α, β, f α+β = f β f α. Cohyperations iterate initial functions which are functions that map initial segments to initial segments. We systematically study co-hyperations and see how they can be employed to define left inverses to hyperations. Hyperations provide an alternative presentation of Veblen progressions and can be useful where a more fine-grained analysis of such sequences is called for. They are very amenable to algebraic manipulation and hence are convenient to work with. Cohyperations, meanwhile, give a novel way to describe slowly increasing functions as often appear, for example, in proof theory.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160830/thumbnails/1.jpg","file_name":"1205.pdf","download_url":"https://www.academia.edu/attachments/113160830/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hyperations_Veblen_progressions_and_tran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160830/1205-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DHyperations_Veblen_progressions_and_tran.pdf\u0026Expires=1734503569\u0026Signature=HJ9tgL~fdfMlDOJf6J0qeun9Xo4x-LZGT9KViXkoSgG87Btc3ib0XSvJdRJJsUkHwpXhy0c18pXqEnHeaffyIWPCoYt5TWs4vZLrMOiEKpURfStEFYQsPI8~vmabh5ZPNwaoyYYdfnqgGvBn3382RmokFsCknJnPhvsPEFG6~DByimWFVTDAk29lK1bIYQkH5aVEn9W2bOefgcnM0Hn9ojUK4yN-qln5EWdq0cnn8WmzcepXwPDxkiq9c2ZiKtlZ8fkeLSG0i~EsmtXmMC26XuGgWKvvVoQaF7q-3t9heJZdyb9rTkaA65GrNeNBu2y3SMidq5JOYlROcAhLSMMHZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":40954479,"url":"http://arxiv.org/pdf/1205.2036"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255557"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255557/Hidden_variables_simulating_quantum_contextuality_increasingly_violate_the_Holevo_bound"><img alt="Research paper thumbnail of Hidden variables simulating quantum contextuality increasingly violate the Holevo bound" class="work-thumbnail" src="https://attachments.academia-assets.com/113160828/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255557/Hidden_variables_simulating_quantum_contextuality_increasingly_violate_the_Holevo_bound">Hidden variables simulating quantum contextuality increasingly violate the Holevo bound</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 10, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we approach some questions about quantum contextuality with tools from formal logic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we approach some questions about quantum contextuality with tools from formal logic. In particular, we consider an experiment associated with the Peres-Mermin square. The language of all possible sequences of outcomes of the experiment is classified in the Chomsky hierarchy and seen to be a regular language. Next, we make the rather evident observation that a finite set of hidden finite valued variables can never account for indeterminism in an ideally isolated repeatable experiment. We see that, when the language of possible outcomes of the experiment is regular, as is the case with the Peres-Mermin square, the amount of binary-valued hidden variables needed to de-randomize the model for all sequences of experiments up to length n grows as bad as it could be: linearly in n. We introduce a very abstract model of machine that simulates nature in a particular sense. A lower-bound on the number of memory states of such machines is proved if they were to simulate the experiment that corresponds to the Peres-Mermin square. Moreover, the proof of this lower bound is seen to scale to a certain generalization of the Peres-Mermin square. For this scaled experiment it is seen that the Holevo bound is violated and that the degree of violation increases uniformly.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c56f7d83bd0581c93beb69f418783f34" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160828,"asset_id":117255557,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160828/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255557"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255557"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255557; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255557]").text(description); $(".js-view-count[data-work-id=117255557]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255557; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255557']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255557, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c56f7d83bd0581c93beb69f418783f34" } } $('.js-work-strip[data-work-id=117255557]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255557,"title":"Hidden variables simulating quantum contextuality increasingly violate the Holevo bound","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"In this paper we approach some questions about quantum contextuality with tools from formal logic. In particular, we consider an experiment associated with the Peres-Mermin square. The language of all possible sequences of outcomes of the experiment is classified in the Chomsky hierarchy and seen to be a regular language. Next, we make the rather evident observation that a finite set of hidden finite valued variables can never account for indeterminism in an ideally isolated repeatable experiment. We see that, when the language of possible outcomes of the experiment is regular, as is the case with the Peres-Mermin square, the amount of binary-valued hidden variables needed to de-randomize the model for all sequences of experiments up to length n grows as bad as it could be: linearly in n. We introduce a very abstract model of machine that simulates nature in a particular sense. A lower-bound on the number of memory states of such machines is proved if they were to simulate the experiment that corresponds to the Peres-Mermin square. Moreover, the proof of this lower bound is seen to scale to a certain generalization of the Peres-Mermin square. For this scaled experiment it is seen that the Holevo bound is violated and that the degree of violation increases uniformly.","publication_date":{"day":10,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160828},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255557/Hidden_variables_simulating_quantum_contextuality_increasingly_violate_the_Holevo_bound","translated_internal_url":"","created_at":"2024-04-08T22:47:47.785-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160828,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160828/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160828/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hidden_variables_simulating_quantum_cont.