CINXE.COM
Search results for: Trophic level
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Trophic level</title> <meta name="description" content="Search results for: Trophic level"> <meta name="keywords" content="Trophic level"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Trophic level" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Trophic level"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12731</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Trophic level</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12731</span> Ecopath Analysis of Trophic Structure in Moroccan Mediterranean Sea and Atlantic Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Aboussalam">Salma Aboussalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Khalil"> Karima Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Elkalay"> Khalid Elkalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ecopath model was utilized to evaluate the trophic structure, function, and current status of the Moroccan Mediterranean Sea ecosystem. The model incorporated 31 functional groups, including fish species, invertebrates, primary producers, and detritus. Through the analysis of trophic interactions among these groups, an average trophic transfer efficiency of 23% was found. The findings revealed that the ecosystem produced more energy than it consumed, with high respiration and consumption rates. Indicators of stability and development were low, indicating that the ecosystem is disturbed by a linear trophic structure. Additionally, keystone species were identified through the use of the keystone index and mixed trophic impact analysis, with demersal invertebrates, zooplankton, and cephalopods found to have a significant impact on other groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecopath" title="ecopath">ecopath</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20web" title=" food web"> food web</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20flux" title=" trophic flux"> trophic flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Moroccan%20Mediterranean%20Sea" title=" Moroccan Mediterranean Sea"> Moroccan Mediterranean Sea</a> </p> <a href="https://publications.waset.org/abstracts/161771/ecopath-analysis-of-trophic-structure-in-moroccan-mediterranean-sea-and-atlantic-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12730</span> Investigating Trophic Relationships in Moroccan Marine Ecosystems: A Study of the Mediterranean and Atlantic Using Ecopath</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Aboussalam">Salma Aboussalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Khalil"> Karima Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Elkalay"> Khalid Elkalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An Ecopath model was employed to investigate the trophic structure, function, and current state of the Moroccan Mediterranean Sea ecosystem. The model incorporated 31 functional groups, including 21 fish species, 7 invertebrates, 2 primary producers, and a detritus group. The trophic interactions among these groups were analyzed, revealing an average trophic transfer efficiency of 23%. The results indicated that the ecosystem produced more energy than it consumed, with high respiration and consumption rates. Indicators of stability and development were low for the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), indicating a disturbed ecosystem with a linear trophic structure. Keystone species were identified through the use of the keystone index and mixed trophic impact analysis, with demersal invertebrates, zooplankton, and cephalopods found to have a significant impact on other groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ecopath" title="Ecopath">Ecopath</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20web" title=" food web"> food web</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20flux" title=" trophic flux"> trophic flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Moroccan%20Mediterranean%20Sea" title=" Moroccan Mediterranean Sea"> Moroccan Mediterranean Sea</a> </p> <a href="https://publications.waset.org/abstracts/161770/investigating-trophic-relationships-in-moroccan-marine-ecosystems-a-study-of-the-mediterranean-and-atlantic-using-ecopath" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12729</span> The Ecological Role of Loligo forbesii in the Moray Firth Ecosystem, Northeast Scotland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Godwin%20A.%20Otogo">Godwin A. Otogo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sansanee%20Wangvoralak"> Sansanee Wangvoralak</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20J.%20Pierce"> Graham J. Pierce</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20C.%20Hastie"> Lee C. Hastie</a>, <a href="https://publications.waset.org/abstracts/search?q=Beth%20Scott"> Beth Scott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The squid <em>Loligo forbesii</em> is suspected to be an important species in marine food webs, as it can strongly impact its prey and be impacted upon by predation, competition, fishing and/or climate variability. To quantify these impacts in the food web, the measurement of its trophic position and ecological role within well-studied ecosystems is essential. An Ecopath model was balanced and run for the Moray Firth ecosystem and was used to investigate the significance of this squid’s trophic roles. The network analysis routine included in Ecopath with Ecosim (EwE) was used to estimate trophic interaction, system indicators (health condition and developmental stage) and food web features. Results indicated that within the Moray Firth squid occupy a top trophic position in the food web and also a major prey item for many other species. Results from Omnivory Index (OI) showed that squid is a generalized feeder transferring energy across wide trophic levels and is more important as a predator than that as a prey in the Moray Firth ecosystem. The results highlight the importance of taking squid into account in the management of Europe’s living marine resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Squid" title="Squid">Squid</a>, <a href="https://publications.waset.org/abstracts/search?q=Loligo%20forbesii" title=" Loligo forbesii"> Loligo forbesii</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecopath" title=" Ecopath"> Ecopath</a>, <a href="https://publications.waset.org/abstracts/search?q=Moray%20Firth" title=" Moray Firth"> Moray Firth</a>, <a href="https://publications.waset.org/abstracts/search?q=Trophic%20level" title=" Trophic level "> Trophic level </a> </p> <a href="https://publications.waset.org/abstracts/23472/the-ecological-role-of-loligo-forbesii-in-the-moray-firth-ecosystem-northeast-scotland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12728</span> Assessing the Ecological Status of the Moroccan Mediterranean Sea: An Ecopath Modeling Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Aboussalam">Salma Aboussalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Khalil"> Karima Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Elkalay"> Khalid Elkalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to understand the structure, functioning, and current state of the Moroccan Mediterranean Sea ecosystem, an Ecopath mass balance model was applied. The model was based on 31 functional groups, which included 21 fish species, 7 invertebrates, 2 primary producers, and one detritus group. The trophic interactions between these groups were analyzed, and the system's average trophic transfer efficiency was found to be 23%. The total primary production and total respiration were calculated to be greater than 1, indicating that the system produces more energy than it respires. The ecosystem was found to have a high level of respiration and consumption flows, and indicators of stability and development showed low values for the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), indicating that the ecosystem is disturbed and has a linear rather than web-like trophic structure. Keystone species were identified using the keystone index and mixed trophic impact analysis, with other demersal invertebrates, zooplankton, and cephalopods found to have a significant impact on other groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecopath" title="ecopath">ecopath</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20web" title=" food web"> food web</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20flux" title=" trophic flux"> trophic flux</a>, <a href="https://publications.waset.org/abstracts/search?q=moroccan%20mediterranean%20sea" title=" moroccan mediterranean sea"> moroccan mediterranean sea</a> </p> <a href="https://publications.waset.org/abstracts/161765/assessing-the-ecological-status-of-the-moroccan-mediterranean-sea-an-ecopath-modeling-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12727</span> Comparing the Trophic Structure of the Moroccan Mediterranean Sea with the Moroccan Atlantic Coast Using Ecopath Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Aboussalam">Salma Aboussalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Khalil"> Karima Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Elkalay"> Khalid Elkalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To describe the structure, functioning, and state of the Moroccan Mediterranean Sea ecosystem, an Ecopath mass balance model has been applied. The model is based on 31 functional groups, containing 21 fishes, 7 invertebrates, 2 primary producers, and one dead group (detritus), which are considered in this work to explore the trophic interaction. The system's average trophic transfer efficiency was 23%. Both