CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;28 of 28 results for author: <span class="mathjax">di Teodoro, E M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="di Teodoro, E M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=di+Teodoro%2C+E+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="di Teodoro, E M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18349">arXiv:2404.18349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18349">pdf</a>, <a href="https://arxiv.org/format/2404.18349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Turbulence statistics of HI clouds entrained in the Milky Way&#39;s nuclear wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gerrard%2C+I+A">Isabella A. Gerrard</a>, <a href="/search/?searchtype=author&amp;query=Noon%2C+K+A">Karlie A. Noon</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18349v1-abstract-short" style="display: inline;"> The interstellar medium (ISM) is ubiquitously turbulent across many physically distinct environments within the Galaxy. Turbulence is key in controlling the structure and dynamics of the ISM, regulating star formation, and transporting metals within the Galaxy. We present the first observational measurements of turbulence in neutral hydrogen entrained in the hot nuclear wind of the Milky Way. Usin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18349v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18349v1-abstract-full" style="display: none;"> The interstellar medium (ISM) is ubiquitously turbulent across many physically distinct environments within the Galaxy. Turbulence is key in controlling the structure and dynamics of the ISM, regulating star formation, and transporting metals within the Galaxy. We present the first observational measurements of turbulence in neutral hydrogen entrained in the hot nuclear wind of the Milky Way. Using recent MeerKAT observations of two extra-planar HI clouds above (gal. lat.$\,\sim7.0^{\circ}$) and below (gal. lat.$\,\sim-3.9^{\circ}$) the Galactic disc, we analyse centroid velocity and column density maps to estimate the velocity dispersion ($蟽_{v,\mathrm{3D}}$), the turbulent sonic Mach number ($\mathcal{M}$), the volume density dispersion ($蟽_{蟻/蟻_0}$), and the turbulence driving parameter ($b$). We also present a new prescription for estimating the spatial temperature variations of HI in the presence of related molecular gas. We measure these turbulence quantities on the global scale of each cloud, but also spatially map their variation across the plane-of-sky extent of each cloud by using a roving kernel method. We find that the two clouds share very similar characteristics of their internal turbulence, despite their varying latitudes. Both clouds are in the sub-to-trans-sonic Mach regime, and have primarily compressively-driven ($b\sim1$) turbulence. Given that there is no known active star-formation present in these clouds, this may be indicative of the way the cloud-wind interaction injects energy into the entrained atomic material on parsec scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18349v1-abstract-full').style.display = 'none'; document.getElementById('2404.18349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to MNRAS, 15 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04313">arXiv:2402.04313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04313">pdf</a>, <a href="https://arxiv.org/format/2402.04313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad64d2">10.3847/1538-4357/ad64d2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Braving the Storm: Quantifying Disk-wide Ionized Outflows in the Large Magellanic Cloud with ULLYSES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+Y">Yong Zheng</a>, <a href="/search/?searchtype=author&amp;query=Tchernyshyov%2C+K">Kirill Tchernyshyov</a>, <a href="/search/?searchtype=author&amp;query=Olsen%2C+K">Knut Olsen</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+Y">Yumi Choi</a>, <a href="/search/?searchtype=author&amp;query=Bustard%2C+C">Chad Bustard</a>, <a href="/search/?searchtype=author&amp;query=Roman-Duval%2C+J">Julia Roman-Duval</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+R">Robert Zhu</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Werk%2C+J">Jessica Werk</a>, <a href="/search/?searchtype=author&amp;query=Putman%2C+M">Mary Putman</a>, <a href="/search/?searchtype=author&amp;query=McLeod%2C+A+F">Anna F. McLeod</a>, <a href="/search/?searchtype=author&amp;query=Faerman%2C+Y">Yakov Faerman</a>, <a href="/search/?searchtype=author&amp;query=Simons%2C+R+C">Raymond C. Simons</a>, <a href="/search/?searchtype=author&amp;query=Peek%2C+J">Joshua Peek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04313v2-abstract-short" style="display: inline;"> The Large Magellanic Cloud (LMC) is home to many HII regions, which may lead to significant outflows. We examine the LMC&#39;s multiphase gas ($T\sim10^{4-5}$ K) in HI, SII, SiIV, and CIV using 110 stellar sight lines from the HST&#39;s Ultraviolet Legacy Library of Young Stars as Essential Standards (ULLYSES) program. We develop a continuum fitting algorithm based on the concept of Gaussian Process regre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04313v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04313v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04313v2-abstract-full" style="display: none;"> The Large Magellanic Cloud (LMC) is home to many HII regions, which may lead to significant outflows. We examine the LMC&#39;s multiphase gas ($T\sim10^{4-5}$ K) in HI, SII, SiIV, and CIV using 110 stellar sight lines from the HST&#39;s Ultraviolet Legacy Library of Young Stars as Essential Standards (ULLYSES) program. We develop a continuum fitting algorithm based on the concept of Gaussian Process regression and identify reliable LMC interstellar absorption over $v_{\rm helio}=175-375$ km s$^{-1}$. Our analyses show disk-wide ionized outflows in SiIV and CIV across the LMC with bulk velocities of $|v_{\rm out, bulk}|\sim20-60$ km s$^{-1}$, which indicates that most of the outflowing mass is gravitationally bound. The outflows&#39; column densities correlate with the LMC&#39;s star formation rate surface densities ($危_{\rm SFR}$), and the outflows with higher $危_{\rm SFR}$ tend to be more ionized. Considering outflows from both sides of the LMC as traced by CIV, we conservatively estimate a total outflow rate of $\dot{M}_{\rm out}\gtrsim 0.03~M_\odot {\rm yr}^{-1}$ and a mass loading factor of $畏\gtrsim 0.15$. We compare the LMC&#39;s outflows with those detected in starburst galaxies and simulation predictions, and find a universal scaling relation of $|v_{\rm out, bulk}|\propto 危_{\rm SFR}^{0.23}$ over a wide range of star-forming conditions ($危_{\rm SFR}\sim10^{-4.5}-10^{2}~M_\odot {\rm yr}^{-1} {\rm kpc}^{-2}$). Lastly, we find that the outflows are co-rotating with the LMC&#39;s young stellar disk and the velocity field does not seem to be significantly impacted by external forces; we thus speculate on the existence of a bow shock leading the LMC, which may have shielded the outflows from ram pressure as the LMC orbits the Milky Way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04313v2-abstract-full').style.display = 'none'; document.getElementById('2402.04313v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ. Key findings can be found in Figures 9-12. Main updates from the previous version include new estimates on star formation rate surface densities. Normalized SII, SiIV, and CIV line spectra derived for this work are published as a High Level Science Product called LMC-FLOWS (doi: 10.17909/hz0m-np43), available on website: https://archive.stsci.edu/hlsp/lmc-flows</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07750">arXiv:2312.07750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07750">pdf</a>, <a href="https://arxiv.org/format/2312.07750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> A Galactic Eclipse: The Small Magellanic Cloud is Forming Stars in Two, Superimposed Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Murray%2C+C+E">Claire E. Murray</a>, <a href="/search/?searchtype=author&amp;query=Hasselquist%2C+S">Sten Hasselquist</a>, <a href="/search/?searchtype=author&amp;query=Peek%2C+J+E+G">Joshua E. G. Peek</a>, <a href="/search/?searchtype=author&amp;query=Lindberg%2C+C+W">Christina Willecke Lindberg</a>, <a href="/search/?searchtype=author&amp;query=Almeida%2C+A">Andres Almeida</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+Y">Yumi Choi</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+J+E+M">Jessica E. M. Craig</a>, <a href="/search/?searchtype=author&amp;query=Denes%2C+H">Helga Denes</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Gerrard%2C+I+A">Isabella A. Gerrard</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">Steven J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">Denis Leahy</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Nidever%2C+D">David Nidever</a>, <a href="/search/?searchtype=author&amp;query=Nguyen%2C+H">Hiep Nguyen</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Tarantino%2C+E">Elizabeth Tarantino</a>, <a href="/search/?searchtype=author&amp;query=Uscanga%2C+L">Lucero Uscanga</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07750v1-abstract-short" style="display: inline;"> The structure and dynamics of the star-forming disk of the Small Magellanic Cloud (SMC) have long confounded us. The SMC is widely used as a prototype for galactic physics at low metallicity, and yet we fundamentally lack an understanding of the structure of its interstellar medium (ISM). In this work, we present a new model for the SMC by comparing the kinematics of young, massive stars with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07750v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07750v1-abstract-full" style="display: none;"> The structure and dynamics of the star-forming disk of the Small Magellanic Cloud (SMC) have long confounded us. The SMC is widely used as a prototype for galactic physics at low metallicity, and yet we fundamentally lack an understanding of the structure of its interstellar medium (ISM). In this work, we present a new model for the SMC by comparing the kinematics of young, massive stars with the structure of the ISM traced by high-resolution observations of neutral atomic hydrogen (HI) from the Galactic Australian Square Kilometer Array Pathfinder survey (GASKAP-HI). Specifically, we identify thousands of young, massive stars with precise radial velocity constraints from the Gaia and APOGEE surveys and match these stars to the ISM structures in which they likely formed. By comparing the average dust extinction towards these stars, we find evidence that the SMC is composed of two structures with distinct stellar and gaseous chemical compositions. We construct a simple model that successfully reproduces the observations and shows that the ISM of the SMC is arranged into two, superimposed, star-forming systems with similar gas mass separated by ~5 kpc along the line of sight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07750v1-abstract-full').style.display = 'none'; document.getElementById('2312.07750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ accepted. 