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160828/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DHidden_variables_simulating_quantum_cont.pdf\u0026Expires=1734503569\u0026Signature=Ic2S9XfSpZc1xt~mY3JRbVkYY2NxVTmLexuKrMmpp7NczDPUy7LEZS39K7hCJwA~UCXj-W6Ujs37sQeftcfo6QMXcI4r3WYOK~Q86AF9T1z-jicTQs4Pqlg0WbYH90GzCQI~bmZa6hmBRomN4YN0Q4RYmuJ90oAWg6U6z3X9P~NJRK9ZOrgFfe~p74jeCB7uMLY6pl2IN9if0kKH-XUsoGzAezX~orUDhLloK8eHtw0-4zSJLAF3UyUB3feZsQmDdmckC3vPqCcJajCY~BvevhPlTQwGcX8mpF5mIHH0QhbD~fke67KGP3q2DDX5-lXZxQHB9fgZ8jZ8gurT-VKcVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hidden_variables_simulating_quantum_contextuality_increasingly_violate_the_Holevo_bound","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"In this paper we approach some questions about quantum contextuality with tools from formal logic. In particular, we consider an experiment associated with the Peres-Mermin square. The language of all possible sequences of outcomes of the experiment is classified in the Chomsky hierarchy and seen to be a regular language. Next, we make the rather evident observation that a finite set of hidden finite valued variables can never account for indeterminism in an ideally isolated repeatable experiment. We see that, when the language of possible outcomes of the experiment is regular, as is the case with the Peres-Mermin square, the amount of binary-valued hidden variables needed to de-randomize the model for all sequences of experiments up to length n grows as bad as it could be: linearly in n. We introduce a very abstract model of machine that simulates nature in a particular sense. A lower-bound on the number of memory states of such machines is proved if they were to simulate the experiment that corresponds to the Peres-Mermin square. Moreover, the proof of this lower bound is seen to scale to a certain generalization of the Peres-Mermin square. For this scaled experiment it is seen that the Holevo bound is violated and that the degree of violation increases uniformly.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160828,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160828/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160828/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk2OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hidden_variables_simulating_quantum_cont.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160828/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DHidden_variables_simulating_quantum_cont.pdf\u0026Expires=1734503569\u0026Signature=Ic2S9XfSpZc1xt~mY3JRbVkYY2NxVTmLexuKrMmpp7NczDPUy7LEZS39K7hCJwA~UCXj-W6Ujs37sQeftcfo6QMXcI4r3WYOK~Q86AF9T1z-jicTQs4Pqlg0WbYH90GzCQI~bmZa6hmBRomN4YN0Q4RYmuJ90oAWg6U6z3X9P~NJRK9ZOrgFfe~p74jeCB7uMLY6pl2IN9if0kKH-XUsoGzAezX~orUDhLloK8eHtw0-4zSJLAF3UyUB3feZsQmDdmckC3vPqCcJajCY~BvevhPlTQwGcX8mpF5mIHH0QhbD~fke67KGP3q2DDX5-lXZxQHB9fgZ8jZ8gurT-VKcVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160829,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160829/thumbnails/1.jpg","file_name":"2004.pdf","download_url":"https://www.academia.edu/attachments/113160829/download_file","bulk_download_file_name":"Hidden_variables_simulating_quantum_cont.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160829/2004-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DHidden_variables_simulating_quantum_cont.pdf\u0026Expires=1734503569\u0026Signature=GVq6BeZztFH7dGmiEnRVB48-mNnKC8RrVtW3Ky9735fW7KqBmAOljcVAPkTVdg3jAbzG25X9hXz~9skMZBJmH-XT83Nbgba7ozCwqcLyuC72aDz2zP-2H~J9WBDnB1M9cXlE7i1~LaZ4Hix~uimogASO63LzbRoNBpgiHmqXZxvLn9Q1O4VySe-DDU6E6HyPjQxcVahpUM2T1RMODpBpvaDnGxmMz1geEi0J10fD8mausUJg9JFBjE5uSxN2-AYAhH-YQmnyRy6BGZtlkpLwIguX9~E-GR1~6GLHEo-aHrO-CYd7mwxWpt8cduPEY7CAJDzP43dcEISxnPtuzt0Lgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":54284,"name":"Generalization","url":"https://www.academia.edu/Documents/in/Generalization"},{"id":69262,"name":"Quantum","url":"https://www.academia.edu/Documents/in/Quantum"},{"id":774681,"name":"Indeterminism","url":"https://www.academia.edu/Documents/in/Indeterminism"}],"urls":[{"id":40954478,"url":"http://arxiv.org/pdf/2004.10654"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255556"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255556/The_interpretability_logic_of_all_reasonable_arithmetical_theories"><img alt="Research paper thumbnail of The interpretability logic of all reasonable arithmetical theories" class="work-thumbnail" src="https://attachments.academia-assets.com/113160827/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255556/The_interpretability_logic_of_all_reasonable_arithmetical_theories">The interpretability logic of all reasonable arithmetical theories</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 27, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper from 2000 is a presentation of a status quaestionis at that tiime, to wit of the probl...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper from 2000 is a presentation of a status quaestionis at that tiime, to wit of the problem of the interpretability logic of all reasonable arithmetical theories. We present both the arithmetical side and the modal side of the question.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b3641056bb1dd4798e5f29f5f773f71c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160827,"asset_id":117255556,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160827/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255556"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255556"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255556; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255556]").text(description); $(".js-view-count[data-work-id=117255556]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255556; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255556']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255556, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b3641056bb1dd4798e5f29f5f773f71c" } } $('.js-work-strip[data-work-id=117255556]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255556,"title":"The interpretability logic of all reasonable arithmetical theories","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper from 2000 is a presentation of a status quaestionis at that tiime, to wit of the problem of the interpretability logic of all reasonable arithmetical theories. We present both the arithmetical side and the modal side of the question.","publication_date":{"day":27,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160827},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255556/The_interpretability_logic_of_all_reasonable_arithmetical_theories","translated_internal_url":"","created_at":"2024-04-08T22:47:47.420-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160827,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160827/thumbnails/1.jpg","file_name":"2004.12685.pdf","download_url":"https://www.academia.edu/attachments/113160827/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_interpretability_logic_of_all_reason.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160827/2004.12685-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DThe_interpretability_logic_of_all_reason.pdf\u0026Expires=1734503570\u0026Signature=AADMyZV27uz3yoGd2wZOqL11tDdNGq7C~SgXbsd7PUiwWGwQFyOyW1C0tJx8FTWjpoYzKJ-30krnLeYkDR7zaXpaEIxKjIzBSEjfWVYk998fKQhbKWpQ1EWwMgtfxpp7ZqqmvhSGGl65FrfhxAyLMLzVt3zKly2lRPFefwwYsHIjX8whxHP-HeviCcmKyZJ5zu2qAdzcubFze97QnZTn3nw541BwC5P2IF~H1mtK3jB1M~Zgzt1oXOulzGcg8QDPFyol4nFouwMw0CZTS1em2v5Fis7NYF88Sq2jvtqShYsvcUDlIm4I81iaXyvLZbVmVvPOHOkiVnJitdrTxiZFYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_interpretability_logic_of_all_reasonable_arithmetical_theories","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"This paper from 2000 is a presentation of a status quaestionis at that tiime, to wit of the problem of the interpretability logic of all reasonable arithmetical theories. We present both the arithmetical side and the modal side of the question.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160827,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160827/thumbnails/1.jpg","file_name":"2004.12685.pdf","download_url":"https://www.academia.edu/attachments/113160827/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_interpretability_logic_of_all_reason.