the total primary production and total respiration were calculated to be >1, suggesting that more energy is produced than respired in the system. The structure of our system is based on high respiration and consumption flows. Indicators of ecosystem stability and development showed low values of the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), suggesting that our system is disturbed and has a more linear than web-like trophic structure. The keystone index and mixed trophic impact analysis indicated that other demersal invertebrates, zooplankton, and cephalopods had a tremendous impact on other groups and were recognized as keystone species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ecopath" title="Ecopath">Ecopath</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20web" title=" food web"> food web</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20flux" title=" trophic flux"> trophic flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Moroccan%20Mediterranean%20Sea" title=" Moroccan Mediterranean Sea"> Moroccan Mediterranean Sea</a> </p> <a href="https://publications.waset.org/abstracts/161763/comparing-the-trophic-structure-of-the-moroccan-mediterranean-sea-with-the-moroccan-atlantic-coast-using-ecopath-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12726</span> Assessing Nutrient Concentration and Trophic Status of Brahma Sarover at Kurukshetra, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shailendra%20Kumar%20Patidar">Shailendra Kumar Patidar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eutrophication of surface water is one of the most widespread environmental problems at present. Large number of pilgrims and tourists visit sacred artificial tank known as “Brahma Sarover” located at Kurukshetra, India to take holy dip and perform religious ceremonies. The sources of pollutants include impurities in feed water, mass bathing, religious offerings and windblown particulate matter. Studies so far have focused mainly on assessing water quality for bathing purpose by using physico-chemical and bacteriological parameters. No effort has been made to assess nutrient concentration and trophic status of the tank to take more appropriate measures for improving water quality on long term basis. In the present study, total nitrogen, total phosphorous and chlorophyll a measurements have been done to assess the nutrient level and trophic status of the tank. The results show presence of high concentration of nutrients and Chlorophyll a indicating mesotrophic and eutrophic state of the tank. Phosphorous has been observed as limiting nutrient in the tank water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahma%20Sarover" title="Brahma Sarover">Brahma Sarover</a>, <a href="https://publications.waset.org/abstracts/search?q=eutrophication" title=" eutrophication"> eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20status" title=" trophic status"> trophic status</a> </p> <a href="https://publications.waset.org/abstracts/12723/assessing-nutrient-concentration-and-trophic-status-of-brahma-sarover-at-kurukshetra-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12725</span> Evidence of Total Mercury Biomagnification in Tropical Estuary Lagoon in East Coast of Peninsula, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quang%20Dung%20Le">Quang Dung Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Kentaro%20Tanaka"> Kentaro Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Viet%20Dung%20Luu"> Viet Dung Luu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kotaro%20Shirai"> Kotaro Shirai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mercury pollutant is great concerns in globe due to its toxicity and biomagnification through the food web. Recently increasing approaches of stable isotope analyses which have applied in food-web structure are enabled to elucidate more insight trophic transfer of pollutants in ecosystems. In this study, the integration of total mercury (Hg) and stable isotopic analyses (δ13C and δ15N) were measured from basal food sources to invertebrates and fishes in order to determine Hg transfer in Setiu lagoon food webs. The average Hg concentrations showed the increasing trend from low to high trophic levels. The result also indicated that potential Hg exposure from inside mangrove could be higher than that from the tidal flat of mangrove creek. Fish Hg concentrations are highly variable, and many factors driving this variability need further examinations. A positive correlation found between Hg concentrations and δ15N values (the trophic magnification factor was 3.02), suggesting Hg biomagnification through the lagoon food web. Almost all Hg concentrations in fishes and mud crabs did not present a risk for human consumption, however, the Hg concentrations of Caranx ignobilis exceed the permitted level could raise a concern of the potential risk for the marine system. Further investigations should be done to elucidate whether trophic relay relates to high Hg concentrations of some fish species in coastal systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercury" title="mercury">mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer" title=" transfer"> transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title=" health risk"> health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove" title=" mangrove"> mangrove</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20web" title=" food web"> food web</a> </p> <a href="https://publications.waset.org/abstracts/58874/evidence-of-total-mercury-biomagnification-in-tropical-estuary-lagoon-in-east-coast-of-peninsula-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12724</span> Functional Feeding Groups and Trophic Levels of Benthic Macroinvertebrates Assemblages in Albertine Rift Rivers and Streams in South Western Uganda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peace%20Liz%20Sasha%20Musonge">Peace Liz Sasha Musonge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Behavioral aspects of species nutrition such as feeding methods and food type are archetypal biological traits signifying how species have adapted to their environment. This concept of functional feeding groups (FFG) analysis is currently used to ascertain the trophic levels of the aquatic food web in a specific microhabitat. However, in Eastern Africa, information about the FFG classification of benthic macroinvertebrates in highland rivers and streams is almost absent, and existing studies have fragmented datasets. For this reason, we carried out a robust study to determine the feed type, trophic level and FFGs, of 56 macroinvertebrate taxa (identified to family level) from Albertine rift valley streams. Our findings showed that all five major functional feeding groups were represented; Gatherer Collectors (GC); Predators (PR); shredders (SH); Scrapers (SC); and Filterer collectors. The most dominant functional feeding group was the Gatherer Collectors (GC) that accounted for 53.5% of the total population. The most abundant (GC) families were Baetidae (7813 individuals), Chironomidae NTP (5628) and Caenidae (1848). Majority of the macroinvertebrate population feed on Fine particulate organic matter (FPOM) from the stream bottom. In terms of taxa richness the Predators (PR) had the highest value of 24 taxa and the Filterer Collectors group had the least number of taxa (3). The families that had the highest number of predators (PR) were Corixidae (1024 individuals), Coenagrionidae (445) and Libellulidae (283). However, Predators accounted for only 7.4% of the population. The findings highlighted the functional feeding groups and habitat type of macroinvertebrate communities along an altitudinal gradient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trophic%20levels" title="trophic levels">trophic levels</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20feeding%20groups" title=" functional feeding groups"> functional feeding groups</a>, <a href="https://publications.waset.org/abstracts/search?q=macroinvertebrates" title=" macroinvertebrates"> macroinvertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=Albertine%20rift" title=" Albertine rift"> Albertine rift</a> </p> <a href="https://publications.waset.org/abstracts/63656/functional-feeding-groups-and-trophic-levels-of-benthic-macroinvertebrates-assemblages-in-albertine-rift-rivers-and-streams-in-south-western-uganda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12723</span> Increase in the Persistence of Various Invaded Multiplex Metacommunities Induced by Heterogeneity of Motifs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dweepabiswa%20Bagchi">Dweepabiswa Bagchi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Senthilkumar"> D. V. Senthilkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous studies have typically demonstrated the devastation of invasions on an isolated ecosystem or, at most, a network of dispersively coupled similar ecosystem patches. Using such a simplistic 2-D network model, one can only consider dispersal coupling and inter-species trophic interactions. However, in a realistic ecosystem, numerous species co-exist and interact trophically and non-trophically in groups of 2 or more. Even different types of dispersal can introduce complexity in an ecological network. Therefore, a more accurate representation of actual ecosystems (or ecological networks) is a complex network consisting of motifs formed by two or more interacting species. Here, the apropos structure of the network should be multiplex or multi-layered. Motifs between different patches or species should be identical within the same layer and vary from one layer to another. This study investigates three