CINXE.COM

Search results for: hydrogel nanoparticles

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hydrogel nanoparticles</title> <meta name="description" content="Search results for: hydrogel nanoparticles"> <meta name="keywords" content="hydrogel nanoparticles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hydrogel nanoparticles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hydrogel nanoparticles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1585</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hydrogel nanoparticles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elbadawy%20A.%20Kamoun">Elbadawy A. Kamoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanocomposites" title="hydrogel nanocomposites">hydrogel nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=tempretaure-responsive%20hydrogel" title=" tempretaure-responsive hydrogel"> tempretaure-responsive hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetic%20nanoparticles" title=" superparamagnetic nanoparticles"> superparamagnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia%20therapy" title=" hyperthermia therapy"> hyperthermia therapy</a> </p> <a href="https://publications.waset.org/abstracts/13516/remote-controlled-of-in-situ-forming-thermo-sensitive-hydrogel-nanocomposite-for-hyperthermia-therapy-application-synthesis-and-characterizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> Poly(N-Vinylcaprolactam-Co-Itaconic Acid-Co-Ethylene Glycol Dimethacrylate)-Based Microgels Embedded in Chitosan Matrix for Controlled Release of Ketoprofen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simone%20F.%20Medeiros">Simone F. Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20M.%20Fonseca"> Jessica M. Fonseca</a>, <a href="https://publications.waset.org/abstracts/search?q=Gizelda%20M.%20Alves"> Gizelda M. Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Danilo%20M.%20Santos"> Danilo M. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9rgio%20P.%20Campana-Filho"> Sérgio P. Campana-Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Amilton%20M.%20Santos"> Amilton M. Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stimuli responsive and biocompatible hydrogel nanoparticles have gained special attention as systems for potential applications in controlled release of drugs to improve their therapeutic efficacy while minimizing side effects. In this work, novel solid dispersions based on thermo- and pH-responsive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate) hydrogel nanoparticles embedded in chitosan matrices were prepared via spray drying for controlled release of ketoprofen. Firstly, the hydrogel nanoparticles containing ketoprofen were prepared via precipitation polymerization and their stimuli-responsive behavior, thermal properties, chemical composition, encapsulation efficiency and morphology were characterized. Then, hydrogel nanoparticles with different particles size were embedded into chitosan matrices via spray-drying. Scanning electron microscopy (SEM) analyses were performed to investigate the particles size, dispersity and morphology. Finally, ketoprofen release profiles were studied as a function of pH and temperature. Chitosan/poly(NVCL-co-IA-co-EGDMA)-ketoprofen microparticles presented spherical shape, rough surface and pronounced agglomeration, indicating that hydrogels nanoparticles loaded with ketoprofen modified the surface of chitosan matrix. The maximum encapsulation efficiency of ketoprofen into hydrogel nanoparticles was 57.8% and the electrostatic interactions between amino groups from chitosan and carboxylic groups from hydrogel nanoparticles were able to control ketoprofen release. The hydrogel nanoparticles themselves were capable to retard the release of ketoprofen-loaded until 48h of in vitro release tests, while their incorporation into chitosan matrix achieved a maximum percentage of drug release of 45%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 10:7, and 69%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 5:2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles" title="hydrogel nanoparticles">hydrogel nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28N-vinylcaprolactam-co-itaconic%20acid-co-ethylene-%20glycol%20dimethacrylate%29" title=" poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate)"> poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate)</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=ketoprofen" title=" ketoprofen"> ketoprofen</a>, <a href="https://publications.waset.org/abstracts/search?q=spray-drying" title=" spray-drying"> spray-drying</a> </p> <a href="https://publications.waset.org/abstracts/81767/polyn-vinylcaprolactam-co-itaconic-acid-co-ethylene-glycol-dimethacrylate-based-microgels-embedded-in-chitosan-matrix-for-controlled-release-of-ketoprofen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Preparation and In vitro Characterization of Nanoparticle Hydrogel for Wound Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Kant%20Panik">Rajni Kant Panik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to develop and evaluate mupirocin loaded nanoparticle incorporated into hydrogel as an infected wound healer. Incorporated Nanoparticle in hydrogel provides a barrier that effectively prevents the contamination of the wound and further progression of infection to deeper tissues. Hydrogel creates moist healing environment on wound space with good fluid absorbance. Nanoparticles were prepared by double emulsion solvent evaporation method using different ratios of PLGA polymer and the hydrogels was developed using sodium alginate and gelatin. Further prepared nanoparticles were then incorporated into the hydrogels. The formulations were characterized by FT-IR and DSC for drug and polymer compatibility and surface morphology was studied by TEM. Nanoparticle hydrogel were evaluated for their size, shape, encapsulation efficiency and for in vitro studies. The FT-IR and DSC confirmed the absence