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160827/2004.12685-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DThe_interpretability_logic_of_all_reason.pdf\u0026Expires=1734503570\u0026Signature=AADMyZV27uz3yoGd2wZOqL11tDdNGq7C~SgXbsd7PUiwWGwQFyOyW1C0tJx8FTWjpoYzKJ-30krnLeYkDR7zaXpaEIxKjIzBSEjfWVYk998fKQhbKWpQ1EWwMgtfxpp7ZqqmvhSGGl65FrfhxAyLMLzVt3zKly2lRPFefwwYsHIjX8whxHP-HeviCcmKyZJ5zu2qAdzcubFze97QnZTn3nw541BwC5P2IF~H1mtK3jB1M~Zgzt1oXOulzGcg8QDPFyol4nFouwMw0CZTS1em2v5Fis7NYF88Sq2jvtqShYsvcUDlIm4I81iaXyvLZbVmVvPOHOkiVnJitdrTxiZFYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160824,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160824/thumbnails/1.jpg","file_name":"2004.12685.pdf","download_url":"https://www.academia.edu/attachments/113160824/download_file","bulk_download_file_name":"The_interpretability_logic_of_all_reason.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160824/2004.12685-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DThe_interpretability_logic_of_all_reason.pdf\u0026Expires=1734503570\u0026Signature=HM3QleZ7AEssPfsbk5PT~lw3vaQRlpDUXFsAZtBeRkD2r0Jy1BzTMra11YyJGGOY2ZcDbYpaejpV9f1jkXBgDAsrI-N8QjwM3xxi6~~JcFBGYqexMr9b9s7lUeHN454lRJSKo3hAFIsw5GdMYzoIZTtqGn~XIVMR91wVxqkPrKujB-nWiVPLE3I9CMCU6fSLZGiOV-0Idk1ahN1b09CqN6ONrx9tlr8mbCXCWWbIn5OBwTI4jpQ-hBajYdvQqcFpu-02gkfboU57xBkU98cxwp63vCZmlrnhgQSc4GYCPHKzzr3sKSusHrUuaD3rEkLfCv9cf-j5bf8QsE-KJrZclA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":361,"name":"Modal Logic","url":"https://www.academia.edu/Documents/in/Modal_Logic"},{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy"},{"id":33207,"name":"Primary","url":"https://www.academia.edu/Documents/in/Primary"},{"id":124170,"name":"Secondary","url":"https://www.academia.edu/Documents/in/Secondary"},{"id":129770,"name":"Key words","url":"https://www.academia.edu/Documents/in/Key_words"},{"id":131903,"name":"Arithmetic","url":"https://www.academia.edu/Documents/in/Arithmetic"},{"id":1190966,"name":"F","url":"https://www.academia.edu/Documents/in/F"},{"id":1194168,"name":"B","url":"https://www.academia.edu/Documents/in/B"},{"id":2599989,"name":"interpretations","url":"https://www.academia.edu/Documents/in/interpretations"},{"id":2652480,"name":"Wijsbegeerte","url":"https://www.academia.edu/Documents/in/Wijsbegeerte"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954477,"url":"https://arxiv.org/pdf/2004.12685.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255554"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255554/Self_Provers_and_Sigma_1_Sentences"><img alt="Research paper thumbnail of Self Provers and $\Sigma_1$ Sentences" class="work-thumbnail" src="https://attachments.academia-assets.com/113160825/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255554/Self_Provers_and_Sigma_1_Sentences">Self Provers and $\Sigma_1$ Sentences</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 15, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper is the second in a series of three papers. All three papers deal with interpretability...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper is the second in a series of three papers. All three papers deal with interpretability logics and related matters. In the first paper a construction method was exposed to obtain models of these logics. Using this method, we obtained some completeness results, some already known, and some new. In this paper, we will set the construction method to work to obtain more results. First, the modal completeness of the logic ILM is proved using the construction method. This is not a new result, but by using our new proof we can obtain new results. Among these new results are some admissible rules for ILM and GL. Moreover, the new proof will be used to classify all the essentially ∆1 and also all the essentially Σ1 formulas of ILM. Closely related to essentially Σ1 sentences are the so-called self provers. A self-prover is a formula ϕ which implies its own provability, that is ϕ → ✷ϕ. Each formula ϕ will generate a self prover ϕ ∧ ✷ϕ. We will use the construction method to characterize those sentences of GL that generate a self prover that is trivial in the sense that it is Σ1.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="101cda4e41613d9149509b220b95cb48" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160825,"asset_id":117255554,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160825/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255554"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255554"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255554; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255554]").text(description); $(".js-view-count[data-work-id=117255554]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255554; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255554']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255554, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "101cda4e41613d9149509b220b95cb48" } } $('.js-work-strip[data-work-id=117255554]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255554,"title":"Self Provers and $\\Sigma_1$ Sentences","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"This paper is the second in a series of three papers. All three papers deal with interpretability logics and related matters. In the first paper a construction method was exposed to obtain models of these logics. Using this method, we obtained some completeness results, some already known, and some new. In this paper, we will set the construction method to work to obtain more results. First, the modal completeness of the logic ILM is proved using the construction method. This is not a new result, but by using our new proof we can obtain new results. Among these new results are some admissible rules for ILM and GL. Moreover, the new proof will be used to classify all the essentially ∆1 and also all the essentially Σ1 formulas of ILM. Closely related to essentially Σ1 sentences are the so-called self provers. A self-prover is a formula ϕ which implies its own provability, that is ϕ → ✷ϕ. Each formula ϕ will generate a self prover ϕ ∧ ✷ϕ. We will use the construction method to characterize those sentences of GL that generate a self prover that is trivial in the sense that it is Σ1.","publication_date":{"day":15,"month":4,"year":2020,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160825},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255554/Self_Provers_and_Sigma_1_Sentences","translated_internal_url":"","created_at":"2024-04-08T22:47:46.935-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160825/thumbnails/1.jpg","file_name":"2004.06934.pdf","download_url":"https://www.academia.edu/attachments/113160825/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_Provers_and_Sigma_1_Sentences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160825/2004.06934-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Provers_and_Sigma_1_Sentences.pdf\u0026Expires=1734503570\u0026Signature=OESYgeaL6FieqT0Rsa3og7AAIquN7I2le69g6ox84AIWR-bRVIUEZNmjoF7OaRypuApZL~y8vrvRMDmgW-261Tkw-0Nh4ZHyhTrsWXTfSuDaPbc54lRb7Gpj~aHfkNbaZmzR6R615FNV-5b0NZO5j3wS1T97YJZZFwa16T5~UPTJyvMYwLZktRC0VxxzFqCYYYkiGYxH9wkIe96pgvRDos5CT7s1ooUVygZC4miDf9JEuMx71F0f26lstXA6AabD1ulOqt4uKdnLv-beeBJA5y~0eXLSkqo~7nmMHqRVYKesFl-lRs3f78kAT2V07cuwoPi4Xd8UxRD~Lmtr6g6~-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_Provers_and_Sigma_1_Sentences","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"This