distinct ecological multiplex networks facing invasion from one or more external species. This work determines and quantifies the criteria for the increased extinction risk of these networks. The dynamical states of the network with high extinction risk, i.e., the danger states, and those with low extinction risk, i.e., the resistive network states, are both subsequently identified. The analysis done in this study further quantifies the persistence of the entire network corresponding to simultaneous changes in the strength of invasive dispersal and higher-order trophic and non-trophic interactions. This study also demonstrates that the ecosystems enjoy an inherent advantage against invasions due to their multiplex network structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=increased%20ecosystem%20persistence" title="increased ecosystem persistence">increased ecosystem persistence</a>, <a href="https://publications.waset.org/abstracts/search?q=invasion%20on%20ecosystems" title=" invasion on ecosystems"> invasion on ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20networks" title=" multiplex networks"> multiplex networks</a>, <a href="https://publications.waset.org/abstracts/search?q=non-trophic%20interactions" title=" non-trophic interactions"> non-trophic interactions</a> </p> <a href="https://publications.waset.org/abstracts/176495/increase-in-the-persistence-of-various-invaded-multiplex-metacommunities-induced-by-heterogeneity-of-motifs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12722</span> Water Quality Assessment Based on Operational Indicator in West Coastal Water of Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Belin%20Tavakoly%20Sany">Seyedeh Belin Tavakoly Sany</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Rosli"> H. Rosli</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Majid"> R. Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Aishah"> S. Aishah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, water monitoring was performed from Nov. 2012 to Oct. 2013 to assess water quality and evaluate the spatial and temporal distribution of physicochemical and biological variables in water. Water samples were collected from 10 coastal water stations of West Port. In the case of water-quality assessment, multi-metric indices and operational indicators have been proposed to classify the trophic status at different stations. The trophic level of West Port coastal water ranges from eutrophic to hypertrophic. Chl-a concentration was used to estimate the biological response of phytoplankton biomass and indicated eutrophic conditions in West Port and mesotrophic conditions at the control site. During the study period, no eutrophication events or secondary symptoms occurred, which may be related to hydrodynamic turbulence and water exchange, which prevent the development of eutrophic conditions in the West Port. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title="water quality">water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-metric%20indices" title=" multi-metric indices"> multi-metric indices</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20indicator" title=" operational indicator"> operational indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=West%20Port" title=" West Port"> West Port</a> </p> <a href="https://publications.waset.org/abstracts/54158/water-quality-assessment-based-on-operational-indicator-in-west-coastal-water-of-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12721</span> Trophic Variations in Uptake and Assimilation of Cadmium, Manganese and Zinc: An Estuarine Food-Chain Radiotracer Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20O%E2%80%99Mara">K. O’Mara</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Cresswell"> T. Cresswell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nearly half of the world’s population live near the coast, and as a result, estuaries and coastal bays in populated or industrialized areas often receive metal pollution. Heavy metals have a chemical affinity for sediment particles and can be stored in estuarine sediments and become biologically available under changing conditions. Organisms inhabiting estuaries can be exposed to metals from a variety of sources including metals dissolved in water, bound to sediment or within contaminated prey. Metal uptake and assimilation responses can vary even between species that are biologically similar, making pollution effects difficult to predict. A multi-trophic level experiment representing a common Eastern Australian estuarine food chain was used to study the sources for Cd, Mn and Zn uptake and assimilation in organisms occupying several trophic levels. Sand cockles (Katelysia scalarina), school prawns (Metapenaeus macleayi) and sand whiting (Sillago ciliata) were exposed to radiolabelled seawater, suspended sediment and food. Three pulse-chase trials on filter-feeding sand cockles were performed using radiolabelled phytoplankton (Tetraselmis sp.), benthic microalgae (Entomoneis sp.) and suspended sediment. Benthic microalgae had lower metal uptake than phytoplankton during labelling but higher cockle assimilation efficiencies (Cd = 51%, Mn = 42%, Zn = 63 %) than both phytoplankton (Cd = 21%, Mn = 32%, Zn = 33%) and suspended sediment (except Mn; (Cd = 38%, Mn = 42%, Zn = 53%)). Sand cockles were also sensitive to uptake of Cd, Mn and Zn dissolved in seawater. Uptake of these metals from the dissolved phase was negligible in prawns and fish, with prawns only accumulating metals during moulting, which were then lost with subsequent moulting in the depuration phase. Diet appears to be the main source of metal assimilation in school prawns, with 65%, 54% and 58% assimilation efficiencies from Cd, Mn and Zn respectively. Whiting fed contaminated prawns were able to exclude the majority of the metal activity through egestion, with only 10%, 23% and 11% assimilation efficiencies from Cd, Mn and Zn respectively. The findings of this study support previous studies that find diet to be the dominant accumulation source for higher level trophic organisms. These results show that assimilation efficiencies can vary depending on the source of exposure; sand cockles assimilated more Cd, Mn, and Zn from the benthic diatom than phytoplankton and assimilation was higher in sand whiting fed prawns compared to artificial pellets. The sensitivity of sand cockles to metal uptake and assimilation from a variety of sources poses concerns for metal availability to predators ingesting the clam tissue, including humans. The high tolerance of sand whiting to these metals is reflected in their widespread presence in Eastern Australian estuaries, including contaminated estuaries such as Botany Bay and Port Jackson. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20chain" title=" food chain"> food chain</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese"> manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic" title=" trophic"> trophic</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/77612/trophic-variations-in-uptake-and-assimilation-of-cadmium-manganese-and-zinc-an-estuarine-food-chain-radiotracer-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12720</span> Microbial and Meiofaunal Dynamics in the Intertidal Sediments of the Northern Red Sea </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20A.%20El-Serehy">Hamed A. El-Serehy</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20A.%20Al-Rasheid"> Khaled A. Al-Rasheid</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20A%20Al-Misned"> Fahad A Al-Misned</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The meiofaunal population fluctuation, microbial dynamic and the composition of the sedimentary organic matter were investigated seasonally in the Egyptian shores along the northern part of Red Sea. Total meiofaunal population densities were extremely low with an annual average of 109 ±26 ind./10 cm2 and largely dominated by nematodes (on annual average from 52% to 94% of total meiofaunal density). The benthic microbial population densities ranged from 0.26±0.02 x 108 to 102.67±18.62 x 108/g dry sediment. Total sedimentary organic matter concentrations varied between 5.8 and 11.6 mg/g and the organic carbon, which was measured as summation of the carbohydrates, proteins and lipids, accounted for only a small fraction of being 32 % of the total organic matter. Chlorophyll a attained very low values and fluctuated between 2 and 11 µg/g. The very low chlorophyll a concentration in the Egyptian coasts along the Red Sea can suggest that the sedimentary organic matter along the Egyptian coasts is dominated by organic detrital and heterotrophic bacteria on one hand, and do not promote carbon transfer towards the higher trophic level on the other hand. However, the present study indicates that the existing of well diversified meiofaunal group, with a total of ten meiofaunal taxa, can serve as food for higher trophic levels in the Red Sea marine ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=meiofauna" title=" meiofauna"> meiofauna</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal%20sediments" title=" intertidal sediments"> intertidal sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Red%20Sea" title=" Red Sea"> Red Sea</a> </p> <a href="https://publications.waset.org/abstracts/28432/microbial-and-meiofaunal-dynamics-in-the-intertidal-sediments-of-the-northern-red-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12719</span> Characteristics of Meiofaunal Communities in Intertidal Habitats Along Albanian Adriatic Sea Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fundime%20Miri">Fundime Miri</a>, <a