CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 316 results for author: <span class="mathjax">van Loon, J T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="van Loon, J T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=van+Loon%2C+J+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="van Loon, J T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05646">arXiv:2412.05646</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05646">pdf</a>, <a href="https://arxiv.org/format/2412.05646">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Star Formation History of the Local Group Dwarf Irregular Galaxy, NGC 6822 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Khatamsaz%2C+F">Fatemeh Khatamsaz</a>, <a href="/search/?searchtype=author&amp;query=Abdollahi%2C+M">Mahdi Abdollahi</a>, <a href="/search/?searchtype=author&amp;query=Abdollahi%2C+H">Hedieh Abdollahi</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05646v1-abstract-short" style="display: inline;"> NGC 6822 is an isolated dwarf irregular galaxy in the local group at a distance of 490 kpc. In this paper, we present the star formation history (SFH) within a field with a radius of 3 kpc, beyond the optical body of the galaxy (1.2 kpc). We utilized a novel method based on evolved asymptotic giant branch (AGB) stars. We collected the Near infrared data of 329 variable stars, including long-period&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05646v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05646v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05646v1-abstract-full" style="display: none;"> NGC 6822 is an isolated dwarf irregular galaxy in the local group at a distance of 490 kpc. In this paper, we present the star formation history (SFH) within a field with a radius of 3 kpc, beyond the optical body of the galaxy (1.2 kpc). We utilized a novel method based on evolved asymptotic giant branch (AGB) stars. We collected the Near infrared data of 329 variable stars, including long-period and amplitude variables and Carbon-rich AGB stars. We used stellar evolutionary track and theoretical isochrones to obtain the birth mass, age, and pulsation duration of the detected stars to calculate the star formation rate (SFR) and trace the SFH of the galaxy. We studied the star formation history of the galaxy for the mean metallicity value (Z) of 0.003. We reconstructed the SFH for two regions. The bar region, a central rectangular area, and the outer region, which covers a circular field beyond the bar region and extends to a radius of 3 kpc. Our results show a significant burst of star formation around 2.6 and 2.9 Gyr ago in the bar and outer regions, respectively. Additionally, we observed a notable enhancement in the SFR in the bar region over the past 200 Myr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05646v1-abstract-full').style.display = 'none'; document.getElementById('2412.05646v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in the Communications of BAO (ComBAO)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05642">arXiv:2412.05642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05642">pdf</a>, <a href="https://arxiv.org/format/2412.05642">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Deciphering Galactic Halos: A Detailed Review of Star Formation in NGC 5128 (Cen A) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abdollahi%2C+M">Mahdi Abdollahi</a>, <a href="/search/?searchtype=author&amp;query=Aghdam%2C+S+T">Sima Taefi Aghdam</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=Hashemi%2C+S+A">Seyed Azim Hashemi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Khosroshahi%2C+H">Habib Khosroshahi</a>, <a href="/search/?searchtype=author&amp;query=Golshan%2C+R+H">Roya Hamedani Golshan</a>, <a href="/search/?searchtype=author&amp;query=Saremi%2C+E">Elham Saremi</a>, <a href="/search/?searchtype=author&amp;query=Saberi%2C+M">Maryam Saberi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05642v1-abstract-short" style="display: inline;"> NGC 5128 (Centaurus A), the closest giant elliptical galaxy outside the Local Group to the Milky Way, is one of the brightest extragalactic radio sources. It is distinguished by a prominent dust lane and powerful jets, driven by a supermassive black hole at its core. Using previously identified long-period variable (LPV) stars from the literature, this study aims to reconstruct the star formation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05642v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05642v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05642v1-abstract-full" style="display: none;"> NGC 5128 (Centaurus A), the closest giant elliptical galaxy outside the Local Group to the Milky Way, is one of the brightest extragalactic radio sources. It is distinguished by a prominent dust lane and powerful jets, driven by a supermassive black hole at its core. Using previously identified long-period variable (LPV) stars from the literature, this study aims to reconstruct the star formation history (SFH) of two distinct regions in the halo of NGC 5128. These regions reveal remarkably similar SFHs, despite being located about 28 kpc apart on opposite sides of the galaxy&#39;s center. In Field 1, star formation rates (SFRs) show notable increases at approximately 800 Myr and 3.8 Gyr ago. Field 2 exhibits similar peaks at these times, along with an additional rise around 6.3 Gyr ago. The increase in SFR around 800 Myr ago is consistent with earlier research suggesting a merger event. Since no LPV catalog exists for the central region of NGC 5128, we focused our investigation on its outer regions, which has provided new insights into the complex evolutionary history of this cornerstone galaxy. The SFH traced by LPVs supports a scenario in which multiple events of nuclear activity have triggered episodic, jet-induced star formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05642v1-abstract-full').style.display = 'none'; document.getElementById('2412.05642v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, To be published in Communications of BAO (ComBAO)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01921">arXiv:2412.01921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01921">pdf</a>, <a href="https://arxiv.org/format/2412.01921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451820">10.1051/0004-6361/202451820 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging the innermost circumstellar environment of the red supergiant WOH G64 in the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ohnaka%2C+K">K. Ohnaka</a>, <a href="/search/?searchtype=author&amp;query=Hofmann%2C+K+-">K. -H. Hofmann</a>, <a href="/search/?searchtype=author&amp;query=Weigelt%2C+G">G. Weigelt</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Schertl%2C+D">D. Schertl</a>, <a href="/search/?searchtype=author&amp;query=Goldman%2C+S+R">S. R. Goldman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01921v1-abstract-short" style="display: inline;"> Significant mass loss in the red supergiant (RSG) phase has great influence on the evolution of massive stars and their final fate as supernovae. We present near-infrared interferometric imaging of the circumstellar environment of the dust-enshrouded RSG WOH G64 in the Large Magellanic Cloud. WOH G64 was observed with the GRAVITY instrument at ESO&#39;s Very Large Telescope Interferometer (VLTI) at 2.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01921v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01921v1-abstract-full" style="display: none;"> Significant mass loss in the red supergiant (RSG) phase has great influence on the evolution of massive stars and their final fate as supernovae. We present near-infrared interferometric imaging of the circumstellar environment of the dust-enshrouded RSG WOH G64 in the Large Magellanic Cloud. WOH G64 was observed with the GRAVITY instrument at ESO&#39;s Very Large Telescope Interferometer (VLTI) at 2.0--2.45 micron. We succeeded in imaging the innermost circumstellar environment of WOH G64 -- the first interferometric imaging of an RSG outside the Milky Way. The reconstructed image reveals elongated compact emission with a semimajor and semiminor axis of ~2 and ~1.5 mas (~13 and 9 stellar radii), respectively. The GRAVITY data show that the stellar flux contribution at 2.2 micron at the time of our observations in 2020 is much lower than predicted by the optically and geometrically thick dust torus model based on the VLTI/MIDI data taken in 2005 and 2007. We found a significant change in the near-infrared spectrum of WOH G64: while the (spectro)photometric data taken at 1--2.5 micron before 2003 show the spectrum of the central RSG with H2O absorption, the spectra and JHK&#39; photometric data taken after 2016 are characterized by a monotonically rising continuum with very weak signatures of H2O. This spectral change likely took place between December 2009 and 2016. On the other hand, the mid-infrared spectrum obtained in 2022 with VLT/VISIR agrees well with the spectra obtained before 2007. The compact emission imaged with GRAVITY and the near-infrared spectral change suggest the formation of hot new dust close to the star, which gives rise to the monotonically rising near-infrared continuum and the high obscuration of the central star. The elongation of the emission may be due to the presence of a bipolar outflow or effects of an unseen companion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01921v1-abstract-full').style.display = 'none'; document.getElementById('2412.01921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, published in Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astronomy and Astrophysics, 2024, 691, L15 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00790">arXiv:2412.00790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00790">pdf</a>, <a href="https://arxiv.org/format/2412.00790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Detection of the Long Period Variable Stars of And II Dwarf Satellite galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abdollahi%2C+H">Hedieh Abdollahi</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=McDonald%2C+I">Iain McDonald</a>, <a href="/search/?searchtype=author&amp;query=Abdollahi%2C+M">Mahdi Abdollahi</a>, <a href="/search/?searchtype=author&amp;query=Saremi%2C+E">Elham Saremi</a>, <a href="/search/?searchtype=author&amp;query=Khosroshahi%2C+H+G">Habib G. Khosroshahi</a>, <a href="/search/?searchtype=author&amp;query=Mahani%2C+H">Hamidreza Mahani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00790v1-abstract-short" style="display: inline;"> We conducted an extensive study of the spheroidal dwarf satellite galaxies around the Andromeda galaxy to produce an extensive catalog of LPV stars. The optical monitoring project consists of 55 dwarf galaxies and four globular clusters that are members of the Local Group. We have made observations of these galaxies using the WFC mounted on the 2.5 m INT in nine different periods, both in the i-ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00790v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00790v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00790v1-abstract-full" style="display: none;"> We conducted an extensive study of the spheroidal dwarf satellite galaxies around the Andromeda galaxy to produce an extensive catalog of LPV stars. The optical monitoring project consists of 55 dwarf galaxies and four globular clusters that are members of the Local Group. We have made observations of these galaxies using the WFC mounted on the 2.5 m INT in nine different periods, both in the i-band filter Sloan and in the filter V-band Harris. We aim to select AGB stars with brightness variations larger than 0.2 mag to investigate the evolutionary processes in these dwarf galaxies. The resulting catalog of LPV stars in Andromeda&#39;s satellite galaxies offers updated information on features like half-light radii, TRGB magnitudes, and distance moduli. This manuscript will review the results obtained for And II galaxy. Using the Sobel filter, we have calculated the distance modulus for this satellite galaxy, which ranges from 23.90 to 24.11 mag. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00790v1-abstract-full').style.display = 'none'; document.getElementById('2412.00790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17118">arXiv:2411.17118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17118">pdf</a>, <a href="https://arxiv.org/format/2411.17118">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ascom.2024.100901">10.1016/j.ascom.2024.100901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Processing of GASKAP-HI pilot survey data using a commercial supercomputer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kemp%2C+I+P">Ian P. Kemp</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Worth%2C+R">Rowan Worth</a>, <a href="/search/?searchtype=author&amp;query=Wake%2C+J">Justin Wake</a>, <a href="/search/?searchtype=author&amp;query=Mitchell%2C+D+A">Daniel A. Mitchell</a>, <a href="/search/?searchtype=author&amp;query=Midgely%2C+S+D">Stuart D. Midgely</a>, <a href="/search/?searchtype=author&amp;query=Tingay%2C+S+J">Steven J. Tingay</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">James Dempsey</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">Steven J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K+E">Kate E. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">Sne啪ana Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17118v2-abstract-short" style="display: inline;"> Modern radio telescopes generate large amounts of data, with the next generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA) expected to feed up to 292 GB of visibilities per second to the science data processor (SDP). However, the continued exponential growth in the power of the world&#39;s largest supercomputers suggests that for the foreseeable future there will be sufficient capa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17118v2-abstract-full').style.display = 'inline'; document.getElementById('2411.17118v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17118v2-abstract-full" style="display: none;"> Modern radio telescopes generate large amounts of data, with the next generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA) expected to feed up to 292 GB of visibilities per second to the science data processor (SDP). However, the continued exponential growth in the power of the world&#39;s largest supercomputers suggests that for the foreseeable future there will be sufficient capacity available to provide for astronomers&#39; needs in processing &#39;science ready&#39; products from the new generation of telescopes, with commercial platforms becoming an option for overflow capacity. The purpose of the current work is to trial the use of commercial high performance computing (HPC) for a large scale processing task in astronomy, in this case processing data from the GASKAP-HI pilot surveys. We delineate a four-step process which can be followed by other researchers wishing to port an existing workflow from a public facility to a commercial provider. We used the process to provide reference images for an ongoing upgrade to ASKAPSoft (the ASKAP SDP software), and to provide science images for the GASKAP collaboration, using the joint deconvolution capability of WSClean. We document the approach to optimising the pipeline to minimise cost and elapsed time at the commercial provider, and give a resource estimate for processing future full survey data. Finally we document advantages, disadvantages, and lessons learned from the project, which will aid other researchers aiming to use commercial supercomputing for radio astronomy imaging. We found the key advantage to be immediate access and high availability, and the main disadvantage to be the need for improved HPC knowledge to take best advantage of the facility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17118v2-abstract-full').style.display = 'none'; document.getElementById('2411.17118v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astronomy and Computing, 2024, 51, 100901 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14149">arXiv:2411.14149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14149">pdf</a>, <a href="https://arxiv.org/format/2411.14149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> X-Shooting ULLYSES: Massive Stars at Low Metallicity X. Physical Parameters and Feedback of Massive Stars in the LMC N11 B Star-Forming Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=G%C3%B3mez-Gonz%C3%A1lez%2C+V+M+A">V. M. A. G贸mez-Gonz谩lez</a>, <a href="/search/?searchtype=author&amp;query=Oskinova%2C+L+M">L. M. Oskinova</a>, <a href="/search/?searchtype=author&amp;query=Hamann%2C+W+-">W. -R. Hamann</a>, <a href="/search/?searchtype=author&amp;query=Todt%2C+H">H. Todt</a>, <a href="/search/?searchtype=author&amp;query=Pauli%2C+D">D. Pauli</a>, <a href="/search/?searchtype=author&amp;query=Serantes%2C+S+R">S. Reyero Serantes</a>, <a href="/search/?searchtype=author&amp;query=Bernini-Peron%2C+M">M. Bernini-Peron</a>, <a href="/search/?searchtype=author&amp;query=Sander%2C+A+C">A. C. Sander</a>, <a href="/search/?searchtype=author&amp;query=Ramachandran%2C+V">V. Ramachandran</a>, <a href="/search/?searchtype=author&amp;query=Vink%2C+J+S">J. S. Vink</a>, <a href="/search/?searchtype=author&amp;query=Crowther%2C+P+A">P. A. Crowther</a>, <a href="/search/?searchtype=author&amp;query=Berlanas%2C+S+R">S. R. Berlanas</a>, <a href="/search/?searchtype=author&amp;query=ud-Doula%2C+A">A. ud-Doula</a>, <a href="/search/?searchtype=author&amp;query=Gormaz-Matamala%2C+A+C">A. C. Gormaz-Matamala</a>, <a href="/search/?searchtype=author&amp;query=Kehrig%2C+C">C. Kehrig</a>, <a href="/search/?searchtype=author&amp;query=Kuiper%2C+R">R. Kuiper</a>, <a href="/search/?searchtype=author&amp;query=Leitherer%2C+C">C. Leitherer</a>, <a href="/search/?searchtype=author&amp;query=Mahy%2C+L">L. Mahy</a>, <a href="/search/?searchtype=author&amp;query=McLeod%2C+A+F">A. F. McLeod</a>, <a href="/search/?searchtype=author&amp;query=Mehner%2C+A">A. Mehner</a>, <a href="/search/?searchtype=author&amp;query=Morrell%2C+N">N. Morrell</a>, <a href="/search/?searchtype=author&amp;query=Shenar%2C+T">T. Shenar</a>, <a href="/search/?searchtype=author&amp;query=Telford%2C+O+G">O. G. Telford</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Tramper%2C+F">F. Tramper</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14149v1-abstract-short" style="display: inline;"> Massive stars lead the ionization and mechanical feedback within young star-forming regions. The Large Magellanic Cloud (LMC) is an ideal galaxy for studying individual massive stars and quantifying their feedback contribution to the environment. We analyze eight exemplary targets in LMC N11 B from the Hubble UV Legacy Library of Young Stars as Essential Standards (ULLYSES) program, using novel sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14149v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14149v1-abstract-full" style="display: none;"> Massive stars lead the ionization and mechanical feedback within young star-forming regions. The Large Magellanic Cloud (LMC) is an ideal galaxy for studying individual massive stars and quantifying their feedback contribution to the environment. We analyze eight exemplary targets in LMC N11 B from the Hubble UV Legacy Library of Young Stars as Essential Standards (ULLYSES) program, using novel spectra from HST (COS and STIS) in the UV, and from VLT (X-shooter) in the optical. We model the spectra of early to late O-type stars by using state-of-the-art PoWR atmosphere models. We determine the stellar and wind parameters (e.g., $T_\star$, $\log g$, $L_{\star}$, $\dot{M}$, $v_\infty$) of the analyzed objects, chemical abundances (C, N, O), ionizing and mechanical feedback ($Q_\mathrm{H}$, $Q_\mathrm{He{\small{I}}}$, $Q_\mathrm{He{\small{II}}}$, $L_\mathrm{mec}$) and X-rays. We report ages of $2-4.5$ Myr and masses of $30-60$ $M_\odot$ for the analyzed stars in N11 B, consistent with a scenario of sequential star formation. We note that the observed wind-momentum luminosity relation is consistent with theoretical predictions. We detect nitrogen enrichment in most of the stars, up to a factor of seven. However, we do not find a correlation between nitrogen enrichment and projected rotational velocity. Finally, based on their spectral type, we estimate the total ionizing photons injected from the O-type stars in N11 B into its environment. We report $\log$ ($\sum$ $Q_\mathrm{H}$)$=50.5$ ph s$^{-1}$, $\log$ ($\sum$ $Q_\mathrm{He{\small{I}}}$)$=49.6$ ph s$^{-1}$ and $\log$ ($\sum$ $Q_\mathrm{He{\small{II}}}$)$=44.4$ ph s$^{-1}$, consistent with the total ionizing budget in N11. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14149v1-abstract-full').style.display = 'none'; document.getElementById('2411.14149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06884">arXiv:2411.06884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06884">pdf</a>, <a href="https://arxiv.org/format/2411.06884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> X-Shooting ULLYSES: Massive stars at low metallicity VI. Atmosphere and mass-loss properties of O-type giants in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Backs%2C+F">Frank Backs</a>, <a href="/search/?searchtype=author&amp;query=Brands%2C+S+A">S. A. Brands</a>, <a href="/search/?searchtype=author&amp;query=de+Koter%2C+A">A. de Koter</a>, <a href="/search/?searchtype=author&amp;query=Kaper%2C+L">L. Kaper</a>, <a href="/search/?searchtype=author&amp;query=Vink%2C+J+S">J. S. Vink</a>, <a href="/search/?searchtype=author&amp;query=Puls%2C+J">J. Puls</a>, <a href="/search/?searchtype=author&amp;query=Sundqvist%2C+J">J. Sundqvist</a>, <a href="/search/?searchtype=author&amp;query=Tramper%2C+F">F. Tramper</a>, <a href="/search/?searchtype=author&amp;query=Sana%2C+H">H. Sana</a>, <a href="/search/?searchtype=author&amp;query=Bernini-Peron%2C+M">M. Bernini-Peron</a>, <a href="/search/?searchtype=author&amp;query=Bestenlehner%2C+J+M">J. M. Bestenlehner</a>, <a href="/search/?searchtype=author&amp;query=Crowther%2C+P+A">P. A. Crowther</a>, <a href="/search/?searchtype=author&amp;query=Hawcroft%2C+C">C. Hawcroft</a>, <a href="/search/?searchtype=author&amp;query=Ignace%2C+R">R. Ignace</a>, <a href="/search/?searchtype=author&amp;query=Kuiper%2C+R">R. Kuiper</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Mahy%2C+L">L. Mahy</a>, <a href="/search/?searchtype=author&amp;query=Marcolino%2C+W">W. Marcolino</a>, <a href="/search/?searchtype=author&amp;query=Najarro%2C+F">F. Najarro</a>, <a href="/search/?searchtype=author&amp;query=Oskinova%2C+L+M">L. M. Oskinova</a>, <a href="/search/?searchtype=author&amp;query=Pauli%2C+D">D. Pauli</a>, <a href="/search/?searchtype=author&amp;query=Ramachandran%2C+V">V. Ramachandran</a>, <a href="/search/?searchtype=author&amp;query=Sander%2C+A+A+C">A. A. C. Sander</a>, <a href="/search/?searchtype=author&amp;query=Verhamme%2C+O">O. Verhamme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06884v1-abstract-short" style="display: inline;"> Mass loss through a stellar wind is an important physical process that steers the evolution of massive stars and controls the properties of their end-of-life products, such as the supernova type and the mass of compact remnants. For an accurate mass loss determination, the inhomogeneities in the wind, known as clumping, needs to be taking into account. We aim to improve empirical estimates of mass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06884v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06884v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06884v1-abstract-full" style="display: none;"> Mass loss through a stellar wind is an important physical process that steers the evolution of massive stars and controls the properties of their end-of-life products, such as the supernova type and the mass of compact remnants. For an accurate mass loss determination, the inhomogeneities in the wind, known as clumping, needs to be taking into account. We aim to improve empirical estimates of mass loss and wind clumping for hot main-sequence massive stars, study the dependence of both properties on the metallicity, and compare the theoretical predictions to our findings. We analyzed the optical and UV spectra of 13 O-type stars in the Small Magellanic Cloud galaxy, which has a metallicity of $\sim 0.2\,Z_\odot$. We quantified the stellar atmosphere, outflow, and wind-clumping properties. To probe the role of metallicity, we compared our findings to studies of Galactic and Large Magellanic Cloud samples that were analyzed with similar methods. We find significant variations in the wind-clumping properties of the target stars, with clumping starting at flow velocities $0.01 - 0.23$ of the terminal wind velocity and reaching clumping factors $f_{\rm cl} = 2 - 30$. In the luminosity ($\log L / L_{\odot} = 5.0 - 6.0$) and metallicity ($Z/Z_{\odot} = 0.2 - 1$) range we considered, we find that the scaling of the mass loss $\dot{M}$ with metallicity $Z$ varies with luminosity. At $\log L/L_{\odot} = 5.75$, we find $\dot{M} \propto Z^m$ with $m = 1.02 \pm 0.30$, in agreement with pioneering work in the field. For lower luminosities, however, we obtain a significantly steeper scaling of $m &gt; 2$. The monotonically decreasing $m(L)$ behavior adds a complexity to the functional description of the mass-loss rate of hot massive stars. Although the trend is present in the predictions, it is much weaker than we found here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06884v1-abstract-full').style.display = 'none'; document.getElementById('2411.06884v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 29 figures. Accepted for publication in Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14937">arXiv:2410.14937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14937">pdf</a>, <a href="https://arxiv.org/format/2410.14937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451169">10.1051/0004-6361/202451169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-Shooting ULLYSES: Massive Stars at low metallicity IX: Empirical constraints on mass-loss rates and clumping parameters for OB supergiants in the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Verhamme%2C+O">O. Verhamme</a>, <a href="/search/?searchtype=author&amp;query=Sundqvist%2C+J">J. Sundqvist</a>, <a href="/search/?searchtype=author&amp;query=de+Koter%2C+A">A. de Koter</a>, <a href="/search/?searchtype=author&amp;query=Sana%2C+H">H. Sana</a>, <a href="/search/?searchtype=author&amp;query=Backs%2C+F">F. Backs</a>, <a href="/search/?searchtype=author&amp;query=Brands%2C+S+A">S. A. Brands</a>, <a href="/search/?searchtype=author&amp;query=Najarro%2C+F">F. Najarro</a>, <a href="/search/?searchtype=author&amp;query=Puls%2C+J">J. Puls</a>, <a href="/search/?searchtype=author&amp;query=Vink%2C+J+S">J. S. Vink</a>, <a href="/search/?searchtype=author&amp;query=Crowther%2C+P+A">P. A. Crowther</a>, <a href="/search/?searchtype=author&amp;query=Kub%C3%A1tov%C3%A1%2C+B">B. Kub谩tov谩</a>, <a href="/search/?searchtype=author&amp;query=Sander%2C+A+A+C">A. A. C. Sander</a>, <a href="/search/?searchtype=author&amp;query=Bernini-Peron%2C+M">M. Bernini-Peron</a>, <a href="/search/?searchtype=author&amp;query=Kuiper%2C+R">R. Kuiper</a>, <a href="/search/?searchtype=author&amp;query=Prinja%2C+R+K">R. K. Prinja</a>, <a href="/search/?searchtype=author&amp;query=Schillemans%2C+P">P. Schillemans</a>, <a href="/search/?searchtype=author&amp;query=Shenar%2C+T">T. Shenar</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=collaboration%2C+X">XShootu collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14937v2-abstract-short" style="display: inline;"> Context. Current implementations of mass loss for hot, massive stars in stellar evolution models include a sharp increase in mass loss when blue supergiants become cooler than Teff 20-22kK. This drastic mass-loss jump has been motivated by the potential presence of a so-called bistability ionisation effect, which may occur for line-driven winds in this temperature region due to recombination of im&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14937v2-abstract-full').style.display = 'inline'; document.getElementById('2410.14937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14937v2-abstract-full" style="display: none;"> Context. Current implementations of mass loss for hot, massive stars in stellar evolution models include a sharp increase in mass loss when blue supergiants become cooler than Teff 20-22kK. This drastic mass-loss jump has been motivated by the potential presence of a so-called bistability ionisation effect, which may occur for line-driven winds in this temperature region due to recombination of important line-driving ions. Aims. We perform quantitative spectroscopy using UV (ULLYSES program) and optical (XShootU collaboration) data for 17 OB-supergiant stars in the LMC (covering the range Teff 14-32kK), deriving absolute constraints on global stellar, wind, and clumping parameters. We examine whether there are any empirical signs of a mass-loss jump in the investigated region, and we study the clumped nature of the wind. Methods. We use a combination of the model atmosphere code fastwind and the genetic algorithm code Kiwi-GA to fit synthetic spectra of a multitude of diagnostic spectral lines in the optical and UV. Results. We find no signs of any upward mass loss jump anywhere in the examined region. Standard theoretical comparison models, which include a strong bistability jump thus severely over predict the empirical mass-loss rates on the cool side of the predicted jump. Additionally, we find that on average about 40% of the total wind mass seems to reside in the diluted medium in between dense clumps. Conclusions. Our derived mass-loss rates suggest that for applications like stellar evolution one should not include a drastic bistability jump in mass loss for stars in the temperature and luminosity region investigated here. The derived high values of interclump density further suggest that the common assumption of an effectively void interclump medium (applied in the vast majority of spectroscopic studies of hot star winds) is not generally valid in this parameter regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14937v2-abstract-full').style.display = 'none'; document.getElementById('2410.14937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 692, A91 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14186">arXiv:2410.14186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14186">pdf</a>, <a href="https://arxiv.org/format/2410.14186">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> An automated method to detect and characterise semi-resolved star clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Miller%2C+A+E">Amy E. Miller</a>, <a href="/search/?searchtype=author&amp;query=Slepian%2C+Z">Zachary Slepian</a>, <a href="/search/?searchtype=author&amp;query=Lada%2C+E+A">Elizabeth A. Lada</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">Richard de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Krumholz%2C+M+R">Mark R. Krumholz</a>, <a href="/search/?searchtype=author&amp;query=Bazkiaei%2C+A+E">Amir E. Bazkiaei</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+J+M">Joana M. Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Ripepi%2C+V">Vincenzo Ripepi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14186v1-abstract-short" style="display: inline;"> We present a novel method for automatically detecting and characterising semi-resolved star clusters: clusters where the observational point-spread function (PSF) is smaller than the cluster&#39;s radius, but larger than the separations between individual stars. We apply our method to a 1.77 deg$^2$ field located in the Large Magellanic Cloud (LMC) using the VISTA survey of the Magellanic Clouds (VMC)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14186v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14186v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14186v1-abstract-full" style="display: none;"> We present a novel method for automatically detecting and characterising semi-resolved star clusters: clusters where the observational point-spread function (PSF) is smaller than the cluster&#39;s radius, but larger than the separations between individual stars. We apply our method to a 1.77 deg$^2$ field located in the Large Magellanic Cloud (LMC) using the VISTA survey of the Magellanic Clouds (VMC), which surveyed the LMC in the $YJK_\text{s}$ bands. Our approach first models the position-dependent PSF to detect and remove point sources from deep $K_\text{s}$ images; this leaves behind extended objects such as star clusters and background galaxies. We then analyse the isophotes of these extended objects to characterise their properties, perform integrated photometry, and finally remove any spurious objects this procedure identifies. We demonstrate our approach in practice on a deep VMC $K_\text{s}$ tile that contains the most active star-forming regions in the LMC: 30 Doradus, N158, N159, and N160. We select this tile because it is the most challenging for automated techniques due both to crowding and nebular emission. We detect 682 candidate star clusters, with an estimated contamination rate of 13% from background galaxies and chance blends of physically unrelated stars. We compare our candidates to publicly available James Webb Space Telescope data and find that at least 80% of our detections appear to be star clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14186v1-abstract-full').style.display = 'none'; document.getElementById('2410.14186v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 17 figures, submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20311">arXiv:2409.20311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20311">pdf</a>, <a href="https://arxiv.org/format/2409.20311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Local HI Absorption towards the Magellanic Cloud foreground using ASKAP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nguyen%2C+H">Hiep Nguyen</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">James Dempsey</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Murray%2C+C+E">Claire E. Murray</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">Sne啪ana Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M+P">Michael P. Busch</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Dawson%2C+J+R">J. R. Dawson</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S">Steven Gibson</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K">Katherine Jameson</a>, <a href="/search/?searchtype=author&amp;query=Joncas%2C+G">Gilles Joncas</a>, <a href="/search/?searchtype=author&amp;query=Kemp%2C+I">Ian Kemp</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">Denis Leahy</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=Miville-Desch%C3%AAnes%2C+M">Marc-Antoine Miville-Desch锚nes</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Seta%2C+A">Amit Seta</a>, <a href="/search/?searchtype=author&amp;query=Soler%2C+J+D">Juan D. Soler</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20311v1-abstract-short" style="display: inline;"> We present the largest Galactic neutral hydrogen HI absorption survey to date, utilizing the Australian SKA Pathfinder Telescope at an unprecedented spatial resolution of 30&#39;&#39;. This survey, GASKAP-HI, unbiasedly targets 2,714 continuum background sources over 250 square degrees in the direction of the Magellanic Clouds, a significant increase compared to a total of 373 sources observed by previous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20311v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20311v1-abstract-full" style="display: none;"> We present the largest Galactic neutral hydrogen HI absorption survey to date, utilizing the Australian SKA Pathfinder Telescope at an unprecedented spatial resolution of 30&#39;&#39;. This survey, GASKAP-HI, unbiasedly targets 2,714 continuum background sources over 250 square degrees in the direction of the Magellanic Clouds, a significant increase compared to a total of 373 sources observed by previous Galactic absorption surveys across the entire Milky Way. We aim to investigate the physical properties of cold (CNM) and warm (WNM) neutral atomic gas in the Milky Way foreground, characterized by two prominent filaments at high Galactic latitudes (between $-45^{\circ}$ and $-25^{\circ}$). We detected strong HI absorption along 462 lines of sight above the 3$蟽$ threshold, achieving an absorption detection rate of 17%. GASKAP-HI&#39;s unprecedented angular resolution allows for simultaneous absorption and emission measurements to sample almost the same gas clouds along a line of sight. A joint Gaussian decomposition is then applied to absorption-emission spectra to provide direct estimates of HI optical depths, temperatures, and column densities for the CNM and WNM components. The thermal properties of CNM components are consistent with those previously observed along a wide range of Solar neighborhood environments, indicating that cold HI properties are widely prevalent throughout the local interstellar medium. Across our region of interest, CNM accounts for ~30% of the total HI gas, with the CNM fraction increasing with column density toward the two filaments. Our analysis reveals an anti-correlation between CNM temperature and its optical depth, which implies that CNM with lower optical depth leads to a higher temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20311v1-abstract-full').style.display = 'none'; document.getElementById('2409.20311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Largest Galactic HI Absorption Survey To Date (GASKAP-HI): Cold Atomic Gas in the Magellanic Cloud foreground using Australian SKA Pathfinder. This paper has 19 pages, 17 figures. This paper has been accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14593">arXiv:2407.14593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14593">pdf</a>, <a href="https://arxiv.org/format/2407.14593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451586">10.1051/0004-6361/202451586 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Binarity at LOw Metallicity (BLOeM): a spectroscopic VLT monitoring survey of massive stars in the SMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shenar%2C+T">T. Shenar</a>, <a href="/search/?searchtype=author&amp;query=Bodensteiner%2C+J">J. Bodensteiner</a>, <a href="/search/?searchtype=author&amp;query=Sana%2C+H">H. Sana</a>, <a href="/search/?searchtype=author&amp;query=Crowther%2C+P+A">P. A. Crowther</a>, <a href="/search/?searchtype=author&amp;query=Lennon%2C+D+J">D. J. Lennon</a>, <a href="/search/?searchtype=author&amp;query=Abdul-Masih%2C+M">M. Abdul-Masih</a>, <a href="/search/?searchtype=author&amp;query=Almeida%2C+L+A">L. A. Almeida</a>, <a href="/search/?searchtype=author&amp;query=Backs%2C+F">F. Backs</a>, <a href="/search/?searchtype=author&amp;query=Berlanas%2C+S+R">S. R. Berlanas</a>, <a href="/search/?searchtype=author&amp;query=Bernini-Peron%2C+M">M. Bernini-Peron</a>, <a href="/search/?searchtype=author&amp;query=Bestenlehner%2C+J+M">J. M. Bestenlehner</a>, <a href="/search/?searchtype=author&amp;query=Bowman%2C+D+M">D. M. Bowman</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+V+A">V. A. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Britavskiy%2C+N">N. Britavskiy</a>, <a href="/search/?searchtype=author&amp;query=de+Koter%2C+A">A. de Koter</a>, <a href="/search/?searchtype=author&amp;query=de+Mink%2C+S+E">S. E. de Mink</a>, <a href="/search/?searchtype=author&amp;query=Deshmukh%2C+K">K. Deshmukh</a>, <a href="/search/?searchtype=author&amp;query=Evans%2C+C+J">C. J. Evans</a>, <a href="/search/?searchtype=author&amp;query=Fabry%2C+M">M. Fabry</a>, <a href="/search/?searchtype=author&amp;query=Gieles%2C+M">M. Gieles</a>, <a href="/search/?searchtype=author&amp;query=Gilkis%2C+A">A. Gilkis</a>, <a href="/search/?searchtype=author&amp;query=Gonz%C3%A1lez-Tor%C3%A0%2C+G">G. Gonz谩lez-Tor脿</a>, <a href="/search/?searchtype=author&amp;query=Gr%C3%A4fener%2C+G">G. Gr盲fener</a>, <a href="/search/?searchtype=author&amp;query=G%C3%B6tberg%2C+Y">Y. G枚tberg</a>, <a href="/search/?searchtype=author&amp;query=Hawcroft%2C+C">C. Hawcroft</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14593v2-abstract-short" style="display: inline;"> Surveys in the Milky Way and Large Magellanic Cloud revealed that the majority of massive stars will interact with companions during their lives. However, knowledge of the binary properties of massive stars at low metallicity, which approaches the conditions of the Early Universe, remains sparse. We present the Binarity at LOw Metallicity (BLOeM) campaign - an ESO large programme designed to obtai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14593v2-abstract-full').style.display = 'inline'; document.getElementById('2407.14593v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14593v2-abstract-full" style="display: none;"> Surveys in the Milky Way and Large Magellanic Cloud revealed that the majority of massive stars will interact with companions during their lives. However, knowledge of the binary properties of massive stars at low metallicity, which approaches the conditions of the Early Universe, remains sparse. We present the Binarity at LOw Metallicity (BLOeM) campaign - an ESO large programme designed to obtain 25 epochs of spectroscopy for 929 massive stars in the SMC - the lowest metallicity conditions in which multiplicity is probed to date (Z = 0.2 Zsun). BLOeM will provide (i) the binary fraction, (ii) the orbital configurations of systems with periods P &lt; 3 yr, (iii) dormant OB+BH binaries, and (iv) a legacy database of physical parameters of massive stars at low metallicity. The stars are observed with the LR02 setup of the giraffe instrument of the Very Large Telescope (3960-4570A, resolving power R=6200; typical signal-to-noise ratio S/N=70-100). This paper utilises the first 9 epochs obtained over a three-month time. We describe the survey and data reduction, perform a spectral classification of the stacked spectra, and construct a Hertzsprung-Russell diagram of the sample via spectral-type and photometric calibrations. The sample covers spectral types from O4 to F5, spanning the effective temperature and luminosity ranges 6.5&lt;Teff/kK&lt;45 and 3.7&lt;log L/Lsun&lt;6.1 and initial masses 8&lt;Mini/Msun&lt;80. It comprises 159 O-type stars, 331 early B-type (B0-3) dwarfs and giants (luminosity classes V-III), 303 early B-type supergiants (II-I), and 136 late-type supergiants. At least 82 stars are Oe/Be stars: 20 O-type and 62 B-type (13% and 11% of the respective samples). In addition, it includes 4 high-mass X-ray binaries, 3 stars resembling luminous blue variables, 2 bloated stripped-star candidates, 2 candidate magnetic stars, and 74 eclipsing binaries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14593v2-abstract-full').style.display = 'none'; document.getElementById('2407.14593v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to A&amp;A on 27 Aug 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 690, A289 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14216">arXiv:2407.14216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14216">pdf</a>, <a href="https://arxiv.org/format/2407.14216">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> X-Shooting ULLYSES: Massive stars at low metallicity VII. Stellar and wind properties of B supergiants in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bernini-Peron%2C+M">M. Bernini-Peron</a>, <a href="/search/?searchtype=author&amp;query=Sander%2C+A+A+C">A. A. C. Sander</a>, <a href="/search/?searchtype=author&amp;query=Ramachandran%2C+V">V. Ramachandran</a>, <a href="/search/?searchtype=author&amp;query=Oskinova%2C+L+M">L. M. Oskinova</a>, <a href="/search/?searchtype=author&amp;query=Vink%2C+J+S">J. S. Vink</a>, <a href="/search/?searchtype=author&amp;query=Verhamme%2C+O">O. Verhamme</a>, <a href="/search/?searchtype=author&amp;query=Najarro%2C+F">F. Najarro</a>, <a href="/search/?searchtype=author&amp;query=Josiek%2C+J">J. Josiek</a>, <a href="/search/?searchtype=author&amp;query=Brands%2C+S+A">S. A. Brands</a>, <a href="/search/?searchtype=author&amp;query=Crowther%2C+P+A">P. A. Crowther</a>, <a href="/search/?searchtype=author&amp;query=G%C3%B3mez-Gonz%C3%A1lez%2C+V+M+A">V. M. A. G贸mez-Gonz谩lez</a>, <a href="/search/?searchtype=author&amp;query=Gormaz-Matamala%2C+A+C">A. C. Gormaz-Matamala</a>, <a href="/search/?searchtype=author&amp;query=Hawcroft%2C+C">C. Hawcroft</a>, <a href="/search/?searchtype=author&amp;query=Kuiper%2C+R">R. Kuiper</a>, <a href="/search/?searchtype=author&amp;query=Mahy%2C+L">L. Mahy</a>, <a href="/search/?searchtype=author&amp;query=Marcolino%2C+W+L+F">W. L. F. Marcolino</a>, <a href="/search/?searchtype=author&amp;query=Martins%2C+L+P">L. P. Martins</a>, <a href="/search/?searchtype=author&amp;query=Mehner%2C+A">A. Mehner</a>, <a href="/search/?searchtype=author&amp;query=Parsons%2C+T+N">T. N. Parsons</a>, <a href="/search/?searchtype=author&amp;query=Pauli%2C+D">D. Pauli</a>, <a href="/search/?searchtype=author&amp;query=Shenar%2C+T">T. Shenar</a>, <a href="/search/?searchtype=author&amp;query=Schootemeijer%2C+A">A. Schootemeijer</a>, <a href="/search/?searchtype=author&amp;query=Todt%2C+H">H. Todt</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=collaboration%2C+t+X">the XShootU collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14216v1-abstract-short" style="display: inline;"> Context. B supergiants (BSGs) represent an important connection between the main sequence and more extreme evolutionary stages of massive stars. Additionally, lying toward the cool end of the hot star regime, determining their wind properties is crucial to constrain the evolution and feedback of massive stars as, for instance, they might manifest the bi-stability jump phenomenon. Aims. We undertak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14216v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14216v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14216v1-abstract-full" style="display: none;"> Context. B supergiants (BSGs) represent an important connection between the main sequence and more extreme evolutionary stages of massive stars. Additionally, lying toward the cool end of the hot star regime, determining their wind properties is crucial to constrain the evolution and feedback of massive stars as, for