paper is the second in a series of three papers. All three papers deal with interpretability logics and related matters. In the first paper a construction method was exposed to obtain models of these logics. Using this method, we obtained some completeness results, some already known, and some new. In this paper, we will set the construction method to work to obtain more results. First, the modal completeness of the logic ILM is proved using the construction method. This is not a new result, but by using our new proof we can obtain new results. Among these new results are some admissible rules for ILM and GL. Moreover, the new proof will be used to classify all the essentially ∆1 and also all the essentially Σ1 formulas of ILM. Closely related to essentially Σ1 sentences are the so-called self provers. A self-prover is a formula ϕ which implies its own provability, that is ϕ → ✷ϕ. Each formula ϕ will generate a self prover ϕ ∧ ✷ϕ. We will use the construction method to characterize those sentences of GL that generate a self prover that is trivial in the sense that it is Σ1.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160825/thumbnails/1.jpg","file_name":"2004.06934.pdf","download_url":"https://www.academia.edu/attachments/113160825/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_Provers_and_Sigma_1_Sentences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160825/2004.06934-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Provers_and_Sigma_1_Sentences.pdf\u0026Expires=1734503570\u0026Signature=OESYgeaL6FieqT0Rsa3og7AAIquN7I2le69g6ox84AIWR-bRVIUEZNmjoF7OaRypuApZL~y8vrvRMDmgW-261Tkw-0Nh4ZHyhTrsWXTfSuDaPbc54lRb7Gpj~aHfkNbaZmzR6R615FNV-5b0NZO5j3wS1T97YJZZFwa16T5~UPTJyvMYwLZktRC0VxxzFqCYYYkiGYxH9wkIe96pgvRDos5CT7s1ooUVygZC4miDf9JEuMx71F0f26lstXA6AabD1ulOqt4uKdnLv-beeBJA5y~0eXLSkqo~7nmMHqRVYKesFl-lRs3f78kAT2V07cuwoPi4Xd8UxRD~Lmtr6g6~-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160826,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160826/thumbnails/1.jpg","file_name":"2004.06934.pdf","download_url":"https://www.academia.edu/attachments/113160826/download_file","bulk_download_file_name":"Self_Provers_and_Sigma_1_Sentences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160826/2004.06934-libre.pdf?1712648425=\u0026response-content-disposition=attachment%3B+filename%3DSelf_Provers_and_Sigma_1_Sentences.pdf\u0026Expires=1734503570\u0026Signature=eeeX4~bZM~b6CnU7ZQ-gb~8WBDiaCFnMTf6sn2QbU6yc9iQJWCMUD16Jsd~VL2VbhKylcRuUcJq8PLV7HBRFqMJjN5xKii58k5UWMz3nPOg156g-s305jd5gsQwo9QbcqicNzisPZDnWUEdt7f4~YlJqxuFJvQz4~21bwoRe7mgQMd6jODdnuGPPEjQQQ3wV2NGvfThKcaaYxcKW5e349~3zKc8DF9h1K7amO18SrwnaRsRBLiwrIXlOsFhVZ81Lm7r4uFz8HLIIkwLx3RfNI9jHJKGyUXRAQpzhSpke0rtANZedKdn~3ML06Qu2Yx0SBI50MgKAetMV03s3aFm-cQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics"},{"id":362034,"name":"Sigma","url":"https://www.academia.edu/Documents/in/Sigma"}],"urls":[{"id":40954476,"url":"https://arxiv.org/pdf/2004.06934.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255553"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255553/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic"><img alt="Research paper thumbnail of Pi^0_1 ordinal analysis beyond first order arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/113160822/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255553/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic">Pi^0_1 ordinal analysis beyond first order arithmetic</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 11, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we give an overview of an essential part of a Π 0 1 ordinal analysis of Peano Arith...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we give an overview of an essential part of a Π 0 1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev ([3]). This analysis is mainly performed within the polymodal provability logic GLPω. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="822ce121f73ec72f6010f649afc3af4a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160822,"asset_id":117255553,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160822/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255553"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255553"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255553; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255553]").text(description); $(".js-view-count[data-work-id=117255553]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255553; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255553']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255553, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "822ce121f73ec72f6010f649afc3af4a" } } $('.js-work-strip[data-work-id=117255553]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255553,"title":"Pi^0_1 ordinal analysis beyond first order arithmetic","translated_title":"","metadata":{"publisher":"Cornell University","grobid_abstract":"In this paper we give an overview of an essential part of a Π 0 1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev ([3]). This analysis is mainly performed within the polymodal provability logic GLPω. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","publication_date":{"day":11,"month":12,"year":2012,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160822},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255553/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic","translated_internal_url":"","created_at":"2024-04-08T22:47:46.606-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160822,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160822/thumbnails/1.jpg","file_name":"1212.pdf","download_url":"https://www.academia.edu/attachments/113160822/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160822/1212-libre.pdf?1712648418=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=Bl-TOy12CD5l3OenV5EAfw-dC1bgOjK0Nkvwre2bT1ZPZIoII5knoNslRt9EENYrQSzzrD05xGParlJa3hLIG~D0saHMbyKszNJopBSh8EHPttAou4YaFLezTxbdj5UnanYFjwav-OBIK2jwnnaF9uKOncMWJp7Peh3rMNgoPOsiAEpGHo1vHOWNcUn3dXcbCqOEnQvcIGTO4kD1O7~sJF7FV-zdDz0WfLs6sJnduCKmPX6MaKkDKOYtQmfEHjYLE-WdE9Xu3E-KxAVt~ojM8FFJwPAs65Yw63D8Urz6IZ9aUDKQWxifFOYOIcHKUSZY~T5Ad0feTj21Cd~owcv26A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In this paper we give an overview of an essential part of a Π 0 1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev ([3]). This analysis is mainly performed within the polymodal provability logic GLPω. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160822,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160822/thumbnails/1.jpg","file_name":"1212.pdf","download_url":"https://www.academia.edu/attachments/113160822/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160822/1212-libre.pdf?1712648418=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=Bl-TOy12CD5l3OenV5EAfw-dC1bgOjK0Nkvwre2bT1ZPZIoII5knoNslRt9EENYrQSzzrD05xGParlJa3hLIG~D0saHMbyKszNJopBSh8EHPttAou4YaFLezTxbdj5UnanYFjwav-OBIK2jwnnaF9uKOncMWJp7Peh3rMNgoPOsiAEpGHo1vHOWNcUn3dXcbCqOEnQvcIGTO4kD1O7~sJF7FV-zdDz0WfLs6sJnduCKmPX6MaKkDKOYtQmfEHjYLE-WdE9Xu3E-KxAVt~ojM8FFJwPAs65Yw63D8Urz6IZ9aUDKQWxifFOYOIcHKUSZY~T5Ad0feTj21Cd~owcv26A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160823/thumbnails/1.jpg","file_name":"1212.pdf","download_url":"https://www.academia.edu/attachments/113160823/download_file","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160823/1212-libre.pdf?1712648421=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=OqH0gsoPGBGru~cKjbvSbFZZ~t9DGBk5Pwdz9jfLtIVYnZOmcHsfbAg7Z4ri2sG-5s~liQa9xlAz7Xh7PQBAkFPqyWGwEDdTl5Xqs9Ywg9s~GTjVWNfVjghMhW~lJ6QLtHu9qQkWliOqTiq~q1gMcKMK0w66HEf3ZXN42o0u2z25rUTddsKTAmQ7ipm-6vFx-Ai-lH3iIgkewUqKvNumMWP8OFs-dpe-DkZL2am-Y1~7A23QERdnIXlPCeSf7Q1A~46QP9gn3j4tPRBOKuP0EFZluXWYHwL2C5~ZUi3LvOL2hmxtsYxbHDDOpVkuQ63qBhL0~noshZF9mPRt13g55g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":14193,"name":"Philosophy of Property","url":"https://www.academia.edu/Documents/in/Philosophy_of_Property"},{"id":131903,"name":"Arithmetic","url":"https://www.academia.edu/Documents/in/Arithmetic"},{"id":141209,"name":"Second Order Arithmetic","url":"https://www.academia.edu/Documents/in/Second_Order_Arithmetic"}],"urls":[{"id":40954475,"url":"https://arxiv.org/pdf/1212.2395"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255552"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255552/Turing_Taylor_expansions_for_arithmetic_theories"><img alt="Research paper thumbnail of Turing-Taylor expansions for arithmetic theories" class="work-thumbnail" src="https://attachments.academia-assets.com/113160820/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255552/Turing_Taylor_expansions_for_arithmetic_theories">Turing-Taylor expansions for arithmetic theories</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Apr 17, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Turing progressions have been often used to measure the proof-theoretic strength of mathematical ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you "hit" the target theory. Turing progressions based on n-provability give rise to a Πn+1 proof-theoretic ordinal |U | Π 0 n+1. As such, to each theory U we can assign the sequence of corresponding Πn+1 ordinals |U |n n>0. We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev's universal model for the closed fragment of the polymodal provability logic GLPω. In particular, we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expansion will define a unique point in Ignatiev's model.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="14878adc903a910752ac7686f77551d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160820,"asset_id":117255552,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160820/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255552"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255552"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255552; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255552]").text(description); $(".js-view-count[data-work-id=117255552]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255552; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255552']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255552, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "14878adc903a910752ac7686f77551d3" } } $('.js-work-strip[data-work-id=117255552]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255552,"title":"Turing-Taylor expansions for arithmetic theories","translated_title":"","metadata":{"publisher":"Cornell University","ai_title_tag":"Turing-Taylor Expansions and Peano Arithmetic Theories","grobid_abstract":"Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you \"hit\" the target theory. Turing progressions based on n-provability give rise to a Πn+1 proof-theoretic ordinal |U | Π 0 n+1. As such, to each theory U we can assign the sequence of corresponding Πn+1 ordinals |U |n n\u003e0. We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev's universal model for the closed fragment of the polymodal provability logic GLPω. In particular, we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expansion will define a unique point in Ignatiev's model.","publication_date":{"day":17,"month":4,"year":2014,"errors":{}},"publication_name":"arXiv (Cornell University)","grobid_abstract_attachment_id":113160820},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255552/Turing_Taylor_expansions_for_arithmetic_theories","translated_internal_url":"","created_at":"2024-04-08T22:47:46.013-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160820,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160820/thumbnails/1.jpg","file_name":"1404.4483.pdf","download_url":"https://www.academia.edu/attachments/113160820/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Turing_Taylor_expansions_for_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160820/1404.4483-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DTuring_Taylor_expansions_for_arithmetic.pdf\u0026Expires=1734503570\u0026Signature=PQTyn5MP5q-PhPPzxJx~3HQC2F9heQgXIxk0oMb2ckNRrv5GMg2haJPLMps6RvYuj2QgiugFMi7XgL7EFvJgU8t-1-Xd960ugWvAqhJAPNmBMq8c2ayDDGqdQuFDvOpPA4aEFyxJ1CrVTy2mIts5jKpfGAACtlfFFFnMr0Afm6ZMQClp1wKIc~yVm4UhFI~z0Pmoa38fIjAucDzMfF8fEIQjWXkwy1a3krjP0Q6C27uXN6Ld6au0drwmofB0JqTMAKpR64KqqwCgXVtWazK86JCGX2QbhBx14JVxyXVPS4HnKx-vIHdDzCFu2Ki1OjY9gxesVt7VVcjdnRcH-BBZxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Turing_Taylor_expansions_for_arithmetic_theories","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you \"hit\" the target theory. Turing progressions based on n-provability give rise to a Πn+1 proof-theoretic ordinal |U | Π 0 n+1. As such, to each theory U we can assign the sequence of corresponding Πn+1 ordinals |U |n n\u003e0. We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev's universal model for the closed fragment of the polymodal provability logic GLPω. In particular, we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expansion will define a unique point in Ignatiev's model.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160820,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160820/thumbnails/1.jpg","file_name":"1404.4483.pdf","download_url":"https://www.academia.edu/attachments/113160820/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Turing_Taylor_expansions_for_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160820/1404.4483-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DTuring_Taylor_expansions_for_arithmetic.pdf\u0026Expires=1734503570\u0026Signature=PQTyn5MP5q-PhPPzxJx~3HQC2F9heQgXIxk0oMb2ckNRrv5GMg2haJPLMps6RvYuj2QgiugFMi7XgL7EFvJgU8t-1-Xd960ugWvAqhJAPNmBMq8c2ayDDGqdQuFDvOpPA4aEFyxJ1CrVTy2mIts5jKpfGAACtlfFFFnMr0Afm6ZMQClp1wKIc~yVm4UhFI~z0Pmoa38fIjAucDzMfF8fEIQjWXkwy1a3krjP0Q6C27uXN6Ld6au0drwmofB0JqTMAKpR64KqqwCgXVtWazK86JCGX2QbhBx14JVxyXVPS4HnKx-vIHdDzCFu2Ki1OjY9gxesVt7VVcjdnRcH-BBZxA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113160821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160821/thumbnails/1.jpg","file_name":"1404.4483.pdf","download_url":"https://www.academia.edu/attachments/113160821/download_file","bulk_download_file_name":"Turing_Taylor_expansions_for_arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160821/1404.4483-libre.pdf?1712648424=\u0026response-content-disposition=attachment%3B+filename%3DTuring_Taylor_expansions_for_arithmetic.pdf\u0026Expires=1734503570\u0026Signature=UyAHkw9S5eorWqKmnNsBw-3uYId42u0pXwee9-mqhuICruHVVG4hdB3-b9pkgG58L-l7D7KkxQXFxAe7gJ6daGMUhrNLyClO0Q7rvoQeD7C1HqQBrDWotKKrEPD~LbLJfBWnOww5xM6pvxfaPmYfKtV72EbLjdDR4ORvLU~STky7WNhYSdX80Yu1jIa3KsT3gtvg6AS8ONZq4cFbM8SGYU3BtAUTaSxHsT9owgVq49KO1xjI3kQlr~k5VfpEGTJPK3vbdC-t6EARXYVL07KtninZv81bPN7zGhgKXc4O6qjxxy6z532wIwz7Qx~vx94KcKe43SVcB2EUGq16wqcu7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":75000,"name":"Philosophy