href="https://publications.waset.org/abstracts/search?q=Emanuela%20Sulaj"> Emanuela Sulaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benthic ecosystems constitute important ecological habitats, providing fundamental services for spawning, foraging, and sheltering aquatic organisms. Benthic faunal communities are characterized by a large biological diversity, supported by a great physical variety of benthic habitats. Until late, the study of meiobenthic communities in Albania has been neglectedthus excluding an important component of benthos. The present study aims to bring characteristics of distribution pattern of meiofaunal communities with further focus on nematode genus-based diversity from different intertidal habitats along Albanian Adriatic Sea Coast. The investigation area is extended from Shkodra to Vlora District, including six sandy sampling sites in beaches and areas near river estuaries. Sediment samples were collected manually in low intertidal zone by using a cylindrical corer, with an internal diameter of 5 cm. The richness onmeiofaunalmajor taxon level did not show any significant change between different sampling sites compare to significant changes in nematode diversity at genus level, with distinct nematode assemblages per sampling sites and presence of exclusive genera. All meiofaunal communities under study were dominated by nematodes. Further assessment of functional diversity on nematode assemblages exhibited changes as well on trophic groups and life strategies due to diverse feeding behaviors and c-p values of nematode genera. This study emphasize the need for lower level taxonomic identification of meiofaunal organisms and extending of ecological assessments on trophic diversity and life strategies to understanding functional consequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benthos" title="benthos">benthos</a>, <a href="https://publications.waset.org/abstracts/search?q=meiofauna" title=" meiofauna"> meiofauna</a>, <a href="https://publications.waset.org/abstracts/search?q=nematode%20genus-based%20diversity" title=" nematode genus-based diversity"> nematode genus-based diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20diversity" title=" functional diversity"> functional diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal" title=" intertidal"> intertidal</a>, <a href="https://publications.waset.org/abstracts/search?q=albanian%20adriatic%20coast" title=" albanian adriatic coast"> albanian adriatic coast</a> </p> <a href="https://publications.waset.org/abstracts/144773/characteristics-of-meiofaunal-communities-in-intertidal-habitats-along-albanian-adriatic-sea-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12718</span> Ecosystem Approach in Aquaculture: From Experimental Recirculating Multi-Trophic Aquaculture to Operational System in Marsh Ponds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Simide">R. Simide</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Miard"> T. Miard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrated multi-trophic aquaculture (IMTA) is used to reduce waste from aquaculture and increase productivity by co-cultured species. In this study, we designed a recirculating multi-trophic aquaculture system which requires low energy consumption, low water renewal and easy-care. European seabass (Dicentrarchus labrax) were raised with co-cultured sea urchin (Paracentrotus lividus), deteritivorous polychaete fed on settled particulate matter, mussels (Mytilus galloprovincialis) used to extract suspended matters, macroalgae (Ulva sp.) used to uptake dissolved nutrients and gastropod (Phorcus turbinatus) used to clean the series of 4 tanks from fouling. Experiment was performed in triplicate during one month in autumn under an experimental greenhouse at the Institute Océanographique Paul Ricard (IOPR). Thanks to the absence of a physical filter, any pomp was needed to pressure water and the water flow was carried out by a single air-lift followed by gravity flow.Total suspended solids (TSS), biochemical oxygen demand (BOD5), turbidity, phytoplankton estimation and dissolved nutrients (ammonium NH₄, nitrite NO₂⁻, nitrate NO₃⁻ and phosphorus PO₄³⁻) were measured weekly while dissolved oxygen and pH were continuously recorded. Dissolved nutrients stay under the detectable threshold during the experiment. BOD5 decreased between fish and macroalgae tanks. TSS highly increased after 2 weeks and then decreased at the end of the experiment. Those results show that bioremediation can be well used for aquaculture system to keep optimum growing conditions. Fish were the only feeding species by an external product (commercial fish pellet) in the system. The others species (extractive species) were fed from waste streams from the tank above or from Ulva produced by the system for the sea urchin. In this way, between the fish aquaculture only and the addition of the extractive species, the biomass productivity increase by 5.7. In other words, the food conversion ratio dropped from 1.08 with fish only to 0.189 including all species. This experimental recirculating multi-trophic aquaculture system was efficient enough to reduce waste and increase productivity. In a second time, this technology has been reproduced at a commercial scale. The IOPR in collaboration with Les 4 Marais company run for 6 month a recirculating IMTA in 8000 m² of water allocate between 4 marsh ponds. A similar air-lift and gravity recirculating system was design and only one feeding species of shrimp (Palaemon sp.) was growth for 3 extractive species. Thanks to this joint work at the laboratory and commercial scales we will be able to challenge IMTA system and discuss about this sustainable aquaculture technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20multi-trophic%20aquaculture%20%28IMTA%29" title=" integrated multi-trophic aquaculture (IMTA)"> integrated multi-trophic aquaculture (IMTA)</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20and%20commercial%20scales" title=" laboratory and commercial scales"> laboratory and commercial scales</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculating%20aquaculture" title=" recirculating aquaculture"> recirculating aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a> </p> <a href="https://publications.waset.org/abstracts/90753/ecosystem-approach-in-aquaculture-from-experimental-recirculating-multi-trophic-aquaculture-to-operational-system-in-marsh-ponds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12717</span> Ecosystem Engineering Strengthens Bottom-Up and Weakens Top-Down Effects via Trait-Mediated Indirect Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiwei%20Zhong">Zhiwei Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofei%20Li"> Xiaofei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Deli%20Wang"> Deli Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ecosystem engineering is a powerful force shaping community structure and ecosystem function. Yet, very little is known about the mechanisms by which engineers affect vital ecosystem processes like trophic interactions. Here, we examine the potential for a herbivore ecosystem engineer, domestic sheep, to affect trophic interactions between the web-building spider Argiope bruennichi, its grasshopper prey Euchorthippus spp., and the grasshoppers’ host plant Leymus chinensis. By integrating small- and large-scale field experiments, we demonstrate that: 1) moderate sheep grazing changed the structure of plant communities by suppressing strongly interacting forbs within a grassland matrix; 2) this change in plant community structure drove interaction modifications between the grasshoppers and their grass host plants and between grasshoppers and their spider predators, and 3) these interaction modifications were entirely mediated by plasticity in grasshopper behavior. Overall, ecosystem engineering by sheep grazing strengthened bottom-up effects and weakened top-down effects via trait-mediated interactions, resulting in a nearly two-fold increase in grasshopper densities. Interestingly, the grasshopper behavioral shifts which reduced spider per capita predation rates in the microcosms did not translate to reduced spider predation rates at the larger system scale because increased grasshopper densities offset behavioral effects at larger scales. Our findings demonstrate that 1) ecosystem engineering can strongly alter trophic interactions, 2) such effects can be driven by cryptic trait-mediated interactions, and 3) the relative importance of trait- versus density effects as measured by microcosm experiments may not reflect the importance of these processes at realistic ecological scales due to scale-dependent interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom-up%20effects" title="bottom-up effects">bottom-up effects</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20engineering" title=" ecosystem engineering"> ecosystem engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=trait-mediated%20indirect%20effects" title=" trait-mediated indirect effects"> trait-mediated indirect effects</a>, <a href="https://publications.waset.org/abstracts/search?q=top-down%20effects" title=" top-down effects"> top-down effects</a> </p> <a href="https://publications.waset.org/abstracts/68635/ecosystem-engineering-strengthens-bottom-up-and-weakens-top-down-effects-via-trait-mediated-indirect-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12716</span> Trophic Ecology of Sarotherodon Melanotheron Heudelotii and Tilapia Guineensis from the Banc D'Arguin National Park, Mauritania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N%C3%A9n%C3%A9%20Gall%C3%A9%20Kide">Néné Gallé Kide</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamadou%20Dia"> Mamadou