20 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06356">arXiv:2304.06356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06356">pdf</a>, <a href="https://arxiv.org/format/2304.06356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1890">10.1093/mnras/stad1890 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observations of the atomic-molecular phase transition in the Milky Way&#39;s nuclear wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Noon%2C+K+A">Karlie A. Noon</a>, <a href="/search/?searchtype=author&amp;query=Krumholz%2C+M+R">Mark R. Krumholz</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Lockman%2C+F+J">Felix J. Lockman</a>, <a href="/search/?searchtype=author&amp;query=Armillotta%2C+L">Lucia Armillotta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06356v2-abstract-short" style="display: inline;"> Hundreds of high-velocity atomic gas clouds exist above and below the Galactic Centre, with some containing a molecular component. However, the origin of these clouds in the Milky Way&#39;s wind is unclear. This paper presents new high-resolution MeerKAT observations of three atomic gas clouds and studies the relationship between the atomic and molecular phases at $\sim 1$ pc scales. The clouds&#39; atomi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06356v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06356v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06356v2-abstract-full" style="display: none;"> Hundreds of high-velocity atomic gas clouds exist above and below the Galactic Centre, with some containing a molecular component. However, the origin of these clouds in the Milky Way&#39;s wind is unclear. This paper presents new high-resolution MeerKAT observations of three atomic gas clouds and studies the relationship between the atomic and molecular phases at $\sim 1$ pc scales. The clouds&#39; atomic hydrogen column densities, $N_{\mathrm{HI}}$, are less than a $\mbox{few}\times 10^{20}$ cm$^{-2}$, but the two clouds closest to the Galactic Centre nonetheless have detectable CO emission. This implies the presence of H$_{2}$ at levels of $N_{\mathrm{HI}}$ at least a factor of ten lower than in the typical Galactic interstellar medium. For the cloud closest to the Galactic Centre, there is little correlation between the $N_{\mathrm{HI}}$ and the probability that it will harbour detectable CO emissions. In contrast, for the intermediate cloud, detectable CO is heavily biased toward the highest values of $N_{\mathrm{HI}}$. The cloud most distant from the Galactic Centre has no detectable CO at similar $N_{\mathrm{HI}}$ values. Moreover, we find that the two clouds with detectable CO are too molecule-rich to be in chemical equilibrium, given the depths of their atomic shielding layers, which suggests a scenario whereby these clouds consist of pre-existing molecular gas from the disc that the Galactic wind has swept up, and that is dissociating into atomic hydrogen as it flows away from the Galaxy. We estimate that entrained molecular material of this type has a $\sim \mathrm{few}-10$ Myr lifetime before photodissociating. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06356v2-abstract-full').style.display = 'none'; document.getElementById('2304.06356v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, 2 tables. Accepted for publication in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Volume 524, Issue 1, 2023, Pages 1258 - 1268 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09648">arXiv:2301.09648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.09648">pdf</a>, <a href="https://arxiv.org/format/2301.09648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/acb53a">10.3847/1538-3881/acb53a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of galaxy shreds in large photometric catalogs using Convolutional Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Peek%2C+J+E+G">Josh E. G. Peek</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+J+F">John F. Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09648v1-abstract-short" style="display: inline;"> Contamination from galaxy fragments, identified as sources, is a major issue in large photometric galaxy catalogs. In this paper, we prove that this problem can be easily addressed with computer vision techniques. We use image cutouts to train a convolutional neural network (CNN) to identify catalogued sources that are in reality just star formation regions and/or shreds of larger galaxies. The CN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09648v1-abstract-full').style.display = 'inline'; document.getElementById('2301.09648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09648v1-abstract-full" style="display: none;"> Contamination from galaxy fragments, identified as sources, is a major issue in large photometric galaxy catalogs. In this paper, we prove that this problem can be easily addressed with computer vision techniques. We use image cutouts to train a convolutional neural network (CNN) to identify catalogued sources that are in reality just star formation regions and/or shreds of larger galaxies. The CNN reaches an accuracy ~98% on our testing datasets. We apply this CNN to galaxy catalogs from three amongst the largest surveys available today: the Sloan Digital Sky Survey (SDSS), the DESI Legacy Imaging Surveys and the Panoramic Survey Telescope and Rapid Response System Survey (Pan-STARSS). We find that, even when strict selection criteria are used, all catalogs still show a ~5% level of contamination from galaxy shreds. Our CNN gives a simple yet effective solution to clean galaxy catalogs from these contaminants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09648v1-abstract-full').style.display = 'none'; document.getElementById('2301.09648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in AJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04164">arXiv:2301.04164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04164">pdf</a>, <a href="https://arxiv.org/format/2301.04164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245001">10.1051/0004-6361/202245001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the excess Fe XXV line emission in the central degrees of the Galactic centre using XMM-Newton data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Anastasopoulou%2C+K">K. Anastasopoulou</a>, <a href="/search/?searchtype=author&amp;query=Ponti%2C+G">G. Ponti</a>, <a href="/search/?searchtype=author&amp;query=Sormani%2C+M+C">M. C. Sormani</a>, <a href="/search/?searchtype=author&amp;query=Locatelli%2C+N">N. Locatelli</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Morris%2C+M+R">M. R. Morris</a>, <a href="/search/?searchtype=author&amp;query=Churazov%2C+E+M">E. M. Churazov</a>, <a href="/search/?searchtype=author&amp;query=Sch%C3%B6del%2C+R">R. Sch枚del</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+C">C. Jin</a>, <a href="/search/?searchtype=author&amp;query=Khabibullin%2C+I">I. Khabibullin</a>, <a href="/search/?searchtype=author&amp;query=Mondal%2C+S">S. Mondal</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">M. Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">X. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04164v1-abstract-short" style="display: inline;"> The diffuse Fe XXV (6.7 keV) line emission observed in the Galactic ridge is widely accepted to be produced by a superposition of a large number of unresolved X-ray point sources. In the very central degrees of our Galaxy, however, the existence of an extremely hot ($\sim$7 keV) diffuse plasma is still under debate. In this work we measure the Fe XXV line emission using all available XMM-Newton ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04164v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04164v1-abstract-full" style="display: none;"> The diffuse Fe XXV (6.7 keV) line emission observed in the Galactic ridge is widely accepted to be produced by a superposition of a large number of unresolved X-ray point sources. In the very central degrees of our Galaxy, however, the existence of an extremely hot ($\sim$7 keV) diffuse plasma is still under debate. In this work we measure the Fe XXV line emission using all available XMM-Newton observations of the Galactic centre (GC) and inner disc ($-10^{\circ}$$&lt;\ell&lt;10^{\circ}$, $-2^{\circ}&lt;b&lt;2^{\circ}$). We use recent stellar mass distribution models to estimate the amount of X-ray emission originating from unresolved point sources, and find that within a region of $\ell=\pm1^{\circ}$ and $b=\pm0.25^\circ$ the 6.7 keV emission is 1.3 to 1.5 times in excess of what is expected from unresolved point sources. The excess emission is enhanced towards regions where known supernova remnants are located, suggesting that at least a part of this emission is due to genuine diffuse very hot plasma. If the entire excess is due to very hot plasma, an energy injection rate of at least $\sim6\times10^{40}$ erg s$^{-1}$ is required, which cannot be provided by the measured supernova explosion rate or past Sgr A$^{*}$ activity alone. However, we find that almost the entire excess we observe can be explained by assuming GC stellar populations with iron abundances $\sim$1.9 times higher than those in the bar/bulge, a value that can be reproduced by fitting diffuse X-ray spectra from the corresponding regions. Even in this case, a leftover X-ray excess is concentrated within $\ell=\pm0.3^{\circ}$ and $b=\pm0.15^\circ$, corresponding to a thermal energy of $\sim2\times10^{52}$ erg, which can be reproduced by the estimated supernova explosion rate in the GC. Finally we discuss a possible connection to the observed GC Fermi-LAT excess. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04164v1-abstract-full').style.display = 'none'; document.getElementById('2301.04164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures, 7 tables, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 671, A55 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07333">arXiv:2211.07333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07333">pdf</a>, <a href="https://arxiv.org/format/2211.07333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2022.43">10.1017/pasa.2022.43 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WALLABY Pilot Survey: Public release of HI kinematic models for more than 100 galaxies from phase 1 of ASKAP pilot observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Deg%2C+N">N. Deg</a>, <a href="/search/?searchtype=author&amp;query=Spekkens%2C+K">K. Spekkens</a>, <a href="/search/?searchtype=author&amp;query=Westmeier%2C+T">T. Westmeier</a>, <a href="/search/?searchtype=author&amp;query=Reynolds%2C+T+N">T. N. Reynolds</a>, <a href="/search/?searchtype=author&amp;query=Venkataraman%2C+P">P. Venkataraman</a>, <a href="/search/?searchtype=author&amp;query=Goliath%2C+S">S. Goliath</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+A+X">A. X. Shen</a>, <a href="/search/?searchtype=author&amp;query=Halloran%2C+R">R. Halloran</a>, <a href="/search/?searchtype=author&amp;query=Bosma%2C+A">A. Bosma</a>, <a href="/search/?searchtype=author&amp;query=Catinella%2C+B">B. Catinella</a>, <a href="/search/?searchtype=author&amp;query=de+Blok%2C+W+J+G">W. J. G. de Blok</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Elagali%2C+A">A. Elagali</a>, <a href="/search/?searchtype=author&amp;query=For%2C+B+-">B. -Q. For</a>, <a href="/search/?searchtype=author&amp;query=Howlett%2C+C">C. Howlett</a>, <a href="/search/?searchtype=author&amp;query=J%C3%B3zsa%2C+G+I+G">G. I. G. J贸zsa</a>, <a href="/search/?searchtype=author&amp;query=Kamphuis%2C+P">P. Kamphuis</a>, <a href="/search/?searchtype=author&amp;query=Kleiner%2C+D">D. Kleiner</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B">B. Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Lee-Waddell%2C+K">K. Lee-Waddell</a>, <a href="/search/?searchtype=author&amp;query=Lelli%2C+F">F. Lelli</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+X">X. Lin</a>, <a href="/search/?searchtype=author&amp;query=Murugeshan%2C+C">C. Murugeshan</a>, <a href="/search/?searchtype=author&amp;query=Oh%2C+S">S. Oh</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07333v1-abstract-short" style="display: inline;"> We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I HI kinematic models. This first data release consists of HI observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique HI detections in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07333v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07333v1-abstract-full" style="display: none;"> We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I HI kinematic models. This first data release consists of HI observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique HI detections in these fields. The modelling method adopted here - which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available - consists of combining results from the homogeneous application of the FAT and 3DBAROLO algorithms to the subset of 209 detections with sufficient resolution and S/N in order to generate optimized model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3-4 synthesized beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially-resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analyzed dataset will be a powerful legacy product that that will enable a wide range of scientific studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07333v1-abstract-full').style.display = 'none'; document.getElementById('2211.07333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to PASA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02906">arXiv:2207.02906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02906">pdf</a>, <a href="https://arxiv.org/format/2207.02906">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3424">10.1093/mnras/stac3424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark matter halos and scaling relations of extremely massive spiral galaxies from extended HI rotation curves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Posti%2C+L">Lorenzo Posti</a>, <a href="/search/?searchtype=author&amp;query=Fall%2C+S+M">S. Michael Fall</a>, <a href="/search/?searchtype=author&amp;query=Ogle%2C+P+M">Patrick M. Ogle</a>, <a href="/search/?searchtype=author&amp;query=Jarrett%2C+T">Thomas Jarrett</a>, <a href="/search/?searchtype=author&amp;query=Appleton%2C+P+N">Philip N. Appleton</a>, <a href="/search/?searchtype=author&amp;query=Cluver%2C+M+E">Michelle E. Cluver</a>, <a href="/search/?searchtype=author&amp;query=Haynes%2C+M+P">Martha P. Haynes</a>, <a href="/search/?searchtype=author&amp;query=Lisenfeld%2C+U">Ute Lisenfeld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02906v2-abstract-short" style="display: inline;"> We present new and archival atomic hydrogen (\hi) observations of \galnum\ of the most massive spiral galaxies in the local Universe ($M_\star&gt;10^{11} \, \mathrm{M}_\odot$). From 3D kinematic modeling of the datacubes, we derive extended \hi\ rotation curves, and from these, we estimate masses of the dark matter halos and specific angular momenta of the discs. We confirm that massive spiral galaxi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02906v2-abstract-full').style.display = 'inline'; document.getElementById('2207.02906v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02906v2-abstract-full" style="display: none;"> We present new and archival atomic hydrogen (\hi) observations of \galnum\ of the most massive spiral galaxies in the local Universe ($M_\star&gt;10^{11} \, \mathrm{M}_\odot$). From 3D kinematic modeling of the datacubes, we derive extended \hi\ rotation curves, and from these, we estimate masses of the dark matter halos and specific angular momenta of the discs. We confirm that massive spiral galaxies lie at the upper ends of the Tully-Fisher relation (mass vs velocity, $M \propto V^{4}$) and Fall relation (specific angular momentum vs mass, $j \propto M^{0.6}$), in both stellar and baryonic forms, with no significant deviations from single power laws. We study the connections between baryons and dark matter through the stellar (and baryon)-to-halo ratios of mass $f_\mathrm{M} \equiv M_\star/M_\mathrm{h}$ and specific angular momentum $f_\mathrm{j} \equiv j_\star/j_\mathrm{h}$ and $f_\mathrm{j,bar} \equiv j_\mathrm{bar}/j_\mathrm{h}$. Combining our sample with others from the literature for less massive disc-dominated galaxies, we find that $f_\mathrm{M}$ rises monotonically with $M_\star$ and $M_\mathrm{h}$ (instead of the inverted-U shaped $f_\mathrm{M}$ for spheroid-dominated galaxies), while $f_\mathrm{j}$ and $f_\mathrm{j,bar}$ are essentially constant near unity over four decades in mass. Our results indicate that disc galaxies constitute a self-similar population of objects closely linked to the self-similarity of their dark halos. This picture is reminiscent of early analytical models of galaxy formation wherein discs grow by relatively smooth and gradual inflow, isolated from disruptive events such as major mergers and strong AGN feedback, in contrast to the more chaotic growth of spheroids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02906v2-abstract-full').style.display = 'none'; document.getElementById('2207.02906v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication on MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05339">arXiv:2111.05339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05339">pdf</a>, <a href="https://arxiv.org/format/2111.05339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.59">10.1017/pasa.2021.59 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GASKAP-HI Pilot Survey Science I: ASKAP Zoom Observations of HI Emission in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">N. M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">J. Dempsey</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K+E">K. E. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Arce%2C+H">H. Arce</a>, <a href="/search/?searchtype=author&amp;query=Anglada%2C+G">G. Anglada</a>, <a href="/search/?searchtype=author&amp;query=Bland-Hawthorn%2C+J">J. Bland-Hawthorn</a>, <a href="/search/?searchtype=author&amp;query=Breen%2C+S+L">S. L. Breen</a>, <a href="/search/?searchtype=author&amp;query=Buckland-Willis%2C+F">F. Buckland-Willis</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Dawson%2C+J+R">J. R. Dawson</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=For%2C+B+-">B. -Q. For</a>, <a href="/search/?searchtype=author&amp;query=Foster%2C+T+J">Tyler J. Foster</a>, <a href="/search/?searchtype=author&amp;query=G%C3%B3mez%2C+J+F">J. F. G贸mez</a>, <a href="/search/?searchtype=author&amp;query=Imai%2C+H">H. Imai</a>, <a href="/search/?searchtype=author&amp;query=Joncas%2C+G">G. Joncas</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+C+-">C. -G. Kim</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M+-">M. -Y. Lee</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">C. Lynn</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Y. K. Ma</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">A. Marchal</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05339v2-abstract-short" style="display: inline;"> We present the most sensitive and detailed view of the neutral hydrogen (HI) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05339v2-abstract-full').style.display = 'inline'; document.getElementById('2111.05339v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05339v2-abstract-full" style="display: none;"> We present the most sensitive and detailed view of the neutral hydrogen (HI) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal HI in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (1.6 mJy/beam) per 0.98 km s$^{-1}$ spectral channel with an angular resolution of 30$&#39;&#39;$ ($\sim$10 pc). We discuss the calibration scheme and the custom imaging pipeline that utilizes a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire $\sim$25 deg$^2$ field-of-view. We provide an overview of the data products and characterize several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power-law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high velocity cloud with previous ASKAP+Parkes HI test observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05339v2-abstract-full').style.display = 'none'; document.getElementById('2111.05339v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PASA, 34 pages, 18 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01618">arXiv:2110.01618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.01618">pdf</a>, <a href="https://arxiv.org/format/2110.01618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2cbd">10.3847/1538-4357/ac2cbd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radial motions and radial gas flows in local spiral galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Peek%2C+J+E+G">Josh E. G. Peek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01618v1-abstract-short" style="display: inline;"> We determine radial velocities and mass flow rates in a sample of 54 local spiral galaxies by modelling high-resolution and high-sensitivity data of the atomic hydrogen emission line. We found that, although radial inflow motions seem to be slightly preferred over outflow motions, their magnitude is generally small. Most galaxies show radial flows of only a few km/s throughout their HI disks, eith&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01618v1-abstract-full').style.display = 'inline'; document.getElementById('2110.01618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01618v1-abstract-full" style="display: none;"> We determine radial velocities and mass flow rates in a sample of 54 local spiral galaxies by modelling high-resolution and high-sensitivity data of the atomic hydrogen emission line. We found that, although radial inflow motions seem to be slightly preferred over outflow motions, their magnitude is generally small. Most galaxies show radial flows of only a few km/s throughout their HI disks, either inwards or outwards, without any clear increase in magnitude in the outermost regions, as we would expect for continuous radial accretion. Gas mass flow rates for most galaxies are less than 1 M$_\odot$/yr. Over the entire sample, we estimated an average inflow rate of 0.3 M$_\odot$/yr outside the optical disk and of 0.1 M$_\odot$/yr in the outskirts of the HI disks. These inflow rates are about 5-10 times smaller than the average star formation rate of 1.4 M$_\odot$/yr. Our study suggests that there is no clear evidence for systematic radial accretion inflows that alone could feed and sustain the star formation process in the inner regions of local spiral galaxies at its current rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01618v1-abstract-full').style.display = 'none'; document.getElementById('2110.01618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publications in ApJ. 12 pages, 6 figures + appendixes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04992">arXiv:2109.04992</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.04992">pdf</a>, <a