instance, they might manifest the bi-stability jump phenomenon. Aims. We undertake a detailed analysis of a representative sample of 18 Small Magellanic Cloud (SMC) BSGs within the ULLYSES and XShootU datasets. Our UV and optical analysis spans BSGs from B0 to B8 - covering the bi-stability jump region. We aim to evaluate their evolutionary status and verify what their wind properties say about the bi-stability jump in a low-metallicity environment. Methods. We used the CMFGEN to model the spectra and photometry (from UV to infrared) of our sample. We compare our results with different evolutionary models, with previous determinations in the literature of OB stars, and with diverging mass-loss recipes at the bi-stability jump. Additionally, we provide the first BSG models in the SMC including X-rays. Results. (i) Within a single-stellar evolution framework, the evolutionary status of early BSGs seem less clear than that of late BSGs, which agree with H-shell burning models. (ii) UV analysis shows evidence that BSGs contain X-rays in their atmospheres, for which we provide constraints. In general, we find higher X-ray luminosity (close to the standard log(L_X/L) ~ -7) for early BSGs. For cooler BSGs, lower values are preferred, log(L_X/L) ~ -8.5. (iii) The obtained mass-loss rates suggest neither a jump nor a monotonic decrease with temperature. Instead, a rather constant trend is observed, which is at odds with the increase found for Galactic BSGs. (iv) The wind velocity behavior with temperature shows a sharp drop at ~19 kK, similar to what is observed for Galactic BSGs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14216v1-abstract-full').style.display = 'none'; document.getElementById('2407.14216v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages (23+10)+(22 at Zenodo), 34 figures (21+13)+(21 at Zenodo), 7 tables (3+4)+(1 at Zenodo), accepted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18175">arXiv:2404.18175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18175">pdf</a>, <a href="https://arxiv.org/ps/2404.18175">ps</a>, <a href="https://arxiv.org/format/2404.18175">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> New quasars behind the Magellanic Clouds. II. Spectroscopic confirmation of 136 near-infrared selected candidates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Dennefeld%2C+M">Michel Dennefeld</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">Richard de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+J+E+M">Jessica E. M. Craig</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Pennock%2C+C">Clara Pennock</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18175v1-abstract-short" style="display: inline;"> Quasi-stellar objects (QSOs) are a basis for an absolute reference system for astrometric studies. There is a need for creating such system behind nearby galaxies, to facilitate the measuring of the proper motions of these galaxies. However, the foreground contamination from the galaxies themselves is a problem for the QSO identification. We search for new QSOs behind both Magellanic Clouds, the M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18175v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18175v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18175v1-abstract-full" style="display: none;"> Quasi-stellar objects (QSOs) are a basis for an absolute reference system for astrometric studies. There is a need for creating such system behind nearby galaxies, to facilitate the measuring of the proper motions of these galaxies. However, the foreground contamination from the galaxies themselves is a problem for the QSO identification. We search for new QSOs behind both Magellanic Clouds, the Magellanic Bridge, and the Magellanic Stream. We identify QSO candidates with a combination of near-infrared colors and variability criteria from the public ESO Visual and Infrared Survey Telescope for Astronomy (VISTA) Magellanic Clouds (VMC) survey. We confirm their nature from broad emission lines with low-resolution optical spectroscopy. We confirmed the QSO nature of 136 objects. They are distributed as follows: 12 behind the LMC, 37 behind the SMC, 63 behind the Bridge, and 24 behind the Stream. The QSOs span a redshift range from z~0.1 to z~2.9. A comparison of our quasar selection with the Quaia quasar catalog, based on Gaia low-resolution spectra, yields a selection and confirmation success rate of 6-19%, depending on whether the quality of the photometry, the magnitude ranges and the colors are considered. Our candidate list is rather incomplete, but the objects in it are likely to be confirmed as quasars with ~90% probability. Finally, we report a list of 3609 objects across the entire VMC survey that match our color and variability selection criteria; only 1249 of them have Gaia counterparts. Our combined infrared color and variability criteria for QSO selection prove to be efficient - ~90% of the observed candidates are bona fide QSOs and allow to generate a list of new high-probability quasar candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18175v1-abstract-full').style.display = 'none'; document.getElementById('2404.18175v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06755">arXiv:2403.06755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06755">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ad2601">10.3847/1538-3881/ad2601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SMC-Last Extracted Photometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kuchar%2C+T+A">T. A. Kuchar</a>, <a href="/search/?searchtype=author&amp;query=Sloan%2C+G+C">G. C. Sloan</a>, <a href="/search/?searchtype=author&amp;query=Mizuno%2C+D+R">D. R. Mizuno</a>, <a href="/search/?searchtype=author&amp;query=Kraemer%2C+K+E">Kathleen E. Kraemer</a>, <a href="/search/?searchtype=author&amp;query=Boyer%2C+M+L">M. L. Boyer</a>, <a href="/search/?searchtype=author&amp;query=Groenewegen%2C+M+A+T">Martin A. T. Groenewegen</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+O+C">O. C. Jones</a>, <a href="/search/?searchtype=author&amp;query=Kemper%2C+F">F. Kemper</a>, <a href="/search/?searchtype=author&amp;query=McDonald%2C+I">Iain McDonald</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+J+M">Joana M. Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Sewi%C5%82o%2C+M">Marta Sewi艂o</a>, <a href="/search/?searchtype=author&amp;query=Srinivasan%2C+S">Sundar Srinivasan</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Zijlstra%2C+A">Albert Zijlstra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06755v1-abstract-short" style="display: inline;"> We present point-source photometry from the Spitzer Space Telescope&#39;s final survey of the Small Magellanic Cloud (SMC). We mapped 30 square degrees in two epochs in 2017, with the second extending to early 2018 at 3.6 and 4.5 microns using the Infrared Array Camera. This survey duplicates the footprint from the SAGE-SMC program in 2008. Together, these surveys cover a nearly 10 yr temporal baselin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06755v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06755v1-abstract-full" style="display: none;"> We present point-source photometry from the Spitzer Space Telescope&#39;s final survey of the Small Magellanic Cloud (SMC). We mapped 30 square degrees in two epochs in 2017, with the second extending to early 2018 at 3.6 and 4.5 microns using the Infrared Array Camera. This survey duplicates the footprint from the SAGE-SMC program in 2008. Together, these surveys cover a nearly 10 yr temporal baseline in the SMC. We performed aperture photometry on the mosaicked maps produced from the new data. We did not use any prior catalogs as inputs for the extractor in order to be sensitive to any moving objects (e.g., foreground brown dwarfs) and other transient phenomena (e.g., cataclysmic variables or FU Ori-type eruptions). We produced a point-source catalog with high-confidence sources for each epoch as well as combined-epoch catalog. For each epoch and the combined-epoch data, we also produced a more complete archive with lower-confidence sources. All of these data products will be available to the community at the Infrared Science Archive. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06755v1-abstract-full').style.display = 'none'; document.getElementById('2403.06755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AJ 167 149 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00547">arXiv:2403.00547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00547">pdf</a>, <a href="https://arxiv.org/format/2403.00547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The EDIBLES Survey. VIII. Band profile alignment of diffuse interstellar bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ebenbichler%2C+A">A. Ebenbichler</a>, <a href="/search/?searchtype=author&amp;query=Smoker%2C+J+V">J. V. Smoker</a>, <a href="/search/?searchtype=author&amp;query=Lallement%2C+R">R. Lallement</a>, <a href="/search/?searchtype=author&amp;query=Farhang%2C+A">A. Farhang</a>, <a href="/search/?searchtype=author&amp;query=Cox%2C+N+L+J">N. L. J. Cox</a>, <a href="/search/?searchtype=author&amp;query=Joblin%2C+C">C. Joblin</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/?searchtype=author&amp;query=Przybilla%2C+N">N. Przybilla</a>, <a href="/search/?searchtype=author&amp;query=Ehrenfreund%2C+P">P. Ehrenfreund</a>, <a href="/search/?searchtype=author&amp;query=Cami%2C+J">J. Cami</a>, <a href="/search/?searchtype=author&amp;query=Cordiner%2C+M">M. Cordiner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00547v1-abstract-short" style="display: inline;"> Context: There have been many attempts to identify families of diffuse interstellar bands (DIBs) with perfectly correlating band strengths. Although major efforts have been made to classify broadly based DIB families and important insights have been gained, no family has been identified with sufficient accuracy or statistical significance to prove that a series of selected DIBs originates from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00547v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00547v1-abstract-full" style="display: none;"> Context: There have been many attempts to identify families of diffuse interstellar bands (DIBs) with perfectly correlating band strengths. Although major efforts have been made to classify broadly based DIB families and important insights have been gained, no family has been identified with sufficient accuracy or statistical significance to prove that a series of selected DIBs originates from the same carrier. This can be attributed in part to the exclusive use of equivalent widths to establish DIB families. Aims: In a change of strategy, we search for DIBs that are highly correlated in both band strength and profile shape. This approach increases the chance of correlating DIBs being members of one family and originating from the same carrier molecule. We also search for correlations between DIB profile families and atomic interstellar lines, with the goal of further chemically constraining possible DIB carriers. Methods: We adapted the well-known method of time-series alignment to perform a spectral alignment; that is, DIB alignment. In a second step, we analysed the alignment results using a clustering analysis. This method required a statistically significant data set of DIB sight lines. The ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) data were perfectly suited for this application. Results: We report eight DIB families with correlating strengths and profiles, as well as four previously unreported DIBs in the visual range, found using DIB alignment. All profile family members show Pearson correlation coefficients in band strength higher than 0.9. In particular, we report the 6614 - 6521 AA DIB pair, in which both DIBs show the same triple-peak substructure and an unprecedented band strength Pearson correlation coefficient of 0.9935. The presented approach opens up new perspectives that can guide the laboratory search for DIB carriers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00547v1-abstract-full').style.display = 'none'; document.getElementById('2403.00547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 53 figures, Accepted for publication in Astronomy &amp; Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12770">arXiv:2401.12770</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12770">pdf</a>, <a href="https://arxiv.org/format/2401.12770">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The VMC Survey -- L. Type II Cepheids in the Magellanic Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sicignano%2C+T">Teresa Sicignano</a>, <a href="/search/?searchtype=author&amp;query=Ripepi%2C+V">Vincenzo Ripepi</a>, <a href="/search/?searchtype=author&amp;query=Marconi%2C+M">Marcella Marconi</a>, <a href="/search/?searchtype=author&amp;query=Molinaro%2C+R">Roberto Molinaro</a>, <a href="/search/?searchtype=author&amp;query=Bhardwaj%2C+A">Anupam Bhardwaj</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L Cioni</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">Richard de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Storm%2C+J">Jesper Storm</a>, <a href="/search/?searchtype=author&amp;query=Groenewegen%2C+M+A+T">Martin A T Groenewegen</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D Ivanov</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th van Loon</a>, <a href="/search/?searchtype=author&amp;query=De+Somma%2C+G">Giulia De Somma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12770v1-abstract-short" style="display: inline;"> Type II Cepheids (T2C) are less frequently used counterparts of classical Cepheids which provide the primary calibration of the distance ladder for measuring $H_0$ in the local Universe. In the era of the Hubble Tension, T2C variables with the RR Lyrae stars (RRL) and the tip of the red giant branch (TRGB) can potentially provide classical Cepheid independent calibration of the cosmic distance lad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12770v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12770v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12770v1-abstract-full" style="display: none;"> Type II Cepheids (T2C) are less frequently used counterparts of classical Cepheids which provide the primary calibration of the distance ladder for measuring $H_0$ in the local Universe. In the era of the Hubble Tension, T2C variables with the RR Lyrae stars (RRL) and the tip of the red giant branch (TRGB) can potentially provide classical Cepheid independent calibration of the cosmic distance ladder. Our goal is to provide an absolute calibration of the Period-Luminosity, Period-Luminosity-Color and Period-Wesenheit relations(PL,PLC and PW) of T2Cs in the Large Magellanic Cloud (LMC). We exploited time-series photometry in the near-infrared (NIR) bands for a sample of more than 320 T2Cs in the Magellanic Clouds (MC). These observations were acquired during 2009-2018 in the context of the VMC ESO public survey (The VISTA near-infrared YJKs survey of the Magellanic System). The NIR photometry was supplemented with well-sampled optical light curves and accurate pulsation periods from the OGLE IV survey and the Gaia mission. We used the best-quality NIR light curves to generate custom templates for modelling sparsely sampled light curves in YJKs bands; in turn, we derived accurate and precise intensity-averaged mean magnitudes and pulsation amplitudes of 339 T2Cs in the MC. We used optical and NIR mean magnitudes to derive PL/PLC/PW relations for T2Cs in multiple bands, which were calibrated with the geometric distance to the LMC and with the Gaia parallaxes. We used our new empirical calibrations of PL/PW relations to obtain distances to 22 T2C-host Galactic globular clusters, which were found to be systematically smaller by 0.1 mag and 0.03-0.06 mag compared with the literature. A better agreement is found between our distances and those based on RRLs in globular clusters, providing strong support for using these population II stars with the TRGB for future distance scale studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12770v1-abstract-full').style.display = 'none'; document.getElementById('2401.12770v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11024">arXiv:2401.11024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.11024">pdf</a>, <a href="https://arxiv.org/format/2401.11024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The MeerKAT 1.3 GHz Survey of the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cotton%2C+W">W. Cotton</a>, <a href="/search/?searchtype=author&amp;query=Filipovic%2C+M+D">M. D. Filipovic</a>, <a href="/search/?searchtype=author&amp;query=Camilo%2C+F">F. Camilo</a>, <a href="/search/?searchtype=author&amp;query=Indebetouw%2C+R">R. Indebetouw</a>, <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">R. Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Anih%2C+J+O">J. O. Anih</a>, <a href="/search/?searchtype=author&amp;query=Baker%2C+M">M. Baker</a>, <a href="/search/?searchtype=author&amp;query=Bastian%2C+T+.+S">T . S. Bastian</a>, <a href="/search/?searchtype=author&amp;query=Bojicic%2C+I">I. Bojicic</a>, <a href="/search/?searchtype=author&amp;query=Carli%2C+E">E. Carli</a>, <a href="/search/?searchtype=author&amp;query=Cavallaro%2C+F">F. Cavallaro</a>, <a href="/search/?searchtype=author&amp;query=Crawford%2C+E+J">E. J. Crawford</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">S. Dai</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Levin%2C+L">L. Levin</a>, <a href="/search/?searchtype=author&amp;query=Luken%2C+K">K. Luken</a>, <a href="/search/?searchtype=author&amp;query=Pennock%2C+C+.+M">C . M. Pennock</a>, <a href="/search/?searchtype=author&amp;query=Rajabpour%2C+N">N. Rajabpour</a>, <a href="/search/?searchtype=author&amp;query=Stappers%2C+B+W">B. W. Stappers</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Zijlstra%2C+A+A">A. A. Zijlstra</a>, <a href="/search/?searchtype=author&amp;query=Buchner%2C+S">S. Buchner</a>, <a href="/search/?searchtype=author&amp;query=Geyer%2C+M">M. Geyer</a>, <a href="/search/?searchtype=author&amp;query=Goedhart%2C+S">S. Goedhart</a>, <a href="/search/?searchtype=author&amp;query=Serylak%2C+M">M. Serylak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11024v1-abstract-short" style="display: inline;"> We present new radio continuum images and a source catalogue from the MeerKAT survey in the direction of the Small Magellanic Cloud (SMC). The observations, at a central frequency of 1.3 GHz across a bandwidth of 0.8 GHz, encompass a field of view ~7 x 7 degrees and result in images with resolution of 8 arcsec. The median broad-band Stokes I image Root Mean Squared noise value is ~11 microJy/beam.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11024v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11024v1-abstract-full" style="display: none;"> We present new radio continuum images and a source catalogue from the MeerKAT survey in the direction of the Small Magellanic Cloud (SMC). The observations, at a central frequency of 1.3 GHz across a bandwidth of 0.8 GHz, encompass a field of view ~7 x 7 degrees and result in images with resolution of 8 arcsec. The median broad-band Stokes I image Root Mean Squared noise value is ~11 microJy/beam. The catalogue produced from these images contains 108,330 point sources and 517 compact extended sources. We also describe a UHF (544-1088 MHz) single pointing observation. We report the detection of a new confirmed Supernova Remnant (SNR) (MCSNR J0100-7211) with an X-ray magnetar at its centre and 10 new SNR candidates. This is in addition to the detection of 21 previously confirmed SNRs and two previously noted SNR candidates. Our new SNR candidates have typical surface brightness an order of magnitude below those previously known, and on the whole they are larger. The high sensitivity of the MeerKAT survey also enabled us to detect the bright end of the SMC Planetary Nebulae (PNe) sample - point-like radio emission is associated with 38 of 102 optically known PNe, of which 19 are new detections. Lastly, we present the detection of three foreground radio stars amidst 11 circularly polarised sources, and a few examples of morphologically interesting background radio galaxies from which the radio ring galaxy ESO 029-G034 may represent a new type of radio object. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11024v1-abstract-full').style.display = 'none'; document.getElementById('2401.11024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 27 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07750">arXiv:2312.07750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07750">pdf</a>, <a href="https://arxiv.org/format/2312.07750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> A Galactic Eclipse: The Small Magellanic Cloud is Forming Stars in Two, Superimposed Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Murray%2C+C+E">Claire E. Murray</a>, <a href="/search/?searchtype=author&amp;query=Hasselquist%2C+S">Sten Hasselquist</a>, <a href="/search/?searchtype=author&amp;query=Peek%2C+J+E+G">Joshua E. G. Peek</a>, <a href="/search/?searchtype=author&amp;query=Lindberg%2C+C+W">Christina Willecke Lindberg</a>, <a href="/search/?searchtype=author&amp;query=Almeida%2C+A">Andres Almeida</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+Y">Yumi Choi</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+J+E+M">Jessica E. M. Craig</a>, <a href="/search/?searchtype=author&amp;query=Denes%2C+H">Helga Denes</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Di+Teodoro%2C+E+M">Enrico M. Di Teodoro</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Gerrard%2C+I+A">Isabella A. Gerrard</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">Steven J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">Denis Leahy</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Nidever%2C+D">David Nidever</a>, <a href="/search/?searchtype=author&amp;query=Nguyen%2C+H">Hiep Nguyen</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Tarantino%2C+E">Elizabeth Tarantino</a>, <a href="/search/?searchtype=author&amp;query=Uscanga%2C+L">Lucero Uscanga</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07750v1-abstract-short" style="display: inline;"> The structure and dynamics of the star-forming disk of the Small Magellanic Cloud (SMC) have long confounded us. The SMC is widely used as a prototype for galactic physics at low metallicity, and yet we fundamentally lack an understanding of the structure of its interstellar medium (ISM). In this work, we present a new model for the SMC by comparing the kinematics of young, massive stars with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07750v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07750v1-abstract-full" style="display: none;"> The structure and dynamics of the star-forming disk of the Small Magellanic Cloud (SMC) have long confounded us. The SMC is widely used as a prototype for galactic physics at low metallicity, and yet we fundamentally lack an understanding of the structure of its interstellar medium (ISM). In this work, we present a new model for the SMC by comparing the kinematics of young, massive stars with the structure of the ISM traced by high-resolution observations of neutral atomic hydrogen (HI) from the Galactic Australian Square Kilometer Array Pathfinder survey (GASKAP-HI). Specifically, we identify thousands of young, massive stars with precise radial velocity constraints from the Gaia and APOGEE surveys and match these stars to the ISM structures in which they likely formed. By comparing the average dust extinction towards these stars, we find evidence that the SMC is composed of two structures with distinct stellar and gaseous chemical compositions. We construct a simple model that successfully reproduces the observations and shows that the ISM of the SMC is arranged into two, superimposed, star-forming systems with similar gas mass separated by ~5 kpc along the line of sight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07750v1-abstract-full').style.display = 'none'; document.getElementById('2312.07750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ accepted. 