Dia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemhaba%20Ould%20Yarba"> Lemhaba Ould Yarba</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssouf%20Kone"> Youssouf Kone</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatimetou%20Mint%20Khalil"> Fatimetou Mint Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajar%20Bouksir"> Hajar Bouksir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghislane%20Salhi"> Ghislane Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn%C3%A8s%20Saoud"> Younès Saoud </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diet of Sarotherodon melanotheron and Tilapia guineensis were investigated in the National Park of Banc d'Arguin (PNBA) from September 2012 to October 2013. A total of 499 individuals ranging in size between 219 and 400 mm total length of S. melanotheron (253 males and 246 females), and 280 individuals of T.guineensis (229 males and 51 females) ranged between 180 and 424mm total length. We used for studying the feeding habits of both two species the frequency of occurrence method. The coefficient of emptiness was 40.88% for S. melanotheron and 38.57% for T. guineensis. Both two species were herbivorous and very close feedings. Their diet consists of Seagrass, green, red, blue, and brown algae, diatoms, gastropods, bivalves, Crustaceans, and mud. The Seagrass and green algae were prey preference of these two species. The diet feeding showed that the composition varies slightly depending on the season and size of individuals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cichlidae" title="Cichlidae">Cichlidae</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20ecology" title=" trophic ecology"> trophic ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=National%20park" title=" National park"> National park</a>, <a href="https://publications.waset.org/abstracts/search?q=Banc%20d%27Arguin" title=" Banc d'Arguin"> Banc d'Arguin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauritania" title=" Mauritania"> Mauritania</a> </p> <a href="https://publications.waset.org/abstracts/16683/trophic-ecology-of-sarotherodon-melanotheron-heudelotii-and-tilapia-guineensis-from-the-banc-darguin-national-park-mauritania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">795</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12715</span> Geochemistry of Nutrients in the South Lagoon of Tunis, Northeast of Tunisia, Using Multivariable Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abidi%20Myriam">Abidi Myriam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Amor%20Rim"> Ben Amor Rim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gueddari%20Moncef"> Gueddari Moncef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding ecosystem response to the restoration project is essential to assess its rehabilitation. Indeed, the time elapsed after restoration is a critical indicator to shows the real of the restoration success. In this order, the south lagoon of Tunis, a shallow Mediterranean coastal area, has witnessed several pollutions. To resolve this environmental problem, a large restoration project of the lagoon was undertaken. In this restoration works, the main changes are the decrease of the residence time of the lagoon water and the nutrient concentrations. In this paper, we attempt to evaluate the trophic state of lagoon water for evaluating the risk of eutrophication after almost 16 years of its restoration. To attend this objectives water quality monitoring was untaken. In order to identify and to analyze the natural and anthropogenic factor governing the nutrients concentrations of lagoon water geochemical methods and multivariate statistical tools were used. Results show that nutrients have duel sources due to the discharge of municipal wastewater of Megrine City in the south side of the lagoon. The Carlson index shows that the South lagoon of Tunis Lagoon Tunis is eutrophic, and may show limited summer anoxia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title="geochemistry">geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20south%20lagoon%20of%20Tunis" title=" the south lagoon of Tunis"> the south lagoon of Tunis</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20state" title=" trophic state"> trophic state</a> </p> <a href="https://publications.waset.org/abstracts/73188/geochemistry-of-nutrients-in-the-south-lagoon-of-tunis-northeast-of-tunisia-using-multivariable-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12714</span> Impact of Foliar Formulations of Macro and Micro Nutrients on the Tritrophic Association of Wheat Aphid and Entomophagous Insects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufyan">Muhammad Sufyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20J.%20Arif"> Muhammad J. Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Shoukat"> Usman Shoukat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Pakistan, wheat (Triticum aestivum L.) is seriously attacked by the wheat aphid. Naturally, bio control agents play an important role in managing wheat aphid. However, association among pest, natural enemies and host plant is highly affected by food resource concentration and predator/parasitoid factor of any ecosystem. The present study was conducted to estimate the effect of different dose levels of macro and micronutrients on the aphid population and its entomophagous insect on wheat and their tri-trophic association. The experiment was laid out in RCBD with six different combinations of macro and micronutrients and a control treatment. The data was initiated from the second week of the February till the maturity of the crop. Data regarding aphid population and coccinellids counts were collected on weekly basis and subjected to analysis of variance and mean comparison. The data revealed that aphid population was at peak in the last week of March. Coccinellids population increased side by side with aphid population and declined after second week of April. Aphid parasitism was maximum 25% on recommended dose of Double and Flasher and minimum 8.67% on control treatment. Maximum aphid population was observed on first April with 687.2 specimens. However, this maximum population was shown against the application of Double + Flasher treatment. The minimum aphid population was recorded after the application of HiK Gold + Flasher recommended dose on 15th April. The coccinellids population was at peak level at on 8th April and against the treatment double recommended dose of HiK gold + Flasher. Amount of nitrogen, phosphorus and potassium percentage dry leaves components was maximum (2.33, 0.18 and 2.62 % dry leaves. respectively) in plots treated with recommended double dose mixture of Double + Flasher and Hi-K Gold + Flasher while it was minimum (1.43, 0.12 and 1.77 dry leaves respectively) in plots where no nutrients applied. The result revealed that maximum parasitism was at recommended level of micro and macro nutrients application. Maximum micro nutrients zinc, copper, manganese, iron and boron found with values 46.67 ppm, 21.81 ppm, 62.35 ppm, 152.69 ppm and 36.78 respectively. The result also showed that Over application of macro and micro nutrients should be avoided because it do not help in pest control, conversely it may cause stress on plant. The treatment Double and Flasher recommended dose ratio is almost comparable with recommended dose and present studies confirm its usefulness on wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomophagous%20insects" title="entomophagous insects">entomophagous insects</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20and%20micro%20nutrients" title=" macro and micro nutrients"> macro and micro nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=tri-trophic" title=" tri-trophic"> tri-trophic</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20aphid" title=" wheat aphid"> wheat aphid</a> </p> <a href="https://publications.waset.org/abstracts/79070/impact-of-foliar-formulations-of-macro-and-micro-nutrients-on-the-tritrophic-association-of-wheat-aphid-and-entomophagous-insects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12713</span> Hydrodynamics of Periphyton Biofilters in Recirculating Aquaculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20N.%20Bell">Adam N. Bell</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarina%20J.%20Ergas"> Sarina J. Ergas</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Nystrom"> Michael Nystrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20P.%20Brennan"> Nathan P. Brennan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevan%20L.