href="https://arxiv.org/format/2109.04992">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2654">10.1093/mnras/stab2654 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MIGHTEE-HI: The baryonic Tully-Fisher relation over the last billion years </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/?searchtype=author&amp;query=Mulaudzi%2C+W">Wanga Mulaudzi</a>, <a href="/search/?searchtype=author&amp;query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/?searchtype=author&amp;query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/?searchtype=author&amp;query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Glowacki%2C+M">Marcin Glowacki</a>, <a href="/search/?searchtype=author&amp;query=Kraan-Korteweg%2C+R+C">Ren茅e C. Kraan-Korteweg</a>, <a href="/search/?searchtype=author&amp;query=Oosterloo%2C+T+A">Tom A. Oosterloo</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/?searchtype=author&amp;query=Prandoni%2C+I">Isabella Prandoni</a>, <a href="/search/?searchtype=author&amp;query=Rajohnson%2C+S+H+A">Sambatriniaina H. A. Rajohnson</a>, <a href="/search/?searchtype=author&amp;query=Sinigaglia%2C+F">Francesco Sinigaglia</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+N+J">Nathan J. Adams</a>, <a href="/search/?searchtype=author&amp;query=Heywood%2C+I">Ian Heywood</a>, <a href="/search/?searchtype=author&amp;query=Bowler%2C+R+A+A">Rebecca A. A. Bowler</a>, <a href="/search/?searchtype=author&amp;query=Hatfield%2C+P+W">Peter W. Hatfield</a>, <a href="/search/?searchtype=author&amp;query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/?searchtype=author&amp;query=Sekhar%2C+S">Srikrishna Sekhar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04992v1-abstract-short" style="display: inline;"> Using a sample of 67 galaxies from the MIGHTEE Survey Early Science data we study the HI-based baryonic Tully-Fisher relation (bTFr), covering a period of $\sim$one billion years ($0 \leq z \leq 0.081 $). We consider the bTFr based on two different rotational velocity measures: the width of the global HI profile and $\rm V_{out}$, measured as the outermost rotational velocity from the resolved HI&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04992v1-abstract-full').style.display = 'inline'; document.getElementById('2109.04992v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04992v1-abstract-full" style="display: none;"> Using a sample of 67 galaxies from the MIGHTEE Survey Early Science data we study the HI-based baryonic Tully-Fisher relation (bTFr), covering a period of $\sim$one billion years ($0 \leq z \leq 0.081 $). We consider the bTFr based on two different rotational velocity measures: the width of the global HI profile and $\rm V_{out}$, measured as the outermost rotational velocity from the resolved HI rotation curves. Both relations exhibit very low intrinsic scatter orthogonal to the best-fit relation ($蟽_{\perp}=0.07\pm0.01$), comparable to the SPARC sample at $z \simeq 0$. The slopes of the relations are similar and consistent with the $ z \simeq 0$ studies ($3.66^{+0.35}_{-0.29}$ for $\rm W_{50}$ and $3.47^{+0.37}_{-0.30}$ for $\rm V_{out}$). We find no evidence that the bTFr has evolved over the last billion years, and all galaxies in our sample are consistent with the same relation independent of redshift and the rotational velocity measure. Our results set up a reference for all future studies of the HI-based bTFr as a function of redshift that will be conducted with the ongoing deep SKA pathfinders surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04992v1-abstract-full').style.display = 'none'; document.getElementById('2109.04992v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03828">arXiv:2109.03828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.03828">pdf</a>, <a href="https://arxiv.org/format/2109.03828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2549">10.1093/mnras/stab2549 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rotation curves and scaling relations of extremely massive spiral galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Posti%2C+L">Lorenzo Posti</a>, <a href="/search/?searchtype=author&amp;query=Ogle%2C+P+M">Patrick M. Ogle</a>, <a href="/search/?searchtype=author&amp;query=Fall%2C+S+M">S. Michael Fall</a>, <a href="/search/?searchtype=author&amp;query=Jarrett%2C+T">Thomas Jarrett</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03828v1-abstract-short" style="display: inline;"> We study the kinematics and scaling relations of a sample of 43 giant spiral galaxies that have stellar masses exceeding $10^{11}$ $M_\odot$ and optical discs up to 80 kpc in radius. We use a hybrid 3D-1D approach to fit 3D kinematic models to long-slit observations of the H$伪$-[NII] emission lines and we obtain robust rotation curves of these massive systems. We find that all galaxies in our samp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03828v1-abstract-full').style.display = 'inline'; document.getElementById('2109.03828v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03828v1-abstract-full" style="display: none;"> We study the kinematics and scaling relations of a sample of 43 giant spiral galaxies that have stellar masses exceeding $10^{11}$ $M_\odot$ and optical discs up to 80 kpc in radius. We use a hybrid 3D-1D approach to fit 3D kinematic models to long-slit observations of the H$伪$-[NII] emission lines and we obtain robust rotation curves of these massive systems. We find that all galaxies in our sample seem to reach a flat part of the rotation curve within the outermost optical radius. We use the derived kinematics to study the high-mass end of the two most important scaling relations for spiral galaxies: the stellar/baryonic mass Tully-Fisher relation and the Fall (mass-angular momentum) relation. All galaxies in our sample, with the possible exception of the two fastest rotators, lie comfortably on both these scaling relations determined at lower masses, without any evident break or bend at the high-mass regime. When we combine our high-mass sample with lower-mass data from the Spitzer Photometry &amp; Accurate Rotation Curves catalog, we find a slope of $伪=4.25\pm0.19$ for the stellar Tully-Fisher relation and a slope of $纬=0.64\pm0.11$ for the Fall relation. Our results indicate that most, if not all, of these rare, giant spiral galaxies are scaled up versions of less massive discs and that spiral galaxies are a self-similar population of objects up to the very high-mass end. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03828v1-abstract-full').style.display = 'none'; document.getElementById('2109.03828v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures + Appendix. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.05957">arXiv:2102.05957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.05957">pdf</a>, <a href="https://arxiv.org/format/2102.05957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abc1893">10.1126/science.abc1893 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A massive stellar bulge in a regularly rotating galaxy 1.2 billion years after the Big Bang </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lelli%2C+F">Federico Lelli</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Fraternali%2C+F">Filippo Fraternali</a>, <a href="/search/?searchtype=author&amp;query=Man%2C+A+W+S">Allison W. S. Man</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z">Zhi-Yu Zhang</a>, <a href="/search/?searchtype=author&amp;query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/?searchtype=author&amp;query=Davis%2C+T+A">Timothy A. Davis</a>, <a href="/search/?searchtype=author&amp;query=Maiolino%2C+R">Roberto Maiolino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.05957v1-abstract-short" style="display: inline;"> Cosmological models predict that galaxies forming in the early Universe experience a chaotic phase of gas accretion and star formation, followed by gas ejection due to feedback processes. Galaxy bulges may assemble later via mergers or internal evolution. Here we present submillimeter observations (with spatial resolution of 700 parsecs) of ALESS 073.1, a starburst galaxy at redshift z~5, when the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.05957v1-abstract-full').style.display = 'inline'; document.getElementById('2102.05957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.05957v1-abstract-full" style="display: none;"> Cosmological models predict that galaxies forming in the early Universe experience a chaotic phase of gas accretion and star formation, followed by gas ejection due to feedback processes. Galaxy bulges may assemble later via mergers or internal evolution. Here we present submillimeter observations (with spatial resolution of 700 parsecs) of ALESS 073.1, a starburst galaxy at redshift z~5, when the Universe was 1.2 billion years old. This galaxy&#39;s cold gas forms a regularly rotating disk with negligible noncircular motions. The galaxy rotation curve requires the presence of a central bulge in addition to a star-forming disk. We conclude that massive bulges and regularly rotating disks can form more rapidly in the early Universe than predicted by models of galaxy formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.05957v1-abstract-full').style.display = 'none'; document.getElementById('2102.05957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Science. This preprint corresponds to the accepted and language edited version of the manuscript. 36 pages, 9 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09121">arXiv:2008.09121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09121">pdf</a>, <a href="https://arxiv.org/format/2008.09121">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-020-2595-z">10.1038/s41586-020-2595-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cold gas in the Milky Way&#39;s nuclear wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Lockman%2C+F+J">Felix J. Lockman</a>, <a href="/search/?searchtype=author&amp;query=Armillotta%2C+L">Lucia Armillotta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09121v1-abstract-short" style="display: inline;"> The centre of the Milky Way is the site of several high-energy processes that have strongly impacted the inner regions of our Galaxy. Activity from the super-massive black hole, Sgr A*, and/or stellar feedback from the inner molecular ring expel matter and energy from the disc in the form of a galactic wind. Multiphase gas has been observed within this outflow, from hot highly-ionized, to warm ion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09121v1-abstract-full').style.display = 'inline'; document.getElementById('2008.09121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09121v1-abstract-full" style="display: none;"> The centre of the Milky Way is the site of several high-energy processes that have strongly impacted the inner regions of our Galaxy. Activity from the super-massive black hole, Sgr A*, and/or stellar feedback from the inner molecular ring expel matter and energy from the disc in the form of a galactic wind. Multiphase gas has been observed within this outflow, from hot highly-ionized, to warm ionized and cool atomic gas. To date, however, there has been no evidence of the cold and dense molecular phase. Here we report the first detection of molecular gas outflowing from the centre of our Galaxy. This cold material is associated