20 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02180">arXiv:2311.02180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.02180">pdf</a>, <a href="https://arxiv.org/format/2311.02180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> ALMA Observations of Supernova Remnant N49 in the Large Magellanic Cloud. II. Non-LTE Analysis of Shock-heated Molecular Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sano%2C+H">H. Sano</a>, <a href="/search/?searchtype=author&amp;query=Yamane%2C+Y">Y. Yamane</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Furuya%2C+K">K. Furuya</a>, <a href="/search/?searchtype=author&amp;query=Fukui%2C+Y">Y. Fukui</a>, <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">R. Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Bamba%2C+A">A. Bamba</a>, <a href="/search/?searchtype=author&amp;query=Enokiya%2C+R">R. Enokiya</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">M. D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Indebetouw%2C+R">R. Indebetouw</a>, <a href="/search/?searchtype=author&amp;query=Inoue%2C+T">T. Inoue</a>, <a href="/search/?searchtype=author&amp;query=Kawamura%2C+A">A. Kawamura</a>, <a href="/search/?searchtype=author&amp;query=Laki%C4%87evi%C4%87%2C+M">M. Laki膰evi膰</a>, <a href="/search/?searchtype=author&amp;query=Law%2C+C+J">C. J. Law</a>, <a href="/search/?searchtype=author&amp;query=Mizuno%2C+N">N. Mizuno</a>, <a href="/search/?searchtype=author&amp;query=Murase%2C+T">T. Murase</a>, <a href="/search/?searchtype=author&amp;query=Onishi%2C+T">T. Onishi</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+S">S. Park</a>, <a href="/search/?searchtype=author&amp;query=Plucinsky%2C+P+P">P. P. Plucinsky</a>, <a href="/search/?searchtype=author&amp;query=Rho%2C+J">J. Rho</a>, <a href="/search/?searchtype=author&amp;query=Richards%2C+A+M+S">A. M. S. Richards</a>, <a href="/search/?searchtype=author&amp;query=Rowell%2C+G">G. Rowell</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">M. Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Seok%2C+J">J. Seok</a>, <a href="/search/?searchtype=author&amp;query=Sharda%2C+P">P. Sharda</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02180v1-abstract-short" style="display: inline;"> We present the first compelling evidence of shock-heated molecular clouds associated with the supernova remnant (SNR) N49 in the Large Magellanic Cloud (LMC). Using $^{12}$CO($J$ = 2-1, 3-2) and $^{13}$CO($J$ = 2-1) line emission data taken with the Atacama Large Millimeter/Submillimeter Array, we derived the H$_2$ number density and kinetic temperature of eight $^{13}$CO-detected clouds using the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02180v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02180v1-abstract-full" style="display: none;"> We present the first compelling evidence of shock-heated molecular clouds associated with the supernova remnant (SNR) N49 in the Large Magellanic Cloud (LMC). Using $^{12}$CO($J$ = 2-1, 3-2) and $^{13}$CO($J$ = 2-1) line emission data taken with the Atacama Large Millimeter/Submillimeter Array, we derived the H$_2$ number density and kinetic temperature of eight $^{13}$CO-detected clouds using the large velocity gradient approximation at a resolution of 3.5$&#39;&#39;$ (~0.8 pc at the LMC distance). The physical properties of the clouds are divided into two categories: three of them near the shock front show the highest temperatures of ~50 K with densities of ~500-700 cm$^{-3}$, while other clouds slightly distant from the SNR have moderate temperatures of ~20 K with densities of ~800-1300 cm$^{-3}$. The former clouds were heated by supernova shocks, but the latter were dominantly affected by the cosmic-ray heating. These findings are consistent with the efficient production of X-ray recombining plasma in N49 due to thermal conduction between the cold clouds and hot plasma. We also find that the gas pressure is roughly constant except for the three shock-engulfed clouds inside or on the SNR shell, suggesting that almost no clouds have evaporated within the short SNR age of ~4800 yr. This result is compatible with the shock-interaction model with dense and clumpy clouds inside a low-density wind bubble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02180v1-abstract-full').style.display = 'none'; document.getElementById('2311.02180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures, 1 table, accepted for publication in The Astrophysical Journal (ApJ)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16533">arXiv:2310.16533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16533">pdf</a>, <a href="https://arxiv.org/format/2310.16533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3300">10.1093/mnras/stad3300 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ATCA Study of Small Magellanic Cloud Supernova Remnant 1E 0102.2-7219 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">Rami Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">M. D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">S. Dai</a>, <a href="/search/?searchtype=author&amp;query=Sano%2C+H">H. Sano</a>, <a href="/search/?searchtype=author&amp;query=Kothes%2C+R">R. Kothes</a>, <a href="/search/?searchtype=author&amp;query=Payne%2C+J+L">J. L. Payne</a>, <a href="/search/?searchtype=author&amp;query=Bozzetto%2C+L+M">L. M. Bozzetto</a>, <a href="/search/?searchtype=author&amp;query=Brose%2C+R">R. Brose</a>, <a href="/search/?searchtype=author&amp;query=Collischon%2C+C">C. Collischon</a>, <a href="/search/?searchtype=author&amp;query=Crawford%2C+E+J">E. J. Crawford</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+T">T. Hill</a>, <a href="/search/?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/?searchtype=author&amp;query=Knies%2C+J">J. Knies</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Macgregor%2C+P+J">P. J. Macgregor</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Manojlovi%C4%87%2C+P">P. Manojlovi膰</a>, <a href="/search/?searchtype=author&amp;query=Mart%C3%ADn%2C+S">S. Mart铆n</a>, <a href="/search/?searchtype=author&amp;query=Matthew%2C+C">C. Matthew</a>, <a href="/search/?searchtype=author&amp;query=Ralph%2C+N+O">N. O. Ralph</a>, <a href="/search/?searchtype=author&amp;query=Rowell%2C+G">G. Rowell</a>, <a href="/search/?searchtype=author&amp;query=Ruiter%2C+A+J">A. J. Ruiter</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">M. Sasaki</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16533v1-abstract-short" style="display: inline;"> We present new and archival Australia Telescope Compact Array and Atacama Large Millimeter/submillimeter Array data of the Small Magellanic Cloud supernova remnant 1E 0102.2-7219 at 2100, 5500, 9000, and 108000 MHz; as well as Hi data provided by the Australian Square Kilometre Array Pathfinder. The remnant shows a ring-like morphology with a mean radius of 6.2 pc. The 5500 MHz image reveals a bri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16533v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16533v1-abstract-full" style="display: none;"> We present new and archival Australia Telescope Compact Array and Atacama Large Millimeter/submillimeter Array data of the Small Magellanic Cloud supernova remnant 1E 0102.2-7219 at 2100, 5500, 9000, and 108000 MHz; as well as Hi data provided by the Australian Square Kilometre Array Pathfinder. The remnant shows a ring-like morphology with a mean radius of 6.2 pc. The 5500 MHz image reveals a bridge-like structure, seen for the first time in a radio image. This structure is also visible in both optical and X-ray images. In the 9000 MHz image we detect a central feature that has a flux density of 4.3 mJy but rule out a pulsar wind nebula origin, due to the lack of significant polarisation towards the central feature with an upper limit of 4 per cent. The mean fractional polarisation for 1E 0102.2-7219 is 7 +- 1 and 12 +- 2 per cent for 5500 and 9000 MHz, respectively. The spectral index for the entire remnant is -0.61 +- 0.01. We estimate the line-of-sight magnetic field strength in the direction of 1E 0102.2-7219 of ~44 microG with an equipartition field of 65 +- 5 microG. This latter model, uses the minimum energy of the sum of the magnetic field and cosmic ray electrons only. We detect an Hi cloud towards this remnant at the velocity range of ~160-180 km s-1 and a cavity-like structure at the velocity of 163.7-167.6 km s-1. We do not detect CO emission towards 1E 0102.2-7219. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16533v1-abstract-full').style.display = 'none'; document.getElementById('2310.16533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03259">arXiv:2310.03259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03259">pdf</a>, <a href="https://arxiv.org/format/2310.03259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243910">10.1051/0004-6361/202243910 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The EDIBLES Survey. VII. A survey of C2 and C3 in interstellar clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fan%2C+H">Haoyu Fan</a>, <a href="/search/?searchtype=author&amp;query=Rocha%2C+C+M+R">Carlos M. R. Rocha</a>, <a href="/search/?searchtype=author&amp;query=Cordiner%2C+M">Martin Cordiner</a>, <a href="/search/?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/?searchtype=author&amp;query=Cox%2C+N+L+J">Nick L. J. Cox</a>, <a href="/search/?searchtype=author&amp;query=Farhang%2C+A">Amin Farhang</a>, <a href="/search/?searchtype=author&amp;query=Smoker%2C+J">Jonathan Smoker</a>, <a href="/search/?searchtype=author&amp;query=Roueff%2C+E">Evelyne Roueff</a>, <a href="/search/?searchtype=author&amp;query=Ehrenfreund%2C+P">Pascale Ehrenfreund</a>, <a href="/search/?searchtype=author&amp;query=Salama%2C+F">Farid Salama</a>, <a href="/search/?searchtype=author&amp;query=Foing%2C+B+H">Bernard H. Foing</a>, <a href="/search/?searchtype=author&amp;query=Lallement%2C+R">Rosine Lallement</a>, <a href="/search/?searchtype=author&amp;query=MacIsaac%2C+H">Heather MacIsaac</a>, <a href="/search/?searchtype=author&amp;query=Kulik%2C+K">Klay Kulik</a>, <a href="/search/?searchtype=author&amp;query=Sarre%2C+P">Peter Sarre</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Cami%2C+J">Jan Cami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03259v2-abstract-short" style="display: inline;"> We carried out a sensitive survey of C$_2$ and C$_3$ using the EDIBLES data set. We also expanded our searches to C$_4$, C$_5$, and $^{13}$C$^{12}$C isotopologue in the most molecule-rich sightlines. We fit synthetic spectra generated following a physical excitation model to the C$_2$ (2-0) Phillips band to obtain the C$_2$ column density ($N$) as well as the kinetic temperature (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03259v2-abstract-full').style.display = 'inline'; document.getElementById('2310.03259v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03259v2-abstract-full" style="display: none;"> We carried out a sensitive survey of C$_2$ and C$_3$ using the EDIBLES data set. We also expanded our searches to C$_4$, C$_5$, and $^{13}$C$^{12}$C isotopologue in the most molecule-rich sightlines. We fit synthetic spectra generated following a physical excitation model to the C$_2$ (2-0) Phillips band to obtain the C$_2$ column density ($N$) as well as the kinetic temperature ($T_\textrm{kin}$) and number density ($n$) of the host cloud. The C$_3$ molecule was measured through its $\tilde{A} - \tilde{X}$ (000-000) electronic origin band system. We simulated the excitation of this band with a double-temperature Boltzmann distribution. We present the largest combined survey of C$_2$ and C$_3$ to date in which the individual transitions can be resolved. In total we detected C$_2$ in 51 velocity components along 40 sightlines, and C$_3$ in 31 velocity components along 27 sightlines. The two molecules are detected in the same velocity components. We find a very good correlation between $N$(C$_2$) and $N$(C$_3$) with Pearson $r = 0.93$ and an average $N$(C$_2$)/$N$(C$_3$) ratio of 15.5$\pm$1.4. A comparison with the behaviour of the C$_2$ DIBs shows that there are no clear differences among sightlines with and without detection of C$_2$ and C$_3$. This is in direct contrast to the better-studied non-C$_2$ DIBs who have reduced strengths in molecule-rich environments. We also identify for the first time the $Q$(2), $Q$(3), and $Q$(4) transitions of the $^{13}$C$^{12}$C (2-0) Phillips band in a stacked average spectrum, and estimate the isotopic ratio of carbon $^{12}$C/$^{13}$C as 79$\pm$8. Our search for the C$_4$ and C$_5$ optical bands was unsuccessful. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03259v2-abstract-full').style.display = 'none'; document.getElementById('2310.03259v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 23 figures. To appear in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 681, A6 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10755">arXiv:2309.10755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10755">pdf</a>, <a href="https://arxiv.org/format/2309.10755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2718">10.1093/mnras/stad2718 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new method for spatially resolving the turbulence driving mixture in the ISM with application to the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gerrard%2C+I+A">Isabella A. Gerrard</a>, <a href="/search/?searchtype=author&amp;query=Federrath%2C+C">Christoph Federrath</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">Naomi M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Marchal%2C+A">Antoine Marchal</a>, <a href="/search/?searchtype=author&amp;query=Joncas%2C+G">Gilles Joncas</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">Sne啪ana Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J">John Dickey</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Yik Ki Ma</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">James Dempsey</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10755v1-abstract-short" style="display: inline;"> Turbulence plays a crucial role in shaping the structure of the interstellar medium. The ratio of the three-dimensional density contrast ($蟽_{蟻/蟻_0}$) to the turbulent sonic Mach number ($\mathcal{M}$) of an isothermal, compressible gas describes the ratio of solenoidal to compressive modes in the turbulent acceleration field of the gas, and is parameterised by the turbulence driving parameter:&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10755v1-abstract-full').style.display = 'inline'; document.getElementById('2309.10755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10755v1-abstract-full" style="display: none;"> Turbulence plays a crucial role in shaping the structure of the interstellar medium. The ratio of the three-dimensional density contrast ($蟽_{蟻/蟻_0}$) to the turbulent sonic Mach number ($\mathcal{M}$) of an isothermal, compressible gas describes the ratio of solenoidal to compressive modes in the turbulent acceleration field of the gas, and is parameterised by the turbulence driving parameter: $b=蟽_{蟻/蟻_0}/\mathcal{M}$. The turbulence driving parameter ranges from $b=1/3$ (purely solenoidal) to $b=1$ (purely compressive), with $b=0.38$ characterising the natural mixture (1/3~compressive, 2/3~solenoidal) of the two driving modes. Here we present a new method for recovering $蟽_{蟻/蟻_0}$, $\mathcal{M}$, and $b$, from observations on galactic scales, using a roving kernel to produce maps of these quantities from column density and centroid velocity maps. We apply our method to high-resolution HI emission observations of the Small Magellanic Cloud (SMC) from the GASKAP-HI survey. We find that the turbulence driving parameter varies between $b\sim 0.3$ and $b\sim 1.0$ within the main body of the SMC, but the median value converges to $b\sim0.51$, suggesting that the turbulence is overall driven more compressively ($b&gt;0.38$). We observe no correlation between the $b$ parameter and HI or H$伪$ intensity, indicating that compressive driving of HI turbulence cannot be determined solely by observing HI or H$伪$ emission density, and that velocity information must also be considered. Further investigation is required to link our findings to potential driving mechanisms such as star-formation feedback, gravitational collapse, or cloud-cloud collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10755v1-abstract-full').style.display = 'none'; document.getElementById('2309.10755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 16 figures, accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14027">arXiv:2308.14027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14027">pdf</a>, <a href="https://arxiv.org/ps/2308.14027">ps</a>, <a href="https://arxiv.org/format/2308.14027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202037581">10.1051/0004-6361/202037581 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The EDIBLES survey VI. Searching for time variations of interstellar absorption features </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Farhang%2C+A">Amin Farhang</a>, <a href="/search/?searchtype=author&amp;query=Smoker%2C+J">Jonathan Smoker</a>, <a href="/search/?searchtype=author&amp;query=Cox%2C+N+L+J">Nick L. J. Cox</a>, <a href="/search/?searchtype=author&amp;query=Cami%2C+J">Jan Cami</a>, <a href="/search/?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&amp;query=Sarre%2C+P+J">Peter J. Sarre</a>, <a href="/search/?searchtype=author&amp;query=Khosroshahi%2C+H+G">Habib G. Khosroshahi</a>, <a href="/search/?searchtype=author&amp;query=Ehrenfreund%2C+P">Pascale Ehrenfreund</a>, <a href="/search/?searchtype=author&amp;query=Foing%2C+B+H">Bernard H. Foing</a>, <a href="/search/?searchtype=author&amp;query=Kaper%2C+L">Lex Kaper</a>, <a href="/search/?searchtype=author&amp;query=Laverick%2C+M">Mike Laverick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14027v1-abstract-short" style="display: inline;"> Interstellar lines observed toward stellar targets change slowly over long timescales, mainly due to the proper motion of the background target relative to the intervening clouds. On longer timescales, the cloud&#39;s slowly changing physical and chemical conditions can also cause variation. We searched for systematic variations in the absorption profiles of the diffuse interstellar bands (DIBs) and i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14027v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14027v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14027v1-abstract-full" style="display: none;"> Interstellar lines observed toward stellar targets change slowly over long timescales, mainly due to the proper motion of the background target relative to the intervening clouds. On longer timescales, the cloud&#39;s slowly changing physical and chemical conditions can also cause variation. We searched for systematic variations in the absorption profiles of the diffuse interstellar bands (DIBs) and interstellar atomic and molecular lines by comparing the high-quality data set from the ESO diffuse interstellar bands extensive exploration survey (EDIBLES) to older archival observations, bridging typical timescales of 10 years with a maximum timescale of 22 years. We found good archival observations for 64 EDIBLES targets. Our analysis focused on 31 DIBs, 7 atomic, and 5 molecular lines. We considered various systematic effects and applied a robust Bayesian test to establish which absorption features could display significant variations. While systematic effects greatly complicate our search, we find evidence for variations in the profiles of the $位位$4727 and 5780 DIBs in a few sightlines. Toward HD~167264, we find a new \ion{Ca}{i} cloud component that appears and becomes stronger after 2008. The same sightline furthermore displays marginal but systematic changes in the column densities of the atomic lines originating from the leading cloud component in the sightline. Similar variations are seen toward HD~147933. Our high-quality spectroscopic observations and archival data show that it is possible to probe interstellar time variations on time scales of typically a decade. Even though systematic uncertainties, as well as the generally somewhat lower quality of older data, complicate matters, we can conclude that time variations can be made visible, both in atomic lines and DIB profiles for a few targets, but that generally, these features are stable along many lines of sight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14027v1-abstract-full').style.display = 'none'; document.getElementById('2308.14027v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">180 pages, 138 figures, accepted for publication in A&amp;A journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 678, A148 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06025">arXiv:2306.06025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06025">pdf</a>, <a href="https://arxiv.org/format/2306.06025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1743921322004914">10.1017/S1743921322004914 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Star formation history for the starburst dwarf galaxy in the Local Group, IC 10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gholami%2C+M">Mahtab Gholami</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Khosroshahi%2C+H">Habib Khosroshahi</a>, <a href="/search/?searchtype=author&amp;query=Saremi%2C+E">Elham Saremi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06025v1-abstract-short" style="display: inline;"> IC 10 as a starburst dwarf galaxy in the Local Group (LG) has a large population of newly formed stars that are massive and intrinsically very bright in comparison with other LG galaxies. Using the Isaac Newton Telescope (INT) with the Wide Field Camera (WFC) in the i-band and V-band, we performed an optical monitoring survey to identify the most evolved asymptotic giant branch stars (AGBs) and re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06025v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06025v1-abstract-full" style="display: none;"> IC 10 as a starburst dwarf galaxy in the Local Group (LG) has a large population of newly formed stars that are massive and intrinsically very bright in comparison with other LG galaxies. Using the Isaac Newton Telescope (INT) with the Wide Field Camera (WFC) in the i-band and V-band, we performed an optical monitoring survey to identify