%20Main"> Kevan L. Main</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrated Multi-Trophic Aquaculture systems (IMTA) have the potential to improve the sustainability of seafood production, generate organic fertilizer and feed, remove waste discharges and reduce energy use. IMTA can include periphyton biofilters where algae and microbes grow on surfaces, along with caught detritus and amphipods. Periphyton biofilters provide many advantages: nitrification, denitrification, primary production and ecological diversity. The goal of this study was to determine how biofilter hydraulic residence time (τ) effects periphyton biomass production, dissolved oxygen (DO) and nutrient removal. A pilot scale recirculating aquaculture system (RAS) was designed, constructed and operated at different hydraulic residence times (τ= 1, 2, 4, 6, 8 hours per tank). For each τ, a conservative tracer study was conducted to investigate system hydrodynamics. Data on periphyton weights, pH, nitrogen species, phosphorus, temperature and DO were collected. The tracer study for τ =1 hour revealed that the normalized time < τ, indicating short-circuiting. Periphyton biomass production rate was relatively unaffected by τ (R_e<1 for all τ). Average ammonia nitrogen removal was > 75% for all trials. Nitrate and nitrite did not accumulate in the RAS for τ≥4 hours due to enhanced denitrification in anoxic zones. For τ≥4 hours DO concentration was at a maximum of 4 mg L-1 after 14:00, and decreased to 0 mg L-1 during nighttime. At τ=1 hour, the RAS stayed > 2 mg L-1 and DO was more evenly distributed. For the validation trial, the culture tank was stocked with Centropomus undecimalis (common snook) and the system was operated at τ= 1 hr. Preliminary results showed that a RAS with an integrated periphyton biofilter could support fish health with low nutrient concentrations DO > 6 mg L-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20aquaculture" title="sustainable aquaculture">sustainable aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20recovery" title=" resource recovery"> resource recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20multi-trophic%20aquaculture" title=" integrated multi-trophic aquaculture"> integrated multi-trophic aquaculture</a> </p> <a href="https://publications.waset.org/abstracts/148221/hydrodynamics-of-periphyton-biofilters-in-recirculating-aquaculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12712</span> The Community Structure of Fish and its Correlation with Mangrove Forest Litter Production in Panjang Island, Banten Bay, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meilisha%20Putri%20Pertiwi">Meilisha Putri Pertiwi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mufti%20Petala%20Patria"> Mufti Petala Patria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mangrove forest often categorized as a productive ecosystem in trophic water and the highest carbon storage among all the forest types. Mangrove-derived organic matter determines the food web of fish and invertebrates. In Indonesia trophic water ecosystem, 80% commersial fish caught in coastal area are high related to food web in mangrove forest ecosystem. Based on the previous research in Panjang Island, Bojonegara, Banten, Indonesia, removed mangrove litterfall to the sea water were 9,023 g/m³/s for two stations (west station–5,169 g/m³/s and north station-3,854 g/m³/s). The vegetation were dominated from Rhizophora apiculata and Rhizopora stylosa. C element is the highest content (27,303% and 30,373%) than N element (0,427% and 0,35%) and P element (0,19% and 0,143%). The aim of research also to know the diversity of fish inhabit in mangrove forest. Fish sampling is by push net. Fish caught are collected into plastics, total length measured, weigh measured, and individual and total counted. Meanwhile, the 3 modified pipes (1 m long, 5 inches diameter, and a closed one hole part facing the river by using a nylon cloth) set in the water channel connecting mangrove forest and sea water for each stasiun. They placed for 1 hour at low tide. Then calculate the speed of water flow and volume of modified pipes. The fish and mangrove litter will be weigh for wet weight, dry weight, and analyze the C, N, and P element content. The sampling data will be conduct 3 times of month in full moon. The salinity, temperature, turbidity, pH, DO, and the sediment of mangrove forest will be measure too. This research will give information about the fish diversity in mangrove forest, the removed mangrove litterfall to the sea water, the composition of sediment, the total element content (C, N, P) of fish and mangrove litter, and the correlation of element content absorption between fish and mangrove litter. The data will be use for the fish and mangrove ecosystem conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish%20diversity" title="fish diversity">fish diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20forest" title=" mangrove forest"> mangrove forest</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20litter" title=" mangrove litter"> mangrove litter</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20element" title=" carbon element"> carbon element</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20element" title=" nitrogen element"> nitrogen element</a>, <a href="https://publications.waset.org/abstracts/search?q=P%20element" title=" P element"> P element</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/23670/the-community-structure-of-fish-and-its-correlation-with-mangrove-forest-litter-production-in-panjang-island-banten-bay-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12711</span> Assessing the Eutrophication Risk in the Suat Uğurlu Dam Lake by Evaluation of Trophic Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilge%20Ayd%C4%B1n%20Er">Bilge Aydın Er</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuksel%20Ardal%C4%B1"> Yuksel Ardalı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Ayvacık village, 80-90% of the population is engaged in agriculture. The pollution was adversely affecting the properties of agricultural origin of the lake. This study is to determine pollution caused by unwanted changes in the Suat Ugurlu Dam Lake has been launched to monitor. Yesilirmak basin is located in the proximal part of the Black Sea. Therefore it was exposed to impact many pollution. In this study, sediment samples from selected points along the lake was made on the analysis. This work was supported by the results of water analyzes. It is clear that urgent measures should be taken to the area of water management <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eutrophication" title="eutrophication">eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=Black%20sea" title=" Black sea"> Black sea</a>, <a href="https://publications.waset.org/abstracts/search?q=lake" title=" lake"> lake</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/54579/assessing-the-eutrophication-risk-in-the-suat-ugurlu-dam-lake-by-evaluation-of-trophic-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12710</span> Impacts on Marine Ecosystems Using a Multilayer Network Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20F.%20F.%20Ebecken">Nelson F. F. Ebecken</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilberto%20C.%20Pereira"> Gilberto C. Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucio%20P.%20de%20Andrade"> Lucio P. de Andrade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20ecosystems" title="marine ecosystems">marine ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20systems" title=" complex systems"> complex systems</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20network" title=" multilayer network"> multilayer network</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems%20management" title=" ecosystems management"> ecosystems management</a> </p> <a href="https://publications.waset.org/abstracts/163480/impacts-on-marine-ecosystems-using-a-multilayer-network-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12709</span> Cold Stunned Sea Turtle Diet Analysis In Cape Cod Bay from 2015-2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucille%20McWilliams">Lucille McWilliams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As water temperatures drop in November, Kemp’s Ridley, Loggerhead, and Green sea turtles cold-stun in Cape Cod Bay. The foraging ecology of these sea turtles remains an understudied area of research. In this study, we aim to assess the diet of these turtles using a multi-tissue stable isotope analysis of cold-stunned kemp’s ridley, loggerhead, and green sea turtles stranded from 2015 to 2020. Stable isotope ratios of carbon and nitrogen were measured in blood, front and rear flipper, liver, muscle, skin, and scute tissue samples. We predict an elevated level of Nitrogen isotope ratios in kemp’s ridley and loggerhead turtles compared to green turtles due to the carnivorous loggerheads and kemp ridleys’ carnivorous diet and the greens herbivorous diet. We anticipate empty stomachs due to starvation while stranded, and a variety of foraging strategies, migration patterns, and trophic positions between these species. Data collected from this study will add to the knowledge of these turtles’ prey species and aid managers in the preservation of these species as a mitigation strategy for these turtles' extinction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sea%20turtles" title="sea turtles">sea turtles</a>, <a href="https://publications.waset.org/abstracts/search?q=kemp%27s%20ridleys" title=" kemp's ridleys"> kemp's ridleys</a>, <a href="https://publications.waset.org/abstracts/search?q=greens" title=" greens"> greens</a>, <a href="https://publications.waset.org/abstracts/search?q=loggerheads" title=" loggerheads"> loggerheads</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-stunning" title=" cold-stunning"> cold-stunning</a>, <a href="https://publications.waset.org/abstracts/search?q=diet%20analysis" title=" diet analysis"> diet analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotope%20analysis" title=" stable isotope analysis"> stable isotope analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20science" title=" environmental science"> environmental science</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20biology" title=" marine biology"> marine biology</a> </p> <a href="https://publications.waset.org/abstracts/146703/cold-stunned-sea-turtle-diet-analysis-in-cape-cod-bay-from-2015-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12708</span> Characterization of Fateh Sagar Wetland and Its Catchment Area at Udaipur City, (Raj.) India, Using High Resolution Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parul%20Bhalla">Parul Bhalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarvesh%20Palria"> Sarvesh