with atomic hydrogen clouds travelling in the nuclear wind. The morphology and the kinematics of the molecular gas, resolved on ~1 pc scale, indicate that these clouds are mixing with the warmer medium and are possibly being disrupted. The data also suggest that the mass of molecular gas driven out is not negligible and could impact the rate of star formation in the central regions. The presence of this cold, dense, high-velocity gas is puzzling, as neither Sgr A* at its current level of activity, nor star formation in the inner Galaxy seem viable sources for this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09121v1-abstract-full').style.display = 'none'; document.getElementById('2008.09121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in the August 19 issue of Nature. This is the authors&#39; version before final edits. Published version is available at http://www.nature.com/articles/s41586-020-2595-z</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature, 2020, vol. 584, pp. 364-367 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.14392">arXiv:2004.14392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.14392">pdf</a>, <a href="https://arxiv.org/format/2004.14392">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa1256">10.1093/mnras/staa1256 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust HI kinematics of gas-rich ultra-diffuse galaxies: hints of a weak-feedback formation scenario </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pi%C3%B1a%2C+P+E+M">Pavel E. Mancera Pi帽a</a>, <a href="/search/?searchtype=author&amp;query=Fraternali%2C+F">Filippo Fraternali</a>, <a href="/search/?searchtype=author&amp;query=Oman%2C+K+A">Kyle A. Oman</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/?searchtype=author&amp;query=Bacchini%2C+C">Cecilia Bacchini</a>, <a href="/search/?searchtype=author&amp;query=Marasco%2C+A">Antonino Marasco</a>, <a href="/search/?searchtype=author&amp;query=Oosterloo%2C+T">Tom Oosterloo</a>, <a href="/search/?searchtype=author&amp;query=Pezzulli%2C+G">Gabriele Pezzulli</a>, <a href="/search/?searchtype=author&amp;query=Posti%2C+L">Lorenzo Posti</a>, <a href="/search/?searchtype=author&amp;query=Leisman%2C+L">Lukas Leisman</a>, <a href="/search/?searchtype=author&amp;query=Cannon%2C+J+M">John M. Cannon</a>, <a href="/search/?searchtype=author&amp;query=di+Teodoro%2C+E+M">Enrico M. di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Gault%2C+L">Lexi Gault</a>, <a href="/search/?searchtype=author&amp;query=Haynes%2C+M+P">Martha P. Haynes</a>, <a href="/search/?searchtype=author&amp;query=Reiter%2C+K">Kameron Reiter</a>, <a href="/search/?searchtype=author&amp;query=Rhode%2C+K+L">Katherine L. Rhode</a>, <a href="/search/?searchtype=author&amp;query=Salzer%2C+J+J">John J. Salzer</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+N+J">Nicholas J. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.14392v2-abstract-short" style="display: inline;"> We study the gas kinematics of a sample of six isolated gas-rich low surface brightness galaxies, of the class called ultra-diffuse galaxies (UDGs). These galaxies have recently been shown to be outliers from the baryonic Tully-Fisher relation (BTFR), as they rotate much slower than expected given their baryonic mass, and to have baryon fractions similar to the cosmological mean. By means of a 3D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.14392v2-abstract-full').style.display = 'inline'; document.getElementById('2004.14392v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.14392v2-abstract-full" style="display: none;"> We study the gas kinematics of a sample of six isolated gas-rich low surface brightness galaxies, of the class called ultra-diffuse galaxies (UDGs). These galaxies have recently been shown to be outliers from the baryonic Tully-Fisher relation (BTFR), as they rotate much slower than expected given their baryonic mass, and to have baryon fractions similar to the cosmological mean. By means of a 3D kinematic modelling fitting technique, we show that the HI in our UDGs is distributed in &#34;thin&#34; regularly rotating discs and we determine their rotation velocity and gas velocity dispersion. We revisit the BTFR adding galaxies from other studies. We find a previously unknown trend between the deviation from the BTFR and the disc scale length valid for dwarf galaxies with circular speeds &lt; 45 km/s, with our UDGs being at the extreme end. Based on our findings, we suggest that the high baryon fractions of our UDGs may originate due to the fact that they have experienced weak stellar feedback, likely due to their low star formation rate surface densities, and as a result they did not eject significant amounts of gas out of their discs. At the same time, we find indications that our UDGs may have higher-than-average stellar specific angular momentum, which can explain their large optical scale lengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.14392v2-abstract-full').style.display = 'none'; document.getElementById('2004.14392v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. v2: a few typos have been corrected and a couple of references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.06218">arXiv:2002.06218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.06218">pdf</a>, <a href="https://arxiv.org/format/2002.06218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa469">10.1093/mnras/staa469 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Life Cycle of the Central Molecular Zone. II: Distribution of atomic and molecular gas tracers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Armillotta%2C+L">Lucia Armillotta</a>, <a href="/search/?searchtype=author&amp;query=Krumholz%2C+M+R">Mark R. Krumholz</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.06218v1-abstract-short" style="display: inline;"> We use the hydrodynamical simulation of our inner Galaxy presented in Armillotta et al. (2019) to study the gas distribution and kinematics within the CMZ. We use a resolution high enough to capture the gas emitting in dense molecular tracers such as NH3 and HCN, and simulate a time window of 50 Myr, long enough to capture phases during which the CMZ experiences both quiescent and intense star for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06218v1-abstract-full').style.display = 'inline'; document.getElementById('2002.06218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.06218v1-abstract-full" style="display: none;"> We use the hydrodynamical simulation of our inner Galaxy presented in Armillotta et al. (2019) to study the gas distribution and kinematics within the CMZ. We use a resolution high enough to capture the gas emitting in dense molecular tracers such as NH3 and HCN, and simulate a time window of 50 Myr, long enough to capture phases during which the CMZ experiences both quiescent and intense star formation. We then post-process the simulated CMZ to calculate its spatially-dependent chemical and thermal state, producing synthetic emission data cubes and maps of both HI and the molecular gas tracers CO, NH3 and HCN. We show that, as viewed from Earth, gas in the CMZ is distributed mainly in two parallel and elongated features extending from positive longitudes and velocities to negative longitudes and velocities. The molecular gas emission within these two streams is not uniform, and it is mostly associated to the region where gas flowing towards the Galactic Center through the dust lanes collides with gas orbiting within the ring. Our simulated data cubes reproduce a number of features found in the observed CMZ. However, some discrepancies emerge when we use our results to interpret the position of individual molecular clouds. Finally, we show that, when the CMZ is near a period of intense star formation, the ring is mostly fragmented as a consequence of supernova feedback, and the bulk of the emission comes from star-forming molecular clouds. This correlation between morphology and star formation rate should be detectable in observations of extragalactic CMZs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.06218v1-abstract-full').style.display = 'none'; document.getElementById('2002.06218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06864">arXiv:1911.06864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.06864">pdf</a>, <a href="https://arxiv.org/format/1911.06864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab55d8">10.3847/1538-4357/ab55d8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Acceleration of HI Clouds Within the Fermi Bubbles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lockman%2C+F+J">Felix J. Lockman</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06864v1-abstract-short" style="display: inline;"> The ~200 HI clouds observed to be entrained in the Fermi Bubble wind show a trend of increasing maximum |VLSR| with Galactic latitude. We analyze previous observations and present new data from the Green Bank Telescope that rule out systematic effects as the source of this phenomenon. Instead, it is likely evidence for acceleration of the clouds. The data suggest that clouds in the lower 2 kpc of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06864v1-abstract-full').style.display = 'inline'; document.getElementById('1911.06864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06864v1-abstract-full" style="display: none;"> The ~200 HI clouds observed to be entrained in the Fermi Bubble wind show a trend of increasing maximum |VLSR| with Galactic latitude. We analyze previous observations and present new data from the Green Bank Telescope that rule out systematic effects as the source of this phenomenon. Instead, it is likely evidence for acceleration of the clouds. The data suggest that clouds in the lower 2 kpc of the Fermi Bubbles, within the Bubble boundaries established from X-ray studies, have an outflow velocity that rises from ~150 - 200 km/s close to the Galactic Center and reaches ~330 km/s at a distance of 2.5 - 3.5 kpc. These parameters are also consistent with the kinematics of UV absorption lines from highly ionized species observed against two targets behind the Fermi Bubbles at $b = -6.6^{\circ}$, and $b = +11.2^{\circ}$. The implied neutral cloud lifetime is 4 - 10 Myr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06864v1-abstract-full').style.display = 'none'; document.getElementById('1911.06864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11283">arXiv:1910.11283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.11283">pdf</a>, <a href="https://arxiv.org/format/1910.11283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab510f">10.3847/1538-4357/ab510f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The 3D Kinematics of Gas in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Murray%2C+C+E">Claire E. Murray</a>, <a href="/search/?searchtype=author&amp;query=Peek%2C+J+E+G">J. E. G. Peek</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Denes%2C+H">Helga Denes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11283v1-abstract-short" style="display: inline;"> We investigate the kinematics of neutral gas in the Small Magellanic Cloud (SMC) and test the hypothesis that it is rotating in a disk. To trace the 3D motions of the neutral gas distribution, we identify a sample of young, massive stars embedded within it. These are stars with radial velocity measurements from spectroscopic surveys and proper motion