and Religious Studies","url":"https://www.academia.edu/Documents/in/Philosophy_and_Religious_Studies"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":141209,"name":"Second Order Arithmetic","url":"https://www.academia.edu/Documents/in/Second_Order_Arithmetic"},{"id":318452,"name":"Turing","url":"https://www.academia.edu/Documents/in/Turing"}],"urls":[{"id":40954474,"url":"https://arxiv.org/pdf/1404.4483"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255551/Interpretability_in_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_display_inline_overflow_scroll_mml_mstyle_mathvariant_normal_mml_mi_PRA_mml_mi_mml_mstyle_mml_math_"><img alt="Research paper thumbnail of Interpretability in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mstyle mathvariant="normal"><mml:mi>PRA</mml:mi></mml:mstyle></mml:math>" class="work-thumbnail" src="https://attachments.academia-assets.com/113160880/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255551/Interpretability_in_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_display_inline_overflow_scroll_mml_mstyle_mathvariant_normal_mml_mi_PRA_mml_mi_mml_mstyle_mml_math_">Interpretability in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mstyle mathvariant="normal"><mml:mi>PRA</mml:mi></mml:mstyle></mml:math></a></div><div class="wp-workCard_item"><span>Annals of Pure and Applied Logic</span><span>, Nov 1, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article appeared in a journal published by Elsevier. The attached copy is furnished to the a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="179811a70e7cb66c6cc80d5ff692ddae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160880,"asset_id":117255551,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160880/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255551]").text(description); $(".js-view-count[data-work-id=117255551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "179811a70e7cb66c6cc80d5ff692ddae" } } $('.js-work-strip[data-work-id=117255551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255551,"title":"Interpretability in \u003cmml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" altimg=\"si1.gif\" display=\"inline\" overflow=\"scroll\"\u003e\u003cmml:mstyle mathvariant=\"normal\"\u003e\u003cmml:mi\u003ePRA\u003c/mml:mi\u003e\u003c/mml:mstyle\u003e\u003c/mml:math\u003e","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Interpretability in PRA","grobid_abstract":"This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:","publication_date":{"day":1,"month":11,"year":2009,"errors":{}},"publication_name":"Annals of Pure and Applied Logic","grobid_abstract_attachment_id":113160880},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255551/Interpretability_in_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_display_inline_overflow_scroll_mml_mstyle_mathvariant_normal_mml_mi_PRA_mml_mi_mml_mstyle_mml_math_","translated_internal_url":"","created_at":"2024-04-08T22:47:45.452-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160880,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160880/thumbnails/1.jpg","file_name":"APAL1949.pdf","download_url":"https://www.academia.edu/attachments/113160880/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interpretability_in_mml_math_xmlns_mml_h.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160880/APAL1949-libre.pdf?1712648408=\u0026response-content-disposition=attachment%3B+filename%3DInterpretability_in_mml_math_xmlns_mml_h.pdf\u0026Expires=1734503570\u0026Signature=KIUpf~U0tK8mVebHhNSGxQgUwkE6-5LVHHZOBjttDhpcSdZeFkic8CmxIZ7irfUm5IXVmDzICRAlv3iLHMeGA73EjfdxQ2cDJYiTiBSLFkx9PWfaC1i8dYDN5awUaDYiotbxGRvBaiGN9z7QKF1us0KdYIe40n9RnFNfXXzaN1KP90kqAuG9Mn6d4GON-j-9wHgl93o6Y5WrYvF82AZWxgR2lI1CipbRw3wZLwmPlNRvUWytLkkyyGDwwc4vtXOTELY7MlWQAwTO1b5I3-O4ATRiBbndiikCguy9MghDAbJ-dclzoXQVH55xNb6ZHpR4qtNV61ANYO4XlVaEKVdwUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interpretability_in_mml_math_xmlns_mml_http_www_w3_org_1998_Math_MathML_altimg_si1_gif_display_inline_overflow_scroll_mml_mstyle_mathvariant_normal_mml_mi_PRA_mml_mi_mml_mstyle_mml_math_","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160880,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160880/thumbnails/1.jpg","file_name":"APAL1949.pdf","download_url":"https://www.academia.edu/attachments/113160880/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interpretability_in_mml_math_xmlns_mml_h.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160880/APAL1949-libre.pdf?1712648408=\u0026response-content-disposition=attachment%3B+filename%3DInterpretability_in_mml_math_xmlns_mml_h.pdf\u0026Expires=1734503570\u0026Signature=KIUpf~U0tK8mVebHhNSGxQgUwkE6-5LVHHZOBjttDhpcSdZeFkic8CmxIZ7irfUm5IXVmDzICRAlv3iLHMeGA73EjfdxQ2cDJYiTiBSLFkx9PWfaC1i8dYDN5awUaDYiotbxGRvBaiGN9z7QKF1us0KdYIe40n9RnFNfXXzaN1KP90kqAuG9Mn6d4GON-j-9wHgl93o6Y5WrYvF82AZWxgR2lI1CipbRw3wZLwmPlNRvUWytLkkyyGDwwc4vtXOTELY7MlWQAwTO1b5I3-O4ATRiBbndiikCguy9MghDAbJ-dclzoXQVH55xNb6ZHpR4qtNV61ANYO4XlVaEKVdwUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":361,"name":"Modal Logic","url":"https://www.academia.edu/Documents/in/Modal_Logic"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":3394442,"name":"Interpretability","url":"https://www.academia.edu/Documents/in/Interpretability"}],"urls":[{"id":40954473,"url":"https://doi.org/10.1016/j.apal.2009.05.012"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255550"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255550/On_the_Necessity_of_Complexity"><img alt="Research paper thumbnail of On the Necessity of Complexity" class="work-thumbnail" src="https://attachments.academia-assets.com/113160879/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255550/On_the_Necessity_of_Complexity">On the Necessity of Complexity</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wolfram's Principle of Computational Equivalence (PCE) implies that universal complexity abounds ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wolfram's Principle of Computational Equivalence (PCE) implies that universal complexity abounds in nature. This paper comprises three sections. In the first section we consider the question why there are so many universal phenomena around. So, in a sense, we seek a driving force behind the PCE if any. We postulate a principle GNS that we call the Generalized Natural Selection principle that together with the Church-Turing thesis is seen to be equivalent in a sense to a weak version of PCE. In the second section we ask the question why we do not observe any phenomena that are complex but not-universal. We choose a cognitive setting to embark on this question and make some analogies with formal logic. In the third and final section we report on a case study where we see rich structures arise everywhere.