the most evolved asymptotic giant branch stars (AGBs) and red supergiant stars (RSGs) in this star-forming galaxy, which can be used to determine the star formation history (SFH). The E(B - V) as an effective factor for obtaining the precise magnitude of stars is measured for each star using a 2D dust map (SFD98) to obtain a total extinction for each star in both the i-band and V-band. We obtained the photometric catalog for 53579 stars within the area of 0.07 deg$^{2}$ (13.5 kpc$^{2}$), of which 762 stars are classified as variable candidates after removing the foreground stars and saturated ones from our catalog. To reconstruct the SFH for IC 10, we first identified 424 long-period variable (LPV) candidates within the area of two half-light radii (2r$_{h}$) from the center of the galaxy. We estimated the recent star formation rate (SFR) at $\sim$ 0.32 M$_{\odot}$ yr$^{-1}$ for a constant metallicity Z = 0.0008, showing the galaxy is currently undergoing high levels of star formation. Also, a total stellar mass of 0.44 $\times$ 10$^{8}$ M$_{\odot}$ is obtained within 2r$_{h}$ for that metallicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06025v1-abstract-full').style.display = 'none'; document.getElementById('2306.06025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06376">arXiv:2305.06376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06376">pdf</a>, <a href="https://arxiv.org/format/2305.06376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245650">10.1051/0004-6361/202245650 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-Shooting ULLYSES: massive stars at low metallicity. I. Project Description </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vink%2C+J+S">Jorick S. Vink</a>, <a href="/search/?searchtype=author&amp;query=Mehner%2C+A">A. Mehner</a>, <a href="/search/?searchtype=author&amp;query=Crowther%2C+P+A">P. A. Crowther</a>, <a href="/search/?searchtype=author&amp;query=Fullerton%2C+A">A. Fullerton</a>, <a href="/search/?searchtype=author&amp;query=Garcia%2C+M">M. Garcia</a>, <a href="/search/?searchtype=author&amp;query=Martins%2C+F">F. Martins</a>, <a href="/search/?searchtype=author&amp;query=Morrell%2C+N">N. Morrell</a>, <a href="/search/?searchtype=author&amp;query=Oskinova%2C+L+M">L. M. Oskinova</a>, <a href="/search/?searchtype=author&amp;query=St-Louis%2C+N">N. St-Louis</a>, <a href="/search/?searchtype=author&amp;query=ud-Doula%2C+A">A. ud-Doula</a>, <a href="/search/?searchtype=author&amp;query=Sander%2C+A+A+C">A. A. C. Sander</a>, <a href="/search/?searchtype=author&amp;query=Sana%2C+H">H. Sana</a>, <a href="/search/?searchtype=author&amp;query=Bouret%2C+J+-">J. -C. Bouret</a>, <a href="/search/?searchtype=author&amp;query=Kubatova%2C+B">B. Kubatova</a>, <a href="/search/?searchtype=author&amp;query=Marchant%2C+P">P. Marchant</a>, <a href="/search/?searchtype=author&amp;query=Martins%2C+L+P">L. P. Martins</a>, <a href="/search/?searchtype=author&amp;query=Wofford%2C+A">A. Wofford</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Telford%2C+O+G">O. Grace Telford</a>, <a href="/search/?searchtype=author&amp;query=Gotberg%2C+Y">Y. Gotberg</a>, <a href="/search/?searchtype=author&amp;query=Bowman%2C+D+M">D. M. Bowman</a>, <a href="/search/?searchtype=author&amp;query=Erba%2C+C">C. Erba</a>, <a href="/search/?searchtype=author&amp;query=Kalari%2C+V+M">V. M. Kalari</a>, <a href="/search/?searchtype=author&amp;query=Abdul-Masih%2C+M">M. Abdul-Masih</a>, <a href="/search/?searchtype=author&amp;query=Alkousa%2C+T">T. Alkousa</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06376v3-abstract-short" style="display: inline;"> Observations of individual massive stars, super-luminous supernovae, gamma-ray bursts, and gravitational-wave events involving spectacular black-hole mergers, indicate that the low-metallicity Universe is fundamentally different from our own Galaxy. Many transient phenomena will remain enigmatic until we achieve a firm understanding of the physics and evolution of massive stars at low metallicity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06376v3-abstract-full').style.display = 'inline'; document.getElementById('2305.06376v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06376v3-abstract-full" style="display: none;"> Observations of individual massive stars, super-luminous supernovae, gamma-ray bursts, and gravitational-wave events involving spectacular black-hole mergers, indicate that the low-metallicity Universe is fundamentally different from our own Galaxy. Many transient phenomena will remain enigmatic until we achieve a firm understanding of the physics and evolution of massive stars at low metallicity (Z). The Hubble Space Telescope has devoted 500 orbits to observe 250 massive stars at low Z in the ultraviolet (UV) with the COS and STIS spectrographs under the ULLYSES program. The complementary ``X-Shooting ULLYSES&#39;&#39; (XShootU) project provides enhanced legacy value with high-quality optical and near-infrared spectra obtained with the wide-wavelength coverage X-shooter spectrograph at ESO&#39;s Very Large Telescope. We present an overview of the XShootU project, showing that combining ULLYSES UV and XShootU optical spectra is critical for the uniform determination of stellar parameters such as effective temperature, surface gravity, luminosity, and abundances, as well as wind properties such as mass-loss rates in function of Z. As uncertainties in stellar and wind parameters percolate into many adjacent areas of Astrophysics, the data and modelling of the XShootU project is expected to be a game-changer for our physical understanding of massive stars at low Z. To be able to confidently interpret James Webb Space Telescope (JWST) spectra of the first stellar generations, the individual spectra of low Z stars need to be understood, which is exactly where XShootU can deliver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06376v3-abstract-full').style.display = 'none'; document.getElementById('2305.06376v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in A&amp;A - 35 Pages, 12 Figures, 4 Tables, 2 Large Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 675, A154 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14368">arXiv:2304.14368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.14368">pdf</a>, <a href="https://arxiv.org/format/2304.14368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1339">10.1093/mnras/stad1339 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinematics of stellar substructures in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Youssoufi%2C+D+E">Dalal El Youssoufi</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Kacharov%2C+N">Nikolay Kacharov</a>, <a href="/search/?searchtype=author&amp;query=Bell%2C+C+P+M">Cameron P. M. Bell</a>, <a href="/search/?searchtype=author&amp;query=Matijevi%C4%87%2C+G">Gal Matijevi膰</a>, <a href="/search/?searchtype=author&amp;query=Bekki%2C+K">Kenji Bekki</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">Richard de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14368v1-abstract-short" style="display: inline;"> We present a kinematic analysis of the Small Magellanic Cloud using 3700 spectra extracted from the European Southern Observatory archive. We used data from Gaia and near-infrared photometry to select stellar populations and discard Galactic foreground stars. The sample includes main-sequence, red giant branch and red clump stars, observed with the Fibre Large Array Multi Wavelength Spectrograph.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14368v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14368v1-abstract-full" style="display: none;"> We present a kinematic analysis of the Small Magellanic Cloud using 3700 spectra extracted from the European Southern Observatory archive. We used data from Gaia and near-infrared photometry to select stellar populations and discard Galactic foreground stars. The sample includes main-sequence, red giant branch and red clump stars, observed with the Fibre Large Array Multi Wavelength Spectrograph. The spectra have a resolving power lambda/Delta(lambda) from 6500 to 38000. We derive radial velocities by employing a full spectrum fitting method using a penalised pixel fitting routine. We obtain a mean radial velocity for the galaxy of 159+/-2 km/s, with a velocity dispersion of 33+/-2 km/s. Our velocities agree with literature estimates for similar (young or old) stellar populations. The radial velocity of stars in the Wing and bar-like structure differ as a consequence of the dynamical interaction with the Large Magellanic Cloud. The higher radial velocity of young main-sequence stars in the bar compared to that of supergiants can be attributed to star formation around 40 Myr ago from gas already influenced by tidal stripping. Similarly, young main-sequence stars in the northern part of the bar, resulting from a prominent episode 25 Myr ago, have a higher radial velocity than stars in the southern part. Radial velocity differences between the northern and southern bar over densities are also traced by giant stars. They are corroborated by studies of the cold gas and proper motion indicating stretching/tidal stripping of the galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14368v1-abstract-full').style.display = 'none'; document.getElementById('2304.14368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07674">arXiv:2302.07674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07674">pdf</a>, <a href="https://arxiv.org/format/2302.07674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acbbc9">10.3847/1538-4357/acbbc9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Isaac Newton Telescope Monitoring Survey of Local Group Dwarf Galaxies. VI. The Star Formation History and Dust Production in Andromeda IX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abdollahi%2C+H">Hedieh Abdollahi</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=Mirtorabi%2C+M+T">Mohammad Taghi Mirtorabi</a>, <a href="/search/?searchtype=author&amp;query=Saremi%2C+E">Elham Saremi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Khosroshahi%2C+H+G">Habib G. Khosroshahi</a>, <a href="/search/?searchtype=author&amp;query=McDonald%2C+I">Iain McDonald</a>, <a href="/search/?searchtype=author&amp;query=Khalouei%2C+E">Elahe Khalouei</a>, <a href="/search/?searchtype=author&amp;query=Mahani%2C+H">Hamidreza Mahani</a>, <a href="/search/?searchtype=author&amp;query=Aghdam%2C+S+T">Sima Taefi Aghdam</a>, <a href="/search/?searchtype=author&amp;query=Saberi%2C+M">Maryam Saberi</a>, <a href="/search/?searchtype=author&amp;query=Torki%2C+M">Maryam Torki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07674v2-abstract-short" style="display: inline;"> We present a photometric study of the resolved stellar populations in And IX, the closest satellite to the M31, a metal-poor and low-mass dwarf spheroidal galaxy. We estimate a distance modulus of $24.56_{-0.15}^{+0.05}$ mag based on the tip of the red giant branch (TRGB). By probing the variability of asymptotic giant branch stars (AGB), we study the star formation history of And IX. We identifie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07674v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07674v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07674v2-abstract-full" style="display: none;"> We present a photometric study of the resolved stellar populations in And IX, the closest satellite to the M31, a metal-poor and low-mass dwarf spheroidal galaxy. We estimate a distance modulus of $24.56_{-0.15}^{+0.05}$ mag based on the tip of the red giant branch (TRGB). By probing the variability of asymptotic giant branch stars (AGB), we study the star formation history of And IX. We identified 50 long period variables (LPVs) in And IX using the Isaac Newton Telescope (INT) in two filters, Sloan $i&#39;$ and Harris $V$. In this study, we selected LPVs within two half-light radii with amplitudes in the range of 0.2-2.20 mag. It is found that the peak of star formation reaches $\sim$ $8.2\pm3.1\times10^{-4}$ M_sun yr$^{-1}$ at $\approx 6$ Gyr ago. Our findings suggest an outside-in galaxy formation scenario for And IX with a quenching occurring $3.65_{-1.52}^{+0.13}$ Gyr ago with the SFR in the order of $2.0\times10^{-4}$ M_sun yr$^{-1}$ at redshift &lt; $0.5$. We calculate the total stellar mass by integrating the star formation rate (SFR) within two half-light radii $\sim$ $3.0\times10^5$ M_sun. By employing the spectral energy distribution (SED) fitting for observed LPVs in And IX, we evaluate the mass-loss rate in the range of $10^{-7}$ $\leq$ $\dot{M}$ $\leq$ $10^{-5}$ M_sun yr$^{-1}$. Finally, we show that the total mass deposition to the interstellar medium (ISM) is $\sim$ $2.4\times10^{-4}$ M_sun yr$^{-1}$ from the C- and O-rich type of dust-enshrouded LPVs. The ratio of the total mass returned to the ISM by LPVs to the total stellar mass is $\sim 8.0\times10^{-10}$ yr$^{-1}$, and so at this rate, it would take $\sim$ 1 Gyr to reproduce this galaxy <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07674v2-abstract-full').style.display = 'none'; document.getElementById('2302.07674v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07599">arXiv:2302.07599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07599">pdf</a>, <a href="https://arxiv.org/format/2302.07599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The formation and evolution of Andromeda IX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abdollahi%2C+H">Hedieh Abdollahi</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=Mirtorabi%2C+M+T">Mohammad Taghi Mirtorabi</a>, <a href="/search/?searchtype=author&amp;query=Saremi%2C+E">Elham Saremi</a>, <a href="/search/?searchtype=author&amp;query=Khosroshahi%2C+H">Habib Khosroshahi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=McDonald%2C+I">Iain McDonald</a>, <a href="/search/?searchtype=author&amp;query=Khalouei%2C+E">Elahe Khalouei</a>, <a href="/search/?searchtype=author&amp;query=Aghdam%2C+S+T">Sima T. Aghdam</a>, <a href="/search/?searchtype=author&amp;query=Saberi%2C+M">Maryam Saberi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07599v2-abstract-short" style="display: inline;"> Local Group (LG), the nearest and most complete galactic environment, provides valuable information on the formation and evolution of the Universe. Studying galaxies of different sizes, morphologies, and ages can provide this information. For this purpose, we chose the And\,IX dSph galaxy, which is one of the observational targets of the Isaac Newton Telescope (INT) survey. A total of 50 long-peri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07599v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07599v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07599v2-abstract-full" style="display: none;"> Local Group (LG), the nearest and most complete galactic environment, provides valuable information on the formation and evolution of the Universe. Studying galaxies of different sizes, morphologies, and ages can provide this information. For this purpose, we chose the And\,IX dSph galaxy, which is one of the observational targets of the Isaac Newton Telescope (INT) survey. A total of 50 long-period variables (LPVs) were found in And\,IX in two filters, Sloan $i&#39;$ and Harris $V$ at a half-light radius of 2.5 arcmin. The And\,IX&#39;s star formation history (SFH) was constructed with a maximum star formation rate (SFR) of about $0.00082\pm0.00031$ M$_\odot$ yr$^{-1}$, using LPVs as a tracer. The total mass return rate of LPVs was calculated based on the spectral energy distribution (SED) of about $2.4\times10^{-4}$ M$_\odot$ yr$^{-1}$. The distance modulus of $24.56_{-0.15}^{+0.05}$ mag was estimated based on the tip of the red giant branch (TRGB). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07599v2-abstract-full').style.display = 'none'; document.getElementById('2302.07599v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of IAUS373 &#34;Resolving the Rise and Fall of Star Formation in Galaxies&#34;, August 2 - 11, 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04880">arXiv:2302.04880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04880">pdf</a>, <a href="https://arxiv.org/format/2302.04880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad462">10.1093/mnras/stad462 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HI filaments as potential compass needles? Comparing the magnetic field structure of the Small Magellanic Cloud to the orientation of GASKAP-HI filaments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ma%2C+Y+K">Y. K. Ma</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">S. J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Soler%2C+J+D">J. D. Soler</a>, <a href="/search/?searchtype=author&amp;query=Putman%2C+M+E">M. E. Putman</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M+-">M. -Y. Lee</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K+E">K. E. Jameson</a>, <a href="/search/?searchtype=author&amp;query=Uscanga%2C+L">L. Uscanga</a>, <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">J. Dempsey</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">C. Lynn</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">N. M. Pingel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04880v1-abstract-short" style="display: inline;"> High-spatial-resolution HI observations have led to the realisation that the nearby (within few hundreds of parsecs) Galactic atomic filamentary structures are aligned with the ambient magnetic field. Enabled by the high quality data from the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope for the Galactic ASKAP HI (GASKAP-HI) survey, we investigate the potential magnetic alig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04880v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04880v1-abstract-full" style="display: none;"> High-spatial-resolution HI observations have led to the realisation that the nearby (within few hundreds of parsecs) Galactic atomic filamentary structures are aligned with the ambient magnetic field. Enabled by the high quality data from the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope for the Galactic ASKAP HI (GASKAP-HI) survey, we investigate the potential magnetic alignment of the $\gtrsim 10\,{\rm pc}$-scale HI filaments in the Small Magellanic Cloud (SMC). Using the Rolling Hough Transform (RHT) technique that automatically identifies filamentary structures, combined with our newly devised ray-tracing algorithm that compares the HI and starlight polarisation data, we find that the HI filaments in the northeastern end of the SMC main body (&#34;Bar&#34; region) and the transition area between the main body and the tidal feature (&#34;Wing&#34; region) appear preferentially aligned with the magnetic field traced by starlight polarisation. Meanwhile, the remaining SMC volume lacks starlight polarisation data of sufficient quality to draw any conclusions. This suggests for the first time that filamentary HI structures can be magnetically aligned across a large spatial volume ($\gtrsim\,{\rm kpc}$) outside of the Milky Way. In addition, we generate maps of the preferred orientation of HI filaments throughout the entire SMC, revealing the highly complex gaseous structures of the galaxy likely shaped by a combination of the intrinsic internal gas dynamics, tidal interactions, and star formation feedback processes. These maps can further be compared with future measurements of the magnetic structures in other regions of the SMC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04880v1-abstract-full').style.display = 'none'; document.getElementById('2302.04880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, MNRAS accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10613">arXiv:2301.10613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.10613">pdf</a>, <a href="https://arxiv.org/format/2301.10613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Hubble Space Telescope imaging of the compact elliptical galaxy M32 reveals a dearth of carbon stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jones%2C+O+C">O. C. Jones</a>, <a href="/search/?searchtype=author&amp;query=Boyer%2C+M+L">M. L. Boyer</a>, <a href="/search/?searchtype=author&amp;query=McDonald%2C+I">I. McDonald</a>, <a href="/search/?searchtype=author&amp;query=Meixner%2C+M">M. Meixner</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10613v2-abstract-short" style="display: inline;"> We present new Hubble Space Telescope WFC3/IR medium-band photometry of the compact elliptical galaxy M32, chemically resolving its thermally pulsating asymptotic giant branch stars. We find 2829 M-type stars and 57 C stars. The carbon stars are likely contaminants from M31. If carbon stars are present in M32 they are so in very low numbers. The uncorrected C/M ratio is 0.020 $\pm$ 0.003; this dro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10613v2-abstract-full').style.display = 'inline'; document.getElementById('2301.10613v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10613v2-abstract-full" style="display: none;"> We present new Hubble Space Telescope WFC3/IR medium-band photometry of the compact elliptical galaxy M32, chemically resolving its thermally pulsating asymptotic giant branch stars. We find 2829 M-type stars and 57 C stars. The carbon stars are likely contaminants from M31. If carbon stars are present in M32 they are so in very low numbers. The uncorrected C/M ratio is 0.020 $\pm$ 0.003; this drops to less than 0.007 after taking into account contamination from M31. As the mean metallicity of M32 is just below solar, this low ratio of C to M stars is unlikely due to a metallicity ceiling for the formation of carbon stars. Instead, the age of the AGB population is likely to be the primary factor. The ratio of AGB to RGB stars in M32 is similar to that of the inner disc of M31 which contain stars that formed 1.5-4 Gyr ago. If the M32 population is at the older end of this age then its lack of C-stars may be consistent with a narrow mass range for carbon star formation predicted by some stellar evolution models. Applying our chemical classifications to the dusty variable stars identified with {\em Spitzer}, we find that the x-AGB candidates identified with Spitzer are predominately M-type stars. This substantially increases the lower limit to the cumulative dust-production rate in M32 to $&gt;$ 1.20 $\times 10^{-5}$ ${\rm M}_{\odot} \, {\rm yr}^{-1}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10613v2-abstract-full').style.display = 'none'; document.getElementById('2301.10613v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, accepted MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.13476">arXiv:2211.13476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.13476">pdf</a>, <a href="https://arxiv.org/format/2211.13476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244677">10.1051/0004-6361/202244677 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VLT-FLAMES Tarantula Survey: Observational evidence for two distinct populations of massive runaway stars in 30 Doradus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sana%2C+H">H. Sana</a>, <a href="/search/?searchtype=author&amp;query=Ram%C3%ADrez-Agudelo%2C+O+H">O. H. Ram铆rez-Agudelo</a>, <a href="/search/?searchtype=author&amp;query=H%C3%A9nault-Brunet%2C+V">V. H茅nault-Brunet</a>, <a