measurements from Gaia, whose radial velocities&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11283v1-abstract-full').style.display = 'inline'; document.getElementById('1910.11283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11283v1-abstract-full" style="display: none;"> We investigate the kinematics of neutral gas in the Small Magellanic Cloud (SMC) and test the hypothesis that it is rotating in a disk. To trace the 3D motions of the neutral gas distribution, we identify a sample of young, massive stars embedded within it. These are stars with radial velocity measurements from spectroscopic surveys and proper motion measurements from Gaia, whose radial velocities match with dominant HI components. We compare the observed radial and tangential velocities of these stars with predictions from the state-of-the-art rotating disk model based on high-resolution 21 cm observations of the SMC from the Australian Square Kilometer Array Pathfinder telescope. We find that the observed kinematics of gas-tracing stars are inconsistent with disk rotation. We conclude that the kinematics of gas in the SMC are more complex than can be inferred from the integrated radial velocity field. As a result of violent tidal interactions with the LMC, non-rotational motions are prevalent throughout the SMC, and it is likely composed of distinct sub-structures overlapping along the line of sight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11283v1-abstract-full').style.display = 'none'; document.getElementById('1910.11283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 1 Appendix; ApJ accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10718">arXiv:1910.10718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.10718">pdf</a>, <a href="https://arxiv.org/format/1910.10718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab4fe9">10.3847/2041-8213/ab4fe9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular gas in the outflow of the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=De+Breuck%2C+C">C. De Breuck</a>, <a href="/search/?searchtype=author&amp;query=Armillotta%2C+L">L. Armillotta</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">N. M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K+E">K. E. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Rubio%2C+M">M. Rubio</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovic%2C+S">S. Stanimirovic</a>, <a href="/search/?searchtype=author&amp;query=Staveley-Smith%2C+L">L. Staveley-Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10718v1-abstract-short" style="display: inline;"> We report the first evidence of molecular gas in two atomic hydrogen (HI) clouds associated with gas outflowing from the Small Magellanic Cloud (SMC). We used the Atacama Pathfinder Experiment (APEX) to detect and spatially resolve individual clumps of CO(2-1) emission in both clouds. CO clumps are compact (~ 10 pc) and dynamically cold (linewidths &lt; 1 km/s). Most CO emission appears to be offset&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10718v1-abstract-full').style.display = 'inline'; document.getElementById('1910.10718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10718v1-abstract-full" style="display: none;"> We report the first evidence of molecular gas in two atomic hydrogen (HI) clouds associated with gas outflowing from the Small Magellanic Cloud (SMC). We used the Atacama Pathfinder Experiment (APEX) to detect and spatially resolve individual clumps of CO(2-1) emission in both clouds. CO clumps are compact (~ 10 pc) and dynamically cold (linewidths &lt; 1 km/s). Most CO emission appears to be offset from the peaks of the HI emission, some molecular gas lies in regions without a clear HI counterpart. We estimate a total molecular gas mass of 10^3-10^4 Msun in each cloud and molecular gas fractions up to 30% of the total cold gas mass (molecular + neutral). Under the assumption that this gas is escaping the galaxy, we calculated a cold gas outflow rate of 0.3-1.8 Msun/yr and mass loading factors of 3 -12 at a distance larger than 1 kpc. These results show that relatively weak star-formation-driven winds in dwarf galaxies like the SMC are able to accelerate significant amounts of cold and dense matter and inject it into the surrounding environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10718v1-abstract-full').style.display = 'none'; document.getElementById('1910.10718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.01363">arXiv:1909.01363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.01363">pdf</a>, <a href="https://arxiv.org/format/1909.01363">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab40c7">10.3847/2041-8213/ab40c7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Off the baryonic Tully-Fisher relation: a population of baryon-dominated ultra-diffuse galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pi%C3%B1a%2C+P+E+M">Pavel E. Mancera Pi帽a</a>, <a href="/search/?searchtype=author&amp;query=Fraternali%2C+F">Filippo Fraternali</a>, <a href="/search/?searchtype=author&amp;query=Adams%2C+E+A+K">Elizabeth A. K. Adams</a>, <a href="/search/?searchtype=author&amp;query=Marasco%2C+A">Antonino Marasco</a>, <a href="/search/?searchtype=author&amp;query=Oosterloo%2C+T">Tom Oosterloo</a>, <a href="/search/?searchtype=author&amp;query=Oman%2C+K+A">Kyle A. Oman</a>, <a href="/search/?searchtype=author&amp;query=Leisman%2C+L">Lukas Leisman</a>, <a href="/search/?searchtype=author&amp;query=di+Teodoro%2C+E+M">Enrico M. di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Posti%2C+L">Lorenzo Posti</a>, <a href="/search/?searchtype=author&amp;query=Battipaglia%2C+M">Michael Battipaglia</a>, <a href="/search/?searchtype=author&amp;query=Cannon%2C+J+M">John M. Cannon</a>, <a href="/search/?searchtype=author&amp;query=Gault%2C+L">Lexi Gault</a>, <a href="/search/?searchtype=author&amp;query=Haynes%2C+M+P">Martha P. Haynes</a>, <a href="/search/?searchtype=author&amp;query=Janowiecki%2C+S">Steven Janowiecki</a>, <a href="/search/?searchtype=author&amp;query=McAllan%2C+E">Elizabeth McAllan</a>, <a href="/search/?searchtype=author&amp;query=Pagel%2C+H+J">Hannah J. Pagel</a>, <a href="/search/?searchtype=author&amp;query=Reiter%2C+K">Kameron Reiter</a>, <a href="/search/?searchtype=author&amp;query=Rhode%2C+K+L">Katherine L. Rhode</a>, <a href="/search/?searchtype=author&amp;query=Salzer%2C+J+J">John J. Salzer</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+N+J">Nicholas J. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.01363v2-abstract-short" style="display: inline;"> We study the gas kinematics traced by the 21-cm emission of a sample of six HI$-$rich low surface brightness galaxies classified as ultra-diffuse galaxies (UDGs). Using the 3D kinematic modelling code $\mathrm{^{3D}}$Barolo we derive robust circular velocities, revealing a startling feature: HI$-$rich UDGs are clear outliers from the baryonic Tully-Fisher relation, with circular velocities much lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01363v2-abstract-full').style.display = 'inline'; document.getElementById('1909.01363v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.01363v2-abstract-full" style="display: none;"> We study the gas kinematics traced by the 21-cm emission of a sample of six HI$-$rich low surface brightness galaxies classified as ultra-diffuse galaxies (UDGs). Using the 3D kinematic modelling code $\mathrm{^{3D}}$Barolo we derive robust circular velocities, revealing a startling feature: HI$-$rich UDGs are clear outliers from the baryonic Tully-Fisher relation, with circular velocities much lower than galaxies with similar baryonic mass. Notably, the baryon fraction of our UDG sample is consistent with the cosmological value: these UDGs are compatible with having no &#34;missing baryons&#34; within their virial radii. Moreover, the gravitational potential provided by the baryons is sufficient to account for the amplitude of the rotation curve out to the outermost measured point, contrary to other galaxies with similar circular velocities. We speculate that any formation scenario for these objects will require very inefficient feedback and a broad diversity in their inner dark matter content. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01363v2-abstract-full').style.display = 'none'; document.getElementById('1909.01363v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication by The Astrophysical Journal Letters (ApJL). V2: Acknowledgments have been updated, and a typo has been corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.01358">arXiv:1908.01358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.01358">pdf</a>, <a href="https://arxiv.org/format/1908.01358">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2170">10.1093/mnras/stz2170 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A multi-wavelength study of a massive, active galaxy at $z\sim 2$: coupling the kinematics of the ionized and molecular gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Loiacono%2C+F">Federica Loiacono</a>, <a href="/search/?searchtype=author&amp;query=Talia%2C+M">Margherita Talia</a>, <a href="/search/?searchtype=author&amp;query=Fraternali%2C+F">Filippo Fraternali</a>, <a href="/search/?searchtype=author&amp;query=Cimatti%2C+A">Andrea Cimatti</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico Maria Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Caminha%2C+G+B">Gabriel Bartosch Caminha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.01358v1-abstract-short" style="display: inline;"> We report a multi-wavelength study of the massive ($M_{\star} \gtrsim 10^{11} \rm{M}_{\odot}$), $z\sim 2$ star-forming galaxy GMASS 0953, which hosts an obscured AGN. We combined near-infrared observations of the GNIRS, SINFONI and KMOS spectrographs to study the kinematics of the [O III]$位5007$ and H$伪$ emission lines. Our analysis shows that GMASS 0953 may host an ionized disc extending up to 13&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01358v1-abstract-full').style.display = 'inline'; document.getElementById('1908.01358v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.01358v1-abstract-full" style="display: none;"> We report a multi-wavelength study of the massive ($M_{\star} \gtrsim 10^{11} \rm{M}_{\odot}$), $z\sim 2$ star-forming galaxy GMASS 0953, which hosts an obscured AGN. We combined near-infrared observations of the GNIRS, SINFONI and KMOS spectrographs to study the kinematics of the [O III]$位5007$ and H$伪$ emission lines. Our analysis shows that GMASS 0953 may host an ionized disc extending up to 13 kpc, which rotates at a velocity of $V_{\rm{ion}} = 203^{+17}_{-20} {\ \rm kms}^{-1}$ at the outermost radius. Evidence of rotation on a smaller scale ($R \sim 1$ kpc) arises from the CO(J=6-5) line. The central velocity $V_{\rm{CO}} = 320^{+ 92}_{-53} {\ \rm kms}^{-1}$ traced by the molecular gas is higher than $V_{\rm{ion}}$, suggesting that the galaxy harbors a multi-phase disc with a rotation curve that peaks in the very central regions. The galaxy appears well located on the $z = 0$ baryonic Tully-Fisher relation. We also discuss the possibility that the [O III]$位5007$ and H$伪$ velocity gradients are due to a galactic-scale wind. Besides, we found evidence of an AGN-driven outflow traced by a broad blueshifted wing affecting the [O III]$位5007$ line, which presents a velocity offset $螖v = -535 \pm 152 {\ \rm kms}^{-1}$ from the systemic velocity. Because