Palria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wetlands are areas of land that are either temporarily or permanently covered by water. Wetlands exhibit enormous diversity according to their genesis, geographical location, water regime and chemistry, dominant plants and soil or sediment characteristics. The spatial and temporal characteristics of wetland in terms of turbidity and aquatic vegetation could serve as guiding tool, in conservation prioritization of wetlands. The aquatic vegetation in the wetland is an indicator of the trophic status of the wetland which has a bearing on the water quality, the turbidity level in any wetland is indicative of the quality of the water in it. To conserve and manage wetland resources, it is important to have inventory of wetland and its catchment. Fateh Sagar wetland in Udaipur city is the one of the important wetland for tourism industry and other economic activities in the region. Realizing the importance of the wetland, the present study has been taken up with the specific objective of delineation and characterization of Fateh Sagar wetland in terms of turbidity and aquatic vegetation, using high resolution satellite data such as Cartosat and LISS IV multi-temporal data, which will efficiently bring out the changes in water spread and quality parameters. The catchment of wetland has been also characterized for various features. The study leads in to takes necessary steps to conserve the wetland and its resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20vegetation" title="aquatic vegetation">aquatic vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=catchment" title=" catchment"> catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity%20status" title=" turbidity status"> turbidity status</a>, <a href="https://publications.waset.org/abstracts/search?q=wetland" title=" wetland"> wetland</a> </p> <a href="https://publications.waset.org/abstracts/35713/characterization-of-fateh-sagar-wetland-and-its-catchment-area-at-udaipur-city-raj-india-using-high-resolution-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12707</span> Modeling Diel Trends of Dissolved Oxygen for Estimating the Metabolism in Pristine Streams in the Brazilian Cerrado</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wesley%20A.%20Saltarelli">Wesley A. Saltarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20R.%20Finkler"> Nicolas R. Finkler</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20C.%20P.%20Miwa"> Adriana C. P. Miwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20C.%20Calijuri"> Maria C. Calijuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Davi%20G.%20F.%20Cunha"> Davi G. F. Cunha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metabolism of the streams is an indicator of ecosystem disturbance due to the influences of the catchment on the structure of the water bodies. The study of the respiration and photosynthesis allows the estimation of energy fluxes through the food webs and the analysis of the autotrophic and heterotrophic processes. We aimed at evaluating the metabolism in streams located in the Brazilian savannah, Cerrado (Sao Carlos, SP), by determining and modeling the daily changes of dissolved oxygen (DO) in the water during one year. Three water bodies with minimal anthropogenic interference in their surroundings were selected, Espraiado (ES), Broa (BR) and Canchim (CA). Every two months, water temperature, pH and conductivity are measured with a multiparameter probe. Nitrogen and phosphorus forms are determined according to standard methods. Also, canopy cover percentages are estimated in situ with a spherical densitometer. Stream flows are quantified through the conservative tracer (NaCl) method. For the metabolism study, DO (PME-MiniDOT) and light (Odyssey Photosynthetic Active Radiation) sensors log data for at least three consecutive days every ten minutes. The reaeration coefficient (k2) is estimated through the method of the tracer gas (SF6). Finally, we model the variations in DO concentrations and calculate the rates of gross and net primary production (GPP and NPP) and respiration based on the one station method described in the literature. Three sampling were carried out in October and December 2015 and February 2016 (the next will be in April, June and August 2016). The results from the first two periods are already available. The mean water temperatures in the streams were 20.0 +/- 0.8C (Oct) and 20.7 +/- 0.5C (Dec). In general, electrical conductivity values were low (ES: 20.5 +/- 3.5uS/cm; BR 5.5 +/- 0.7uS/cm; CA 33 +/- 1.4 uS/cm). The mean pH values were 5.0 (BR), 5.7 (ES) and 6.4 (CA). The mean concentrations of total phosphorus were 8.0ug/L (BR), 66.6ug/L (ES) and 51.5ug/L (CA), whereas soluble reactive phosphorus concentrations were always below 21.0ug/L. The BR stream had the lowest concentration of total nitrogen (0.55mg/L) as compared to CA (0.77mg/L) and ES (1.57mg/L). The average discharges were 8.8 +/- 6L/s (ES), 11.4 +/- 3L/s and CA 2.4 +/- 0.5L/s. The average percentages of canopy cover were 72% (ES), 75% (BR) and 79% (CA). Significant daily changes were observed in the DO concentrations, reflecting predominantly heterotrophic conditions (respiration exceeded the gross primary production, with negative net primary production). The GPP varied from 0-0.4g/m2.d (in Oct and Dec) and the R varied from 0.9-22.7g/m2.d (Oct) and from 0.9-7g/m2.d (Dec). The predominance of heterotrophic conditions suggests increased vulnerability of the ecosystems to artificial inputs of organic matter that would demand oxygen. The investigation of the metabolism in the pristine streams can help defining natural reference conditions of trophic state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-order%20streams" title="low-order streams">low-order streams</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20primary%20production" title=" net primary production"> net primary production</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20state" title=" trophic state"> trophic state</a> </p> <a href="https://publications.waset.org/abstracts/50600/modeling-diel-trends-of-dissolved-oxygen-for-estimating-the-metabolism-in-pristine-streams-in-the-brazilian-cerrado" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12706</span> The Role of Phycoremediation in the Sustainable Management of Aquatic Pollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Ezenweani">Raymond Ezenweani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20Ogbebor"> Jeffrey Ogbebor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The menace of aquatic pollution has become increasingly of great concern and the effects of this pollution as a result of anthropogenic activities cannot be over emphasized. Phycoremediation is the application of algal remediation technology in the removal of harmful products from the environment. Harmful products also known as pollutants are usually introduced into the environment through variety of processes such as industrial discharge, agricultural runoff, flooding, and acid rain. This work has to do with the capability of algae in the efficient removal of different pollutants, ranging from hydrocarbons, eutrophication, agricultural chemicals and wastes, heavy metals, foul smell from septic tanks or dumps through different processes such as bioconversion, biosorption, bioabsorption and biodecomposition. Algae are capable of bioconversion of environmentally persistent compounds to degradable compounds and also capable of putting harmful bacteria growth into check in waste water remediation. Numerous algal organisms such as Nannochloropsis spp, Chlorella spp, Tetraselmis spp, Shpaerocystics spp, cyanobacteria and different macroalgae have been tested by different researchers in laboratory scale and shown to have 100% efficiency in environmental remediation. Algae as a result of their photosynthetic capacity are also efficient in air cleansing and management of global warming by sequestering carbon iv oxide in air and converting it into organic carbon, thereby making food available for the other organisms in the higher trophic level of the aquatic food chain. Algae play major role in the sustenance of the aquatic ecosystem by their virtue of being photosynthetic. They are the primary producers and their role in environmental sustainability is remarkable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algae" title="Algae ">Algae </a>, <a href="https://publications.waset.org/abstracts/search?q=Pollutant" title=" Pollutant"> Pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=." title=".">.