href="/search/?searchtype=author&amp;query=Mahy%2C+L">L. Mahy</a>, <a href="/search/?searchtype=author&amp;query=Almeida%2C+L+A">L. A. Almeida</a>, <a href="/search/?searchtype=author&amp;query=de+Koter%2C+A">A. de Koter</a>, <a href="/search/?searchtype=author&amp;query=Bestenlehner%2C+J+M">J. M. Bestenlehner</a>, <a href="/search/?searchtype=author&amp;query=Evans%2C+C+J">C. J. Evans</a>, <a href="/search/?searchtype=author&amp;query=Langer%2C+N">N. Langer</a>, <a href="/search/?searchtype=author&amp;query=Schneider%2C+F+R+N">F. R. N. Schneider</a>, <a href="/search/?searchtype=author&amp;query=Crowther%2C+P+A">P. A. Crowther</a>, <a href="/search/?searchtype=author&amp;query=de+Mink%2C+S+E">S. E. de Mink</a>, <a href="/search/?searchtype=author&amp;query=Herrero%2C+A">A. Herrero</a>, <a href="/search/?searchtype=author&amp;query=Lennon%2C+D+J">D. J. Lennon</a>, <a href="/search/?searchtype=author&amp;query=Gieles%2C+M">M. Gieles</a>, <a href="/search/?searchtype=author&amp;query=Apell%C3%A1niz%2C+J+M">J. Ma铆z Apell谩niz</a>, <a href="/search/?searchtype=author&amp;query=Renzo%2C+M">M. Renzo</a>, <a href="/search/?searchtype=author&amp;query=Sabbi%2C+E">E. Sabbi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Vink%2C+J+S">J. S. Vink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.13476v1-abstract-short" style="display: inline;"> Two main scenarios have been proposed for origin of massive runaway stars -- dynamical ejection or release from a binary at the first core collapse -- but their relative contribution remains debated. Using two large spectroscopic campaigns towards massive stars in 30 Doradus, we aim to provide observational constraints on the properties of the O-type runaway population in the most massive active&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13476v1-abstract-full').style.display = 'inline'; document.getElementById('2211.13476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.13476v1-abstract-full" style="display: none;"> Two main scenarios have been proposed for origin of massive runaway stars -- dynamical ejection or release from a binary at the first core collapse -- but their relative contribution remains debated. Using two large spectroscopic campaigns towards massive stars in 30 Doradus, we aim to provide observational constraints on the properties of the O-type runaway population in the most massive active star-forming region in the Local group. We use RV measurements of the O-type star populations in 30 Doradus obtained by the VLT-FLAMES Tarantula Survey and the Tarantula Massive Binary Monitoring to identify single and binary O-type runaways. We discuss their rotational properties and qualitatively compare observations with expectations of ejection scenarios. We identify 23 single and one binary O-type runaway objects, most of them outside the main star-forming regions in 30 Doradus. We find an overabundance of rapid rotators (vsini &gt; 200km/s) among the runaway population, providing an explanation of the overabundance of rapidly rotating stars in the 30 Doradus field. Considerations of the projected rotation rates and runaway line-of-sight (los) velocities reveal a conspicuous absence of rapidly rotating (vsini &gt; 210k/ms), fast moving (v_{los} &gt; 60km/s) runaways, and suggest the presence of two different populations of runaway stars: a population of rapidly-spinning but slowly moving runaways and a population of fast moving but slowly rotating ones. These are detected with a ratio close to 2:1 in our sample. We argue that slowly moving but rapidly spinning runaways result from binary ejections, while rapidly moving but slowly spinning runaways could result from dynamical ejections. Given that detection biases will more strongly impact the slow-moving population, our results suggest that the binary evolution scenario dominates the current massive runaway population in 30 Doradus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13476v1-abstract-full').style.display = 'none'; document.getElementById('2211.13476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A Letters; 9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 668, L5 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10695">arXiv:2211.10695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10695">pdf</a>, <a href="https://arxiv.org/format/2211.10695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aca471">10.3847/1538-4357/aca471 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Isaac Newton Telescope monitoring survey of Local Group dwarf galaxies--V. The star formation history of Sagittarius dwarf irregular galaxy derived from long period variable stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Parto%2C+T">Tahere Parto</a>, <a href="/search/?searchtype=author&amp;query=Dehghani%2C+S">Shahrzad Dehghani</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=Saremi%2C+E">Elham Saremi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Khosroshahi%2C+H+G">Habib G. Khosroshahi</a>, <a href="/search/?searchtype=author&amp;query=McDonald%2C+I">Iain McDonald</a>, <a href="/search/?searchtype=author&amp;query=Mirtorabi%2C+M+T">Mohammad T. Mirtorabi</a>, <a href="/search/?searchtype=author&amp;query=Navabi%2C+M">Mahdieh Navabi</a>, <a href="/search/?searchtype=author&amp;query=Saberi%2C+M">Maryam Saberi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10695v1-abstract-short" style="display: inline;"> We conducted an optical monitoring survey of the Sagittarius dwarf irregular galaxy (SagDIG) during the period of June 2016 -- October 2017, using the 2.5-m Isaac Newton Telescope (INT) at La Palama. Our goal was to identify Long Period Variable stars (LPVs), namely asymptotic giant branch stars (AGBs) and red supergiant stars (RSGs), to obtain the Star Formation History (SFH) of isolated, metal-p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10695v1-abstract-full').style.display = 'inline'; document.getElementById('2211.10695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10695v1-abstract-full" style="display: none;"> We conducted an optical monitoring survey of the Sagittarius dwarf irregular galaxy (SagDIG) during the period of June 2016 -- October 2017, using the 2.5-m Isaac Newton Telescope (INT) at La Palama. Our goal was to identify Long Period Variable stars (LPVs), namely asymptotic giant branch stars (AGBs) and red supergiant stars (RSGs), to obtain the Star Formation History (SFH) of isolated, metal-poor SagDIG. For our purpose, we used a method that relies on evaluating the relation between luminosity and the birth mass of these most evolved stars. We found $27$ LPV candidates within two half-light radii of SagDIG. $10$ LPV candidates were in common with previous studies, including one very dusty AGB (x-AGB). By adopting the metallicity $Z = 0.0002$ for older population and $Z=0.0004$ for younger ages, we estimated that the star formation rate changes from $0.0005\pm0.0002$ M$_{\odot}$yr$^{-1}$kpc$^{-2}$ ($13$ Gyr ago) to $0.0021 \pm 0.0010$ M$_{\odot}$yr$^{-1}$kpc$^{-2}$ ($0.06$ Gyr ago). Like many dwarf irregular galaxies, SagDIG has had continuous star formation activity across its lifetime, though with different rates, and experiences an enhancement of star formation since $z \simeq 1$. We also evaluated the total stellar mass within two half-light radii of SagDIG for three choices of metallicities. For metallicity $Z = 0.0002$ and $Z=0.0004$ we estimated the stellar mass M$_*$ = ($5.4 \pm 2.3$) $\times$ $10^ 6$ and ($3.0 \pm 1.3$) $\times$ $10^ 6$ M$_{\odot}$, respectively. Additionally, we determined a distance modulus $渭$ = $25.27\pm0.05$ mag, using the tip of the red giant branch (TRGB). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10695v1-abstract-full').style.display = 'none'; document.getElementById('2211.10695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.03403">arXiv:2211.03403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.03403">pdf</a>, <a href="https://arxiv.org/format/2211.03403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Spectral identification and classification of dusty stellar sources using spectroscopic and multiwavelength observations through machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ghaziasgar%2C+S">Sepideh Ghaziasgar</a>, <a href="/search/?searchtype=author&amp;query=Masoudnezhad%2C+A">Amirhossein Masoudnezhad</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Khosroshahi%2C+H+G">Habib G. Khosroshahi</a>, <a href="/search/?searchtype=author&amp;query=Khosravaninezhad%2C+N">Negin Khosravaninezhad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.03403v1-abstract-short" style="display: inline;"> We proposed a machine learning approach to identify and distinguish dusty stellar sources employing supervised and unsupervised methods and categorizing point sources, mainly evolved stars, using photometric and spectroscopic data collected over the IR sky. Spectroscopic data is typically used to identify specific infrared sources. However, our goal is to determine how well these sources can be id&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03403v1-abstract-full').style.display = 'inline'; document.getElementById('2211.03403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.03403v1-abstract-full" style="display: none;"> We proposed a machine learning approach to identify and distinguish dusty stellar sources employing supervised and unsupervised methods and categorizing point sources, mainly evolved stars, using photometric and spectroscopic data collected over the IR sky. Spectroscopic data is typically used to identify specific infrared sources. However, our goal is to determine how well these sources can be identified using multiwavelength data. Consequently, we developed a robust training set of spectra of confirmed sources from the Large and Small Magellanic Clouds derived from SAGE-Spec Spitzer Legacy and SMC-Spec Spitzer Infrared Spectrograph (IRS) spectral catalogs. Subsequently, we applied various learning classifiers to distinguish stellar subcategories comprising young stellar objects (YSOs), C-rich asymptotic giant branch (CAGB), O-rich AGB stars (OAGB), Red supergiant (RSG), and post-AGB stars. We have classified around 700 counts of these sources. It should be highlighted that despite utilizing the limited spectroscopic data we trained, the accuracy and models&#39; learning curve provided outstanding results for some of the models. Therefore, the Support Vector Classifier (SVC) is the most accurate classifier for this limited dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03403v1-abstract-full').style.display = 'none'; document.getElementById('2211.03403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, 3 tables, Proceeding of IAU Symposium 368: &#34;Machine Learning in Astronomy: Possibilities and Pitfalls&#34;, to be published in the &#34;IAU Proceedings Series&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17165">arXiv:2210.17165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.17165">pdf</a>, <a href="https://arxiv.org/format/2210.17165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1743921322003908">10.1017/S1743921322003908 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Star Formation History of Two Fields in the Halo of NGC5128 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aghdam%2C+S+T">Sima T. Aghdam</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=Hashemi%2C+S">Seyedazim Hashemi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Khosroshahi%2C+H">Habib Khosroshahi</a>, <a href="/search/?searchtype=author&amp;query=Golshan%2C+R+H">Roya H. Golshan</a>, <a href="/search/?searchtype=author&amp;query=Saremi%2C+E">Elham Saremi</a>, <a href="/search/?searchtype=author&amp;query=Saberi%2C+M">Maryam Saberi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17165v1-abstract-short" style="display: inline;"> NGC5128 galaxy is a giant elliptical galaxy located in the Centaurus group of galaxies at 3.8 Mpc. We aim to study the star formation history (SFH) of two different fields of the galaxy. The northeastern field (Field 1) is located at a distance of 18.8 kpc, while the southern field (Field 2) is at 9.9 kpc. We use a photometric method that is based on identifying long period variable (LPV) stars an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17165v1-abstract-full').style.display = 'inline'; document.getElementById('2210.17165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17165v1-abstract-full" style="display: none;"> NGC5128 galaxy is a giant elliptical galaxy located in the Centaurus group of galaxies at 3.8 Mpc. We aim to study the star formation history (SFH) of two different fields of the galaxy. The northeastern field (Field 1) is located at a distance of 18.8 kpc, while the southern field (Field 2) is at 9.9 kpc. We use a photometric method that is based on identifying long period variable (LPV) stars and asymptotic giant branch (AGB) stars, as they are strong tracers of star formation and galaxy evolution due to their luminosity and variability; 395 LPVs in Field 1 and 671 LPVs in Field 2 have been identified. These two fields present similar SFHs, although the SF rate of Field 2 is more enhanced. We find that the galaxy has three major star formation episodes t $\sim$ 800 Myr ago, t $\sim$ 3.2 Gyr ago, and t $\sim$ 10 Gyr ago, where t is look-back time. The rate of star formation at $\sim$ 800 Myr ago agrees with previous studies suggesting that the galaxy experienced a merger around that time. Furthermore, NGC5128 has experienced a lower star formation rate in its recent history which could have been driven by jet-induction star formation and multiple outbursts of AGN activity in this galaxy, as well as a minor merger around 400 Myr ago. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17165v1-abstract-full').style.display = 'none'; document.getElementById('2210.17165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure, Proceeding Paper of IAU Symposium 373</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05090">arXiv:2210.05090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05090">pdf</a>, <a href="https://arxiv.org/format/2210.05090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2922">10.1093/mnras/stac2922 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New ASKAP Radio Supernova Remnants and Candidates in the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bozzetto%2C+L+M">Luke M. Bozzetto</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">Miroslav D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Sano%2C+H">H. Sano</a>, <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">R. Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Barnes%2C+L+A">L. A. Barnes</a>, <a href="/search/?searchtype=author&amp;query=Boji%C4%8Di%C4%87%2C+I+S">I. S. Boji膷i膰</a>, <a href="/search/?searchtype=author&amp;query=Brose%2C+R">R. Brose</a>, <a href="/search/?searchtype=author&amp;query=Chomiuk%2C+L">L. Chomiuk</a>, <a href="/search/?searchtype=author&amp;query=Crawford%2C+E+J">E. J. Crawford</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">S. Dai</a>, <a href="/search/?searchtype=author&amp;query=Ghavam%2C+M">M. Ghavam</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+T">T. Hill</a>, <a href="/search/?searchtype=author&amp;query=Hopkins%2C+A+M">A. M. Hopkins</a>, <a href="/search/?searchtype=author&amp;query=Ingallinera%2C+A">A. Ingallinera</a>, <a href="/search/?searchtype=author&amp;query=Jarrett%2C+T">T. Jarrett</a>, <a href="/search/?searchtype=author&amp;query=Kavanagh%2C+P+J">P. J. Kavanagh</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Kothes%2C+R">R. Kothes</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Lenc%2C+E">E. Lenc</a>, <a href="/search/?searchtype=author&amp;query=Leonidaki%2C+I">I. Leonidaki</a>, <a href="/search/?searchtype=author&amp;query=Maggi%2C+P">P. Maggi</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">C. Maitra</a>, <a href="/search/?searchtype=author&amp;query=Matthew%2C+C">C. Matthew</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05090v2-abstract-short" style="display: inline;"> We present a new Australian Square Kilometre Array Pathfinder (ASKAP) sample of 14 radio Supernova Remnant (SNR) candidates in the Large Magellanic Cloud (LMC). This new sample is a significant increase to the known number of older, larger and low surface brightness LMC SNRs. We employ a multi-frequency search for each object and found possible traces of optical and occasionally X-ray emission in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05090v2-abstract-full').style.display = 'inline'; document.getElementById('2210.05090v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05090v2-abstract-full" style="display: none;"> We present a new Australian Square Kilometre Array Pathfinder (ASKAP) sample of 14 radio Supernova Remnant (SNR) candidates in the Large Magellanic Cloud (LMC). This new sample is a significant increase to the known number of older, larger and low surface brightness LMC SNRs. We employ a multi-frequency search for each object and found possible traces of optical and occasionally X-ray emission in several of these 14 SNR candidates. One of these 14 SNR candidates (MCSNR J0522-6543) has multi-frequency properties that strongly indicate a bona fide SNR. We also investigate a sample of 20 previously suggested LMC SNR candidates and confirm the SNR nature of MCSNR J0506-6815. We detect lower surface brightness SNR candidates which were likely formed by a combination of shock waves and strong stellar winds from massive progenitors (and possibly surrounding OB stars). Some of our new SNR candidates are also found in a lower density environments in which SNe type Ia explode inside a previously excavated interstellar medium (ISM). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05090v2-abstract-full').style.display = 'none'; document.getElementById('2210.05090v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in MNRAS, this version corrects arXiv metadata only</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10371">arXiv:2209.10371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10371">pdf</a>, <a href="https://arxiv.org/format/2209.10371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2692">10.1093/mnras/stac2692 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Massive young stellar objects in the Local Group spiral galaxy M33 identified using machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kinson%2C+D+A">David A. Kinson</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+J+M">Joana M. Oliveira</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10371v1-abstract-short" style="display: inline;"> We present a supervised machine learning classification of stellar populations in the Local Group spiral galaxy M\,33. The Probabilistic Random Forest (PRF) methodology, previously applied to populations in NGC\,6822, utilises both near and far-IR classification features. It classifies sources into nine target classes: young stellar objects (YSOs), oxygen- and carbon-rich asymptotic giant branch s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10371v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10371v1-abstract-full" style="display: none;"> We present a supervised machine learning classification of stellar populations in the Local Group spiral galaxy M\,33. The Probabilistic Random Forest (PRF) methodology, previously applied to populations in NGC\,6822, utilises both near and far-IR classification features. It classifies sources into nine target classes: young stellar objects (YSOs), oxygen- and carbon-rich asymptotic giant branch stars, red giant branch and red super-giant stars, active galactic nuclei, blue stars (e.g. O-, B- and A-type main sequence stars), Wolf-Rayet stars and Galactic foreground stars. Across 100 classification runs the PRF classified 162,746 sources with an average estimated accuracy of $\sim$\,86\,per\,cent, based on confusion matrices. We identified 4985 YSOs across the disk of M\,33, applying a density-based clustering analysis to identify 68 star forming regions (SFRs) primarily in the galaxy&#39;s spiral arms. SFR counterparts to known H\,{\sc ii} regions were recovered, with $\sim$\,91\,per\,cent of SFRs spatially coincident with giant molecular clouds identified in the literature. Using photometric measurements, as well as SFRs in NGC\,6822 with an established evolutionary sequence as a benchmark, we employed a novel approach combining ratios of [H$伪$]$/$[24$渭$m] and [250$渭$m]$/$[500$渭$m] to estimate the relative evolutionary status of all M\,33 SFRs. Masses were estimated for each YSO ranging from 6\,$-$\,27\,M$_\odot$. Using these masses, we estimate star formation rates based on direct YSO counts of 0.63\,M$_\odot$\,yr$^{-1}$ in M\,33&#39;s SFRs, 0.79\,$\pm$\,0.16\,M$_\odot$\,yr$^{-1}$ in its centre and 1.42\,$\pm$\,0.16\,M$_\odot$\,yr$^{-1}$ globally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10371v1-abstract-full').style.display = 'none'; document.getElementById('2209.10371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 33 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12301">arXiv:2207.12301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.12301">pdf</a>, <a href="https://arxiv.org/format/2207.12301">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2096">10.1093/mnras/stac2096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VMC Survey -- XLIX. Discovery of a population of quasars dominated by nuclear dust emission behind the Magellanic Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pennock%2C+C+M">Clara M. Pennock</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Anih%2C+J+O">Joy O. Anih</a>, <a href="/search/?searchtype=author&amp;query=Maitra%2C+C">Chandreyee Maitra</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">Frank Haberl</a>, <a href="/search/?searchtype=author&amp;query=Sansom%2C+A+E">Anne E. Sansom</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Cowley%2C+M+J">Michael J. Cowley</a>, <a href="/search/?searchtype=author&amp;query=Afonso%2C+J">Jos茅 Afonso</a>, <a href="/search/?searchtype=author&amp;query=Ant%C3%B3n%2C+S">Sonia Ant贸n</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Craig%2C+J+E+M">Jessica E. M. Craig</a>, <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">Miroslav D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Hopkins%2C+A+M">Andrew M. Hopkins</a>, <a href="/search/?searchtype=author&amp;query=Nanni%2C+A">Ambra Nanni</a>, <a href="/search/?searchtype=author&amp;query=Prandoni%2C+I">Isabella Prandoni</a>, <a href="/search/?searchtype=author&amp;query=Vardoulaki%2C+E">Eleni Vardoulaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12301v1-abstract-short" style="display: inline;"> Following the discovery of SAGE0536AGN ($z \sim$ 0.14), with the strongest 10-$渭$m silicate emission ever observed for an Active Galactic Nucleus (AGN), we discovered SAGE0534AGN ($z \sim$ 1.01), a similar AGN but with less extreme silicate emission. Both were originally mistaken as evolved stars in the Magellanic Clouds. Lack of far-infrared emission, and therefore star-formation, implies we are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12301v1-abstract-full').style.display = 'inline'; document.getElementById('2207.12301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12301v1-abstract-full" style="display: none;"> Following the discovery of SAGE0536AGN ($z \sim$ 0.14), with the strongest 10-$渭$m silicate emission ever observed for an Active Galactic Nucleus (AGN), we discovered SAGE0534AGN ($z \sim$ 1.01), a similar AGN but with less extreme silicate emission. Both were originally mistaken as evolved stars in the Magellanic Clouds. Lack of far-infrared emission, and therefore star-formation, implies we are seeing the central engine of the AGN without contribution from the host galaxy. They could be a key link in galaxy evolution. We used a dimensionality reduction algorithm, t-SNE (t-distributed Stochastic Neighbourhood Embedding) with multi-wavelength data from Gaia EDR3, VISTA survey of the Magellanic Clouds, AllWISE and the Australian SKA Pathfinder to find these two unusual AGN are grouped with 16 other objects separated from the rest, suggesting a rare class. Our spectroscopy at SAAO/SALT and literature data confirm at least 14 of these objects are extragalactic ($0.13 &lt; z &lt; 1.23$), all hosting AGN. Using spectral energy distribution fitter CIGALE we find that the majority of dust emission ($&gt; 70 \%$) in these sources is due to the AGN. Host galaxies appear to be either in or transitioning into the green valley. There is a trend of a thinning torus, increasing X-ray luminosity and decreasing Eddington ratio as the AGN transition through the green valley, implying that as the accretion supply depletes, the torus depletes and the column density reduces. Also, the near-infrared variability amplitude of these sources correlates with attenuation by the torus, implying the torus plays a role in the variability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12301v1-abstract-full').style.display = 'none'; document.getElementById('2207.12301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04406">arXiv:2205.04406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04406">pdf</a>, <a href="https://arxiv.org/format/2205.04406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1545">10.1093/mnras/stac1545 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The intrinsic reddening of the Magellanic Clouds as traced by background galaxies -- III. The Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bell%2C+C+P+M">Cameron P. M. Bell</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Wright%2C+A+H">Angus H. Wright</a>, <a href="/search/?searchtype=author&amp;query=Nidever%2C+D+L">David L. Nidever</a>, <a href="/search/?searchtype=author&amp;query=Chiang%2C+I">I-Da Chiang</a>, <a href="/search/?searchtype=author&amp;query=Choudhury%2C+S">Samyaday Choudhury</a>, <a href="/search/?searchtype=author&amp;query=Groenewegen%2C+M+A+T">Martin A. T. Groenewegen</a>, <a href="/search/?searchtype=author&amp;query=Pennock%2C+C+M">Clara M. Pennock</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+Y">Yumi Choi</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">Richard de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Massana%2C+P">Pol Massana</a>, <a href="/search/?searchtype=author&amp;query=Nanni%2C+A">Ambra Nanni</a>, <a href="/search/?searchtype=author&amp;query=No%C3%ABl%2C+N+E+D">Noelia E. D. No毛l</a>, <a href="/search/?searchtype=author&amp;query=Olsen%2C+K">Knut Olsen</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Vivas%2C+A+K">A. Katherina Vivas</a>, <a href="/search/?searchtype=author&amp;query=Zaritsky%2C+D">Dennis Zaritsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04406v2-abstract-short" style="display: inline;"> We present a map of the total intrinsic reddening across ~90 deg$^{2}$ of the Large Magellanic Cloud (LMC) derived using optical (ugriz) and near-infrared (IR; YJKs) spectral energy distributions (SEDs) of background galaxies. The reddening map is created from a sample of 222,752 early-type galaxies based on the LEPHARE $蠂^{2}$ minimisation SED-fitting routine. We find excellent agreement between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04406v2-abstract-full').style.display = 'inline'; document.getElementById('2205.04406v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04406v2-abstract-full" style="display: none;"> We present a map of the total intrinsic reddening across ~90 deg$^{2}$ of the Large Magellanic Cloud (LMC) derived using optical (ugriz) and near-infrared (IR; YJKs) spectral energy distributions (SEDs) of background galaxies. The reddening map is created from a sample of 222,752 early-type galaxies based on the LEPHARE $蠂^{2}$ minimisation SED-fitting routine. We find excellent agreement between the regions of enhanced intrinsic reddening across the central (4x4 deg$^2$) region of the LMC and the morphology of the low-level pervasive dust emission as traced by far-IR emission. In addition, we are able to distinguish smaller, isolated enhancements that are coincident with known star-forming regions and the clustering of young stars observed in morphology maps. The level of reddening associated with the molecular ridge south of 30 Doradus is, however, smaller than in the literature reddening maps. The reduced number of galaxies detected in this region, due to high extinction and crowding, may bias our results towards lower reddening values. Our map is consistent with maps derived from red clump stars and from the analysis of the star formation history across the LMC. This study represents one of the first large-scale categorisations of extragalactic sources behind the LMC and as such we provide the LEPHARE outputs for our full sample of ~2.5 million sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04406v2-abstract-full').style.display = 'none'; document.getElementById('2205.04406v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 16 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04325">arXiv:2205.04325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04325">pdf</a>, <a href="https://arxiv.org/format/2205.04325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6de1">10.3847/1538-4357/ac6de1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Detection of Deuterated Water in the Large Magellanic Cloud with ALMA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sewi%C5%82o%2C+M">Marta Sewi艂o</a>, <a href="/search/?searchtype=author&amp;query=Karska%2C+A">Agata Karska</a>, <a href="/search/?searchtype=author&amp;query=Kristensen%2C+L+E">Lars E. Kristensen</a>, <a href="/search/?searchtype=author&amp;query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C+-+R">C. -H. Rosie Chen</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+J+M">Joana M. Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Cordiner%2C+M">Martin Cordiner</a>, <a href="/search/?searchtype=author&amp;query=Wiseman%2C+J">Jennifer Wiseman</a>, <a href="/search/?searchtype=author&amp;query=S%C3%A1nchez-Monge%2C+%C3%81">脕lvaro S谩nchez-Monge</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Indebetouw%2C+R">Remy Indebetouw</a>, <a href="/search/?searchtype=author&amp;query=Schilke%2C+P">Peter Schilke</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Berrios%2C+E">Emmanuel Garcia-Berrios</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04325v1-abstract-short" style="display: inline;"> We report the first detection of deuterated water (HDO) toward an extragalactic hot core. The HDO 2$_{11}$-2$_{12}$ line has been detected toward hot cores N105-2A and 2B in the N105 star-forming region in the low-metallicity Large Magellanic Cloud (LMC) dwarf galaxy with the Atacama Large Millimeter/submillimeter Array (ALMA). We have compared the HDO line luminosity ($L_{\rm HDO}$) measured towa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04325v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04325v1-abstract-full" style="display: none;"> We report the first detection of deuterated water (HDO) toward an extragalactic hot core. The HDO 2$_{11}$-2$_{12}$ line has been detected toward hot cores N105-2A and 2B in the N105 star-forming region in the low-metallicity Large Magellanic Cloud (LMC) dwarf galaxy with the Atacama Large Millimeter/submillimeter Array (ALMA). We have compared the HDO line luminosity ($L_{\rm HDO}$) measured toward the LMC hot cores to those observed toward a sample of seventeen Galactic hot cores covering three orders of magnitude in $L_{\rm HDO}$, four orders of magnitude in bolometric luminosity ($L_{\rm bol}$), and a wide range of Galactocentric distances (thus metallicities). The observed values of $L_{\rm HDO}$ for the LMC hot cores fit very well into the $L_{\rm HDO}$ trends with $L_{\rm bol}$ and metallicity observed toward the Galactic hot cores. We have found that $L_{\rm HDO}$ seems to be largely dependent on the source luminosity, but metallicity also plays a role. We provide a rough estimate of the H$_2$O column density and abundance ranges toward the LMC hot cores by assuming that HDO/H$_2$O toward the LMC hot cores is the same as that observed in the Milky Way; the estimated ranges are systematically lower than Galactic values. The spatial distribution and velocity structure of the HDO emission in N105-2A is consistent with HDO being the product of the low-temperature dust grain chemistry. Our results are in agreement with the astrochemical model predictions that HDO is abundant regardless of the extragalactic environment and should be detectable with ALMA in external galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04325v1-abstract-full').style.display = 'none'; document.getElementById('2205.04325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 2 tables, 9 figures (including appendices); Accepted for publication in the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11530">arXiv:2204.11530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.11530">pdf</a>, <a href="https://arxiv.org/format/2204.11530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1743921322001405">10.1017/S1743921322001405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From evolved Long-Period-Variable stars to the evolution of M31 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Torki%2C+M">Maryam Torki</a>, <a href="/search/?searchtype=author&amp;query=Navabi%2C+M">Mahdieh Navabi</a>, <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=Saremi%2C+E">Elham Saremi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Ghaziasgar%2C+S">Sepideh Ghaziasgar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11530v1-abstract-short" style="display: inline;"> One of the ways to understand the genesis and evolution of the universe is to know how galaxies have formed and evolved. In this regard, the study of star formation history (SFH) plays an important role in the accurate understanding of galaxies. In this paper, we used long-period variable stars (LPVs) to estimate the SFH in the Andromeda galaxy (M31). These cool stars reach their peak luminosity i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11530v1-abstract-full').style.display = 'inline'; document.getElementById('2204.11530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11530v1-abstract-full" style="display: none;"> One of the ways to understand the genesis and evolution of the universe is to know how galaxies have formed and evolved. In this regard, the study of star formation history (SFH) plays an important role in the accurate understanding of galaxies. In this paper, we used long-period variable stars (LPVs) to estimate the SFH in the Andromeda galaxy (M31). These cool stars reach their peak luminosity in the final stage of their evolution; their birth mass is directly related to their luminosity. Therefore, we construct the mass function and the star formation history using stellar evolution models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11530v1-abstract-full').style.display = 'none'; document.getElementById('2204.11530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, Proceedings of IAUS362 &#39;THE PREDICTIVE POWER OF COMPUTATIONAL ASTROPHYSICS&#39;, November 8 - 12, 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.08944">arXiv:2204.08944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.08944">pdf</a>, <a href="https://arxiv.org/ps/2204.08944">ps</a>, <a href="https://arxiv.org/format/2204.08944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1743921322001326">10.1017/S1743921322001326 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass-loss rates of cool evolved stars in M33 galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Javadi%2C+A">Atefeh Javadi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.08944v1-abstract-short" style="display: inline;"> We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). In this paper, we present the dust and gas mass-loss rates by the pulsating Asymptotic Giant Branch (AGB) stars and red supergiants (RSGs) across the stellar disc of M33. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.08944v1-abstract-full" style="display: none;"> We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). In this paper, we present the dust and gas mass-loss rates by the pulsating Asymptotic Giant Branch (AGB) stars and red supergiants (RSGs) across the stellar disc of M33. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08944v1-abstract-full').style.display = 'none'; document.getElementById('2204.08944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A talk presented at the &#34;IAU symposium 366 : The Origin of Outflows in Evolved Stars&#34;, to be published in the &#34;IAU Proceedings Series&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.06285">arXiv:2204.06285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.06285">pdf</a>, <a href="https://arxiv.org/format/2204.06285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2022.18">10.1017/pasa.2022.18 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GASKAP-HI Pilot Survey Science III: An unbiased view of cold gas in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dempsey%2C+J">James Dempsey</a>, <a href="/search/?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/?searchtype=author&amp;query=Murray%2C+C">Claire Murray</a>, <a href="/search/?searchtype=author&amp;query=Dickey%2C+J+M">John M. Dickey</a>, <a href="/search/?searchtype=author&amp;query=Pingel%2C+N+M">Nickolas M. Pingel</a>, <a href="/search/?searchtype=author&amp;query=Jameson%2C+K">Katherine Jameson</a>, <a href="/search/?searchtype=author&amp;query=D%C3%A9nes%2C+H">Helga D茅nes</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Min-Young Lee</a>, <a href="/search/?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">S. Stanimirovi膰</a>, <a href="/search/?searchtype=author&amp;query=Breen%2C+S">Shari Breen</a>, <a href="/search/?searchtype=author&amp;query=Buckland-Willis%2C+F">Frances Buckland-Willis</a>, <a href="/search/?searchtype=author&amp;query=Gibson%2C+S+J">Steven J. Gibson</a>, <a href="/search/?searchtype=author&amp;query=Imai%2C+H">Hiroshi Imai</a>, <a href="/search/?searchtype=author&amp;query=Lynn%2C+C">Callum Lynn</a>, <a href="/search/?searchtype=author&amp;query=Tremblay%2C+C+D">C. D. Tremblay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.06285v1-abstract-short" style="display: inline;"> We present the first unbiased survey of neutral hydrogen (HI) absorption in the Small Magellanic Cloud (SMC). The survey utilises pilot HI observations with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope as part of the Galactic ASKAP HI (GASKAP-HI) project whose dataset has been processed with the GASKAP-HI absorption pipeline, also described here. This dataset provides absorpt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06285v1-abstract-full').style.display = 'inline'; document.getElementById('2204.06285v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.06285v1-abstract-full" style="display: none;"> We present the first unbiased survey of neutral hydrogen (HI) absorption in the Small Magellanic Cloud (SMC). The survey utilises pilot HI observations with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope as part of the Galactic ASKAP HI (GASKAP-HI) project whose dataset has been processed with the GASKAP-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the SMC region, as well as an improvement in the quality of absorption spectra over previous surveys of the SMC. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the SMC and is more representative of the SMC as a whole. We also find that the optical depth varies greatly between the SMC&#39;s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of $\mathcal{R}_{\rm HI} \sim 1.04$) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06285v1-abstract-full').style.display = 'none'; document.getElementById('2204.06285v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PASA, 19 pages, 17 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14369">arXiv:2203.14369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14369">pdf</a>, <a href="https://arxiv.org/format/2203.14369">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac712">10.1093/mnras/stac712 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VMC survey -- XLVI. Stellar proper motions in the centre of the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Niederhofer%2C+F">F. Niederhofer</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+-+L">M. -R. L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Schmidt%2C+T">T. Schmidt</a>, <a href="/search/?searchtype=author&amp;query=Bekki%2C+K">K. Bekki</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">R. de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">V. D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+J+M">J. M. Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Ripepi%2C+V">V. Ripepi</a>, <a href="/search/?searchtype=author&amp;query=Subramanian%2C+S">S. Subramanian</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14369v1-abstract-short" style="display: inline;"> We present proper motion (PM) measurements within the central region of the Large Magellanic Cloud (LMC) using near-infrared data from the VISTA survey of the Magellanic Cloud system (VMC). This work encompasses 18 VMC tiles covering a total sky area of $\sim$28~deg$^2$. We computed absolute stellar PMs from multi-epoch observations in the $K_s$ filter over time baselines between $\sim$12 and 47 m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14369v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14369v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14369v1-abstract-full" style="display: none;"> We present proper motion (PM) measurements within the central region of the Large Magellanic Cloud (LMC) using near-infrared data from the VISTA survey of the Magellanic Cloud system (VMC). This work encompasses 18 VMC tiles covering a total sky area of $\sim$28~deg$^2$. We computed absolute stellar PMs from multi-epoch observations in the $K_s$ filter over time baselines between $\sim$12 and 47 months. Our final catalogue contains $\sim$6,322,000 likely LMC member stars with derived PMs. We employed a simple flat-rotating disc model to analyse and interpret the PM data. We found a stellar centre of rotation ($伪_0$ = 79.95 deg +0.22 -0.23, $未_0$ = -69.31 deg +0.12 -0.11) that is in agreement with that resulting from Hubble Space Telescope data. The inferred viewing angles of the LMC disc (i = 33.5 deg +1.2 -1.3, $螛$ = 129.8 deg +1.9 -1.9) are in good agreement with values from the literature but suggest a higher inclination of the central parts of the LMC. Our data confirm a higher rotation amplitude for the young ($\lesssim$0.5~Gyr) stars compared to the intermediate-age/old ($\gtrsim$1~Gyr) population, which can be explained by asymmetric drift. We constructed spatially resolved velocity maps of the intermediate-age/old and young populations. Intermediate-age/old stars follow elongated orbits parallel to the bar&#39;s major axis, providing first observational evidence for $x_1$ orbits within the LMC bar. In the innermost regions, the motions show more chaotic structures. Young stars show motions along a central filamentary bar structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14369v1-abstract-full').style.display = 'none'; document.getElementById('2203.14369v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 17 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01803">arXiv:2203.01803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.01803">pdf</a>, <a href="https://arxiv.org/format/2203.01803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142225">10.1051/0004-6361/202142225 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The EDIBLES survey V: Line profile variations in the $位位$5797, 6379, and 6614 diffuse interstellar bands as a tool to constrain carrier sizes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=MacIsaac%2C+H">Heather MacIsaac</a>, <a href="/search/?searchtype=author&amp;query=Cami%2C+J">Jan Cami</a>, <a href="/search/?searchtype=author&amp;query=Cox%2C+N+L+J">Nick L. J. Cox</a>, <a href="/search/?searchtype=author&amp;query=Farhang%2C+A">Amin Farhang</a>, <a href="/search/?searchtype=author&amp;query=Smoker%2C+J">Jonathan Smoker</a>, <a href="/search/?searchtype=author&amp;query=Elyajouri%2C+M">Meriem Elyajouri</a>, <a href="/search/?searchtype=author&amp;query=Lallement%2C+R">Rosine Lallement</a>, <a href="/search/?searchtype=author&amp;query=Sarre%2C+P+J">Peter J. Sarre</a>, <a href="/search/?searchtype=author&amp;query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&amp;query=Fan%2C+H">Haoyu Fan</a>, <a href="/search/?searchtype=author&amp;query=Kulik%2C+K">Klay Kulik</a>, <a href="/search/?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/?searchtype=author&amp;query=Foing%2C+B+H">Bernard H. Foing</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=Mulas%2C+G">Giacomo Mulas</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+K+T">Keith T. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01803v1-abstract-short" style="display: inline;"> Several diffuse interstellar bands (DIBs) have profiles with resolved sub-peaks that resemble rotational bands of large molecules. Analysis of these profiles can constrain the sizes and geometries of the DIB carriers, especially if the profiles exhibit clear variations along lines of sight probing different physical conditions. Using the extensive data set from the EDIBLES survey we searched for s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01803v1-abstract-full').style.display = 'inline'; document.getElementById('2203.01803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01803v1-abstract-full" style="display: none;"> Several diffuse interstellar bands (DIBs) have profiles with resolved sub-peaks that resemble rotational bands of large molecules. Analysis of these profiles can constrain the sizes and geometries of the DIB carriers, especially if the profiles exhibit clear variations along lines of sight probing different physical conditions. Using the extensive data set from the EDIBLES survey we searched for systematic variations in the peak-to-peak separation of these sub-peaks for the $位位$5797, 6379, and 6614 DIBs in lines of sight with a single dominant interstellar cloud. We used the spectra of twelve single-cloud sight lines to measure the peak-to-peak separation in the band profile substructures for these DIBs. We adopted the rotational contour formalism to infer the rotational constant for each DIB carrier and the rotational excitation temperature in the sight lines. We compared these to rotational constants for linear and spherical molecules to estimate the DIB carrier sizes. All three DIBs have peak separations that vary systematically between lines of sight, indicating correlated changes in the rotational excitation temperatures. We derived $B_{6614}$=$(22.2\pm8.9)\times 10^{-3}$ cm$^{-1}$, consistent with previous estimates. Assuming a similar rotational temperature for the $位$6614 DIB carrier and assuming a linear carrier, we found B$_{5797}^{\rm linear}=(5.1\pm2.0)\times10^{-3}~{\rm cm}^{-1}$ and B$_{6379}^{\rm linear} =(2.3\pm0.9)\times10^{-3}~{\rm cm}^{-1}$. If the carriers of those DIBs however are spherical species, their rotational constants are half that value, $B_{5797}^{\rm spherical} = (2.6\pm1.0)\times10^{-3}~{\rm cm}^{-1}$ and $B_{6379}^{\rm spherical} = (1.1\pm0.4)\times10^{-3}~{\rm cm}^{-1}$. We estimate molecule sizes that range from 7--9 carbon atoms ($位$6614 carrier, linear) to 77--114 carbon atoms ($位$6379, spherical). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01803v1-abstract-full').style.display = 'none'; document.getElementById('2203.01803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 56 figures. Accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 662, A24 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01780">arXiv:2203.01780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.01780">pdf</a>, <a href="https://arxiv.org/format/2203.01780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac595">10.1093/mnras/stac595 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VMC Survey -- XLVIII. Classical Cepheids unveil the 3D geometry of the LMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ripepi%2C+V">V. Ripepi</a>, <a href="/search/?searchtype=author&amp;query=Chemin%2C+L">L. Chemin</a>, <a href="/search/?searchtype=author&amp;query=Molinaro%2C+R">R. Molinaro</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+R+L">M. R. L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Bekki%2C+K">K. Bekki</a>, <a href="/search/?searchtype=author&amp;query=Clementini%2C+G">G. Clementini</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">R. de Grijs</a>, <a href="/search/?searchtype=author&amp;query=De+Somma%2C+G">G. De Somma</a>, <a href="/search/?searchtype=author&amp;query=Youssoufi%2C+D+E">D. El Youssoufi</a>, <a href="/search/?searchtype=author&amp;query=Girardi%2C+L">L. Girardi</a>, <a href="/search/?searchtype=author&amp;query=Groenewegen%2C+M+A+T">M. A. T. Groenewegen</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V">V. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Marconi%2C+M">M. Marconi</a>, <a href="/search/?searchtype=author&amp;query=McMillan%2C+P+J">P. J. McMillan</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">J. Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01780v1-abstract-short" style="display: inline;"> We employed the {\it VISTA near-infrared $YJK_\mathrm{s}$ survey of the Magellanic System} (VMC), to analyse the $Y,\,J,\,K_\mathrm{s}$ light curves of $未$ Cepheid stars (DCEPs) in the Large Magellanic Cloud (LMC). Our sample consists of 4408 objects accounting for 97 per cent of the combined list of OGLE\,IV and {\it Gaia}\,DR2 DCEPs. We determined a variety of period-luminosity ($PL$) and period&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01780v1-abstract-full').style.display = 'inline'; document.getElementById('2203.01780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01780v1-abstract-full" style="display: none;"> We employed the {\it VISTA near-infrared $YJK_\mathrm{s}$ survey of the Magellanic System} (VMC), to analyse the $Y,\,J,\,K_\mathrm{s}$ light curves of $未$ Cepheid stars (DCEPs) in the Large Magellanic Cloud (LMC). Our sample consists of 4408 objects accounting for 97 per cent of the combined list of OGLE\,IV and {\it Gaia}\,DR2 DCEPs. We determined a variety of period-luminosity ($PL$) and period-Wesenheit $PW$ relationships for Fundamental (F) and First Overtone (1O) pulsators. We discovered for the first time a break in these relationships for 1O DCEPs at $P$=0.58 d. We derived relative individual distances for DCEPs in the LMC with a precision of $\sim$1 kpc, calculating the position angle of the line of nodes and inclination of the galaxy: $胃$=145.6$\pm$1.0 deg and $i$=25.7$\pm$0.4 deg. The bar and the disc are seen under different viewing angles. We calculated the ages of the pulsators, finding two main episodes of DCEP formation lasting $\sim$40 Myr which happened 93 and 159 Myr ago. Likely as a result of its past interactions with the SMC, the LMC shows a non-planar distribution, with considerable structuring: the bar is divided into two distinct portions, the eastern and the western displaced by more than 1 kpc from each other. Similar behaviour is shown by the spiral arms. The LMC disc appears &#34;flared&#34; and thick, with a disc scale height of $h\sim 0.97$ kpc. This feature can be explained by strong tidal interactions with the Milky Way and/or the Small Magellanic Cloud or past merging events with now disrupted LMC satellites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01780v1-abstract-full').style.display = 'none'; document.getElementById('2203.01780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 21 figures, accepted for publication on MNRAS. Tables 1 and 2 are available in advance of publication upon request from the first author</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09267">arXiv:2202.09267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.09267">pdf</a>, <a href="https://arxiv.org/format/2202.09267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac508">10.1093/mnras/stac508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VMC survey -- XLVII. Turbulence-Controlled Hierarchical Star Formation in the Large Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Miller%2C+A+E">Amy E. Miller</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">Richard de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+N">Ning-Chen Sun</a>, <a href="/search/?searchtype=author&amp;query=Bell%2C+C+P+M">Cameron P. M. Bell</a>, <a href="/search/?searchtype=author&amp;query=Choudhury%2C+S">Samyaday Choudhury</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Marconi%2C+M">Marcella Marconi</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+J">Joana Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Petr-Gotzens%2C+M">Monika Petr-Gotzens</a>, <a href="/search/?searchtype=author&amp;query=Ripepi%2C+V">Vincenzo Ripepi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09267v1-abstract-short" style="display: inline;"> We perform a statistical clustering analysis of upper main-sequence stars in the Large Magellanic Cloud (LMC) using data from the Visible and Infrared Survey Telescope for Astronomy survey of the Magellanic Clouds. We map over 2500 young stellar structures at 15 significance levels across ~120 square degrees centred on the LMC. The structures have sizes ranging from a few parsecs to over 1 kpc. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09267v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09267v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09267v1-abstract-full" style="display: none;"> We perform a statistical clustering analysis of upper main-sequence stars in the Large Magellanic Cloud (LMC) using data from the Visible and Infrared Survey Telescope for Astronomy survey of the Magellanic Clouds. We map over 2500 young stellar structures at 15 significance levels across ~120 square degrees centred on the LMC. The structures have sizes ranging from a few parsecs to over 1 kpc. We find that the young structures follow power-law size and mass distributions. From the perimeter-area relation, we derive a perimeter-area dimension of 1.44+-0.20. From the mass-size relation and the size distribution, we derive two-dimensional fractal dimensions of 1.50+-0.10 and 1.61+-0.20, respectively. We find that the surface density distribution is well-represented by a lognormal distribution. We apply the Larson relation to estimate the velocity dispersions and crossing times of these structures. Our results indicate that the fractal nature of the young stellar structures has been inherited from the gas clouds from which they form and that this architecture is generated by supersonic turbulence. Our results also suggest that star formation in the LMC is scale-free from 10 pc to 700 pc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09267v1-abstract-full').style.display = 'none'; document.getElementById('2202.09267v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 17 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10026">arXiv:2201.10026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.10026">pdf</a>, <a href="https://arxiv.org/format/2201.10026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac210">10.1093/mnras/stac210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mysterious Odd Radio Circle near the Large Magellanic Cloud -- An Intergalactic Supernova Remnant? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">Miroslav D. Filipovi膰</a>, <a href="/search/?searchtype=author&amp;query=Payne%2C+J+L">J. L. Payne</a>, <a href="/search/?searchtype=author&amp;query=Alsaberi%2C+R+Z+E">R. Z. E. Alsaberi</a>, <a href="/search/?searchtype=author&amp;query=Norris%2C+R+P">R. P. Norris</a>, <a href="/search/?searchtype=author&amp;query=Macgregor%2C+P+J">P. J. Macgregor</a>, <a href="/search/?searchtype=author&amp;query=Rudnick%2C+L">L. Rudnick</a>, <a href="/search/?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/?searchtype=author&amp;query=Ducci%2C+L">L. Ducci</a>, <a href="/search/?searchtype=author&amp;query=Kothes%2C+R">R. Kothes</a>, <a href="/search/?searchtype=author&amp;query=Andernach%2C+H">H. Andernach</a>, <a href="/search/?searchtype=author&amp;query=Barnes%2C+L">L. Barnes</a>, <a href="/search/?searchtype=author&amp;query=Boji%C4%8Di%C4%87%2C+I+S">I. S. Boji膷i膰</a>, <a href="/search/?searchtype=author&amp;query=Bozzetto%2C+L+M">L. M. Bozzetto</a>, <a href="/search/?searchtype=author&amp;query=Brose%2C+R">R. Brose</a>, <a href="/search/?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/?searchtype=author&amp;query=Crawford%2C+E+J">E. J. Crawford</a>, <a href="/search/?searchtype=author&amp;query=Crocker%2C+R+M">R. M. Crocker</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+S">S. Dai</a>, <a href="/search/?searchtype=author&amp;query=Galvin%2C+T+J">T. J. Galvin</a>, <a href="/search/?searchtype=author&amp;query=Haberl%2C+F">F. Haberl</a>, <a href="/search/?searchtype=author&amp;query=Heber%2C+U">U. Heber</a>, <a href="/search/?searchtype=author&amp;query=Hill%2C+T">T. Hill</a>, <a href="/search/?searchtype=author&amp;query=Hopkins%2C+A+M">A. M. Hopkins</a>, <a href="/search/?searchtype=author&amp;query=Hurley-Walker%2C+N">N. Hurley-Walker</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10026v1-abstract-short" style="display: inline;"> We report the discovery of J0624-6948, a low-surface brightness radio ring, lying between the Galactic Plane and the Large Magellanic Cloud (LMC). It was first detected at 888 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP), and with a diameter of ~196 arcsec. This source has phenomenological similarities to Odd Radio Circles (ORCs). Significant differences to the known ORCs - a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10026v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10026v1-abstract-full" style="display: none;"> We report the discovery of J0624-6948, a low-surface brightness radio ring, lying between the Galactic Plane and the Large Magellanic Cloud (LMC). It was first detected at 888 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP), and with a diameter of ~196 arcsec. This source has phenomenological similarities to Odd Radio Circles (ORCs). Significant differences to the known ORCs - a flatter radio spectral index, the lack of a prominent central galaxy as a possible host, and larger apparent size - suggest that J0624-6948 may be a different type of object. We argue that the most plausible explanation for J0624-6948 is an intergalactic supernova remnant due to a star that resided in the LMC outskirts that had undergone a single-degenerate type Ia supernova, and we are seeing its remnant expand into a rarefied, intergalactic environment. We also examine if a massive star or a white dwarf binary ejected from either galaxy could be the supernova progenitor. Finally, we consider several other hypotheses for the nature of the object, including the jets of an active galactic nucleus (AGN) or the remnant of a nearby stellar super-flare. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10026v1-abstract-full').style.display = 'none'; document.getElementById('2201.10026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10018">arXiv:2201.10018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.10018">pdf</a>, <a href="https://arxiv.org/format/2201.10018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142148">10.1051/0004-6361/202142148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VMC survey -- XLV. Proper motion of the outer LMC and the impact of the SMC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Schmidt%2C+T">Thomas Schmidt</a>, <a href="/search/?searchtype=author&amp;query=Cioni%2C+M+L">Maria-Rosa L. Cioni</a>, <a href="/search/?searchtype=author&amp;query=Niederhofer%2C+F">Florian Niederhofer</a>, <a href="/search/?searchtype=author&amp;query=Bekki%2C+K">Kenji Bekki</a>, <a href="/search/?searchtype=author&amp;query=Bell%2C+C+P+M">Cameron P. M. Bell</a>, <a href="/search/?searchtype=author&amp;query=de+Grijs%2C+R">Richard de Grijs</a>, <a href="/search/?searchtype=author&amp;query=Youssoufi%2C+D+E">Dalal El Youssoufi</a>, <a href="/search/?searchtype=author&amp;query=Ivanov%2C+V+D">Valentin D. Ivanov</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+J+M">Joana M. Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Ripepi%2C+V">Vincenzo Ripepi</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10018v2-abstract-short" style="display: inline;"> The Large Magellanic Cloud (LMC) is the most luminous satellite galaxy of the Milky Way and owing to its companion, the Small Magellanic Cloud (SMC), represents an excellent laboratory to study the interaction of dwarf galaxies. The aim of this study is to investigate the kinematics of the outer regions of the LMC by using stellar proper motions to understand the impact of interactions, e.g. with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10018v2-abstract-full').style.display = 'inline'; document.getElementById('2201.10018v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10018v2-abstract-full" style="display: none;"> The Large Magellanic Cloud (LMC) is the most luminous satellite galaxy of the Milky Way and owing to its companion, the Small Magellanic Cloud (SMC), represents an excellent laboratory to study the interaction of dwarf galaxies. The aim of this study is to investigate the kinematics of the outer regions of the LMC by using stellar proper motions to understand the impact of interactions, e.g. with the SMC about 250 Myr ago. {We calculate proper motions using multi-epoch $K_\mathrm{s}$-band images from the VISTA survey of the Magellanic Clouds system (VMC). Observations span a time baseline of 2$-$5 yr. We combine the VMC data with data from the Gaia early Data Release 3 and introduce a new method to distinguish between Magellanic and Milky Way stars based on a machine learning algorithm. This new technique enables a larger and cleaner sample selection of fainter sources as it reaches below the red clump of the LMC. We investigate the impact of the SMC on the rotational field of the LMC and find hints of stripped SMC debris. The south east region of the LMC shows a slow rotational speed compared to the overall rotation. $N$-body simulations suggest that this could be caused by a fraction of stripped SMC stars, located in that particular region, that move opposite to the expected rotation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10018v2-abstract-full').style.display = 'none'; document.getElementById('2201.10018v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 21 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 663, A107 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09945">arXiv:2201.09945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09945">pdf</a>, <a href="https://arxiv.org/format/2201.09945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4e8f">10.3847/1538-4357/ac4e8f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ALMA Observations of Molecular Complexity in the Large Magellanic Cloud: The N105 Star-Forming Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sewi%C5%82o%2C+M">Marta Sewi艂o</a>, <a href="/search/?searchtype=author&amp;query=Cordiner%2C+M">Martin Cordiner</a>, <a href="/search/?searchtype=author&amp;query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&amp;query=Oliveira%2C+J+M">Joana M. Oliveira</a>, <a href="/search/?searchtype=author&amp;query=Berrios%2C+E+G">Emmanuel Garcia Berrios</a>, <a href="/search/?searchtype=author&amp;query=Schilke%2C+P">Peter Schilke</a>, <a href="/search/?searchtype=author&amp;query=Ward%2C+J+L">Jacob L. Ward</a>, <a href="/search/?searchtype=author&amp;query=Wiseman%2C+J">Jennifer Wiseman</a>, <a href="/search/?searchtype=author&amp;query=Indebetouw%2C+R">Remy Indebetouw</a>, <a href="/search/?searchtype=author&amp;query=Tokuda%2C+K">Kazuki Tokuda</a>, <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&amp;query=S%C3%A1nchez-Monge%2C+%C3%81">脕lvaro S谩nchez-Monge</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+V">Veronica Allen</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C+-+R">C. -H. Rosie Chen</a>, <a href="/search/?searchtype=author&amp;query=Golshan%2C+R+H">Roya Hamedani Golshan</a>, <a href="/search/?searchtype=author&amp;query=Karska%2C+A">Agata Karska</a>, <a href="/search/?searchtype=author&amp;query=Kristensen%2C+L+E">Lars E. Kristensen</a>, <a href="/search/?searchtype=author&amp;query=Kurtz%2C+S+E">Stan E. Kurtz</a>, <a href="/search/?searchtype=author&amp;query=Onishi%2C+T">Toshikazu Onishi</a>, <a href="/search/?searchtype=author&amp;query=Zahorecz%2C+S">Sarolta Zahorecz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09945v1-abstract-short" style="display: inline;"> The Large Magellanic Cloud (LMC) is the nearest laboratory for detailed studies on the formation and survival of complex organic molecules (COMs), including biologically important ones, in low-metallicity environments--typical for earlier cosmological epochs. We report the results of 1.2 mm continuum and molecular line observations of three fields in the star-forming region N105 with the Atacama L&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09945v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09945v1-abstract-full" style="display: none;"> The Large Magellanic Cloud (LMC) is the nearest laboratory for detailed studies on the formation and survival of complex organic molecules (COMs), including biologically important ones, in low-metallicity environments--typical for earlier cosmological epochs. We report the results of 1.2 mm continuum and molecular line observations of three fields in the star-forming region N105 with the Atacama Large Millimeter/submillimeter Array (ALMA). N105 lies at the western edge of the LMC bar with on-going star formation traced by H$_2$O, OH, and CH$_3$OH masers, ultracompact H II regions, and young stellar objects. Based on the spectral line modeling, we estimated rotational temperatures, column densities, and fractional molecular abundances for twelve 1.2 mm continuum sources. We identified sources with a range of chemical make-ups, including two bona fide hot cores and four hot core candidates. The CH$_3$OH emission is widespread and associated with all the continuum sources. COMs CH$_3$CN and CH$_3$OCH$_3$ are detected toward two hot cores in N105 together with smaller molecules typically found in Galactic hot cores (e.g., SO$_2$, SO, and HNCO) with the molecular abundances roughly scaling with metallicity. We report a tentative detection of the astrobiologically relevant formamide molecule (NH$_2$CHO) toward one of the hot cores; if confirmed, this would be the first detection of NH$_2$CHO in an extragalactic sub-solar metallicity environment. We suggest that metallicity inhomogeneities resulting from the tidal interactions between the LMC and the Small Magellanic Cloud (SMC) might have led to the observed large variations in COM abundances in LMC hot cores. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09945v1-abstract-full').style.display = 'none'; document.getElementById('2201.09945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">75 pages, 48 figures, 7 tables (including appendices); Accepted for publication in the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06076">arXiv:2112.06076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06076">pdf</a>, <a href="https://arxiv.org/format/2112.06076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> </div> </div> <p class="title is-5 mathjax"> The curious case of Betelgeuse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T">Jacco Th. van Loon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06076v1-abstract-short" style="display: inline;"> Betelgeuse is the nearest red supergiant, one of the brightest stars in our sky, and statistically speaking it would be expected to be &#34;typical&#34;. Yet it exhibits many features that seem &#34;curious&#34;, to say the least. For instance it has a high proper motion. It rotates fast. It has little dust. It dimmed unexpectedly. Is any of these, and other, phenomena atypical, and taken together does it make Be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06076v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06076v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06076v1-abstract-full" style="display: none;"> Betelgeuse is the nearest red supergiant, one of the brightest stars in our sky, and statistically speaking it would be expected to be &#34;typical&#34;. Yet it exhibits many features that seem &#34;curious&#34;, to say the least. For instance it has a high proper motion. It rotates fast. It has little dust. It dimmed unexpectedly. Is any of these, and other, phenomena atypical, and taken together does it make Betelgeuse atypical? This is important to know, because we need to know whether Betelgeuse might be a prototype of red supergiants in general, or certain subclasses of red supergiants, since we can study it in such great detail. It is also important to know as it may be a link to understanding other, apparently atypical cases such as supernova 1987A, and maybe even such exotica as Thorne-呕ytkov objects. Studying this question in itself helps us understand how we deal with rarity and coincidence in understanding the Universe we live in. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06076v1-abstract-full').style.display = 'none'; document.getElementById('2112.06076v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited talk at the 16th Marcel Grossmann meeting</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=van+Loon%2C+J+T&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10