CINXE.COM

(infinity,1)-monad (changes) in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> (infinity,1)-monad (changes) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> (infinity,1)-monad (changes) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/diff/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <p class="show_diff"> Showing changes from revision #15 to #16: <ins class="diffins">Added</ins> | <del class="diffdel">Removed</del> | <del class="diffmod">Chan</del><ins class="diffmod">ged</ins> </p> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='higher_algebra'>Higher algebra</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/higher+algebra'>higher algebra</a></strong></p> <p><a class='existingWikiWord' href='/nlab/show/diff/universal+algebra'>universal algebra</a></p> <h2 id='algebraic_theories'>Algebraic theories</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/algebraic+theory'>algebraic theory</a> / <a class='existingWikiWord' href='/nlab/show/diff/2-Lawvere+theory'>2-algebraic theory</a> / <a class='existingWikiWord' href='/nlab/show/diff/%28%E2%88%9E%2C1%29-algebraic+theory'>(∞,1)-algebraic theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/monad'>monad</a> / <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-monad'>(∞,1)-monad</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/operad'>operad</a> / <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-operad'>(∞,1)-operad</a></p> </li> </ul> <h2 id='algebras_and_modules'>Algebras and modules</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/algebra+over+a+monad'>algebra over a monad</a></p> <p><a class='existingWikiWord' href='/nlab/show/diff/infinity-algebra+over+an+%28infinity%2C1%29-monad'>∞-algebra over an (∞,1)-monad</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/algebra+over+a+Lawvere+theory'>algebra over an algebraic theory</a></p> <p><a class='existingWikiWord' href='/nlab/show/diff/infinity-algebra+over+an+%28infinity%2C1%29-algebraic+theory'>∞-algebra over an (∞,1)-algebraic theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/algebra+over+an+operad'>algebra over an operad</a></p> <p><a class='existingWikiWord' href='/nlab/show/diff/infinity-algebra+over+an+%28infinity%2C1%29-operad'>∞-algebra over an (∞,1)-operad</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/action'>action</a>, <a class='existingWikiWord' href='/nlab/show/diff/infinity-action'>∞-action</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/representation'>representation</a>, <a class='existingWikiWord' href='/nlab/show/diff/infinity-representation'>∞-representation</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/module'>module</a>, <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-module'>∞-module</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/associated+bundle'>associated bundle</a>, <a class='existingWikiWord' href='/nlab/show/diff/associated+infinity-bundle'>associated ∞-bundle</a></p> </li> </ul> <h2 id='higher_algebras'>Higher algebras</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/monoidal+%28infinity%2C1%29-category'>monoidal (∞,1)-category</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/symmetric+monoidal+%28infinity%2C1%29-category'>symmetric monoidal (∞,1)-category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/monoid+in+a+monoidal+%28infinity%2C1%29-category'>monoid in an (∞,1)-category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/commutative+monoid+in+a+symmetric+monoidal+%28infinity%2C1%29-category'>commutative monoid in an (∞,1)-category</a></p> </li> </ul> </li> <li> <p>symmetric monoidal (∞,1)-category of spectra</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/smash+product+of+spectra'>smash product of spectra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/symmetric+smash+product+of+spectra'>symmetric monoidal smash product of spectra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/ring+spectrum'>ring spectrum</a>, <a class='existingWikiWord' href='/nlab/show/diff/module+spectrum'>module spectrum</a>, <a class='existingWikiWord' href='/nlab/show/diff/algebra+spectrum'>algebra spectrum</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/A-infinity-algebra'>A-∞ algebra</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/A-infinity-ring'>A-∞ ring</a>, <a class='existingWikiWord' href='/nlab/show/diff/A-infinity-space'>A-∞ space</a></li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/C_%E2%88%9E-algebra'>C-∞ algebra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/E-infinity-ring'>E-∞ ring</a>, <a class='existingWikiWord' href='/nlab/show/diff/E-infinity+algebra'>E-∞ algebra</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-module'>∞-module</a>, <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-module+bundle'>(∞,1)-module bundle</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/multiplicative+cohomology+theory'>multiplicative cohomology