CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 89 results for author: <span class="mathjax">Chuss, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Chuss%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chuss, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chuss%2C+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chuss, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chuss%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chuss%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chuss%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14961">arXiv:2502.14961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.14961">pdf</a>, <a href="https://arxiv.org/format/2502.14961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> SOFIA/HAWC+ Far-Infrared Polarimetric Large Area CMZ Exploration Survey. V. The Magnetic Field Strength and Morphology in the Sagittarius C Complex </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+R+J">Roy J. Zhao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Par%C3%A9%2C+D+M">Dylan M. Par茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">Jordan A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Butterfield%2C+N+O">Natalie O. Butterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karpovich%2C+K">Kaitlyn Karpovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14961v1-abstract-short" style="display: inline;"> We present an analysis of the magnetic field strength and morphology in the Sagittarius C complex (Sgr C; G359.43-0.09) in the Milky Way Galaxy&#39;s Central Molecular Zone (CMZ) using the 214 $渭$m polarimetry data acquired with the High-Angular-Resolution Wideband Camera+ (HAWC+) instrument aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). We use several hundred magnetic field pseu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14961v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14961v1-abstract-full" style="display: none;"> We present an analysis of the magnetic field strength and morphology in the Sagittarius C complex (Sgr C; G359.43-0.09) in the Milky Way Galaxy&#39;s Central Molecular Zone (CMZ) using the 214 $渭$m polarimetry data acquired with the High-Angular-Resolution Wideband Camera+ (HAWC+) instrument aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). We use several hundred magnetic field pseudovectors in the Sgr C region to trace the projected magnetic field orientation within cold molecular gas clouds, and as is the trend throughout the CMZ, they show a higher polarization fraction toward the periphery of the clouds. We conduct a modified Davis-Chandrasekhar-Fermi (DCF) analysis of individual clouds and find that the sky-plane magnetic field strength varies from highly turbulent regions having inferred strengths of $\sim30~渭{\rm G}$ to regions of relatively uniform field orientation having strengths of $\sim 1~{\rm mG}$. The magnetic field orientations suggest that outflows from active star-forming regions, such as the extended green object (EGO) G359.43-0.10 and the protostellar source FIR-4 (G359.43+0.02), cause high turbulence in their vicinity. The magnetic field direction is found to be tangential to the surface of the Sgr C HII region, as well as two [CII] emission cavities around this region. Several other features in the vicinity of Sgr C, especially numerous non-thermal filaments (NTFs) and a diffuse source of X-ray emission towards the southwest of the \hii{} region, are discussed with regard to the observed magnetic field pseudovectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14961v1-abstract-full').style.display = 'none'; document.getElementById('2502.14961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 18 figures. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11904">arXiv:2501.11904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.11904">pdf</a>, <a href="https://arxiv.org/format/2501.11904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> A Measurement of the Largest-Scale CMB E-mode Polarization with CLASS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J">John Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C">Charles Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M">Michael Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+C">Carol Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D">David Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K">Kevin Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T">Tobias Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+N">Nathan Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perez%2C+C+M">Carolina Morales Perez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parker%2C+L">Lucas Parker</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11904v1-abstract-short" style="display: inline;"> We present measurements of large-scale cosmic microwave background (CMB) E-mode polarization from the Cosmology Large Angular Scale Surveyor (CLASS) 90 GHz data. Using 115 det-yr of observations collected through 2024 with a variable-delay polarization modulator, we achieved a polarization sensitivity of $78\,\mathrm{渭K\,arcmin}$, comparable to Planck at similar frequencies (100 and 143 GHz). The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11904v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11904v1-abstract-full" style="display: none;"> We present measurements of large-scale cosmic microwave background (CMB) E-mode polarization from the Cosmology Large Angular Scale Surveyor (CLASS) 90 GHz data. Using 115 det-yr of observations collected through 2024 with a variable-delay polarization modulator, we achieved a polarization sensitivity of $78\,\mathrm{渭K\,arcmin}$, comparable to Planck at similar frequencies (100 and 143 GHz). The analysis demonstrates effective mitigation of systematic errors and addresses challenges to large-angular-scale power recovery posed by time-domain filtering in maximum-likelihood map-making. A novel implementation of the pixel-space transfer matrix is introduced, which enables efficient filtering simulations and bias correction in the power spectrum using the quadratic cross-spectrum estimator. Overall, we achieved an unbiased time-domain filtering correction to recover the largest angular scale polarization, with the only power deficit, arising from map-making non-linearity, being characterized as less than $3\%$. Through cross-correlation with Planck, we detected the cosmic reionization at $99.4\%$ significance and measured the reionization optical depth $蟿=0.053^{+0.018}_{-0.019}$, marking the first ground-based attempt at such a measurement. At intermediate angular scales ($\ell&gt;30$), our results, both independently and in cross-correlation with Planck, remain fully consistent with Planck&#39;s measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11904v1-abstract-full').style.display = 'none'; document.getElementById('2501.11904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures, 3 tables; submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12705">arXiv:2411.12705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12705">pdf</a>, <a href="https://arxiv.org/format/2411.12705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> High-Efficiency and Low-Noise Detectors for the Upgraded CLASS 90 GHz Focal Plane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Costen%2C+N">Nick Costen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mateo%2C+J">Jennette Mateo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D">Duncan Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zeng%2C+L">Lingzhen Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12705v1-abstract-short" style="display: inline;"> We present the in-lab and on-sky performance for the upgraded 90 GHz focal plane of the Cosmology Large Angular Scale Surveyor (CLASS), which had four of its seven detector wafers updated during the austral winter of 2022. The update aimed to improve the transition-edge-sensor (TES) stability and bias range and to realize the high optical efficiency of the sensor design. Modifications included rev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12705v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12705v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12705v1-abstract-full" style="display: none;"> We present the in-lab and on-sky performance for the upgraded 90 GHz focal plane of the Cosmology Large Angular Scale Surveyor (CLASS), which had four of its seven detector wafers updated during the austral winter of 2022. The update aimed to improve the transition-edge-sensor (TES) stability and bias range and to realize the high optical efficiency of the sensor design. Modifications included revised circuit terminations, electrical contact between the TES superconductor and the normal metal providing the bulk of the bolometer&#39;s heat capacity, and additional filtering on the TES bias lines. The upgrade was successful: 94% of detectors are stable down to 15% of the normal resistance, providing a wide overlapping range of bias voltages for all TESs on a wafer. The median telescope efficiency improved from $0.42^{+0.15}_{-0.22}$ to $0.60^{+0.10}_{-0.32}$ (68% quantiles). For the four upgraded wafers alone, median telescope efficiency increased to $0.65^{+0.06}_{-0.06}$. Given our efficiency estimate for the receiver optics, this telescope efficiency implies a detector efficiency exceeding $0.90$. The overall noise-equivalent temperature of the 90 GHz focal plane improved from 19 $渭$K$\sqrt{s}$ to 11.3 $渭$K$\sqrt{s}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12705v1-abstract-full').style.display = 'none'; document.getElementById('2411.12705v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures.Submitted to ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10597">arXiv:2410.10597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10597">pdf</a>, <a href="https://arxiv.org/format/2410.10597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> SOFIA/HAWC+ Far-Infrared Polarimetric Large-Area CMZ Exploration Survey. IV. Relative Magnetic Field Orientation Throughout the CMZ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Par%C3%A9%2C+D+M">Dylan M. Par茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karpovich%2C+K">Kaitlyn Karpovich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Butterfield%2C+N+O">Natalie O. Butterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iulliano%2C+J+I">Jeffrey Inara Iulliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pan%2C+X">Xing Pan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+Q">Qizhou Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nilsson%2C+M">Matthilda Nilsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+R+J">Roy J. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10597v2-abstract-short" style="display: inline;"> The nature of the magnetic field structure throughout the Galactic Center (GC) has long been of interest. The recent Far-InfraREd Polarimetric Large-Area CMZ Exploration (FIREPLACE) Survey reveals preliminary connections between the seemingly distinct vertical and horizontal magnetic field distributions previously observed in the GC. We use the statistical techniques of the Histogram of Relative O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10597v2-abstract-full').style.display = 'inline'; document.getElementById('2410.10597v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10597v2-abstract-full" style="display: none;"> The nature of the magnetic field structure throughout the Galactic Center (GC) has long been of interest. The recent Far-InfraREd Polarimetric Large-Area CMZ Exploration (FIREPLACE) Survey reveals preliminary connections between the seemingly distinct vertical and horizontal magnetic field distributions previously observed in the GC. We use the statistical techniques of the Histogram of Relative Orientation (HRO) and the Projected Rayleigh Statistic (PRS) to assess whether the CMZ magnetic field preferentially aligns with the structure of the CMZ molecular clouds or the morphology of the non-thermal emission of the GC NTF population. We find that there is a range of magnetic field orientations throughout the population of CMZ molecular clouds, ranging from parallel to perpendicular orientation. We posit these orientations depend on the prevalence of gravitational shear in the GC in contrast with what is observed in Galactic Disk star-forming regions. We also compare the magnetic field orientation from dust polarimetry with individual prominent NTFs, finding a preferred perpendicular relative orientation. This perpendicular orientation indicates that the vertical field component found in the FIREPLACE observations is not spatially confined to the NTFs, providing evidence for a more pervasive vertical field in the GC. From dynamical arguments, we estimate an upper limit on the magnetic field strength for this vertical field, finding B less than or equal to 4 mG. A field close to this upper limit would indicate that the NTFs are not local enhancements of a weaker background field and that the locations of the NTFs depend on proximity to sites of cosmic ray production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10597v2-abstract-full').style.display = 'none'; document.getElementById('2410.10597v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12917">arXiv:2407.12917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12917">pdf</a>, <a href="https://arxiv.org/format/2407.12917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Modeling the Far-Infrared Polarization Spectrum of a High-Mass Star Forming Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dennis Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C">Che-Yu Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E+G">Erin G. Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karpovich%2C+K">Kaitlyn Karpovich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P">Peter Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthoud%2C+M">Marc Berthoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Yun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">Joseph M. Michail</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12917v1-abstract-short" style="display: inline;"> The polarization spectrum, or wavelength dependence of the polarization fraction, of interstellar dust emission provides important insights into the grain alignment mechanism of interstellar dust grains. We investigate the far-infrared polarization spectrum of a realistic simulated high-mass star forming cloud under various models of grain alignment and emission. We find that neither a homogeneous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12917v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12917v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12917v1-abstract-full" style="display: none;"> The polarization spectrum, or wavelength dependence of the polarization fraction, of interstellar dust emission provides important insights into the grain alignment mechanism of interstellar dust grains. We investigate the far-infrared polarization spectrum of a realistic simulated high-mass star forming cloud under various models of grain alignment and emission. We find that neither a homogeneous grain alignment model nor a grain alignment model that includes collisional dealignment is able to produce the falling spectrum seen in observations. On the other hand, we find that a grain alignment model with grain alignment efficiency dependent on local temperature is capable of producing a falling spectrum that is in qualitative agreement with observations of OMC-1. For the model most in agreement with OMC-1, we find no correlation between temperature and the slope of the polarization spectrum. However, we do find a positive correlation between column density and the slope of the polarization spectrum. We suggest this latter correlation to be the result of wavelength-dependent polarization by absorption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12917v1-abstract-full').style.display = 'none'; document.getElementById('2407.12917v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, 2 tables; Accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08912">arXiv:2407.08912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08912">pdf</a>, <a href="https://arxiv.org/format/2407.08912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Design and characterization of a 60-cm reflective half-wave plate for the CLASS 90 GHz band telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+C+Y+Y">Carol Yan Yan Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shukawa%2C+K">Koji Shukawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08912v1-abstract-short" style="display: inline;"> Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08912v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08912v1-abstract-full" style="display: none;"> Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization modulator for the 90 GHz band telescope of the Cosmology Large Angular Scale Surveyor (CLASS) project. The RHWP consists of an array of parallel wires (diameter $50~\mathrm{渭m}$, $175~\mathrm{渭m}$ pitch) positioned $0.88~\mathrm{mm}$ from an aluminum mirror. In lab tests, it was confirmed that the wire resonance frequency ($f_\mathrm{res}$) profile is consistent with the target, $139~\mathrm{Hz}&lt;f_\mathrm{res}&lt;154~\mathrm{Hz}$ in the optically active region (diameter smaller than $150~\mathrm{mm}$), preventing the wire vibration during operation and reducing the RHWP deformation under the wire tension. The mirror tilt relative to the rotating axis was controlled to be $&lt;15&#39;&#39;$, corresponding to an increase in beam width due to beam smearing of $&lt;0.6&#39;&#39;$, negligible compared to the beam&#39;s full-width half-maximum of $36&#39;$. The median and 16/84th percentile of the wire--mirror separation residual was $0.048^{+0.013}_{-0.014}~\mathrm{mm}$ in the optically active region, achieving a modulation efficiency $蔚=96.2_{+0.5}^{-0.4}\%$ with an estimated bandpass of 34 GHz. The angular velocity of the RHWP was maintained to an accuracy of within $0.005\%$ at the nominal rotation frequency ($2.5~\mathrm{Hz}$). The RHWP has been successfully integrated into the CLASS 90 GHz telescope and started taking data in June 2024, replacing the previous modulator that has been in operation since June 2018. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08912v1-abstract-full').style.display = 'none'; document.getElementById('2407.08912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures, 1 table, to appear in Proc. SPIE Astronomical Telescopes and Instrumentation 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20403">arXiv:2405.20403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20403">pdf</a>, <a href="https://arxiv.org/format/2405.20403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Primordial Inflation Explorer (PIXIE): Mission Design and Science Goals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">Alan Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Switzer%2C+E">Eric Switzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fixsen%2C+D">Dale Fixsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aghanim%2C+N">Nabila Aghanim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D">Dave Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">Jacques Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dvorkin%2C+C">Cora Dvorkin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B">Brandon Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+C">Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maffei%2C+B">Bruno Maffei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pullen%2C+A">Anthony Pullen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rotti%2C+A">Aditya Rotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sabyr%2C+A">Alina Sabyr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thiele%2C+L">Leander Thiele</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E">Ed Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zelko%2C+I">Ioana Zelko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20403v1-abstract-short" style="display: inline;"> The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept to measure the energy spectrum and linear polarization of the cosmic microwave background (CMB). A single cryogenic Fourier transform spectrometer compares the sky to an external blackbody calibration target, measuring the Stokes I, Q, U parameters to levels ~200 Jy/sr in each 2.65 degree diameter beam over the full sky&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20403v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20403v1-abstract-full" style="display: none;"> The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept to measure the energy spectrum and linear polarization of the cosmic microwave background (CMB). A single cryogenic Fourier transform spectrometer compares the sky to an external blackbody calibration target, measuring the Stokes I, Q, U parameters to levels ~200 Jy/sr in each 2.65 degree diameter beam over the full sky, in each of 300 frequency channels from 28 GHz to 6 THz. With sensitivity over 1000 times greater than COBE/FIRAS, PIXIE opens a broad discovery space for the origin, contents, and evolution of the universe. Measurements of small distortions from a CMB blackbody spectrum provide a robust determination of the mean electron pressure and temperature in the universe while constraining processes including dissipation of primordial density perturbations, black holes, and the decay or annihilation of dark matter. Full-sky maps of linear polarization measure the optical depth to reionization at nearly the cosmic variance limit and constrain models of primordial inflation. Spectra with sub-percent absolute calibration spanning microwave to far-IR wavelengths provide a legacy data set for analyses including line intensity mapping of extragalactic emission and the cosmic infrared background amplitude and anisotropy. We describe the PIXIE instrument sensitivity, foreground subtraction, and anticipated science return from both the baseline 2-year mission and a potential extended mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20403v1-abstract-full').style.display = 'none'; document.getElementById('2405.20403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages with 18 figures and 4 tables, including full sensitivity curves. Sensitivity curves are available for download at https://lambda.gsfc.nasa.gov/product/pixie/pixie_baseline_noise_get.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17567">arXiv:2404.17567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17567">pdf</a>, <a href="https://arxiv.org/format/2404.17567">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Sensitivity-Improved Polarization Maps at 40 GHz with CLASS and WMAP data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Song%2C+Z">Zeya Song</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weiland%2C+J+L">Janet L. Weiland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17567v2-abstract-short" style="display: inline;"> Improved polarization measurements at frequencies below 70 GHz with degree-level angular resolution are crucial for advancing our understanding of the Galactic synchrotron radiation and the potential polarized anomalous microwave emission and ultimately benefiting the detection of primordial $B$ modes. In this study, we present sensitivity-improved 40 GHz polarization maps obtained by combining th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17567v2-abstract-full').style.display = 'inline'; document.getElementById('2404.17567v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17567v2-abstract-full" style="display: none;"> Improved polarization measurements at frequencies below 70 GHz with degree-level angular resolution are crucial for advancing our understanding of the Galactic synchrotron radiation and the potential polarized anomalous microwave emission and ultimately benefiting the detection of primordial $B$ modes. In this study, we present sensitivity-improved 40 GHz polarization maps obtained by combining the CLASS 40 GHz and WMAP $Q$-band data through a weighted average in the harmonic domain. The decision to include WMAP $Q$-band data stems from similarities in the bandpasses. Leveraging the accurate large-scale measurements from WMAP $Q$ band and the high-sensitivity information from CLASS 40 GHz band at intermediate scales, the noise level at $\ell\in[30, 100]$ is reduced by a factor of $2-3$ in the map space. A pixel domain analysis of the polarized synchrotron spectral index ($尾_s$) using WMAP $K$ band and the combined maps (mean and 16/84th percentile across the $尾_s$ map: $-3.08_{-0.20}^{+0.20}$) reveals a stronger preference for spatial variation (PTE for a uniform $尾_s$ hypothesis smaller than 0.001) than the results obtained using WMAP $K$ and $Ka$ bands ($-3.08_{-0.14}^{+0.14}$). The cross-power spectra of the combined maps follow the same trend as other low-frequency data, and validation through simulations indicates negligible bias introduced by the combination method (sub-percent level in the power spectra). The products of this work are publicly available on $\mathtt{LAMBDA}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17567v2-abstract-full').style.display = 'none'; document.getElementById('2404.17567v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures, 1 table, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05317">arXiv:2401.05317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05317">pdf</a>, <a href="https://arxiv.org/format/2401.05317">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad4462">10.3847/1538-4357/ad4462 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SOFIA/HAWC+ Far-Infrared Polarimetric Large-Area CMZ Exploration (FIREPLACE) Survey III: Full Survey Data Set </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Par%C3%A9%2C+D">Dylan Par茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Butterfield%2C+N+O">Natalie O. Butterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">Jordan A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J+I">Jeffrey I. Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karpovich%2C+K">Kaitlyn Karpovich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E">Edward Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05317v3-abstract-short" style="display: inline;"> We present the second data release (DR2) of the Far-Infrared Polarimetric Large-Area CMZ Exploration (FIREPLACE) survey. This survey utilized the Stratospheric Observatory for Infrared Astronomy (SOFIA) High-resolution Airborne Wideband Camera plus (HAWC+) instrument at 214 $渭$m (E-band) to observe dust polarization throughout the Central Molecular Zone (CMZ) of the Milky Way. DR2 consists of obse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05317v3-abstract-full').style.display = 'inline'; document.getElementById('2401.05317v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05317v3-abstract-full" style="display: none;"> We present the second data release (DR2) of the Far-Infrared Polarimetric Large-Area CMZ Exploration (FIREPLACE) survey. This survey utilized the Stratospheric Observatory for Infrared Astronomy (SOFIA) High-resolution Airborne Wideband Camera plus (HAWC+) instrument at 214 $渭$m (E-band) to observe dust polarization throughout the Central Molecular Zone (CMZ) of the Milky Way. DR2 consists of observations that were obtained in 2022 covering the region of the CMZ extending roughly from the Brick to the Sgr C molecular clouds (corresponding to a roughly 1$^{\circ}$ $\times$ 0.75$^{\circ}$ region of the sky). We combine DR2 with the first FIREPLACE data release to obtain full coverage of the CMZ (a 1.5$^{\circ}$ $\times$0.75$^{\circ}$ region of the sky). After applying total and polarized intensity significance cuts on the full FIREPLACE data set we obtain $\rm\sim$65,000 Nyquist-sampled polarization pseudovectors. The distribution of polarization pseudovectors confirms a bimodal distribution in the CMZ magnetic field orientations, recovering field components that are oriented predominantly parallel or perpendicular to the Galactic plane. These magnetic field orientations indicate possible connections between the previously observed parallel and perpendicular distributions. We also inspect the magnetic fields toward a set of prominent CMZ molecular clouds (the Brick, Three Little Pigs, 50 km s$\rm^{-1}$, Circum-nuclear Disk, CO 0.02-0.02, 20 km s$\rm^{-1}$, and Sgr C), revealing spatially varying magnetic fields that generally trace the morphologies of the clouds. We find evidence that compression from stellar winds and shear from tidal forces are prominent mechanisms influencing the structure of the magnetic fields observed within the clouds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05317v3-abstract-full').style.display = 'none'; document.getElementById('2401.05317v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 23 figures, 3 tables. Article is accepted for publication in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 969 (2024) 150 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01983">arXiv:2401.01983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01983">pdf</a>, <a href="https://arxiv.org/format/2401.01983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> SOFIA/HAWC+ Far-Infrared Polarimetric Large Area CMZ Exploration (FIREPLACE) II: Detection of a Magnetized Dust Ring in the Galactic Center </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Butterfield%2C+N+O">Natalie O. Butterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">Jordan A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pare%2C+D">Dylan Pare</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Costa%2C+A+H">Allison H. Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hankins%2C+M+J">Matthew J. Hankins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staguhn%2C+J">Johannes Staguhn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zweibel%2C+E">Ellen Zweibel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01983v2-abstract-short" style="display: inline;"> We present the detection of a magnetized dust ring (M0.8-0.2) in the Central Molecular Zone (CMZ) of the Galactic Center. The results presented in this paper utilize the first data release (DR1) of the Far-Infrared Polarimetric Large Area CMZ Exploration (FIREPLACE) survey (i.e., FIREPLACE I; Butterfield et al. 2023). The FIREPLACE survey is a 214 $渭$m polarimetic survey of the Galactic Center usi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01983v2-abstract-full').style.display = 'inline'; document.getElementById('2401.01983v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01983v2-abstract-full" style="display: none;"> We present the detection of a magnetized dust ring (M0.8-0.2) in the Central Molecular Zone (CMZ) of the Galactic Center. The results presented in this paper utilize the first data release (DR1) of the Far-Infrared Polarimetric Large Area CMZ Exploration (FIREPLACE) survey (i.e., FIREPLACE I; Butterfield et al. 2023). The FIREPLACE survey is a 214 $渭$m polarimetic survey of the Galactic Center using the SOFIA/HAWC+ telescope. The M0.8-0.2 ring is a region of gas and dust that has a circular morphology with a central depression. The dust polarization in the M0.8-0.2 ring implies a curved magnetic field that traces the ring-like structure of the cloud. We posit an interpretation in which an expanding shell compresses and concentrates the ambient gas and magnetic field. We argue that this compression results in the strengthening of the magnetic field, as we infer from the observations toward the interior of the ring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01983v2-abstract-full').style.display = 'none'; document.getElementById('2401.01983v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07221">arXiv:2309.07221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07221">pdf</a>, <a href="https://arxiv.org/format/2309.07221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> CLASS Observations of Atmospheric Cloud Polarization at Millimeter Wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reeves%2C+R+A">Rodrigo A. Reeves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wolff%2C+O+F">Oliver F. Wolff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07221v1-abstract-short" style="display: inline;"> The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07221v1-abstract-full').style.display = 'inline'; document.getElementById('2309.07221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07221v1-abstract-full" style="display: none;"> The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor (CLASS) experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016 to 2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly $90^\circ$ from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of $3.90\pm0.06$, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07221v1-abstract-full').style.display = 'none'; document.getElementById('2309.07221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 14 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00675">arXiv:2309.00675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00675">pdf</a>, <a href="https://arxiv.org/format/2309.00675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> CLASS Angular Power Spectra and Map-Component Analysis for 40 GHz Observations through 2022 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flux%C3%A1%2C+P">Pedro Flux谩</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayer%2C+J">Johannes Hubmayer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parker%2C+L">Lucas Parker</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00675v2-abstract-short" style="display: inline;"> Measurement of the largest angular scale ($\ell &lt; 30$) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial $B$-modes. We present an analysis of maps covering 73.6\% of the sky made from the $40\,\mathrm{GHz}$ channel of the Cosmology Large Angula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00675v2-abstract-full').style.display = 'inline'; document.getElementById('2309.00675v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00675v2-abstract-full" style="display: none;"> Measurement of the largest angular scale ($\ell &lt; 30$) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial $B$-modes. We present an analysis of maps covering 73.6\% of the sky made from the $40\,\mathrm{GHz}$ channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range $10 &lt; \ell &lt; 100$. Simulations show the CLASS linear (circular) polarization maps have a white noise level of $125 \,(130)\,\mathrm{渭K\, arcmin}$. We measure the Galaxy-masked $EE$ and $BB$ spectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range $5 &lt; \ell &lt; 125$ with the first bin showing $D_\ell &lt; 0.023$ $\mathrm{渭K^2_{CMB}}$ at 95\% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00675v2-abstract-full').style.display = 'none'; document.getElementById('2309.00675v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 25 figures, 6 tables. Accepted to The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13309">arXiv:2308.13309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13309">pdf</a>, <a href="https://arxiv.org/format/2308.13309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ad50a0">10.3847/1538-4365/ad50a0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmology Large Angular Scale Surveyor (CLASS): 90 GHz Telescope Pointing, Beam Profile, Window Function, and Polarization Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flux%C3%A1%2C+P">Pedro Flux谩</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novack%2C+S">Sasha Novack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parker%2C+L">Lucas Parker</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13309v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over ~75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale CMB polarization to constrain the tensor-to-scalar ratio and the optical depth to last scattering. This paper presents the op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13309v2-abstract-full').style.display = 'inline'; document.getElementById('2308.13309v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13309v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over ~75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale CMB polarization to constrain the tensor-to-scalar ratio and the optical depth to last scattering. This paper presents the optical characterization of the 90GHz telescope, which has been observing since July 2018. Observations of the Moon establish the pointing while dedicated observations of Jupiter are used for beam calibration. The standard deviations of the pointing error in azimuth, elevation, and boresight angle are 1.3, 2.1, and 2.0 arcminutes, respectively, over the first 3 years of observations. This corresponds to a pointing uncertainty ~7% of the beam&#39;s full width at half maximum (FWHM). The effective azimuthally-symmetrized instrument 1D beam estimated at 90 GHz has an FWHM of 0.620+/-0.003 deg and a solid angle of 138.7+/-0.6(stats.)+/-1.1(sys.) usr integrated to a radius of 4 deg. The corresponding beam window function drops to b_ell^2 = 0.93, 0.71, 0.14 at ell = 30, 100, 300, respectively. Far-sidelobes are studied using detector-centered intensity maps of the Moon and measured to be at a level of 10^-3 or below relative to the peak. The polarization angle of Tau A estimated from preliminary survey maps is 149.6+/-0.2(stats.) deg in equatorial coordinates. The instrumental temperature-to-polarization (T-to-P) leakage fraction, inferred from per-detector demodulated Jupiter scan data, has a monopole component at the level of 1.7 x 10^-3, a dipole component with an amplitude of 4.3 x 10^-3, with no evidence of quadrupolar leakage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13309v2-abstract-full').style.display = 'none'; document.getElementById('2308.13309v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 18 figures, submitted to ApJS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Supplement Series, Volume 273, Number 2 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01681">arXiv:2306.01681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.01681">pdf</a>, <a href="https://arxiv.org/format/2306.01681">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad12b9">10.3847/1538-4357/ad12b9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SOFIA/HAWC+ Far-InfraRed Polarimetric Large Area CMZ Exploration (FIREPLACE) Survey I: General Results from the Pilot Program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Butterfield%2C+N+O">Natalie O. Butterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">Jordan A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pare%2C+D">Dylan Pare</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dowell%2C+C+D">C. Darren Dowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hankins%2C+M+J">Matthew J. Hankins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karpovich%2C+K">Kaitlyn Karpovich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siah%2C+J">Javad Siah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staguhn%2C+J">Johannes Staguhn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zweibel%2C+E">Ellen Zweibel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01681v2-abstract-short" style="display: inline;"> We present the first data release (DR1) of the Far-Infrared Polarimetric Large Area CMZ Exploration (FIREPLACE) survey. The survey was taken using the 214-micron band of the HAWC+ instrument with the SOFIA telescope (19.6$&#39;$ resolution; 0.7 pc). In this first data release we present dust polarization observations covering a ~0.5$掳$ region of the Galactic Center&#39;s Central Molecular Zone (CMZ), appr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01681v2-abstract-full').style.display = 'inline'; document.getElementById('2306.01681v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01681v2-abstract-full" style="display: none;"> We present the first data release (DR1) of the Far-Infrared Polarimetric Large Area CMZ Exploration (FIREPLACE) survey. The survey was taken using the 214-micron band of the HAWC+ instrument with the SOFIA telescope (19.6$&#39;$ resolution; 0.7 pc). In this first data release we present dust polarization observations covering a ~0.5$掳$ region of the Galactic Center&#39;s Central Molecular Zone (CMZ), approximately centered on the Sgr B2 complex. We detect ~25,000 Nyquist-sampled polarization pseudovectors, after applying the standard SOFIA cuts for minimum signal-to-noise in fractional polarization and total intensity of 3 and 200, respectively. Analysis of the magnetic field orientation suggests a bimodal distribution in the field direction. This bimodal distribution shows enhancements in the distribution of field directions for orientations parallel and perpendicular to the Galactic plane, which is suggestive of a CMZ magnetic field configuration with polodial and torodial components. Furthermore, a detailed analysis of individual clouds included in our survey (i.e., Sgr B2, Sgr B2-NW, Sgr B2-Halo, Sgr B1, and Clouds-E/F) shows these clouds have fractional polarization values of 1--10% at 214-micron, with most of the emission having values $&lt;$5%. A few of these clouds (i.e., Sgr B2, Clouds-E/F) show relatively low fractional polarization values toward the cores of the cloud, with higher fractional polarization values toward the less dense periphery. We also observe higher fractional polarization towards compact HII regions which could indicate an enhancement in the grain alignment in the dust surrounding these sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01681v2-abstract-full').style.display = 'none'; document.getElementById('2306.01681v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01908">arXiv:2305.01908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.01908">pdf</a>, <a href="https://arxiv.org/format/2305.01908">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/accff7">10.3847/1538-4357/accff7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The origin of dust polarization in the Orion Bar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andersson%2C+B">B-G Andersson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soam%2C+A">Archana Soam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schirmer%2C+T">Thi茅baut Schirmer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">Joseph M. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lopez-Rodriguez%2C+E">Enrique Lopez-Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flores%2C+S">Sophia Flores</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vaillancourt%2C+J+E">John E. Vaillancourt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoang%2C+T">Thiem Hoang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lazarian%2C+A">Alex Lazarian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01908v1-abstract-short" style="display: inline;"> The linear polarization of thermal dust emission provides a powerful tool to probe interstellar and circumstellar magnetic fields, because aspherical grains tend to align themselves with magnetic field lines. While the Radiative Alignment Torque (RAT) mechanism provides a theoretical framework to this phenomenon, some aspects of this alignment mechanism still need to be quantitatively tested. One&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01908v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01908v1-abstract-full" style="display: none;"> The linear polarization of thermal dust emission provides a powerful tool to probe interstellar and circumstellar magnetic fields, because aspherical grains tend to align themselves with magnetic field lines. While the Radiative Alignment Torque (RAT) mechanism provides a theoretical framework to this phenomenon, some aspects of this alignment mechanism still need to be quantitatively tested. One such aspect is the possibility that the reference alignment direction changes from the magnetic field (&#34;B-RAT&#34;) to the radiation field k-vector (&#34;k-RAT&#34;) in areas of strong radiation fields. We investigate this transition toward the Orion Bar PDR, using multi-wavelength SOFIA HAWC+ dust polarization observations. The polarization angle maps show that the radiation field direction is on average not the preferred grain alignment axis. We constrain the grain sizes for which the transition from B-RAT to k-RAT occur in the Orion Bar (grains &gt; 0.1 渭m toward the most irradiated locations), and explore the radiatively driven rotational disruption that may take place in the high-radiation environment of the Bar for large grains. While the grains susceptible to rotational disruption should be in supra-thermal rotation and aligned with the magnetic field, k-RAT aligned grains would rotate at thermal velocities. We find that the grain size at which the alignment shifts from B-RAT to k-RAT corresponds to grains too large to survive the rotational disruption. Therefore, we expect a large fraction of grains to be aligned at supra-thermal rotation with the magnetic field, and potentially be subject to rotational disruption depending on their tensile strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01908v1-abstract-full').style.display = 'none'; document.getElementById('2305.01908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01045">arXiv:2305.01045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.01045">pdf</a>, <a href="https://arxiv.org/format/2305.01045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> CLASS Data Pipeline and Maps for 40 GHz Observations through 2022 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osumi%2C+K">Keisuke Osumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J">John Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M">Michael Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C">Charles Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D">David Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J">Jullianna Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K">Kevin Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Inostroza%2C+F+R+E">Francisco Raul Espinoza Inostroza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fluxa%2C+P">Pedro Fluxa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T">Tobias Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+N">Nathan Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novack%2C+S">Sasha Novack</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01045v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75\% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220~GHz. This paper describes the CLASS data pipeline and maps for 40~GHz observations conducted from August 2016 to May 2022. We demonstrate how well the CLASS survey strategy, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01045v2-abstract-full').style.display = 'inline'; document.getElementById('2305.01045v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01045v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75\% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220~GHz. This paper describes the CLASS data pipeline and maps for 40~GHz observations conducted from August 2016 to May 2022. We demonstrate how well the CLASS survey strategy, with rapid ($\sim10\,\mathrm{Hz}$) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers $\sim75$\% of $EE$, $BB$, and $VV$ power at $\ell=20$ and $\sim45$\% at $\ell=10$. We present linear and circular polarization maps over 75\% of the sky. Simulations based on the data imply the maps have a white noise level of $110\,\mathrm{渭K\, arcmin}$ and correlated noise component rising at low-$\ell$ as $\ell^{-2.2}$. The transfer-function-corrected low-$\ell$ component is comparable to the white noise at the angular knee frequencies of $\ell\approx16$ (linear polarization) and $\ell\approx12$ (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding sub-percent bias for the $螞\mathrm{CDM}$ $EE$ power spectra. Bias from $E$-to-$B$ leakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for an $r=0.01$ $BB$ power spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01045v2-abstract-full').style.display = 'none'; document.getElementById('2305.01045v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures; submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06823">arXiv:2304.06823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06823">pdf</a>, <a href="https://arxiv.org/format/2304.06823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/acdacd">10.3847/1538-3881/acdacd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Strength of the Sheared Magnetic Field in the Galactic&#39;s Circum-Nuclear Disk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">J. A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lopez-Rodriguez%2C+E">E. Lopez-Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">D. T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Butterfield%2C+N+O">N. O. Butterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmelz%2C+J+T">J. T. Schmelz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06823v2-abstract-short" style="display: inline;"> Recent high-resolution 53-$渭$m polarimetric observations from SOFIA/HAWC+ have revealed the inferred plane-of-the-sky magnetic field (B-field) orientation in the Galactic center&#39;s Circum-Nuclear Disk (CND). The B-field is mostly aligned with the steamers of ionized material falling onto Sgr A* at large, differential velocities (shear). In such conditions, estimating the B-field strength with the `&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06823v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06823v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06823v2-abstract-full" style="display: none;"> Recent high-resolution 53-$渭$m polarimetric observations from SOFIA/HAWC+ have revealed the inferred plane-of-the-sky magnetic field (B-field) orientation in the Galactic center&#39;s Circum-Nuclear Disk (CND). The B-field is mostly aligned with the steamers of ionized material falling onto Sgr A* at large, differential velocities (shear). In such conditions, estimating the B-field strength with the ``classical&#34; Davis-Chandrasekhar-Fermi (DCF) method does not provide accurate results. We derive a ``modified&#39;&#39; DCF method by solving the ideal MHD equations from first principles considering the effects of a large-scale, shear flow on the propagation of a fast magnetosonic wave. In the context of the DCF approximation, both the value of the shear and its Laplacian affect the inferred B-field strength. Using synthetic polarization data from MHD simulations for a medium dominated by shear flows, we find that the ``classical&#39;&#39; DCF determines B-field strengths only within $&gt;50$\% of the true value where the ``modified&#34; DCF results are improved significantly ($\sim$3-22\%). Applying our ``modified&#39;&#39; DCF method to the CND revealed B-field strengths of 1 - 16 mG in the northern arm, 1 - 13 mG in the eastern arm, and 3 - 27 mG in the western arm at spatial scales $\lesssim1$ pc, with median values of $5.1\pm0.8$, $4.0\pm1.2$, and $8.5\pm2.3$ mG, respectively. The balance between turbulent gas energy (kinetic plus hydrostatic) and turbulent magnetic energy densities suggest that, along the magnetic-field-flow direction, magnetic effects become less dominant as the shear flow increases and weakens the B-field via magnetic convection. Our results indicate that the transition from magnetically to gravitationally dominated accretion of material onto Sgr A* starts at distances $\sim$ 1 pc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06823v2-abstract-full').style.display = 'none'; document.getElementById('2304.06823v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00091">arXiv:2304.00091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.00091">pdf</a>, <a href="https://arxiv.org/format/2304.00091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2023/07/057">10.1088/1475-7516/2023/07/057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Systematic error mitigation for the PIXIE Fourier transform spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">A. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fixsen%2C+D">Dale Fixsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aghanim%2C+N">Nabila Aghanim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">Jacques Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B+S">Brandon S. Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maffei%2C+B">Bruno Maffei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pullen%2C+A+R">Anthony R. Pullen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rotti%2C+A">Aditya Rotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zelko%2C+I">Ioana Zelko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00091v1-abstract-short" style="display: inline;"> The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept to measure the spectrum and polarization of the cosmic microwave background. Cosmological signals are small compared to the instantaneous instrument noise, requiring strict control of instrumental signals. The instrument design provides multiple levels of null operation, signal modulation, and signal differences, with o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00091v1-abstract-full').style.display = 'inline'; document.getElementById('2304.00091v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00091v1-abstract-full" style="display: none;"> The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept to measure the spectrum and polarization of the cosmic microwave background. Cosmological signals are small compared to the instantaneous instrument noise, requiring strict control of instrumental signals. The instrument design provides multiple levels of null operation, signal modulation, and signal differences, with only few-percent systematic error suppression required at each level. Jackknife tests based on discrete instrument symmetries provide an independent means to identify, model, and remove remaining instrumental signals. We use detailed time-ordered simulations, including realistic performance and tolerance parameters, to evaluate the instrument response to broad classes of systematic errors for both spectral distortions and polarization. The largest systematic errors contribute additional white noise at the few-percent level compared to the dominant photon noise. Coherent instrumental effects which do not integrate down are smaller still, and remain several orders of magnitude below the targeted cosmological signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00091v1-abstract-full').style.display = 'none'; document.getElementById('2304.00091v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages including 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01417">arXiv:2301.01417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.01417">pdf</a>, <a href="https://arxiv.org/format/2301.01417">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2023.3262497">10.1109/TASC.2023.3262497 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On-sky performance of new 90 GHz detectors for the Cosmology Large Angular Scale Surveyor (CLASS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T">Tobias Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P%C3%A9rez%2C+C+M">Carolina Morales P茅rez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01417v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales. The CLASS array is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01417v2-abstract-full').style.display = 'inline'; document.getElementById('2301.01417v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01417v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales. The CLASS array is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (HF). During the austral winter of 2022, we upgraded the first 90 GHz telescope (W1) by replacing four of the seven focal plane modules. These new modules contain detector wafers with an updated design, aimed at improving the optical efficiency and detector stability. We present a description of the design changes and measurements of on-sky optical efficiencies derived from observations of Jupiter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01417v2-abstract-full').style.display = 'none'; document.getElementById('2301.01417v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, to appear in the IEEE Transactions on Applied Superconductivity. arXiv admin note: text overlap with arXiv:2208.05006</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.09049">arXiv:2208.09049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.09049">pdf</a>, <a href="https://arxiv.org/format/2208.09049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac9b24">10.3847/1538-4357/ac9b24 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tracing PAH Emission in $位$-Orionis Using COBE/DIRBE Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B+S">Brandon S. Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A+J">Alan J. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">Jordan A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nofi%2C+H+C">Hayley C. Nofi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siah%2C+J">Javad Siah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.09049v2-abstract-short" style="display: inline;"> We use archival COBE/DIRBE data to construct a map of polycyclic aromatic hydrocarbon (PAH) emission in the $位$-Orionis region. The presence of the 3.3 $渭$m PAH feature within the DIRBE 3.5 $渭$m band and the corresponding lack of significant PAH spectral features in the adjacent DIRBE bands (1.25, 2.2, and 4.9 $渭$m) enable estimation of the PAH contribution to the 3.5 $渭$m data. Having the shortes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09049v2-abstract-full').style.display = 'inline'; document.getElementById('2208.09049v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.09049v2-abstract-full" style="display: none;"> We use archival COBE/DIRBE data to construct a map of polycyclic aromatic hydrocarbon (PAH) emission in the $位$-Orionis region. The presence of the 3.3 $渭$m PAH feature within the DIRBE 3.5 $渭$m band and the corresponding lack of significant PAH spectral features in the adjacent DIRBE bands (1.25, 2.2, and 4.9 $渭$m) enable estimation of the PAH contribution to the 3.5 $渭$m data. Having the shortest wavelength of known PAH features, the 3.3 $渭$m feature probes the smallest PAHs, which are also the leading candidates for carriers of anomalous microwave emission (AME). We use this map to investigate the association between the AME and the emission from PAH molecules. We find that the spatial correlation in $位$-Orionis is higher between AME and far-infrared dust emission (as represented by the DIRBE 240 $渭$m map) than it is between our PAH map and AME. This finding, in agreement with previous studies using PAH features at longer wavelengths, is in tension with the hypothesis that AME is due to spinning PAHs. However, the expected correlation between mid-infrared and microwave emission could potentially be degraded by different sensitivities of each emission mechanism to local environmental conditions even if PAHs are the carriers of both. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09049v2-abstract-full').style.display = 'none'; document.getElementById('2208.09049v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, accepted, ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05022">arXiv:2208.05022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05022">pdf</a>, <a href="https://arxiv.org/format/2208.05022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Cosmology Large Angular Scale Surveyor (CLASS): Pointing Stability and Beam Measurements at 90, 150, and 220 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna D. Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05022v1-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) telescope array surveys 75% of the sky from the Atacama desert in Chile at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the largest-angular-scale CMB polarization with the aim of constraining the tensor-to-scalar ratio, measuring the optical depth to reionization to near the cosmic variance limit, and more. The CLASS Q-ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05022v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05022v1-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) telescope array surveys 75% of the sky from the Atacama desert in Chile at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the largest-angular-scale CMB polarization with the aim of constraining the tensor-to-scalar ratio, measuring the optical depth to reionization to near the cosmic variance limit, and more. The CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic high frequency (150/220 GHz) telescopes have been observing since June 2016, May 2018, and September 2019, respectively. On-sky optical characterization of the 40 GHz instrument has been published. Here, we present preliminary on-sky measurements of the beams at 90, 150, and 220 GHz, and pointing stability of the 90 and 150/220 GHz telescopes. The average 90, 150, and 220 GHz beams measured from dedicated observations of Jupiter have full width at half maximum (FWHM) of 0.615+/-0.019 deg, 0.378+/-0.005 deg, and 0.266+/-0.008 deg, respectively. Telescope pointing variations are within a few percent of the beam FWHM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05022v1-abstract-full').style.display = 'none'; document.getElementById('2208.05022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Proc. SPIE Astronomical Telescopes and Instrumentation (2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05005">arXiv:2208.05005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05005">pdf</a>, <a href="https://arxiv.org/format/2208.05005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Construction of a Large Diameter Reflective Half-Wave Plate Modulator for Millimeter Wave Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05005v2-abstract-short" style="display: inline;"> Polarization modulation is a powerful technique to increase the stability of measurements by enabling the distinction of a polarized signal from dominant slow system drifts and unpolarized foregrounds. Furthermore, when placed as close to the sky as possible, modulation can reduce systematic errors from instrument polarization. In this work, we introduce the design and preliminary drive system lab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05005v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05005v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05005v2-abstract-full" style="display: none;"> Polarization modulation is a powerful technique to increase the stability of measurements by enabling the distinction of a polarized signal from dominant slow system drifts and unpolarized foregrounds. Furthermore, when placed as close to the sky as possible, modulation can reduce systematic errors from instrument polarization. In this work, we introduce the design and preliminary drive system laboratory performance of a new 60 cm diameter reflective half-wave plate (RHWP) polarization modulator. The wave plate consists of a wire array situated in front of a flat mirror. Using \mbox{50 $渭$m} diameter wires with \mbox{175 $渭$m} spacing, the wave plate will be suitable for operation in the millimeter wavelength range with flatness of the wires and parallelism to the mirror held to a small fraction of a wavelength. The presented design targets the 77--108 GHz range. Modulation is performed by a rotation of the wave plate with a custom rotary drive utilizing an actively controlled servo motor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05005v2-abstract-full').style.display = 'none'; document.getElementById('2208.05005v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, to appear in Proc. SPIE Astronomical Telescopes and Instrumentation 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04996">arXiv:2208.04996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.04996">pdf</a>, <a href="https://arxiv.org/format/2208.04996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Long-Timescale Stability in CMB Observations at Multiple Frequencies using Front-End Polarization Modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nunez%2C+C">Carolina Nunez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reeves%2C+R+A">Rodrigo A. Reeves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04996v1-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array observing the Cosmic Microwave Background (CMB) at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the CMB polarization on the largest angular scales to constrain the inflationary tensor-to-scalar ratio and the optical depth due to reionization. To achieve the long time-scale stability necessary for this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04996v1-abstract-full').style.display = 'inline'; document.getElementById('2208.04996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04996v1-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array observing the Cosmic Microwave Background (CMB) at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the CMB polarization on the largest angular scales to constrain the inflationary tensor-to-scalar ratio and the optical depth due to reionization. To achieve the long time-scale stability necessary for this measurement from the ground, CLASS utilizes a front-end, variable-delay polarization modulator on each telescope. Here we report on the improvements in stability afforded by front-end modulation using data across all four CLASS frequencies. Across one month of modulated linear polarization data in 2021, CLASS achieved median knee frequencies of 9.1, 29.1, 20.4, and 36.4 mHz for the 40, 90, 150, and 220 GHz observing bands. The knee frequencies are approximately an order of magnitude lower than achieved via CLASS pair-differencing orthogonal detector pairs without modulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04996v1-abstract-full').style.display = 'none'; document.getElementById('2208.04996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to SPIE Astronomical Telescopes + Instrumentation 2022 Conference (AS22)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05920">arXiv:2206.05920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.05920">pdf</a>, <a href="https://arxiv.org/format/2206.05920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb339">10.3847/1538-4357/acb339 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing CMB Anomalies in E-mode Polarization with Current and Future Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+N+J">Nathan J. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05920v2-abstract-short" style="display: inline;"> In this paper, we explore the power of the cosmic microwave background (CMB) polarization (E-mode) data to corroborate four potential anomalies in CMB temperature data: the lack of large angular-scale correlations, the alignment of the quadrupole and octupole (Q-O), the point-parity asymmetry, and the hemispherical power asymmetry. We use CMB simulations with noise representative of three experime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05920v2-abstract-full').style.display = 'inline'; document.getElementById('2206.05920v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05920v2-abstract-full" style="display: none;"> In this paper, we explore the power of the cosmic microwave background (CMB) polarization (E-mode) data to corroborate four potential anomalies in CMB temperature data: the lack of large angular-scale correlations, the alignment of the quadrupole and octupole (Q-O), the point-parity asymmetry, and the hemispherical power asymmetry. We use CMB simulations with noise representative of three experiments -- the Planck satellite, the Cosmology Large Angular Scale Surveyor (CLASS), and the LiteBIRD satellite -- to test how current and future data constrain the anomalies. We find the correlation coefficients $蟻$ between temperature and E-mode estimators to be less than $0.1$, except for the point-parity asymmetry ($蟻=0.17$ for cosmic-variance-limited simulations), confirming that E-modes provide a check on the anomalies that is largely independent of temperature data. Compared to Planck component-separated CMB data (SMICA), the putative LiteBIRD survey would reduce errors on E-mode anomaly estimators by factors of $\sim 3$ for hemispherical power asymmetry and point-parity asymmetry, and by $\sim 26$ for lack of large-scale correlation. The improvement in Q-O alignment is not obvious due to large cosmic variance, but we found the ability to pin down the estimator value will be improved by a factor $\gtrsim100$. Improvements with CLASS are intermediate to these. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05920v2-abstract-full').style.display = 'none'; document.getElementById('2206.05920v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 15 figures, 6 tables. Published in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, 945:79 (20pp), 2023 March 1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.06901">arXiv:2205.06901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.06901">pdf</a>, <a href="https://arxiv.org/format/2205.06901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac8cf2">10.3847/1538-4365/ac8cf2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration of Transition-edge Sensor (TES) Bolometer Arrays with Application to CLASS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna D. Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K">Kevin Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osumi%2C+K">Keisuke Osumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weiland%2C+J+L">Janet L. Weiland</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.06901v2-abstract-short" style="display: inline;"> The current and future cosmic microwave background (CMB) experiments fielding kilo-pixel arrays of transition-edge sensor (TES) bolometers require accurate and robust gain calibration methods. We simplify and refactor the standard TES model to directly relate the detector responsivity calibration and optical time constant to the measured TES current $I$ and the applied bias current&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06901v2-abstract-full').style.display = 'inline'; document.getElementById('2205.06901v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.06901v2-abstract-full" style="display: none;"> The current and future cosmic microwave background (CMB) experiments fielding kilo-pixel arrays of transition-edge sensor (TES) bolometers require accurate and robust gain calibration methods. We simplify and refactor the standard TES model to directly relate the detector responsivity calibration and optical time constant to the measured TES current $I$ and the applied bias current $I_{\mathrm{b}}$. The calibration method developed for the Cosmology Large Angular Scale Surveyor (CLASS) TES bolometer arrays relies on current versus voltage ($I$-$V$) measurements acquired daily prior to CMB observations. By binning Q-band (40GHz) $I$-$V$ measurements by optical loading, we find that the gain calibration median standard error within a bin is 0.3%. We test the accuracy of this &#34;$I$-$V$ bin&#34; detector calibration method by using the Moon as a photometric standard. The ratio of measured Moon amplitudes between detector pairs sharing the same feedhorn indicates a TES calibration error of 0.5%. We also find that for the CLASS Q-band TES array, calibrating the response of individual detectors based solely on the applied TES bias current accurately corrects TES gain variations across time but introduces a bias in the TES calibration from data counts to power units. Since the TES current bias value is set and recorded before every observation, this calibration method can always be applied to raw TES data and is not subject to $I$-$V$ data quality or processing errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.06901v2-abstract-full').style.display = 'none'; document.getElementById('2205.06901v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 5 tables. Submitted to ApJS May 2022. Published ApJS Oct 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJS 262 52 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08022">arXiv:2107.08022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.08022">pdf</a>, <a href="https://arxiv.org/format/2107.08022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac397c">10.3847/1538-4357/ac397c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna D. Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J+J">Jeffrey J. McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+N+J">Nathan J. Miller</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08022v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1$^\circ \lesssim 胃\leq$ 90$^\circ$ with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08022v2-abstract-full').style.display = 'inline'; document.getElementById('2107.08022v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08022v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1$^\circ \lesssim 胃\leq$ 90$^\circ$ with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since June 2016, May 2018, and September 2019, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power-to-antenna-temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 $\mathrm{渭K}_\mathrm{cmb}\sqrt{\mathrm{s}}$ for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08022v2-abstract-full').style.display = 'none'; document.getElementById('2107.08022v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures, published in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, 926:33 (9pp), 2022 February 10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07936">arXiv:2103.07936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.07936">pdf</a>, <a href="https://arxiv.org/format/2103.07936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0029430">10.1063/5.0029430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anti-reflection Coated Vacuum Window for the Primordial Inflation Polarization ExploreR (PIPER) balloon-borne instrument </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gandilo%2C+N+N">Natalie N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Helson%2C+K">Kyle Helson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A+J">Alan J. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+L">Luke Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mirel%2C+P">Paul Mirel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sagliocca%2C+M">Marco Sagliocca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sponseller%2C+D">Danielle Sponseller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Switzer%2C+E+R">Eric R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taraschi%2C+P+A">Peter A. Taraschi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07936v1-abstract-short" style="display: inline;"> Measuring the faint polarization signal of the cosmic microwave background (CMB) not only requires high optical throughput and instrument sensitivity but also control over systematic effects. Polarimetric cameras or receivers used in this setting often employ dielectric vacuum windows, filters, or lenses to appropriately prepare light for detection by cooled sensor arrays. These elements in the op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07936v1-abstract-full').style.display = 'inline'; document.getElementById('2103.07936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07936v1-abstract-full" style="display: none;"> Measuring the faint polarization signal of the cosmic microwave background (CMB) not only requires high optical throughput and instrument sensitivity but also control over systematic effects. Polarimetric cameras or receivers used in this setting often employ dielectric vacuum windows, filters, or lenses to appropriately prepare light for detection by cooled sensor arrays. These elements in the optical chain are typically designed to minimize reflective losses and hence improve sensitivity while minimizing potential imaging artifacts such as glint and ghosting. The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument designed to measure the polarization of the CMB radiation at the largest angular scales and characterize astrophysical dust foregrounds. PIPER&#39;s twin telescopes and detector systems are submerged in an open-aperture liquid helium bucket dewar. A fused-silica window anti-reflection (AR) coated with polytetrafluoroethylene (PTFE) is installed on the vacuum cryostat that houses the cryogenic detector arrays. Light passes from the skyward portions of the telescope to the detector arrays though this window, which utilizes an indium seal to prevent superfluid helium leaks into the vacuum cryostat volume. The AR coating implemented reduces reflections from each interface to &lt;1% compared to ~10% from an uncoated window surface. The AR coating procedure and room temperature optical measurements of the window are presented. The indium vacuum sealing process is also described in detail and test results characterizing its integrity to superfluid helium leaks are provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07936v1-abstract-full').style.display = 'none'; document.getElementById('2103.07936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 92, 035111 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00034">arXiv:2101.00034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.00034">pdf</a>, <a href="https://arxiv.org/format/2101.00034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2235">10.3847/1538-4357/ac2235 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two Year Cosmology Large Angular Scale Surveyor (CLASS) Observations: Long Timescale Stability Achieved with a Front-End Variable-delay Polarization Modulator at 40 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osumi%2C+K">Keisuke Osumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Inostroza%2C+F+R+E">Francisco Raul Espinoza Inostroza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+N+J">Nathan J. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00034v1-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales ($2 \lesssim \ell \lesssim 200$) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00034v1-abstract-full').style.display = 'inline'; document.getElementById('2101.00034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00034v1-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales ($2 \lesssim \ell \lesssim 200$) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator (VPM) as the first optical element in each of the CLASS telescopes. Here we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first two years of observations by the 40 GHz CLASS telescope. These timestreams are used to measure the $1/f$ noise and temperature-to-polarization ($T\rightarrow P$) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a $T\rightarrow P$ leakage of $&lt;3.8\times10^{-4}$ (95\% confidence) across the focal plane. We examine the sources of $1/f$ noise present in the data and find the component of $1/f$ due to atmospheric precipitable water vapor (PWV) has an amplitude of $203 \pm 12 \mathrm{渭K_{RJ}\sqrt{s}}$ for 1 mm of PWV when evaluated at 10 mHz; accounting for $\sim32\%$ of the $1/f$ noise in the central pixels of the focal plane. The low level of $T\rightarrow P$ leakage and $1/f$ noise achieved through the use of a front-end polarization modulator enables the observation of the largest scales of the CMB polarization from the ground by the CLASS telescopes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00034v1-abstract-full').style.display = 'none'; document.getElementById('2101.00034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 ApJ 922 212 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08433">arXiv:2012.08433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08433">pdf</a>, <a href="https://arxiv.org/format/2012.08433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2561609">10.1117/12.2561609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control and systems software for the Cosmology Large Angular Scale Surveyor (CLASS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rojas%2C+P+F">Pedro Flux谩 Rojas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+N+J">Nathan J. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valle%2C+D+A+N">Deniz Augusto Nunes Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watts%2C+D+J">Duncan J. Watts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08433v1-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is an array of polarization-sensitive millimeter wave telescopes that observes ~70% of the sky at frequency bands centered near 40GHz, 90GHz, 150GHz, and 220GHz from the Atacama desert of northern Chile. Here, we describe the architecture of the software used to control the telescopes, acquire data from the various instruments, schedule observatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08433v1-abstract-full').style.display = 'inline'; document.getElementById('2012.08433v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08433v1-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is an array of polarization-sensitive millimeter wave telescopes that observes ~70% of the sky at frequency bands centered near 40GHz, 90GHz, 150GHz, and 220GHz from the Atacama desert of northern Chile. Here, we describe the architecture of the software used to control the telescopes, acquire data from the various instruments, schedule observations, monitor the status of the instruments and observations, create archival data packages, and transfer data packages to North America for analysis. The computer and network architecture of the CLASS observing site is also briefly discussed. This software and architecture has been in use since 2016, operating the telescopes day and night throughout the year, and has proven successful in fulfilling its design goals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08433v1-abstract-full').style.display = 'none'; document.getElementById('2012.08433v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures, to appear in Proc. SPIE</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11452, Software and Cyberinfrastructure for Astronomy VI, 114521O (13 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12739">arXiv:2010.12739</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.12739">pdf</a>, <a href="https://arxiv.org/format/2010.12739">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/PSJ/abedad">10.3847/PSJ/abedad <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Venus Observations at 40 and 90 GHz with CLASS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna D. Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J">Joseph Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Espinoza%2C+F">Francisco Espinoza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gothe%2C+D">Dominik Gothe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novack%2C+S">Sasha Novack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parker%2C+L">Lucas Parker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12739v2-abstract-short" style="display: inline;"> Using the Cosmology Large Angular Scale Surveyor, we measure the disk-averaged absolute Venus brightness temperature to be 432.3 $\pm$ 2.8 K and 355.6 $\pm$ 1.3 K in the Q and W frequency bands centered at 38.8 and 93.7 GHz, respectively. At both frequency bands, these are the most precise measurements to date. Furthermore, we observe no phase dependence of the measured temperature in either band.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12739v2-abstract-full').style.display = 'inline'; document.getElementById('2010.12739v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12739v2-abstract-full" style="display: none;"> Using the Cosmology Large Angular Scale Surveyor, we measure the disk-averaged absolute Venus brightness temperature to be 432.3 $\pm$ 2.8 K and 355.6 $\pm$ 1.3 K in the Q and W frequency bands centered at 38.8 and 93.7 GHz, respectively. At both frequency bands, these are the most precise measurements to date. Furthermore, we observe no phase dependence of the measured temperature in either band. Our measurements are consistent with a CO$_2$-dominant atmospheric model that includes trace amounts of additional absorbers like SO$_2$ and H$_2$SO$_4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12739v2-abstract-full').style.display = 'none'; document.getElementById('2010.12739v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, published in PSJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Planetary Science Journal, 2:71 (6pp), 2021 April 12 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.07897">arXiv:2008.07897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.07897">pdf</a>, <a href="https://arxiv.org/format/2008.07897">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/abada8">10.3847/1538-3881/abada8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HAWC+ Far-Infrared Observations of the Magnetic Field Geometry in M51 and NGC 891 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+T+J">Terry Jay Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Jin-Ah Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dowell%2C+C+D">C. Darren Dowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pineda%2C+J+L">Jorge L. Pineda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benford%2C+D+J">Dominic J. Benford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthoud%2C+M">Marc Berthoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dale%2C+D+A">Daniel A. Dale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L+M">L. M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldsmith%2C+P+F">Paul F. Goldsmith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+R+T">Ryan T. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+D+A">Doyal A. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T+K">Thomas K. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lazarian%2C+A">Alex Lazarian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">Joseph M. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+F+P">Fabio P. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheth%2C+K">Kartik Sheth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siah%2C+J">Javad Siah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stacey%2C+G+J">Gordon J. Stacey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staguhn%2C+J">Johannes Staguhn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stephens%2C+I+W">Ian W. Stephens</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.07897v1-abstract-short" style="display: inline;"> SOFIA HAWC+ polarimetry at $154~\micron$ is reported for the face-on galaxy M51 and the edge-on galaxy NGC 891. For M51, the polarization vectors generally follow the spiral pattern defined by the molecular gas distribution, the far-infrared (FIR) intensity contours, and other tracers of star formation. The fractional polarization is much lower in the FIR-bright central regions than in the outer r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07897v1-abstract-full').style.display = 'inline'; document.getElementById('2008.07897v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.07897v1-abstract-full" style="display: none;"> SOFIA HAWC+ polarimetry at $154~\micron$ is reported for the face-on galaxy M51 and the edge-on galaxy NGC 891. For M51, the polarization vectors generally follow the spiral pattern defined by the molecular gas distribution, the far-infrared (FIR) intensity contours, and other tracers of star formation. The fractional polarization is much lower in the FIR-bright central regions than in the outer regions, and we rule out loss of grain alignment and variations in magnetic field strength as causes. When compared with existing synchrotron observations, which sample different regions with different weighting, we find the net position angles are strongly correlated, the fractional polarizations are moderately correlated, but the polarized intensities are uncorrelated. We argue that the low fractional polarization in the central regions must be due to significant numbers of highly turbulent segments across the beam and along lines of sight in the beam in the central 3 kpc of M51. For NGC 891, the FIR polarization vectors within an intensity contour of 1500 $\rm{MJy~sr^{-1}}$ are oriented very close to the plane of the galaxy. The FIR polarimetry is probably sampling the magnetic field geometry in NGC 891 much deeper into the disk than is possible with NIR polarimetry and radio synchrotron measurements. In some locations in NGC 891 the FIR polarization is very low, suggesting we are preferentially viewing the magnetic field mostly along the line of sight, down the length of embedded spiral arms. There is tentative evidence for a vertical field in the polarized emission off the plane of the disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07897v1-abstract-full').style.display = 'none'; document.getElementById('2008.07897v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">AJ, Accepted, In Press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05537">arXiv:2008.05537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05537">pdf</a>, <a href="https://arxiv.org/format/2008.05537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abccbe">10.3847/1538-4357/abccbe <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observational evidence for rotational desorption of Complex Molecules by radiative torques from Orion BN/KL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tram%2C+L+N">Le Ngoc Tram</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+H">Hyeseung Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoang%2C+T">Thiem Hoang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">Joseph M. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nickerson%2C+S">Sarah Nickerson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rangwala%2C+N">Naseem Rangwala</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reach%2C+W+T">William T. Reach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05537v2-abstract-short" style="display: inline;"> Complex Organic Molecules (COMs) are believed to form in the ice mantle of dust grains and are released to the gas by thermal sublimation when grain mantles are heated to temperatures of $T_{\rm d}\gtrsim 100\,\rm K$. However, some COMs are detected in regions with temperatures below 100 K. Recently, a new mechanism of rotational desorption due to centrifugal stress induced by radiative torques (R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05537v2-abstract-full').style.display = 'inline'; document.getElementById('2008.05537v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05537v2-abstract-full" style="display: none;"> Complex Organic Molecules (COMs) are believed to form in the ice mantle of dust grains and are released to the gas by thermal sublimation when grain mantles are heated to temperatures of $T_{\rm d}\gtrsim 100\,\rm K$. However, some COMs are detected in regions with temperatures below 100 K. Recently, a new mechanism of rotational desorption due to centrifugal stress induced by radiative torques (RATs) is proposed by Hoang &amp; Tram 2020 that can desorb COMs at low temperatures. In this paper, we report observational evidence for rotational desorption of COMs toward the nearest massive star-forming region Orion BN/KL. We compare the abundance of three representative COMs which have very high binding energy computed by the rotational desorption mechanism with observations by ALMA, and demonstrate that the rotational desorption mechanism can explain the existence of such COMs. We also analyze the polarization data from SOFIA/HAWC+ and JCMT/SCUBA-2 and find that the polarization degree at far-infrared/submm decreases with increasing the grain temperature for $T_{\rm d}\gtrsim 71\,\rm K$. This is consistent with the theoretical prediction using the Radiative Torque (RAT) alignment theory and Radiative Torque Disruption (RATD) mechanism. Such an anti-correlation between dust polarization and dust temperature supports the rotational disruption as well as rotational desorption mechanism of COMs induced by RATs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05537v2-abstract-full').style.display = 'none'; document.getElementById('2008.05537v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, 1 table, accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00310">arXiv:2008.00310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.00310">pdf</a>, <a href="https://arxiv.org/format/2008.00310">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abd090">10.3847/1538-4357/abd090 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Far-Infrared Polarization Spectrum of the OMC-1 Star-Forming Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">Joseph M. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">Peter C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthoud%2C+M+G">Marc G. Berthoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dowell%2C+C+D">C. Darren Dowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">Jordan A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+D+A">Doyal A. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+F+P">Fabio P. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siah%2C+J">Javad Siah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sukay%2C+E">Ezra Sukay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taylor%2C+A">Aster Taylor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tram%2C+L+N">Le Ngoc Tram</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vaillancourt%2C+J+E">John E. Vaillancourt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00310v2-abstract-short" style="display: inline;"> We analyze the wavelength dependence of the far-infrared polarization fraction toward the OMC-1 star forming region using observations from HAWC+/SOFIA at 53, 89, 154, and 214 $渭$m. We find that the shape of the far-infrared polarization spectrum is variable across the cloud and that there is evidence of a correlation between the slope of the polarization spectrum and the average line-of-sight tem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00310v2-abstract-full').style.display = 'inline'; document.getElementById('2008.00310v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00310v2-abstract-full" style="display: none;"> We analyze the wavelength dependence of the far-infrared polarization fraction toward the OMC-1 star forming region using observations from HAWC+/SOFIA at 53, 89, 154, and 214 $渭$m. We find that the shape of the far-infrared polarization spectrum is variable across the cloud and that there is evidence of a correlation between the slope of the polarization spectrum and the average line-of-sight temperature. The slope of the polarization spectrum tends to be negative (falling toward longer wavelengths) in cooler regions and positive or flat in warmer regions. This is very similar to what was discovered in $蟻$ Oph A via SOFIA polarimetry at 89 and 154 $渭$m. Like the authors of this earlier work, we argue that the most natural explanation for our falling spectra is line-of-sight superposition of differing grain populations, with polarized emission from the warmer regions and less-polarized emission from the cooler ones. In contrast with the earlier work on $蟻$ Oph A, we do not find a clear correlation of polarization spectrum slope with column density. This suggests that falling spectra are attributable to variations in grain alignment efficiency in a heterogeneous cloud consistent with radiative torques theory. Alternative explanations in which variations in grain alignment efficiency are caused by varying gas density rather than by varying radiation intensity are disfavored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00310v2-abstract-full').style.display = 'none'; document.getElementById('2008.00310v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures. Accepted to ApJ. Major changes from first draft: 1. Additional discussion/introduction about ETAC/HCE, 2. More in-depth analysis on robustness of polarization slope/dust temperature correlation, 3. Updated notation on the spatial polarization ratio analysis, 4. Updated many figures for clarity and consistency</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04923">arXiv:2007.04923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.04923">pdf</a>, <a href="https://arxiv.org/format/2007.04923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abd6f0">10.3847/1538-4357/abd6f0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maps of Magnetic Field Strength in the OMC-1 using HAWC+ FIR Polarimetric data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">Jordan A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dowell%2C+C+D">C. Darren Dowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Houde%2C+M">Martin Houde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">Joseph M. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siah%2C+J">Javad Siah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04923v3-abstract-short" style="display: inline;"> Far-infrared (FIR) dust polarimetry enables the study of interstellar magnetic fields via tracing of the polarized emission from dust grains that are partially aligned with the direction of the field. The advent of high quality polarimetric data has permitted the use of statistical methods to extract both the direction and magnitude of the magnetic field. In this work, the Davis-Chandrasekhar-Ferm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04923v3-abstract-full').style.display = 'inline'; document.getElementById('2007.04923v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04923v3-abstract-full" style="display: none;"> Far-infrared (FIR) dust polarimetry enables the study of interstellar magnetic fields via tracing of the polarized emission from dust grains that are partially aligned with the direction of the field. The advent of high quality polarimetric data has permitted the use of statistical methods to extract both the direction and magnitude of the magnetic field. In this work, the Davis-Chandrasekhar-Fermi technique is used to make maps of the plane-of-sky (POS) component of the magnetic field in the Orion Molecular Cloud (OMC-1) by combining polarization maps at 53, 89, 154 and 214 \micron\ from HAWC+/SOFIA with maps of density and velocity dispersion. In addition, maps of the local dispersion of polarization angles are used in conjuction with Zeeman measurements to estimate a map of the strength of the line-of-sight (LOS) component of the field. Combining these maps, information about the three-dimensional magnetic field configuration (integrated along the line-of-sight) is inferred over the OMC-1 region. POS magnetic field strengths of up to 2 mG are observed near the BN/KL object, while the OMC-1 bar shows strengths of up to a few hundred $渭$G. These estimates of the magnetic field components are used to produce maps of the mass-to-magnetic flux ratio ($M/桅$) -- a metric for probing the conditions for star formation in molecular clouds -- and determine regions of sub- and super-criticality in OMC-1. Such maps can provide invaluable input and comparison to MHD simulations of star formation processes in filamentary structures of molecular clouds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04923v3-abstract-full').style.display = 'none'; document.getElementById('2007.04923v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04499">arXiv:1911.04499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.04499">pdf</a>, <a href="https://arxiv.org/format/1911.04499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab76c2">10.3847/1538-4357/ab76c2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: 40 GHz Telescope Pointing, Beam Profile, Window Function, and Polarization Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rojas%2C+P+F">Pedro Flux谩 Rojas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osumi%2C+K">Keisuke Osumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pradenas%2C+B">Basti谩n Pradenas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K+L">Kevin L. Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gothe%2C+D">Dominik Gothe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04499v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale ($1^\circ\lesssim胃\leqslant 90^\circ$) CMB polarization to constrain the tensor-to-scalar ratio at the $r\sim0.01$ level and t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04499v2-abstract-full').style.display = 'inline'; document.getElementById('1911.04499v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04499v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale ($1^\circ\lesssim胃\leqslant 90^\circ$) CMB polarization to constrain the tensor-to-scalar ratio at the $r\sim0.01$ level and the optical depth to last scattering to the sample variance limit. This paper presents the optical characterization of the 40 GHz telescope during its first observation era, from 2016 September to 2018 February. High signal-to-noise observations of the Moon establish the pointing and beam calibration. The telescope boresight pointing variation is $&lt;0.023^\circ$ ($&lt;1.6$% of the beam&#39;s full width at half maximum (FWHM)). We estimate beam parameters per detector and in aggregate, as in the CMB survey maps. The aggregate beam has an FWHM of $1.579^\circ\pm.001^\circ$ and a solid angle of $838 \pm 6\ 渭{\rm sr}$, consistent with physical optics simulations. The corresponding beam window function has a sub-percent error per multipole at $\ell &lt; 200$. An extended $90^\circ$ beam map reveals no significant far sidelobes. The observed Moon polarization shows that the instrument polarization angles are consistent with the optical model and that the temperature-to-polarization leakage fraction is $&lt;10^{-4}$ (95% C.L.). We find that the Moon-based results are consistent with measurements of M42, RCW 38, and Tau A from CLASS&#39;s CMB survey data. In particular, Tau A measurements establish degree-level precision for instrument polarization angles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04499v2-abstract-full').style.display = 'none'; document.getElementById('1911.04499v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 24 figures, published in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, 891:134 (25pp), 2020 March 10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.01016">arXiv:1911.01016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.01016">pdf</a>, <a href="https://arxiv.org/format/1911.01016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab64e2">10.3847/1538-4357/ab64e2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A First Detection of Atmospheric Circular Polarization at Q Band </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rojas%2C+P+F">Pedro Flux谩 Rojas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gothe%2C+D">Dominik Gothe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+N+J">Nathan J. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parker%2C+L">Lucas Parker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reeves%2C+R">Rodrigo Reeves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.01016v2-abstract-short" style="display: inline;"> The Earth&#39;s magnetic field induces Zeeman splitting of the magnetic dipole transitions of molecular oxygen in the atmosphere, which produces polarized emission in the millimeter-wave regime. This polarized emission is primarily circularly polarized and manifests as a foreground with a dipole-shaped sky pattern for polarization-sensitive ground-based cosmic microwave background experiments, such as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01016v2-abstract-full').style.display = 'inline'; document.getElementById('1911.01016v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.01016v2-abstract-full" style="display: none;"> The Earth&#39;s magnetic field induces Zeeman splitting of the magnetic dipole transitions of molecular oxygen in the atmosphere, which produces polarized emission in the millimeter-wave regime. This polarized emission is primarily circularly polarized and manifests as a foreground with a dipole-shaped sky pattern for polarization-sensitive ground-based cosmic microwave background experiments, such as the Cosmology Large Angular Scale Surveyor (CLASS), which is capable of measuring large angular scale circular polarization. Using atmospheric emission theory and radiative transfer formalisms, we model the expected amplitude and spatial distribution of this signal and evaluate the model for the CLASS observing site in the Atacama Desert of northern Chile. Then, using two years of observations at 32.3 GHz to 43.7 GHz from the CLASS Q-band telescope, we present a detection of this signal and compare the observed signal to that predicted by the model. We recover an angle between magnetic north and true north of $(-5.5 \pm 0.6)^\circ$, which is consistent with the expectation of $-5.9^\circ$ for the CLASS observing site. When comparing dipole sky patterns fit to both simulated and data-derived sky maps, the dipole directions match to within a degree, and the measured amplitudes match to within ${\sim}20\%$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01016v2-abstract-full').style.display = 'none'; document.getElementById('1911.01016v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, published in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal 889:120 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.00391">arXiv:1911.00391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.00391">pdf</a>, <a href="https://arxiv.org/format/1911.00391">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab61f8">10.3847/1538-4357/ab61f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A Measurement of Circular Polarization at 40 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yunyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J">Jullianna Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K">Kevin Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flux%C3%A1%2C+P">Pedro Flux谩</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+N+J">Nathan J. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+C">Carolina N煤帽ez</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.00391v1-abstract-short" style="display: inline;"> We report circular polarization measurements from the first two years of observation with the 40 GHz polarimeter of the Cosmology Large Angular Scale Surveyor (CLASS). CLASS is conducting a multi-frequency survey covering 75% of the sky from the Atacama Desert designed to measure the cosmic microwave background (CMB) linear E and B polarization on angular scales $1^\circ \lesssim 胃\leq 90^\circ$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00391v1-abstract-full').style.display = 'inline'; document.getElementById('1911.00391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.00391v1-abstract-full" style="display: none;"> We report circular polarization measurements from the first two years of observation with the 40 GHz polarimeter of the Cosmology Large Angular Scale Surveyor (CLASS). CLASS is conducting a multi-frequency survey covering 75% of the sky from the Atacama Desert designed to measure the cosmic microwave background (CMB) linear E and B polarization on angular scales $1^\circ \lesssim 胃\leq 90^\circ$, corresponding to a multipole range of $2 \leq \ell \lesssim 200$. The modulation technology enabling measurements of linear polarization at the largest angular scales from the ground, the Variable-delay Polarization Modulator, is uniquely designed to provide explicit sensitivity to circular polarization (Stokes $V$). We present a first detection of circularly polarized atmospheric emission at 40 GHz that is well described by a dipole with an amplitude of $124\pm4\,\mathrm{渭K}$ when observed at an elevation of $45^\circ$, and discuss its potential impact as a foreground to CMB experiments. Filtering the atmospheric component, CLASS places a 95% C.L. upper limit of $0.4\,\mathrm{渭K}^2$ to $13.5\,\mathrm{渭K}^2$ on $\ell(\ell+1)C_\ell^{VV}/(2蟺)$ between $1 \leq \ell \leq 120$, representing a two-orders-of-magnitude improvement over previous limits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.00391v1-abstract-full').style.display = 'none'; document.getElementById('1911.00391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.06440">arXiv:1909.06440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.06440">pdf</a>, <a href="https://arxiv.org/format/1909.06440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5108649">10.1063/1.5108649 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-Kelvin cooling for two kilopixel bolometer arrays in the PIPER receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Switzer%2C+E+R">E. R. Switzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baildon%2C+T">T. Baildon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benford%2C+D">D. Benford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">C. L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">D. T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">R. Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">J. R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fixsen%2C+D+J">D. J. Fixsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T+M">T. M. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G">G. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irwin%2C+K">K. Irwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jhabvala%2C+C">C. Jhabvala</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kimball%2C+M">M. Kimball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">A. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lazear%2C+J">J. Lazear</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+L+N">L. N. Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J+J">J. J. McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+T+M">T. M. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mirel%2C+P">P. Mirel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moseley%2C+S+H">S. H. Moseley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pawlyk%2C+S">S. Pawlyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+S">S. Rodriguez</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.06440v1-abstract-short" style="display: inline;"> The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne telescope mission to search for inflationary gravitational waves from the early universe. PIPER employs two 32x40 arrays of superconducting transition-edge sensors, which operate at 100 mK. An open bucket dewar of liquid helium maintains the receiver and telescope optics at 1.7 K. We describe the thermal design of the receiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06440v1-abstract-full').style.display = 'inline'; document.getElementById('1909.06440v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.06440v1-abstract-full" style="display: none;"> The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne telescope mission to search for inflationary gravitational waves from the early universe. PIPER employs two 32x40 arrays of superconducting transition-edge sensors, which operate at 100 mK. An open bucket dewar of liquid helium maintains the receiver and telescope optics at 1.7 K. We describe the thermal design of the receiver and sub-kelvin cooling with a continuous adiabatic demagnetization refrigerator (CADR). The CADR operates between 70-130 mK and provides ~10 uW cooling power at 100 mK, nearly five times the loading of the two detector assemblies. We describe electronics and software to robustly control the CADR, overall CADR performance in flight-like integrated receiver testing, and practical considerations for implementation in the balloon float environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.06440v1-abstract-full').style.display = 'none'; document.getElementById('1909.06440v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Inst 90(9) 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07495">arXiv:1908.07495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.07495">pdf</a>, <a href="https://arxiv.org/format/1908.07495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> PICO: Probe of Inflation and Cosmic Origins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">S. Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+M">M. Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Artis%2C+E">E. Artis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P">P. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aurlien%2C+R">R. Aurlien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerji%2C+R">R. Banerji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartlett%2C+J+G">J. G. Bartlett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J">J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boddy%2C+K+K">K. K. Boddy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonato%2C+M">M. Bonato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borrill%2C+J">J. Borrill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F">F. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burkhart%2C+B">B. Burkhart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">J. Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D">D. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S">S. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cooperrider%2C+J">J. Cooperrider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crill%2C+B+P">B. P. Crill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Zotti%2C+G">G. De Zotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">J. Delabrouille</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07495v1-abstract-short" style="display: inline;"> The Probe of Inflation and Cosmic Origins (PICO) is a proposed probe-scale space mission consisting of an imaging polarimeter operating in frequency bands between 20 and 800 GHz. We describe the science achievable by PICO, which has sensitivity equivalent to more than 3300 Planck missions, the technical implementation, the schedule and cost. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07495v1-abstract-full" style="display: none;"> The Probe of Inflation and Cosmic Origins (PICO) is a proposed probe-scale space mission consisting of an imaging polarimeter operating in frequency bands between 20 and 800 GHz. We describe the science achievable by PICO, which has sensitivity equivalent to more than 3300 Planck missions, the technical implementation, the schedule and cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07495v1-abstract-full').style.display = 'none'; document.getElementById('1908.07495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">APC White Paper submitted to the Astro2020 decadal panel; 10 page version of the 50 page mission study report arXiv:1902.10541</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> astro-ph/1902.10541 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.06648">arXiv:1907.06648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.06648">pdf</a>, <a href="https://arxiv.org/format/1907.06648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab5849">10.3847/1538-4357/ab5849 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SOFIA/HAWC+ traces the magnetic fields in NGC 1068 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lopez-Rodriguez%2C+E">E. Lopez-Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dowell%2C+C+D">C. D. Dowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+T+J">T. J. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+D+A">D. A. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthoud%2C+M">M. Berthoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D">D. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dale%2C+D+A">D. A. Dale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">J. A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+R+T">R. T. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">L. W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">J. M. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nikutta%2C+R">R. Nikutta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">G. Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+F+P">F. P. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheth%2C+K">K. Sheth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siah%2C+J">J. Siah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staguhn%2C+J">J. Staguhn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stephens%2C+I+W">I. W. Stephens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tassis%2C+K">K. Tassis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trinh%2C+C+Q">C. Q. Trinh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ward-Thompson%2C+D">D. Ward-Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Werner%2C+M">M. Werner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">E. J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zweibel%2C+E">E. Zweibel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.06648v2-abstract-short" style="display: inline;"> We report the first detection of galactic spiral structure by means of thermal emission from magnetically aligned dust grains. Our 89 $渭$m polarimetric imaging of NGC 1068 with the High-resolution Airborne Wideband Camera/Polarimeter (HAWC+) on NASA&#39;s Stratospheric Observatory for Infrared Astronomy (SOFIA) also sheds light on magnetic field structure in the vicinity of the galaxy&#39;s inner-bar and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06648v2-abstract-full').style.display = 'inline'; document.getElementById('1907.06648v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.06648v2-abstract-full" style="display: none;"> We report the first detection of galactic spiral structure by means of thermal emission from magnetically aligned dust grains. Our 89 $渭$m polarimetric imaging of NGC 1068 with the High-resolution Airborne Wideband Camera/Polarimeter (HAWC+) on NASA&#39;s Stratospheric Observatory for Infrared Astronomy (SOFIA) also sheds light on magnetic field structure in the vicinity of the galaxy&#39;s inner-bar and active galactic nucleus (AGN). We find correlations between the 89 $渭$m magnetic field vectors and other tracers of spiral arms, and a symmetric polarization pattern as a function of the azimuthal angle arising from the projection and inclination of the disk field component in the plane of the sky. The observations can be fit with a logarithmic spiral model with pitch angle of $16.9^{+2.7}_{-2.8}$$^{\circ}$ and a disk inclination of $48\pm2^{\circ}$. We infer that the bulk of the interstellar medium from which the polarized dust emission originates is threaded by a magnetic field that closely follows the spiral arms. Inside the central starburst disk ($&lt;1.6$ kpc), the degree of polarization is found to be lower than for far-infrared sources in the Milky Way, and has minima at the locations of most intense star formation near the outer ends of the inner-bar. Inside the starburst ring, the field direction deviates from the model, becoming more radial along the leading edges of the inner-bar. The polarized flux and dust temperature peak $\sim 3-6$&#34; NE of the AGN at the location of a bow shock between the AGN outflow and the surrounding interstellar medium, but the AGN itself is weakly polarized ($&lt; 1$%) at both 53 and 89 \um. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06648v2-abstract-full').style.display = 'none'; document.getElementById('1907.06648v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, Accepted for publication by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00705">arXiv:1905.00705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.00705">pdf</a>, <a href="https://arxiv.org/format/1905.00705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab3407">10.3847/1538-4357/ab3407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The far-infrared polarization spectrum of Rho Ophiuchi A from HAWC+/SOFIA observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+F+P">Fabio P. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dowell%2C+C+D">C. Darren Dowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Houde%2C+M">Martin Houde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+E+L">Enrique Lopez Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthoud%2C+M">Marc Berthoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dale%2C+D+A">Daniel A. Dale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">Jordan A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+R+T">Ryan T. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+D+A">Doyal A. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T+K">Thomas K. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+T+J">Terry Jay Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lazarian%2C+A">Alex Lazarian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">Joseph M. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staguhn%2C+J">Johannes Staguhn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stephens%2C+I+W">Ian W. Stephens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tassis%2C+K">Konstantinos Tassis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trinh%2C+C+Q">Christopher Q. Trinh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Camp%2C+E">Eric Van Camp</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Volpert%2C+C+G">C. G. Volpert</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00705v2-abstract-short" style="display: inline;"> We report on polarimetric maps made with HAWC+/SOFIA toward Rho Oph A, the densest portion of the Rho Ophiuchi molecular complex. We employed HAWC+ bands C (89 $渭$m) and D (154 $渭$m). The slope of the polarization spectrum was investigated by defining the quantity R_DC = p_D/p_C, where p_C and p_D represent polarization degrees in bands C and D, respectively. We find a clear correlation between R_&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00705v2-abstract-full').style.display = 'inline'; document.getElementById('1905.00705v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00705v2-abstract-full" style="display: none;"> We report on polarimetric maps made with HAWC+/SOFIA toward Rho Oph A, the densest portion of the Rho Ophiuchi molecular complex. We employed HAWC+ bands C (89 $渭$m) and D (154 $渭$m). The slope of the polarization spectrum was investigated by defining the quantity R_DC = p_D/p_C, where p_C and p_D represent polarization degrees in bands C and D, respectively. We find a clear correlation between R_DC and the molecular hydrogen column density across the cloud. A positive slope (R_DC &gt; 1) dominates the lower density and well illuminated portions of the cloud, that are heated by the high mass star Oph S1, whereas a transition to a negative slope (R_DC &lt; 1) is observed toward the denser and less evenly illuminated cloud core. We interpret the trends as due to a combination of: (1) Warm grains at the cloud outskirts, which are efficiently aligned by the abundant exposure to radiation from Oph S1, as proposed in the radiative torques theory; and (2) Cold grains deep in the cloud core, which are poorly aligned due to shielding from external radiation. To assess this interpretation, we developed a very simple toy model using a spherically symmetric cloud core based on Herschel data, and verified that the predicted variation of R_DC is consistent with the observations. This result introduces a new method that can be used to probe the grain alignment efficiency in molecular clouds, based on the analysis of trends in the far-infrared polarization spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00705v2-abstract-full').style.display = 'none'; document.getElementById('1905.00705v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJ (July 18 2019)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.11556">arXiv:1904.11556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.11556">pdf</a>, <a href="https://arxiv.org/ps/1904.11556">ps</a>, <a href="https://arxiv.org/format/1904.11556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab14e8">10.3847/1538-4357/ab14e8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of the Cosmic Infrared Background from COBE/FIRAS and Planck HFI Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Odegard%2C+N">N. Odegard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weiland%2C+J+L">J. L. Weiland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fixsen%2C+D+J">D. J. Fixsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">D. T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dwek%2C+E">E. Dwek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">A. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Switzer%2C+E+R">E. R. Switzer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.11556v2-abstract-short" style="display: inline;"> New determinations are presented of the cosmic infrared background monopole brightness in the Planck HFI bands from 100 GHz to 857 GHz. Planck was not designed to measure the monopole component of sky brightness, so cross-correlation of the 2015 HFI maps with COBE/FIRAS data is used to recalibrate the zero level of the HFI maps. For the HFI 545 and 857 GHz maps, the brightness scale is also recali&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11556v2-abstract-full').style.display = 'inline'; document.getElementById('1904.11556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.11556v2-abstract-full" style="display: none;"> New determinations are presented of the cosmic infrared background monopole brightness in the Planck HFI bands from 100 GHz to 857 GHz. Planck was not designed to measure the monopole component of sky brightness, so cross-correlation of the 2015 HFI maps with COBE/FIRAS data is used to recalibrate the zero level of the HFI maps. For the HFI 545 and 857 GHz maps, the brightness scale is also recalibrated. Correlation of the recalibrated HFI maps with a linear combination of Galactic H I and H alpha data is used to separate the Galactic foreground emission and determine the cosmic infrared background brightness in each of the HFI bands. We obtain CIB values of 0.007 +- 0.014, 0.010 +- 0.019, 0.060 +- 0.023, 0.149 +- 0.017, 0.371 +- 0.018, and 0.576 +- 0.034 MJy/sr at 100, 143, 217, 353, 545, and 857 GHz, respectively. The estimated uncertainties for the 353 to 857 GHz bands are about 3 to 6 times smaller than those of previous direct CIB determinations at these frequencies. Our results are compared with integrated source brightness results from selected recent submillimeter and millimeter wavelength imaging surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11556v2-abstract-full').style.display = 'none'; document.getElementById('1904.11556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 18 figures, accepted for publication in ApJ; minor changes in v2 to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Ap.J. 877, 40 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.08757">arXiv:1903.08757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.08757">pdf</a>, <a href="https://arxiv.org/format/1903.08757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Studying Magnetic Fields in Star Formation and the Turbulent Interstellar Medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L">Laura Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hull%2C+C+L+H">Charles L. H. Hull</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andr%C3%A9%2C+P">Philippe Andr茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boulanger%2C+F">Fran莽ois Boulanger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dowell%2C+C+D">C. Darren Dowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Falgarone%2C+E">Edith Falgarone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B">Brandon Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lazarian%2C+A">A. Lazarian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stephens%2C+I">Ian Stephens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+S">Siyao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.08757v1-abstract-short" style="display: inline;"> Understanding the physics of how stars form is a highly-prioritized goal of modern Astrophysics, in part because star formation is linked to both galactic dynamics on large scales and to the formation of planets on small scales. It is well-known that stars form from the gravitational collapse of molecular clouds, which are in turn formed out of the turbulent interstellar medium. Star formation is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08757v1-abstract-full').style.display = 'inline'; document.getElementById('1903.08757v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.08757v1-abstract-full" style="display: none;"> Understanding the physics of how stars form is a highly-prioritized goal of modern Astrophysics, in part because star formation is linked to both galactic dynamics on large scales and to the formation of planets on small scales. It is well-known that stars form from the gravitational collapse of molecular clouds, which are in turn formed out of the turbulent interstellar medium. Star formation is highly inefficient, with one of the likely culprits being the regulation against gravitational collapse provided by magnetic fields. Measurement of the polarized emission from interstellar dust grains, which are partially aligned with the magnetic field, provides a key tool for understanding the role these fields play in the star formation process. Over the past decade, much progress has been made by the most recent generation of polarimeters operating over a range of wavelengths (from the far-infrared through the millimeter part of the spectrum) and over a range of angular resolutions (from less than an arcsecond through fractions of a degree). Future developments in instrument sensitivity for ground-based, airborne, and space-borne polarimeters operating over range of spatial scales are critical for enabling revolutionary steps forward in our understanding of the magnetized turbulence from which stars are formed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08757v1-abstract-full').style.display = 'none'; document.getElementById('1903.08757v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Astro2020 Decadal Survey (with a few updated citations)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.04218">arXiv:1903.04218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.04218">pdf</a>, <a href="https://arxiv.org/format/1903.04218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">J. Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">A. Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patil%2C+S+P">S. P. Patil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abitbol%2C+M+H">M. H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aghanim%2C+N">N. Aghanim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali-Haimoud%2C+Y">Y. Ali-Haimoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amin%2C+M+A">M. A. Amin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+K">K. Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battye%2C+R">R. Battye</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baumann%2C+D">D. Baumann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ben-Dayan%2C+I">I. Ben-Dayan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">B. Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F+R">F. R. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgess%2C+C+P">C. P. Burgess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burigana%2C+C">C. Burigana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Byrnes%2C+C+T">C. T. Byrnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cabass%2C+G">G. Cabass</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">D. T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clesse%2C+S">S. Clesse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cole%2C+P+S">P. S. Cole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dai%2C+L">L. Dai</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.04218v2-abstract-short" style="display: inline;"> Following the pioneering observations with COBE in the early 1990s, studies of the cosmic microwave background (CMB) have focused on temperature and polarization anisotropies. CMB spectral distortions - tiny departures of the CMB energy spectrum from that of a perfect blackbody - provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoret&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04218v2-abstract-full').style.display = 'inline'; document.getElementById('1903.04218v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.04218v2-abstract-full" style="display: none;"> Following the pioneering observations with COBE in the early 1990s, studies of the cosmic microwave background (CMB) have focused on temperature and polarization anisotropies. CMB spectral distortions - tiny departures of the CMB energy spectrum from that of a perfect blackbody - provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoretical foundation of spectral distortions has seen major advances in recent years, which highlight the immense potential of this emerging field. Spectral distortions probe a fundamental property of the Universe - its thermal history - thereby providing additional insight into processes within the cosmological standard model (CSM) as well as new physics beyond. Spectral distortions are an important tool for understanding inflation and the nature of dark matter. They shed new light on the physics of recombination and reionization, both prominent stages in the evolution of our Universe, and furnish critical information on baryonic feedback processes, in addition to probing primordial correlation functions at scales inaccessible to other tracers. In principle the range of signals is vast: many orders of magnitude of discovery space could be explored by detailed observations of the CMB energy spectrum. Several CSM signals are predicted and provide clear experimental targets, some of which are already observable with present-day technology. Confirmation of these signals would extend the reach of the CSM by orders of magnitude in physical scale as the Universe evolves from the initial stages to its present form. The absence of these signals would pose a huge theoretical challenge, immediately pointing to new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04218v2-abstract-full').style.display = 'none'; document.getElementById('1903.04218v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Astro2020 Science White Paper, 5 pages text, 13 pages in total, 3 Figures, minor update to references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.10541">arXiv:1902.10541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.10541">pdf</a>, <a href="https://arxiv.org/format/1902.10541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> PICO: Probe of Inflation and Cosmic Origins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Artis%2C+E">Emmanuel Artis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P">Peter Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aumont%2C+J">Jonathan Aumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aurlien%2C+R">Ragnhild Aurlien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerji%2C+R">Ranajoy Banerji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barreiro%2C+R+B">R. Belen Barreiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bartlett%2C+J+G">James G. Bartlett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basak%2C+S">Soumen Basak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J">Jamie Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boddy%2C+K+K">Kimberly K. Boddy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonato%2C+M">Matteo Bonato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borrill%2C+J">Julian Borrill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouchet%2C+F">Fran莽ois Bouchet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boulanger%2C+F">Fran莽ois Boulanger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burkhart%2C+B">Blakesley Burkhart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D">David Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cooperrider%2C+J">Joelle Cooperrider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crill%2C+B+P">Brendan P. Crill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Zotti%2C+G">Gianfranco De Zotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">Jacques Delabrouille</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.10541v2-abstract-short" style="display: inline;"> The Probe of Inflation and Cosmic Origins (PICO) is an imaging polarimeter that will scan the sky for 5 years in 21 frequency bands spread between 21 and 799 GHz. It will produce full-sky surveys of intensity and polarization with a final combined-map noise level of 0.87 $渭$K arcmin for the required specifications, equivalent to 3300 Planck missions, and with our current best-estimate would have a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10541v2-abstract-full').style.display = 'inline'; document.getElementById('1902.10541v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.10541v2-abstract-full" style="display: none;"> The Probe of Inflation and Cosmic Origins (PICO) is an imaging polarimeter that will scan the sky for 5 years in 21 frequency bands spread between 21 and 799 GHz. It will produce full-sky surveys of intensity and polarization with a final combined-map noise level of 0.87 $渭$K arcmin for the required specifications, equivalent to 3300 Planck missions, and with our current best-estimate would have a noise level of 0.61 $渭$K arcmin (6400 Planck missions). PICO will either determine the energy scale of inflation by detecting the tensor to scalar ratio at a level $r=5\times 10^{-4}~(5蟽)$, or will rule out with more than $5蟽$ all inflation models for which the characteristic scale in the potential is the Planck scale. With LSST&#39;s data it could rule out all models of slow-roll inflation. PICO will detect the sum of neutrino masses at $&gt;4蟽$, constrain the effective number of light particle species with $螖N_{\rm eff}&lt;0.06~(2蟽)$, and elucidate processes affecting the evolution of cosmic structures by measuring the optical depth to reionization with errors limited by cosmic variance and by constraining the evolution of the amplitude of linear fluctuations $蟽_{8}(z)$ with sub-percent accuracy. Cross-correlating PICO&#39;s map of the thermal Sunyaev-Zeldovich effect with LSST&#39;s gold sample of galaxies will precisely trace the evolution of thermal pressure with $z$. PICO&#39;s maps of the Milky Way will be used to determine the make up of galactic dust and the role of magnetic fields in star formation efficiency. With 21 full sky legacy maps in intensity and polarization, which cannot be obtained in any other way, the mission will enrich many areas of astrophysics. PICO is the only single-platform instrument with the combination of sensitivity, angular resolution, frequency bands, and control of systematic effects that can deliver this compelling, timely, and broad science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10541v2-abstract-full').style.display = 'none'; document.getElementById('1902.10541v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Probe class mission study submitted to NASA and 2020 Decadal Panel. Executive summary: 2.5 pages; Science: 28 pages; Total: 50 pages, 36 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.06816">arXiv:1812.06816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.06816">pdf</a>, <a href="https://arxiv.org/ps/1812.06816">ps</a>, <a href="https://arxiv.org/format/1812.06816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aaf8b9">10.3847/2041-8213/aaf8b9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SOFIA Far Infrared Imaging Polarimetry of M82 and NGC 253: Exploring the Super-Galactic Wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+T+J">Terry Jay Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dowell%2C+C+D">C. Darren Dowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+E+L">Enrique Lopez Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zweibel%2C+E+G">Ellen G. Zweibel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthoud%2C+M">Marc Berthoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldsmith%2C+P+F">Paul F. Goldsmith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+R+T">Ryan T. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+D+A">Doyal A. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lazarian%2C+7+A">7 Alex Lazarian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">Joseph M. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+F+P">Fabio P. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheth%2C+K">Kartik Sheth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stacey%2C+G+J">Gordon J. Stacey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staguhn%2C+J">Johannes Staguhn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stephens%2C+I+W">Ian W. Stephens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tassis%2C+K">Konstantinos Tassis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trinh%2C+C+Q">Christopher Q. Trinh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Volpert%2C+C+G">C. G. Volpert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Werner%2C+M">Michael Werner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.06816v1-abstract-short" style="display: inline;"> We present Far-Infrared polarimetry observations of M82 at 53 and $154~渭\rm{m}$ and NGC 253 at $89~渭\rm{m}$, which were taken with HAWC+ in polarimetry mode on the Stratospheric Observatory for Infrared Astronomy (SOFIA). The polarization of M82 at $53~渭\rm{m}$ clearly shows a magnetic field geometry perpendicular to the disk in the hot dust emission. For M82 the polarization at $154~渭\rm{m}$ show&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06816v1-abstract-full').style.display = 'inline'; document.getElementById('1812.06816v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.06816v1-abstract-full" style="display: none;"> We present Far-Infrared polarimetry observations of M82 at 53 and $154~渭\rm{m}$ and NGC 253 at $89~渭\rm{m}$, which were taken with HAWC+ in polarimetry mode on the Stratospheric Observatory for Infrared Astronomy (SOFIA). The polarization of M82 at $53~渭\rm{m}$ clearly shows a magnetic field geometry perpendicular to the disk in the hot dust emission. For M82 the polarization at $154~渭\rm{m}$ shows a combination of field geometry perpendicular to the disk in the nuclear region, but closer to parallel to the disk away from the nucleus. The fractional polarization at $53~渭\rm{m}$ $(154~渭\rm{m})$ ranges from 7% (3%) off nucleus to 0.5% (0.3%) near the nucleus. A simple interpretation of the observations of M82 invokes a massive polar outflow, dragging the field along, from a region $\sim 700$~pc in diameter that has entrained some of the gas and dust, creating a vertical field geometry seen mostly in the hotter $(53~渭\rm{m})$ dust emission. This outflow sits within a larger disk with a more typical planar geometry that more strongly contributes to the cooler $(154~渭\rm{m})$ dust emission. For NGC 253, the polarization at $89~渭\rm{m}$ is dominated by a planar geometry in the tilted disk, with weak indication of a vertical geometry above and below the plane from the nucleus. The polarization observations of NGC 253 at $53~渭\rm{m}$ were of insufficient S/N for detailed analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06816v1-abstract-full').style.display = 'none'; document.getElementById('1812.06816v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Figures, 20 pages, ApJL accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08287">arXiv:1811.08287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.08287">pdf</a>, <a href="https://arxiv.org/format/1811.08287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab1652">10.3847/1538-4357/ab1652 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On-sky performance of the CLASS Q-band telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+I+L">Ivan L. Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marquez%2C+B+P">Basti谩n Pradenas Marquez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustos%2C+R">Ricardo Bustos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+M">Manwei Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleary%2C+J">Joseph Cleary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Couto%2C+J">Jullianna Couto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denis%2C+K">Kevin Denis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fluxa%2C+P">Pedro Fluxa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gothe%2C+D">Dominik Gothe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08287v2-abstract-short" style="display: inline;"> The Cosmology Large Angular Scale Surveyor (CLASS) is mapping the polarization of the Cosmic Microwave Background (CMB) at large angular scales ($2&lt;\ell\lesssim200$) in search of a primordial gravitational wave B-mode signal down to a tensor-to-scalar ratio of $r \approx 0.01$. The same data set will provide a near sample-variance-limited measurement of the optical depth to reionization. Between J&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08287v2-abstract-full').style.display = 'inline'; document.getElementById('1811.08287v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08287v2-abstract-full" style="display: none;"> The Cosmology Large Angular Scale Surveyor (CLASS) is mapping the polarization of the Cosmic Microwave Background (CMB) at large angular scales ($2&lt;\ell\lesssim200$) in search of a primordial gravitational wave B-mode signal down to a tensor-to-scalar ratio of $r \approx 0.01$. The same data set will provide a near sample-variance-limited measurement of the optical depth to reionization. Between June 2016 and March 2018, CLASS completed the largest ground-based Q-band CMB survey to date, covering over 31 000~square-degrees (75% of the sky), with an instantaneous array noise-equivalent temperature (NET) sensitivity of $32~渭\mbox{K}_{cmb}\sqrt{\mbox{s}}$. We demonstrate that the detector optical loading ($1.6~\mbox{pW}$) and noise-equivalent power ($19~\mbox{aW}\sqrt{\mbox{s}}$) match the expected noise model dominated by photon bunching noise. We derive a $13.1\pm0.3~\mbox{K/pW}$ calibration to antenna temperature based on Moon observations, which translates to an optical efficiency of $0.48\pm0.04$ and a $27~\mbox{K}$ system noise temperature. Finally, we report a Tau A flux density of $308\pm11~\mbox{Jy}$ at $38.4\pm0.2~\mbox{GHz}$, consistent with the WMAP Tau A time-dependent spectral flux density model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08287v2-abstract-full').style.display = 'none'; document.getElementById('1811.08287v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08233">arXiv:1810.08233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.08233">pdf</a>, <a href="https://arxiv.org/format/1810.08233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aafd37">10.3847/1538-4357/aafd37 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HAWC+/SOFIA Multiwavelength Polarimetric Observations of OMC-1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andersson%2C+B">B-G Andersson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bally%2C+J">John Bally</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dotson%2C+J+L">Jessie L. Dotson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dowell%2C+C+D">C. Darren Dowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guerra%2C+J+A">Jordan A. Guerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harper%2C+D+A">Doyal A. Harper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Houde%2C+M">Martin Houde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+T+J">Terry Jay Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lazarian%2C+A">A. Lazarian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+E+L">Enrique Lopez Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J+M">Joseph M. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morris%2C+M+R">Mark R. Morris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novak%2C+G">Giles Novak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siah%2C+J">Javad Siah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staguhn%2C+J">Johannes Staguhn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vaillancourt%2C+J+E">John E. Vaillancourt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Volpert%2C+C+G">C. G. Volpert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Werner%2C+M">Michael Werner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benford%2C+D+J">Dominic J. Benford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berthoud%2C+M">Marc Berthoud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cox%2C+E+G">Erin G. Cox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crutcher%2C+R">Richard Crutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dale%2C+D+A">Daniel A. Dale</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08233v2-abstract-short" style="display: inline;"> We report new polarimetric and photometric maps of the massive star-forming region OMC-1 using the HAWC+ instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA). We present continuum polarimetric and photometric measurements of this region at 53, 89, 154, and 214 microns at angular resolutions of 5.1, 7.9, 14.0, and 18.7 arcseconds for the four bands, respectively. The photometr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08233v2-abstract-full').style.display = 'inline'; document.getElementById('1810.08233v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08233v2-abstract-full" style="display: none;"> We report new polarimetric and photometric maps of the massive star-forming region OMC-1 using the HAWC+ instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA). We present continuum polarimetric and photometric measurements of this region at 53, 89, 154, and 214 microns at angular resolutions of 5.1, 7.9, 14.0, and 18.7 arcseconds for the four bands, respectively. The photometric maps enable the computation of improved SEDs for the region. We find that at the longer wavelengths, the inferred magnetic field configuration matches the `hourglass&#39; configuration seen in previous studies, indicating magnetically-regulated star formation. The field morphology differs at the shorter wavelengths. The magnetic field inferred at these wavelengths traces the bipolar structure of the explosive Becklin-Neugebauer (BN)/Kleinman-Low (KL) outflow emerging from OMC-1 behind the Orion Nebula. Using statistical methods to estimate the field strength in the region, we find that the explosion dominates the magnetic field near the center of the feature. Farther out, the magnetic field is close to energetic equilibrium with the ejecta and may be providing confinement to the explosion. The correlation between polarization fraction and the local polarization angle dispersion indicates that the depolarization as a function of unpolarized intensity is a result of intrinsic field geometry as opposed to decreases in grain alignment efficiency in denser regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08233v2-abstract-full').style.display = 'none'; document.getElementById('1810.08233v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 14 figures, ApJ, accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.01369">arXiv:1808.01369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.01369">pdf</a>, <a href="https://arxiv.org/format/1808.01369">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Optical Design of PICO, a Concept for a Space Mission to Probe Inflation and Cosmic Origins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Young%2C+K">Karl Young</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J">Jamie Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borrill%2C+J">Julian Borrill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D">David Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crill%2C+B">Brendan Crill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">Jacques Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L">Laura Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flauger%2C+R">Raphael Flauger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+D">Daniel Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gorski%2C+K">Kris Gorski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hills%2C+R">Richard Hills</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B">Bradley Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+B">Bill Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knox%2C+L">Lloyd Knox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">Al Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawrence%2C+C">Charles Lawrence</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McGuire%2C+J">Jim McGuire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brient%2C+R">Roger O&#39;Brient</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.01369v1-abstract-short" style="display: inline;"> The Probe of Inflation and Cosmic Origins (PICO) is a probe-class mission concept currently under study by NASA. PICO will probe the physics of the Big Bang and the energy scale of inflation, constrain the sum of neutrino masses, measure the growth of structures in the universe, and constrain its reionization history by making full sky maps of the cosmic microwave background with sensitivity 80 ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01369v1-abstract-full').style.display = 'inline'; document.getElementById('1808.01369v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.01369v1-abstract-full" style="display: none;"> The Probe of Inflation and Cosmic Origins (PICO) is a probe-class mission concept currently under study by NASA. PICO will probe the physics of the Big Bang and the energy scale of inflation, constrain the sum of neutrino masses, measure the growth of structures in the universe, and constrain its reionization history by making full sky maps of the cosmic microwave background with sensitivity 80 times higher than the Planck space mission. With bands at 21-799 GHz and arcmin resolution at the highest frequencies, PICO will make polarization maps of Galactic synchrotron and dust emission to observe the role of magnetic fields in Milky Way&#39;s evolution and star formation. We discuss PICO&#39;s optical system, focal plane, and give current best case noise estimates. The optical design is a two-reflector optimized open-Dragone design with a cold aperture stop. It gives a diffraction limited field of view (DLFOV) with throughput of 910 square cm sr at 21 GHz. The large 82 square degree DLFOV hosts 12,996 transition edge sensor bolometers distributed in 21 frequency bands and maintained at 0.1 K. We use focal plane technologies that are currently implemented on operating CMB instruments including three-color multi-chroic pixels and multiplexed readouts. To our knowledge, this is the first use of an open-Dragone design for mm-wave astrophysical observations, and the only monolithic CMB instrument to have such a broad frequency coverage. With current best case estimate polarization depth of 0.65 microK(CMB}-arcmin over the entire sky, PICO is the most sensitive CMB instrument designed to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01369v1-abstract-full').style.display = 'none'; document.getElementById('1808.01369v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 Figures, Submitted to SPIE, Proceedings of the 2018 Conference on Astronomical Telescopes and Instrumentation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.01368">arXiv:1808.01368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.01368">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> PICO - the probe of inflation and cosmic origins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sutin%2C+B">Brian Sutin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J">Jamie Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonato%2C+M">Matteo Bonato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borrill%2C+J">Julian Borrill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cooperrider%2C+J">Joelle Cooperrider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crill%2C+B">Brendan Crill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delabrouille%2C+J">Jacques Delabrouille</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fissel%2C+L">Laura Fissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flauger%2C+R">Raphael Flauger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gorski%2C+K">Krzysztof Gorski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+D">Daniel Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanany%2C+S">Shaul Hanany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B">Bradley Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knox%2C+L">Lloyd Knox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kogut%2C+A">Alan Kogut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawrence%2C+C">Charles Lawrence</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+T">Tomotake Matsumura</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.01368v1-abstract-short" style="display: inline;"> The Probe of Inflation and Cosmic Origins (PICO) is a NASA-funded study of a Probe-class mission concept. The top-level science objectives are to probe the physics of the Big Bang by measuring or constraining the energy scale of inflation, probe fundamental physics by measuring the number of light particles in the Universe and the sum of neutrino masses, to measure the reionization history of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01368v1-abstract-full').style.display = 'inline'; document.getElementById('1808.01368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.01368v1-abstract-full" style="display: none;"> The Probe of Inflation and Cosmic Origins (PICO) is a NASA-funded study of a Probe-class mission concept. The top-level science objectives are to probe the physics of the Big Bang by measuring or constraining the energy scale of inflation, probe fundamental physics by measuring the number of light particles in the Universe and the sum of neutrino masses, to measure the reionization history of the Universe, and to understand the mechanisms driving the cosmic star formation history, and the physics of the galactic magnetic field. PICO would have multiple frequency bands between 21 and 799 GHz, and would survey the entire sky, producing maps of the polarization of the cosmic microwave background radiation, of galactic dust, of synchrotron radiation, and of various populations of point sources. Several instrument configurations, optical systems, cooling architectures, and detector and readout technologies have been and continue to be considered in the development of the mission concept. We will present a snapshot of the baseline mission concept currently under development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.01368v1-abstract-full').style.display = 'none'; document.getElementById('1808.01368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 Figure, submitted to SPIE, Proceedings of the Conference on Astronomical Telescopes and Instrumentation, 2018</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chuss%2C+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chuss%2C+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chuss%2C+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10