of the short depletion timescale ($蟿_{\rm{dep}}\sim 10^8$ yr) due to gas ejection and gas consumption by star formation activity, GMASS 0953 may likely evolve into a passive galaxy. However, the role of the AGN in depleting the gas reservoir of the galaxy is quite unclear because of the uncertainties affecting the outflow rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01358v1-abstract-full').style.display = 'none'; document.getElementById('1908.01358v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.01309">arXiv:1905.01309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.01309">pdf</a>, <a href="https://arxiv.org/format/1905.01309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2880">10.1093/mnras/stz2880 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Life Cycle of the Central Molecular Zone. I: Inflow, Star Formation, and Winds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Armillotta%2C+L">L. Armillotta</a>, <a href="/search/?searchtype=author&amp;query=Krumholz%2C+M+R">M. R. Krumholz</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.01309v2-abstract-short" style="display: inline;"> We present a study of the gas cycle and star formation history in the central 500 pc of the Milky Way, known as Central Molecular Zone (CMZ). Through hydrodynamical simulations of the inner 4.5 kpc of our Galaxy, we follow the gas cycle in a completely self-consistent way, starting from gas radial inflow due to the Galactic bar, the channelling of this gas into a dense, star-forming ring/stream at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01309v2-abstract-full').style.display = 'inline'; document.getElementById('1905.01309v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.01309v2-abstract-full" style="display: none;"> We present a study of the gas cycle and star formation history in the central 500 pc of the Milky Way, known as Central Molecular Zone (CMZ). Through hydrodynamical simulations of the inner 4.5 kpc of our Galaxy, we follow the gas cycle in a completely self-consistent way, starting from gas radial inflow due to the Galactic bar, the channelling of this gas into a dense, star-forming ring/stream at ~ 200 - 300 pc from the Galactic centre, and the launching of galactic outflows powered by stellar feedback. We find that star formation activity in the CMZ goes through oscillatory burst/quench cycles, with a period of tens to hundreds of Myr, characterised by roughly constant gas mass but order-of-magnitude level variations in the star formation rate. Comparison with the observed present-day star formation rate of the CMZ suggests that we are currently near a minimum of this cycle. Stellar feedback drives a mainly two-phase wind off the Galactic disc. The warm phase dominates the mass flux, and carries 100 - 200 % of the gas mass converted into stars. However, most of this gas goes into a fountain and falls back onto the disc rather than escaping the Galaxy. The hot phase carries most of the energy, with a time-averaged energy outflow rate of 10 - 20 % of the supernova energy budget. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01309v2-abstract-full').style.display = 'none'; document.getElementById('1905.01309v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 15 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.03121">arXiv:1903.03121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.03121">pdf</a>, <a href="https://arxiv.org/format/1903.03121">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz670">10.1093/mnras/stz670 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The SAMI Galaxy Survey: Bayesian Inference for Gas Disk Kinematics using a Hierarchical Gaussian Mixture Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Varidel%2C+M+R">Mathew R. Varidel</a>, <a href="/search/?searchtype=author&amp;query=Croom%2C+S+M">Scott M. Croom</a>, <a href="/search/?searchtype=author&amp;query=Lewis%2C+G+F">Geraint F. Lewis</a>, <a href="/search/?searchtype=author&amp;query=Brewer%2C+B+J">Brendon J. Brewer</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Bland-Hawthorn%2C+J">Joss Bland-Hawthorn</a>, <a href="/search/?searchtype=author&amp;query=Bryant%2C+J+J">Julia J. Bryant</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Foster%2C+C">Caroline Foster</a>, <a href="/search/?searchtype=author&amp;query=Glazebrook%2C+K">Karl Glazebrook</a>, <a href="/search/?searchtype=author&amp;query=Goodwin%2C+M">Michael Goodwin</a>, <a href="/search/?searchtype=author&amp;query=Groves%2C+B">Brent Groves</a>, <a href="/search/?searchtype=author&amp;query=Hopkins%2C+A+M">Andrew M. Hopkins</a>, <a href="/search/?searchtype=author&amp;query=Lawrence%2C+J+S">Jon S. Lawrence</a>, <a href="/search/?searchtype=author&amp;query=L%C3%B3pez-S%C3%A1nchez%2C+%C3%81+R">脕ngel R. L贸pez-S谩nchez</a>, <a href="/search/?searchtype=author&amp;query=Medling%2C+A+M">Anne M. Medling</a>, <a href="/search/?searchtype=author&amp;query=Owers%2C+M+S">Matt S. Owers</a>, <a href="/search/?searchtype=author&amp;query=Richards%2C+S+N">Samuel N. Richards</a>, <a href="/search/?searchtype=author&amp;query=Scalzo%2C+R">Richard Scalzo</a>, <a href="/search/?searchtype=author&amp;query=Scott%2C+N">Nicholas Scott</a>, <a href="/search/?searchtype=author&amp;query=Sweet%2C+S+M">Sarah M. Sweet</a>, <a href="/search/?searchtype=author&amp;query=Taranu%2C+D+S">Dan S. Taranu</a>, <a href="/search/?searchtype=author&amp;query=van+de+Sande%2C+J">Jesse van de Sande</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.03121v2-abstract-short" style="display: inline;"> We present a novel Bayesian method, referred to as Blobby3D, to infer gas kinematics that mitigates the effects of beam smearing for observations using Integral Field Spectroscopy (IFS). The method is robust for regularly rotating galaxies despite substructure in the gas distribution. Modelling the gas substructure within the disk is achieved by using a hierarchical Gaussian mixture model. To acco&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03121v2-abstract-full').style.display = 'inline'; document.getElementById('1903.03121v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.03121v2-abstract-full" style="display: none;"> We present a novel Bayesian method, referred to as Blobby3D, to infer gas kinematics that mitigates the effects of beam smearing for observations using Integral Field Spectroscopy (IFS). The method is robust for regularly rotating galaxies despite substructure in the gas distribution. Modelling the gas substructure within the disk is achieved by using a hierarchical Gaussian mixture model. To account for beam smearing effects, we construct a modelled cube that is then convolved per wavelength slice by the seeing, before calculating the likelihood function. We show that our method can model complex gas substructure including clumps and spiral arms. We also show that kinematic asymmetries can be observed after beam smearing for regularly rotating galaxies with asymmetries only introduced in the spatial distribution of the gas. We present findings for our method applied to a sample of 20 star-forming galaxies from the SAMI Galaxy Survey. We estimate the global H$伪$ gas velocity dispersion for our sample to be in the range $\bar蟽_v \sim $[7, 30] km s$^{-1}$. The relative difference between our approach and estimates using the single Gaussian component fits per spaxel is $螖\bar蟽_v / \bar蟽_v = - 0.29 \pm 0.18$ for the H$伪$ flux-weighted mean velocity dispersion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03121v2-abstract-full').style.display = 'none'; document.getElementById('1903.03121v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures, accepted for MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.08479">arXiv:1812.08479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.08479">pdf</a>, <a href="https://arxiv.org/format/1812.08479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834456">10.1051/0004-6361/201834456 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The angular momentum of disc galaxies at z=1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Marasco%2C+A">A. Marasco</a>, <a href="/search/?searchtype=author&amp;query=Fraternali%2C+F">F. Fraternali</a>, <a href="/search/?searchtype=author&amp;query=Posti%2C+L">L. Posti</a>, <a href="/search/?searchtype=author&amp;query=Ijtsma%2C+M">M. Ijtsma</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Oosterloo%2C+T">T. Oosterloo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.08479v1-abstract-short" style="display: inline;"> We investigate the relation between stellar mass and specific stellar angular momentum, or `Fall relation&#39;, for a sample of 17 isolated, regularly rotating disc galaxies at z=1. All galaxies have a) rotation curves determined from Halpha emission-line data; b) HST imaging in optical and infrared filters; c) robust determinations of their stellar masses. We use HST images in f814w and f160w filters&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08479v1-abstract-full').style.display = 'inline'; document.getElementById('1812.08479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.08479v1-abstract-full" style="display: none;"> We investigate the relation between stellar mass and specific stellar angular momentum, or `Fall relation&#39;, for a sample of 17 isolated, regularly rotating disc galaxies at z=1. All galaxies have a) rotation curves determined from Halpha emission-line data; b) HST imaging in optical and infrared filters; c) robust determinations of their stellar masses. We use HST images in f814w and f160w filters, roughly corresponding to rest-frames B and I bands, to extract surface brightness profiles for our systems. We robustly bracket the specific angular momentum by assuming that rotation curves beyond the outermost Halpha rotation point stay either flat or follow a Keplerian fall-off. By comparing our measurements with those determined for disc galaxies in the local Universe, we find no evolution in the Fall relation in the redshift range 0&lt;z&lt;1, regardless of the band used and despite the uncertainties in the stellar rotation curves at large radii. This result holds unless stellar masses at z=1 are systematically underestimated by more than 50%. Our findings are compatible with expectations based on a LCDM cosmological framework and support a scenario where both the stellar Tully-Fisher and mass-size relations for spirals do not evolve significantly in this redshift range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08479v1-abstract-full').style.display = 'none'; document.getElementById('1812.08479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, 1 table. Accepted by A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 621, L6 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.09627">arXiv:1811.09627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.09627">pdf</a>, <a href="https://arxiv.org/format/1811.09627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty3095">10.1093/mnras/sty3095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the dynamics of the Small Magellanic Cloud through high-resolution ASKAP HI observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K+E">K. E. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Denes%2C+H">H. Denes</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovic%2C+S">S. Stanimirovic</a>, <a href="/search/?searchtype=author&amp;query=Staveley-Smith%2C+L">L. Staveley-Smith</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+C">C. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Bunton%2C+J+D">J. D. Bunton</a>, <a href="/search/?searchtype=author&amp;query=Chippendale%2C+A">A. Chippendale</a>, <a href="/search/?searchtype=author&amp;query=Lee-Waddell%2C+K">K. Lee-Waddell</a>, <a href="/search/?searchtype=author&amp;query=MacLeod%2C+A">A. MacLeod</a>, <a href="/search/?searchtype=author&amp;query=Voronkov%2C+M+A">M. A Voronkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.09627v1-abstract-short" style="display: inline;"> We use new high-resolution HI data from the Australian Square Kilometre Array Pathfinder (ASKAP) to investigate the dynamics of the Small Magellanic Cloud (SMC). We model the HI gas component as a rotating disc of non-negligible angular size, moving into the plane of the sky and undergoing nutation/precession motions. We derive a high-resolution (~ 10 pc) rotation curve of the SMC out to R ~ 4 kpc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09627v1-abstract-full').style.display = 'inline'; document.getElementById('1811.09627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.09627v1-abstract-full" style="display: none;"> We use new high-resolution HI data from the Australian Square Kilometre Array Pathfinder (ASKAP) to investigate the dynamics of the Small Magellanic Cloud (SMC). We model the HI gas component as a rotating disc of non-negligible angular size, moving into the plane of the sky and undergoing nutation/precession motions. We derive a high-resolution (~ 10 pc) rotation curve of the SMC out to R ~ 4 kpc. After correcting for asymmetric drift, the circular velocity slowly rises to a maximum value of Vc ~ 55 km/s at R ~ 2.8 kpc and possibly flattens outwards. In spite of the SMC undergoing strong gravitational interactions with its neighbours, its HI rotation curve is akin to that of many isolated gas-rich dwarf galaxies. We decompose the rotation curve and explore different dynamical models to deal with the unknown three-dimensional shape of the mass components (gas, stars and dark matter). We find that, for reasonable mass-to-light ratios, a dominant dark matter halo with mass M(R&lt;4 kpc) = 1-1.5 x 10^9 solar masses is always required to successfully reproduce the observed rotation curve, implying a large baryon fraction of 30%-40%. We discuss the impact of our assumptions and the limitations of deriving the SMC kinematics and dynamics from HI observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09627v1-abstract-full').style.display = 'none'; document.getElementById('1811.09627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02152">arXiv:1802.02152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02152">pdf</a>, <a href="https://arxiv.org/format/1802.02152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aaad6a">10.3847/1538-4357/aaad6a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Blowing in the Milky Way wind: neutral hydrogen clouds tracing the Galactic nuclear outflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Lockman%2C+F+J">Felix J. Lockman</a>, <a href="/search/?searchtype=author&amp;query=Denbo%2C+S+R">Sara R. Denbo</a>, <a href="/search/?searchtype=author&amp;query=Endsley%2C+R">Ryan Endsley</a>, <a href="/search/?searchtype=author&amp;query=Ford%2C+H+A">H. Alyson Ford</a>, <a href="/search/?searchtype=author&amp;query=Harrington%2C+K">Kevin Harrington</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02152v1-abstract-short" style="display: inline;"> We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b | &lt; 10 deg with an effective angular resolution of 9.5&#39; and an average rms brightness temperature noise of 40 mK in a 1 km/s channel. The survey reveals the existence of a population of anomalous high-velocity cl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02152v1-abstract-full').style.display = 'inline'; document.getElementById('1802.02152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02152v1-abstract-full" style="display: none;"> We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b | &lt; 10 deg with an effective angular resolution of 9.5&#39; and an average rms brightness temperature noise of 40 mK in a 1 km/s channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic Plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | Vlsr | &lt; 360 km/s and, assuming a Galactic Center origin, they have sizes of a few tens of parsecs and neutral hydrogen masses spanning $10-10^5 \, M_\odot$. Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and Vlsr. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity Vw ~ 330 km/s distributed throughout a bi-cone with opening angle $伪&gt;140$ deg. This simple model implies an outflow luminosity $Lw &gt; 3 \times 10^{40}$ erg/s over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate $\lesssim 0.1 \, M_\odot$/yr. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02152v1-abstract-full').style.display = 'none'; document.getElementById('1802.02152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures. Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.06546">arXiv:1801.06546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.06546">pdf</a>, <a href="https://arxiv.org/format/1801.06546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty175">10.1093/mnras/sty175 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinematics of the SN Refsdal host revealed by MUSE: a regularly rotating spiral galaxy at z~1.5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Grillo%2C+C">C. Grillo</a>, <a href="/search/?searchtype=author&amp;query=Fraternali%2C+F">F. Fraternali</a>, <a href="/search/?searchtype=author&amp;query=Gobat%2C+R">R. Gobat</a>, <a href="/search/?searchtype=author&amp;query=Karman%2C+W">W. Karman</a>, <a href="/search/?searchtype=author&amp;query=Mercurio%2C+A">A. Mercurio</a>, <a href="/search/?searchtype=author&amp;query=Rosati%2C+P">P. Rosati</a>, <a href="/search/?searchtype=author&amp;query=Balestra%2C+I">I. Balestra</a>, <a href="/search/?searchtype=author&amp;query=Caminha%2C+G+B">G. B. Caminha</a>, <a href="/search/?searchtype=author&amp;query=Caputi%2C+K+I">K. I. Caputi</a>, <a href="/search/?searchtype=author&amp;query=Lombardi%2C+M">M. Lombardi</a>, <a href="/search/?searchtype=author&amp;query=Suyu%2C+S+H">S. H. Suyu</a>, <a href="/search/?searchtype=author&amp;query=Treu%2C+T">T. Treu</a>, <a href="/search/?searchtype=author&amp;query=Vanzella%2C+E">E. Vanzella</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.06546v2-abstract-short" style="display: inline;"> We use Multi Unit Spectroscopic Explorer (MUSE) observations of the galaxy cluster MACS J1149.5+2223 to explore the kinematics of the grand-design spiral galaxy Sp1149 hosting the SN Refsdal. Sp1149 lies at $z\simeq1.49$, has a stellar mass $M_*\simeq5\times10^9 \, \mathrm{M_\odot}$, a star-formation rate $\mathrm{SFR} \simeq1-6 \, \mathrm{M_\odot/yr}$ and represents a likely progenitor of a Milky&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06546v2-abstract-full').style.display = 'inline'; document.getElementById('1801.06546v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.06546v2-abstract-full" style="display: none;"> We use Multi Unit Spectroscopic Explorer (MUSE) observations of the galaxy cluster MACS J1149.5+2223 to explore the kinematics of the grand-design spiral galaxy Sp1149 hosting the SN Refsdal. Sp1149 lies at $z\simeq1.49$, has a stellar mass $M_*\simeq5\times10^9 \, \mathrm{M_\odot}$, a star-formation rate $\mathrm{SFR} \simeq1-6 \, \mathrm{M_\odot/yr}$ and represents a likely progenitor of a Milky-Way-like galaxy. All the four multiple images of Sp1149 in our data show strong OII-line emissions pointing to a clear rotation pattern. We take advantage of the gravitational lensing magnification effect ($\simeq 4 \times$) on the OII emission of the least distorted image to fit 3D kinematic models to the MUSE data-cube and derive the rotation curve and the velocity dispersion profile of Sp1149. We find that the rotation curve steeply rises, peaks at $R\simeq1$ kpc and then (initially) declines and flattens to an average $V_\mathrm{flat} = 128^{+29}_{-19}$ km/s. The shape of the rotation curve is well determined but the actual value of $V_\mathrm{flat}$ is quite uncertain because of the nearly face-on configuration of the galaxy. The intrinsic velocity dispersion due to gas turbulence is almost constant across the entire disc with an average of $27\pm5$ km/s. This value is consistent with $z=0$ measurements in the ionized gas component and a factor 2-4 lower than other estimates in different galaxies at similar redshifts. The average stellar-to-total mass fraction is of the order of one fifth. Our kinematic analysis returns the picture of a regular star-forming, mildly turbulent, rotation-dominated ($V / 蟽\simeq5$) spiral galaxy in a 4 Gyr old Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06546v2-abstract-full').style.display = 'none'; document.getElementById('1801.06546v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.04942">arXiv:1602.04942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.04942">pdf</a>, <a href="https://arxiv.org/format/1602.04942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201628315">10.1051/0004-6361/201628315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z~1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Fraternali%2C+F">F. Fraternali</a>, <a href="/search/?searchtype=author&amp;query=Miller%2C+S+H">S. H. Miller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.04942v3-abstract-short" style="display: inline;"> The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper we select a sample of 18 galaxies at z~1, observed in the H-alpha emission-line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3D-Barolo, that models the galaxy emission directly in the 3D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04942v3-abstract-full').style.display = 'inline'; document.getElementById('1602.04942v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.04942v3-abstract-full" style="display: none;"> The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper we select a sample of 18 galaxies at z~1, observed in the H-alpha emission-line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3D-Barolo, that models the galaxy emission directly in the 3D observational space, without the need to extract kinematic maps. This technique&#39;s major advantage is that it is not affected by beam smearing and thus it enables the determination of rotation velocity and intrinsic velocity dispersion, even at low spatial resolution. We find that: 1) the rotation curves of these z~1 galaxies rise very steeply within few kiloparsecs and remain flat out to the outermost radius and 2) the H-alpha velocity dispersions are low, ranging from 15 to 40 km/s, which leads to V/sigma = 3-10. These characteristics are similar to those of disc galaxies in the local Universe. Finally, we also report no significant evolution of the stellar-mass Tully-Fisher relation. Our results show that disc galaxies are kinematically mature and rotation-dominated already at z~1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04942v3-abstract-full').style.display = 'none'; document.getElementById('1602.04942v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A, 11 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 594, A77 (2016) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10