theory</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/L-infinity-algebra'>L-∞ algebra</a></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/deformation+theory'>deformation theory</a></li> </ul> </li> </ul> <h2 id='model_category_presentations'>Model category presentations</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/model+structure+on+simplicial+algebras'>model structure on simplicial T-algebras</a> / <a class='existingWikiWord' href='/nlab/show/diff/homotopy+T-algebra'>homotopy T-algebra</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/model+structure+on+operads'>model structure on operads</a></p> <p><a class='existingWikiWord' href='/nlab/show/diff/model+structure+on+algebras+over+an+operad'>model structure on algebras over an operad</a></p> </li> </ul> <h2 id='geometry_on_formal_duals_of_algebras'>Geometry on formal duals of algebras</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Isbell+duality'>Isbell duality</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/derived+geometry'>derived geometry</a></p> </li> </ul> <h2 id='theorems'>Theorems</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Deligne+conjecture'>Deligne conjecture</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/delooping+hypothesis'>delooping hypothesis</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/monoidal+Dold-Kan+correspondence'>monoidal Dold-Kan correspondence</a></p> </li> </ul> <div> <p> <a href='/nlab/edit/higher+algebra+-+contents'>Edit this sidebar</a> </p> </div></div> </div> </div> <h1 id='contents'>Contents</h1> <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#MonadicityTheorem'>Barr-Beck monadicity theorem</a></li><li><a href='#HomotopyCoherence'>Homotopy coherence</a></li></ul></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div> <h2 id='idea'>Idea</h2> <p>The notion of <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-monad is the <a class='existingWikiWord' href='/nlab/show/diff/vertical+categorification'>vertical categorification</a> of that of <a class='existingWikiWord' href='/nlab/show/diff/monad'>monad</a> from the context of <a class='existingWikiWord' href='/nlab/show/diff/category'>categories</a> to that of <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category'>(∞,1)-categories</a>.</p> <p>They relate to <a class='existingWikiWord' href='/nlab/show/diff/adjoint+%28infinity%2C1%29-functor'>(∞,1)-adjunctions</a> as <a class='existingWikiWord' href='/nlab/show/diff/monad'>monads</a> relate to <a class='existingWikiWord' href='/nlab/show/diff/adjunction'>adjunctions</a>.</p> <h2 id='properties'>Properties</h2> <h3 id='MonadicityTheorem'>Barr-Beck monadicity theorem</h3> <div class='num_prop' id='CanonicalMonadicAdjunction'> <h6 id='proposition'>Proposition</h6> <p>Given an <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-monad'>(∞,1)-monad</a> <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math> on an <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category'>(∞,1)-category</a> <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math>, there is an <a class='existingWikiWord' href='/nlab/show/diff/adjoint+%28infinity%2C1%29-functor'>(∞,1)-adjunction</a></p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_269923edb99792022684838a527da1a1f8fe8162_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>F</mi><mo>⊣</mo><mi>U</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace' /><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace' /><msub><mi>Alg</mi> <mi>𝒞</mi></msub><mo stretchy='false'>(</mo><mi>T</mi><mo stretchy='false'>)</mo><mover><munder><mo>⟶</mo><mi>U</mi></munder><mover><mo>↔</mo><mi>F</mi></mover></mover><mi>𝒞</mi><mspace width='thinmathspace' /><mo>,</mo></mrow><annotation encoding='application/x-tex'> (F \dashv U) \;\colon\; Alg_{\mathcal{C}}(T) \stackrel{\overset{F}{\leftrightarrow}}{\underset{U}{\longrightarrow}} \mathcal{C} \,, </annotation></semantics></math></div> <p>where <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Alg</mi> <mi>𝒞</mi></msub><mo stretchy='false'>(</mo><mi>T</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Alg_{\mathcal{C}}(T)</annotation></semantics></math> is the (Eilenberg-Moore) <a class='existingWikiWord' href='/nlab/show/diff/infinity-algebra+over+an+%28infinity%2C1%29-monad'>(∞,1)-category of algebras over the (∞,1)-monad</a> and where <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/diff/forgetful+functor'>forgetful functor</a> that remembers the underlying <a class='existingWikiWord' href='/nlab/show/diff/object'>object</a> of <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math>.</p> </div> <p>This appears in (<a href='#RiehlVerity13'><span> Riehl-Verity 13, def.<del class='diffmod'> 6.1.15</del><ins class='diffmod'> 6.1.14</ins></span></a>).