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="301b0db0cb3187d627554706d6736254" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160879,"asset_id":117255550,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160879/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255550"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255550"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255550; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255550]").text(description); $(".js-view-count[data-work-id=117255550]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255550; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255550']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255550, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "301b0db0cb3187d627554706d6736254" } } $('.js-work-strip[data-work-id=117255550]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255550,"title":"On the Necessity of Complexity","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"Wolfram's Principle of Computational Equivalence (PCE) implies that universal complexity abounds in nature. This paper comprises three sections. In the first section we consider the question why there are so many universal phenomena around. So, in a sense, we seek a driving force behind the PCE if any. We postulate a principle GNS that we call the Generalized Natural Selection principle that together with the Church-Turing thesis is seen to be equivalent in a sense to a weak version of PCE. In the second section we ask the question why we do not observe any phenomena that are complex but not-universal. We choose a cognitive setting to embark on this question and make some analogies with formal logic. In the third and final section we report on a case study where we see rich structures arise everywhere.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Springer eBooks","grobid_abstract_attachment_id":113160879},"translated_abstract":null,"internal_url":"https://www.academia.edu/117255550/On_the_Necessity_of_Complexity","translated_internal_url":"","created_at":"2024-04-08T22:47:45.130-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160879,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160879/thumbnails/1.jpg","file_name":"1211.1878v1.pdf","download_url":"https://www.academia.edu/attachments/113160879/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Necessity_of_Complexity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160879/1211.1878v1-libre.pdf?1712648408=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Necessity_of_Complexity.pdf\u0026Expires=1734503570\u0026Signature=JBDBdYavJuYOU2QRsRRNlzr2n7hmnZezxNQh2Tv2x1eJZPGcDsgk68-tO0tgx4XYUCB~yo3i68GBpOIKhKapouaQiELsJI3N3obM4jJM5xMK~7Vi2a0VX7CsUFBTeEnrxd3iJzEYVwatgew~Ma1C0mHr~oAq24uB7DTDw7Nc5RFif3KDGiY~1FiQruSRxFBqnXcYFKQ62rBtod3krT6Tj7H71V7CXmMSedduCZhPjFnY110gQH4KlP72ur4Dg5VLNlzvt3ZWwZ5o-gAOkwiqU104djnEOPCOUs7eIZQeBdJ8bz4tBS1YKqRwjTUHAj65RU8wasl~2GVwk8yei40R8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Necessity_of_Complexity","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Wolfram's Principle of Computational Equivalence (PCE) implies that universal complexity abounds in nature. This paper comprises three sections. In the first section we consider the question why there are so many universal phenomena around. So, in a sense, we seek a driving force behind the PCE if any. We postulate a principle GNS that we call the Generalized Natural Selection principle that together with the Church-Turing thesis is seen to be equivalent in a sense to a weak version of PCE. In the second section we ask the question why we do not observe any phenomena that are complex but not-universal. We choose a cognitive setting to embark on this question and make some analogies with formal logic. In the third and final section we report on a case study where we see rich structures arise everywhere.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160879,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160879/thumbnails/1.jpg","file_name":"1211.1878v1.pdf","download_url":"https://www.academia.edu/attachments/113160879/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Necessity_of_Complexity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160879/1211.1878v1-libre.pdf?1712648408=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Necessity_of_Complexity.pdf\u0026Expires=1734503570\u0026Signature=JBDBdYavJuYOU2QRsRRNlzr2n7hmnZezxNQh2Tv2x1eJZPGcDsgk68-tO0tgx4XYUCB~yo3i68GBpOIKhKapouaQiELsJI3N3obM4jJM5xMK~7Vi2a0VX7CsUFBTeEnrxd3iJzEYVwatgew~Ma1C0mHr~oAq24uB7DTDw7Nc5RFif3KDGiY~1FiQruSRxFBqnXcYFKQ62rBtod3krT6Tj7H71V7CXmMSedduCZhPjFnY110gQH4KlP72ur4Dg5VLNlzvt3ZWwZ5o-gAOkwiqU104djnEOPCOUs7eIZQeBdJ8bz4tBS1YKqRwjTUHAj65RU8wasl~2GVwk8yei40R8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":318452,"name":"Turing","url":"https://www.academia.edu/Documents/in/Turing"},{"id":349061,"name":"Turing machine","url":"https://www.academia.edu/Documents/in/Turing_machine"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":40954472,"url":"https://doi.org/10.1007/978-3-642-35482-3_2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117255549"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117255549/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic"><img alt="Research paper thumbnail of Pi^0_1 ordinal analysis beyond first order arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/113160819/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117255549/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic">Pi^0_1 ordinal analysis beyond first order arithmetic</a></div><div class="wp-workCard_item"><span>arXiv: Logic</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev. This analysis is mainly performed within the polymodal provability logic GLP. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="462ec27b7c81472e38dfedd041181832" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113160819,"asset_id":117255549,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113160819/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117255549"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117255549"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117255549; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117255549]").text(description); $(".js-view-count[data-work-id=117255549]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117255549; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117255549']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117255549, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "462ec27b7c81472e38dfedd041181832" } } $('.js-work-strip[data-work-id=117255549]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117255549,"title":"Pi^0_1 ordinal analysis beyond first order arithmetic","translated_title":"","metadata":{"abstract":"In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev. This analysis is mainly performed within the polymodal provability logic GLP. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"arXiv: Logic"},"translated_abstract":"In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev. This analysis is mainly performed within the polymodal provability logic GLP. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","internal_url":"https://www.academia.edu/117255549/Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic","translated_internal_url":"","created_at":"2024-04-08T22:47:43.903-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113160819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160819/thumbnails/1.jpg","file_name":"1212.2395v1.pdf","download_url":"https://www.academia.edu/attachments/113160819/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160819/1212.2395v1-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=XlV5mgoFTdhxgPMK3Dv6-Y7PhMD0IsDpRC2LA5ZBYQB~wiuY93dwUn4e8vXZmMmTQn2zan0lezJqD1W4PIeHtqZAtXHRahXo6xNjrJFVluWOnVa0EsY8dwzMwc0HwTJshwPvSjVT~9EAYohbBmzIqhIqmoJScZP4gptAh8G5zobrhNHELtPg3Ktb3XpJfp-EAuyYv7sZ78AU63FzWgr2K6hpvLc0fcm-KFjloEyW38eCBsUz3QSaa2hDj60~lnUtmBJbp6m7VU9oSTBCspWysXquKM0978AzqOOYHTAEvmJMsTVl82ysPSFXYYibFUo9p4WLBtO-~dyNwRSgW54IpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pi_0_1_ordinal_analysis_beyond_first_order_arithmetic","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In this paper we give an overview of an essential part of a Pi^0_1 ordinal analysis of Peano Arithmetic (PA) as presented by Beklemishev. This analysis is mainly performed within the polymodal provability logic GLP. We reflect on ways of extending this analysis beyond PA. A main difficulty in this is to find proper generalizations of the so-called Reduction Property. The Reduction Property relates reflection principles to reflection rules. In this paper we prove a result that simplifies the reflection rules. Moreover, we see that for an ordinal analysis the full Reduction Property is not needed. This latter observation is also seen to open up ways for applications of ordinal analysis relative to some strong base theory.","owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":113160819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113160819/thumbnails/1.jpg","file_name":"1212.2395v1.pdf","download_url":"https://www.academia.edu/attachments/113160819/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pi_0_1_ordinal_analysis_beyond_first_ord.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113160819/1212.2395v1-libre.pdf?1712648422=\u0026response-content-disposition=attachment%3B+filename%3DPi_0_1_ordinal_analysis_beyond_first_ord.pdf\u0026Expires=1734503570\u0026Signature=XlV5mgoFTdhxgPMK3Dv6-Y7PhMD0IsDpRC2LA5ZBYQB~wiuY93dwUn4e8vXZmMmTQn2zan0lezJqD1W4PIeHtqZAtXHRahXo6xNjrJFVluWOnVa0EsY8dwzMwc0HwTJshwPvSjVT~9EAYohbBmzIqhIqmoJScZP4gptAh8G5zobrhNHELtPg3Ktb3XpJfp-EAuyYv7sZ78AU63FzWgr2K6hpvLc0fcm-KFjloEyW38eCBsUz3QSaa2hDj60~lnUtmBJbp6m7VU9oSTBCspWysXquKM0978AzqOOYHTAEvmJMsTVl82ysPSFXYYibFUo9p4WLBtO-~dyNwRSgW54IpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":14193,"name":"Philosophy of Property","url":"https://www.academia.edu/Documents/in/Philosophy_of_Property"},{"id":131903,"name":"Arithmetic","url":"https://www.academia.edu/Documents/in/Arithmetic"},{"id":141209,"name":"Second Order Arithmetic","url":"https://www.academia.edu/Documents/in/Second_Order_Arithmetic"}],"urls":[{"id":40954471,"url":"https://arxiv.org/pdf/1212.2395v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="113504400"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/113504400/The_Worm_Calculus"><img alt="Research paper thumbnail of The Worm Calculus" class="work-thumbnail" src="https://attachments.academia-assets.com/110446587/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/113504400/The_Worm_Calculus">The Worm Calculus</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Mar 28, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fca8d87990bffbb5d43d4db34ae33f63" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":110446587,"asset_id":113504400,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/110446587/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="113504400"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="113504400"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113504400; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113504400]").text(description); $(".js-view-count[data-work-id=113504400]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113504400; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='113504400']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 113504400, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fca8d87990bffbb5d43d4db34ae33f63" } } $('.js-work-strip[data-work-id=113504400]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":113504400,"title":"The Worm Calculus","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":28,"month":3,"year":2018,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/113504400/The_Worm_Calculus","translated_internal_url":"","created_at":"2024-01-14T20:57:18.603-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":51116229,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":110446587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110446587/thumbnails/1.jpg","file_name":"1803.10543.pdf","download_url":"https://www.academia.edu/attachments/110446587/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Worm_Calculus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110446587/1803.10543-libre.pdf?1705297030=\u0026response-content-disposition=attachment%3B+filename%3DThe_Worm_Calculus.pdf\u0026Expires=1734503570\u0026Signature=IgrYmLYBxBd8AvgWa-SFEcikLyZ9v8emXsAP-OxrRRG2H4T7EwLYI7MvJnW-EaEkdo26vcSkHj65kBdI7YztYj9M-4OpjG9y4jBkl9DiYx0b4xNX7Jk80lwFKOuVuFmTrrAjjeforvIzcSZcUlqMx1iNffJAn0x~tWY51rF5bQ9JQB-HAt-95ydlz4gXXBJDdjy1ZyNZXFIFhz4TUJxoq6EwptwFsZnB6Yw189y3c0eYPmVsa0Dyi9nDwzaTMrm1S5U58BbVgDTzkQkPTEKOvfIEK6L6DztQLARWJwjWajcJKaghhc0mdphU1fo6X7ogIwFxOLPftyM-Y07oTaj6hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Worm_Calculus","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":null,"owner":{"id":51116229,"first_name":"Joost","middle_initials":null,"last_name":"Joosten","page_name":"JoostJoosten","domain_name":"independent","created_at":"2016-07-18T08:37:04.953-07:00","display_name":"Joost Joosten","url":"https://independent.academia.edu/JoostJoosten"},"attachments":[{"id":110446587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/110446587/thumbnails/1.jpg","file_name":"1803.10543.pdf","download_url":"https://www.academia.edu/attachments/110446587/download_file?st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&st=MTczNDQ5OTk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Worm_Calculus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/110446587/1803.10543-libre.pdf?1705297030=\u0026response-content-disposition=attachment%3B+filename%3DThe_Worm_Calculus.pdf\u0026Expires=1734503570\u0026Signature=IgrYmLYBxBd8AvgWa-SFEcikLyZ9v8emXsAP-OxrRRG2H4T7EwLYI7MvJnW-EaEkdo26vcSkHj65kBdI7YztYj9M-4OpjG9y4jBkl9DiYx0b4xNX7Jk80lwFKOuVuFmTrrAjjeforvIzcSZcUlqMx1iNffJAn0x~tWY51rF5bQ9JQB-HAt-95ydlz4gXXBJDdjy1ZyNZXFIFhz4TUJxoq6EwptwFsZnB6Yw189y3c0eYPmVsa0Dyi9nDwzaTMrm1S5U58BbVgDTzkQkPTEKOvfIEK6L6DztQLARWJwjWajcJKaghhc0mdphU1fo6X7ogIwFxOLPftyM-Y07oTaj6hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":361,"name":"Modal Logic","url":"https://www.academia.edu/Documents/in/Modal_Logic"},{"id":368005,"name":"Propositional Calculus","url":"https://www.academia.edu/Documents/in/Propositional_Calculus"},{"id":371994,"name":"Dental Calculus","url":"https://www.academia.edu/Documents/in/Dental_Calculus"}],"urls":[{"id":38574289,"url":"http://arxiv.org/pdf/1803.10543"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "a5ead675c1954275cf1a55e72927adb251b25d65e96a5da7a480592c1711adf1", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Zcvjv6tPGkdU1CAMApRujoIWDtZByKegSK3No3ySg8hSf3v9mFtlp/54FjWBcQptLRhPOR/YEv7UcAylCYEtDw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/JoostJoosten" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="D21q4XJ8UCZwIZXbZHz4DhfgLSjHs2pOT1s2GykBaZU42fKjQWgvxtqNo+LnmZztuO5sx5mj3xDThvcdXBLHUg==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>