</a>, <a href="https://publications.waset.org/abstracts/search?q=Phycoremediation" title=" Phycoremediation"> Phycoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Aquatic" title=" Aquatic"> Aquatic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sustainability" title=" Sustainability"> Sustainability</a> </p> <a href="https://publications.waset.org/abstracts/120451/the-role-of-phycoremediation-in-the-sustainable-management-of-aquatic-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12705</span> Mercury (Hg) Concentration in Fish Marketed in the São Luís Fish Market (MA) and Potential Exposure of Consumers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20Drude%20de%20Lacerda">Luiz Drude de Lacerda</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Luiz%20Cordeiro%20Ferrer%20do%20Carmo"> Kevin Luiz Cordeiro Ferrer do Carmo</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Lacerda%20Moura"> Victor Lacerda Moura</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayone%20Wesley%20Santos%20de%20Oliveira"> Rayone Wesley Santos de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Mois%C3%A9s%20Fernandes%20Bezerra"> Moisés Fernandes Bezerra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is a food source well recognized for its health benefits. However, the consumption of fish, especially carnivorous species, is the main path of human exposure to Hg, a widely distributed pollutant on the planet and that accumulates along food chains. Studies on the impacts on public health by fish intake show existing toxic risks even when at low concentrations. This study quantifies, for the first time, the concentrations of Hg in muscle tissue of the nine most commercialized fish species in the fish market of São Luís (MA) in north Brazil and estimates the consequent human exposure through consumption. Concentrations varied according to trophic level, with the highest found in the larger carnivorous species; the Yellow hake (Cynoscion acoupa) (296.4 ± 241.2 ng/g w.w) and the Atlantic croaker (Micropogonias undulatus) (262.8 ± 89.1 ng/g w.w.), whereas the lowest concentrations were recorded in iliophagous Mullets (Mugil curema) (20.5 ± 9.6 ng/g w.w.). Significant correlations were observed between Hg concentrations and individual length in only two species: the Flaming catfish (Bagre marinus) and the Atlantic bumper (Chloroscombrus crysurus). Given the relatively uniform size of individuals of the other species and/or the small number of samples, this relationship was not found for the other species. The estimated risk coefficients, despite the relatively low concentrations of Hg, suggest that yellow hake and Whitemouth croaker (Micropogonias furnieri), fish most consumed by the local population, present some risk to human health (> 1) HQ and THQ, depending on the frequency of their consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20exposure" title=" human exposure"> human exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/159037/mercury-hg-concentration-in-fish-marketed-in-the-sao-luis-fish-market-ma-and-potential-exposure-of-consumers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12704</span> Shielding Engineered Islets with Mesenchymal Stem Cells Enhance Survival under Hypoxia by Inhibiting p38 MAPK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhawna%20Chandravanshi">Bhawna Chandravanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Bhonde"> Ramesh Bhonde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we focused on the improvisation of islet survival in hypoxia. The Islet-like cell aggregates (ICAs) derived from Wharton's jelly mesenchymal stem cells (WJ-MSC) were cultured with and without WJ-MSC for 48h in hypoxia and normoxia and tested for their direct trophic effect on β cell survival. The WJ MSCs themselves secreted insulin upon glucose challenge and expressed the pancreatic markers at both transcription and translational level (C-peptide, Insulin, Glucagon and Glut 2). Direct contact of MSCs with ICAs facilitate the highest viability under hypoxia as evidenced by fluorescein diacetate/propidium iodide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytokine analysis of the co-cultured ICAs revealed amplification of anti-inflammatory cytokine-like TGFβ and TNFα accompanied by depletion of pro-inflammatory cytokines. The increment in VEGF and PDGFa was also seen showing their ability to vascularize upon transplantation. This was further accompanied by reduction in total reactive oxygen species, nitric oxide, and super oxide ions and down-regulation of Caspase3, Caspase8, p53 and up regulation of Bcl2 confirming prevention of apoptosis in ICAs. There was a significant reduction in the expression of p38 protein in the presence of MSCs making the ICAs responsive to glucose. Taken together our data demonstrate for the first time that the WJ-MSC expressed pancreatic markers and their supplementation protected engineered islets against hypoxia, oxidative stress, and inflammatory cytokines by inhibiting p38 MAPK protein. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypoxia" title="hypoxia">hypoxia</a>, <a href="https://publications.waset.org/abstracts/search?q=islet-like%20cell%20aggregates" title=" islet-like cell aggregates"> islet-like cell aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20cytokines" title=" inflammatory cytokines"> inflammatory cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/65044/shielding-engineered-islets-with-mesenchymal-stem-cells-enhance-survival-under-hypoxia-by-inhibiting-p38-mapk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12703</span> Long-Term Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayoumy%20Mohamed">Bayoumy Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Alam%20El-Din"> Khaled Alam El-Din </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, 24 years of gridded sea level anomalies (SLA) from satellite altimetry and sea surface temperature (SST) from advanced very-high-resolution radiometer (AVHRR) daily data (1993-2016) are used. These data have been used to investigate the sea level rising and warming rates of SST, and their spatial distribution in the Mediterranean Sea. The results revealed that there is a significant sea level rise in the Mediterranean Sea of 2.86 ± 0.45 mm/year together with a significant warming of 0.037 ± 0.007 °C/year. The high spatial correlation between sea level and SST variations suggests that at least part of the sea level change reported during the period of study was due to heating of surface layers. This indicated that the steric effect had a significant influence on sea level change in the Mediterranean Sea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altimetry" title="altimetry">altimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=AVHRR" title=" AVHRR"> AVHRR</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20Sea" title=" Mediterranean Sea"> Mediterranean Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level%20and%20SST%20changes" title=" sea level and SST changes"> sea level and SST changes</a>, <a href="https://publications.waset.org/abstracts/search?q=trend%20analysis" title=" trend analysis"> trend analysis</a> </p> <a href="https://publications.waset.org/abstracts/103295/long-term-trends-of-sea-level-and-sea-surface-temperature-in-the-mediterranean-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12702</span> A Review on Silicon Based Induced Resistance in Plants against Insect Pests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asim%20Abbasi">Asim Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufyan"> Muhammad Sufyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Kamran"> Muhammad Kamran</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra"> Iqra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of resistance in insect pests against various groups of insecticides has prompted the use of alternative integrated pest management approaches. Among these induced host plant resistance represents an important strategy as it offers a practical, cheap and long lasting solution to keep pests populations below economic threshold level (ETL). Silicon (Si) has a major role in regulating plant eco-relationship by providing strength to the plant in the form of anti-stress mechanism which was utilized in coping with the environmental extremes to get a better yield and quality end produce. Among biotic stresses, insect herbivore signifies one class against which Si provide defense. Silicon in its neutral form (H₄SiO₄) is absorbed by the plants via roots through an active process accompanied by the help of different transporters which were located in the plasma membrane of root cells or by a passive process mostly regulated by transpiration stream, which occurs via the xylem cells along with the water. Plants tissues mainly the epidermal cell walls are the sinks of absorbed silicon where it polymerizes in the form of amorphous silica or monosilicic acid. The noteworthy function of this absorbed silicon is to provide structural rigidity to the tissues and strength to the cell walls. Silicon has both direct and indirect effects on insect herbivores. Increased abrasiveness and hardness of epidermal plant tissues and reduced digestibility as a result of deposition of Si primarily as phytoliths within cuticle layer is now the most authenticated mechanisms of Si in enhancing plant resistance to insect herbivores. Moreover, increased Si content in the diet also impedes the efficiency by which insects transformed consumed food into the body mass. The palatability of food material has also been changed by Si application, and it also deters herbivore feeding for food. The production of defensive compounds of plants like silica and phenols have also been amplified by the exogenous application of silicon sources which results in reduction of the probing time of certain insects. Some studies also highlighted the role of silicon at the third trophic level as it also attracts natural enemies of insects attacking the crop. Hence, the inclusion of Si in pest management approaches can be a healthy and eco-friendly tool in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defensive" title="defensive">defensive</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoliths" title=" phytoliths"> phytoliths</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=stresses" title=" stresses"> stresses</a> </p> <a href="https://publications.waset.org/abstracts/80162/a-review-on-silicon-based-induced-resistance-in-plants-against-insect-pests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=424">424</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=425">425</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Trophic%20level&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>