</p> <p>The following is the refinement to <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a> of the classical <a class='existingWikiWord' href='/nlab/show/diff/monadicity+theorem'>Barr-Beck monadicity theorem</a> which states sufficient conditions for recognizing an <a class='existingWikiWord' href='/nlab/show/diff/adjoint+%28infinity%2C1%29-functor'>(∞,1)-adjunction</a> as being canonically <a class='existingWikiWord' href='/nlab/show/diff/equivalence'>equivalent</a> to the one in prop. <a class='maruku-ref' href='#CanonicalMonadicAdjunction'>1</a>, hence to be a <em><a class='existingWikiWord' href='/nlab/show/diff/monadic+adjunction'>monadic adjunction</a></em>.</p> <div class='num_theorem' id='InfinityBarrBeckTheorem'> <h6 id='theorem'>Theorem</h6> <p>Let <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>L</mi><mo>⊣</mo><mi>R</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(L \dashv R)</annotation></semantics></math> a pair of <a class='existingWikiWord' href='/nlab/show/diff/adjoint+%28infinity%2C1%29-functor'>adjoint (∞,1)-functors</a> such that</p> <ol> <li> <p><math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/diff/conservative+%28%E2%88%9E%2C1%29-functor'>conservative (∞,1)-functor</a>;</p> </li> <li> <p>the <a class='existingWikiWord' href='/nlab/show/diff/domain'>domain</a> <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category'>(∞,1)-category</a> of <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> admits <a class='existingWikiWord' href='/nlab/show/diff/geometric+realization'>geometric realization</a> (<a class='existingWikiWord' href='/nlab/show/diff/%28%E2%88%9E%2C1%29-limit'>(∞,1)-colimit</a>) of <a class='existingWikiWord' href='/nlab/show/diff/simplicial+object+in+an+%28infinity%2C1%29-category'>simplicial objects</a>;</p> </li> <li> <p>and <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> preserves these</p> </li> </ol> <p>then for <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>T</mi><mo>≔</mo><mi>R</mi><mo>∘</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>T \coloneqq R \circ L</annotation></semantics></math> the essentially unique <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-monad structure on the composite endofunctor, there is an <a class='existingWikiWord' href='/nlab/show/diff/equivalence+of+%28infinity%2C1%29-categories'>equivalence of (∞,1)-categories</a> identifying the <a class='existingWikiWord' href='/nlab/show/diff/domain'>domain</a> of <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> with the <a class='existingWikiWord' href='/nlab/show/diff/infinity-algebra+over+an+%28infinity%2C1%29-monad'>(∞,1)-category of algebras over an (∞,1)-monad</a> <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Alg</mi> <mi>𝒞</mi></msub><mo stretchy='false'>(</mo><mi>T</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Alg_{\mathcal{C}}(T)</annotation></semantics></math> over <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math> itself as the canonical <a class='existingWikiWord' href='/nlab/show/diff/forgetful+functor'>forgetful functor</a> <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math> from prop. <a class='maruku-ref' href='#CanonicalMonadicAdjunction'>1</a>.</p> </div> <p>This appears as (<a class='existingWikiWord' href='/nlab/show/diff/Higher+Algebra'>Higher Algebra, theorem 6.2.0.6, theorem 6.2.2.5</a>, <a href='#RiehlVerity13'>Riehl-Verity 13, section 7</a>)</p> <h3 id='HomotopyCoherence'>Homotopy coherence</h3> <div class='num_remark'> <h6 id='remark'>Remark</h6> <p>An <a class='existingWikiWord' href='/nlab/show/diff/adjoint+%28infinity%2C1%29-functor'>(∞,1)-adjunction</a> <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>L</mi><mo>⊣</mo><mi>R</mi><mo stretchy='false'>)</mo><mo lspace='verythinmathspace'>:</mo><mi>𝒞</mi><mo>↔</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>(L \dashv R) \colon \mathcal{C} \leftrightarrow \mathcal{D}</annotation></semantics></math> is uniquely determined already by its image in the <a class='existingWikiWord' href='/nlab/show/diff/homotopy+2-category'>homotopy 2-category</a> (<a href='#RiehlVerity13'>Riehl-Verity 13, theorem 5.4.14</a>). This is not in general true for <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-monads <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>T</mi><mo lspace='verythinmathspace'>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>T \colon \mathcal{C} \to \mathcal{C}</annotation></semantics></math>. As these are <a class='existingWikiWord' href='/nlab/show/diff/monoid+in+a+monoidal+%28infinity%2C1%29-category'>monoids in an (∞,1)-category</a> of <a class='existingWikiWord' href='/nlab/show/diff/endomorphism'>endomorphisms</a>, they in general have relevant <a class='existingWikiWord' href='/nlab/show/diff/coherence+law'>coherence</a> data all the way up in degree. However, by the previous statement and the monadicity theorem <a class='maruku-ref' href='#InfinityBarrBeckTheorem'>1</a>, for <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-monads given via specified <a class='existingWikiWord' href='/nlab/show/diff/adjoint+%28infinity%2C1%29-functor'>(∞,1)-adjunctions</a> as <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>T</mi><mo>≃</mo><mi>R</mi><mo>∘</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>T \simeq R \circ L</annotation></semantics></math> are determined by less (further) coherence data (<a class='existingWikiWord' href='/nlab/show/diff/Higher+Algebra'>Higher Algebra, remark 6.2.0.7, prop. 6.2.2.3</a>, <a href='#RiehlVerity13'>Riehl-Verity 13, page 6</a>). (Of course there is, instead, extra data/information carried by the choice of <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>\mathcal{D}</annotation></semantics></math>.) This should justify the <a class='existingWikiWord' href='/nlab/show/diff/simplicial+model+category'>simplicial model category</a>-theoretic discussion in (<a href='#Hess10'>Hess 10</a>) in <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>.</p> </div> <h2 id='related_concepts'>Related concepts</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/higher+monadic+descent'>higher monadic descent</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/algebraic+theory'>algebraic theory</a> / <a class='existingWikiWord' href='/nlab/show/diff/Lawvere+theory'>Lawvere theory</a> / <a class='existingWikiWord' href='/nlab/show/diff/%28%E2%88%9E%2C1%29-algebraic+theory'>(∞,1)-algebraic theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/monad'>monad</a> / <a class='existingWikiWord' href='/nlab/show/diff/2-monad'>2-monad</a>/ <a class='existingWikiWord' href='/nlab/show/diff/doctrine'>doctrine</a> / <strong><math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-monad</strong></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/idempotent+%28infinity%2C1%29-monad'>idempotent (∞,1)-monad</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/modal+type+theory'>modal type theory</a></p> </li> </ul> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/operad'>operad</a> / <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-operad'>(∞,1)-operad</a></p> </li> </ul> <h2 id='references'>References</h2> <p>A general treatment of <math class='maruku-mathml' display='inline' id='mathml_269923edb99792022684838a527da1a1f8fe8162_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-monads in <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a> is in</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Jacob+Lurie'>Jacob Lurie</a>, section 3 of <em>Noncommutative algebra</em> (<a href='http://arxiv.org/abs/math/0702299'>math.CT/0702299</a>)</li> </ul> <p>later absorbed as</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/Jacob+Lurie'>Jacob Lurie</a>, section 6.2 of <em><a class='existingWikiWord' href='/nlab/show/diff/Higher+Algebra'>Higher Algebra</a></em></li> </ul> <p>More explict discussion in terms of <a class='existingWikiWord' href='/nlab/show/diff/quasi-category'>quasi-categories</a> and <a class='existingWikiWord' href='/nlab/show/diff/simplicial+set'>simplicial sets</a>:</p> <ul> <li id='RiehlVerity13'> <a class='existingWikiWord' href='/nlab/show/diff/Emily+Riehl'>Emily Riehl</a>, <a class='existingWikiWord' href='/nlab/show/diff/Dominic+Verity'>Dominic Verity</a>, <em>Homotopy coherent adjunctions and the formal theory of monads</em>, Advances in Mathematics, Volume 286, 2 January 2016, Pages 802-888 (<a href='http://arxiv.org/abs/1310.8279'>arXiv:1310.8279</a>, <a href='https://doi.org/10.1016/j.aim.2015.09.011'>doi:10.1016/j.aim.2015.09.011</a>)</li> </ul> <p>Some homotopy theory of (<a class='existingWikiWord' href='/nlab/show/diff/enriched+functor'>enriched</a>) monads on (<a class='existingWikiWord' href='/nlab/show/diff/simplicial+model+category'>simplicial</a>) <a class='existingWikiWord' href='/nlab/show/diff/model+category'>model categories</a> is discussed (with an eye towards <a class='existingWikiWord' href='/nlab/show/diff/higher+monadic+descent'>higher monadic descent</a>) in</p> <ul> <li id='Hess10'><a class='existingWikiWord' href='/nlab/show/diff/Kathryn+Hess'>Kathryn Hess</a>, <em>A general framework for homotopic descent and codescent</em> (<a href='http://arxiv.org/abs/1001.1556'>arXiv/1001.1556</a>)</li> </ul> <p> </p> <p> </p> <p> </p> <p> </p> </div> <div class="revisedby"> <p> Last revised on September 22, 2020 at 13:58:49. See the <a href="/nlab/history/%28infinity%2C1%29-monad" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/%28infinity%2C1%29-monad" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/diff/%28infinity%2C1%29-monad/15" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/%28infinity%2C1%29-monad" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Hide changes</a><a href="/nlab/history/%28infinity%2C1%29-monad" accesskey="S" class="navlink" id="history" rel="nofollow">History (15 revisions)</a> <a href="/nlab/show/%28infinity%2C1%29-monad/cite" style="color: black">Cite</a> <a href="/nlab/print/%28infinity%2C1%29-monad" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/%28infinity%2C1%29-monad" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10