of any drug polymer interaction. The average size of Nanoparticle was found to be in range of 208.21-412.33 nm and shape was found to be spherical. The maximum encapsulation efficiency was found to be 69.03%. The in vitro release profile of Nanoparticle incorporated hydrogel formulation was found to give sustained release of drug. Antimicrobial activity testing confirmed that encapsulated drug preserve its effectiveness. The stability study confirmed that the formulation prepared were stable. Present study complements our finding that mupirocin loaded Nanoparticle incorporated into hydrogel has the potential to be an effective and safe novel addition for the release of mupirocin in sustained manner, which may be a better option for the management of wound. These finding also supports the progression of antibiotic via hydrogel delivery system is a novel topical dosage form for the management of wound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=PLGA" title=" PLGA"> PLGA</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a> </p> <a href="https://publications.waset.org/abstracts/47734/preparation-and-in-vitro-characterization-of-nanoparticle-hydrogel-for-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> Utilization and Characterizations of Olive Oil Industry By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Dacrory">Sawsan Dacrory</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Abou-Yousef"> Hussein Abou-Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kamel"> Samir Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ragab%20E.%20Abou-Zeid"> Ragab E. Abou-Zeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Abdel-Aziz"> Mohamed S. Abdel-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elbadry"> Mohamed Elbadry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, &alpha;-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethyle%20cellulose" title=" carboxymethyle cellulose"> carboxymethyle cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pulp" title=" olive pulp"> olive pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/40837/utilization-and-characterizations-of-olive-oil-industry-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> Preparation and in vitro Bactericidal and Fungicidal Efficiency of NanoSilver/Methylcellulose Hydrogel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Panacek">A. Panacek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kilianova"> M. Kilianova</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Prucek"> R. Prucek</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Husickova"> V. Husickova</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Vecerova"> R. Vecerova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kolar"> M. Kolar</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kvitek"> L. Kvitek</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zboril"> R. Zboril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we describe the preparation of NanoSilver/methylcellulose hydrogel containing silver nanoparticles (NPs) for topical bactericidal applications. Highly concentrated dispersion of silver NPs as high as of 5g/L of silver with diameter of 10nm was prepared by reduction of AgNO3 via strong reducing agent NaBH4. Silver NPs were stabilized by addition of sodium polyacrylate in order to prevent their aggregation at such high concentration. This way synthesized silver NPs were subsequently incorporated into methylcellulose suspension at elevated temperature resulting in formation of NanoSilver/methylcellulose hydrogel when temperature cooled down to laboratory conditions. In vitro antibacterial activity assay proved high bactericidal and fungicidal efficiency of silver NPs alone in the form of dispersion as well as in the form of hydrogel against broad spectrum of bacteria and yeasts including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus. A very low concentrations of silver as low as 0.84mg/L Ag in as-prepared dispersion gave antibacterial performance. NanoSilver/methylcellulose hydrogel showed antibacterial action at the lowest used silver concentration equal to 25mg/L. Such prepared NanoSilver/methylcellulose hydrogel represent promising topical antimicrobial formulation for treatment of burns and wounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=burn" title=" burn"> burn</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20NPs" title=" silver NPs"> silver NPs</a> </p> <a href="https://publications.waset.org/abstracts/6458/preparation-and-in-vitro-bactericidal-and-fungicidal-efficiency-of-nanosilvermethylcellulose-hydrogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> Calcium ion Cross-linked HEC/SA/HA hydrogel: Fabrication, Characterization and Wound Healing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathima%20Shahitha">Fathima Shahitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Alqasim%20Al-Mamari"> Alqasim Al-Mamari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Al-Sibani"> Mohammed Al-Sibani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al%20Harrasi"> Ahmed Al Harrasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to prepare a novel antibacterial wound healing hydrogel based on hydroxyethyl cellulose/ Sodium alginate/ hyaluronic acid (HEC/SA/HA) and Ag nanoparticles, which is cross-linked via Ca2+ ions. The aim of the study is to obtain a hydrogel compound using green chemistry that helps to heal the wound faster and better. The properties and structure of the hydrogel have been tested to include swelling ratio, vitro degradation, antibacterial and antifungal activity and wound healing tests. It was also characterized via UV-Vis, FTIR, TEM, TGA and tested after it was fabricated by freeze-drying technique. The characteristic peak of UV-Vis spectra revealed the formation of AgNPs in the compound at 411 nm. The FTIR curves showed new peaks that confirmed the oxidation of HEC and also showed the chemical interaction of the three polymers with AgNPs and Ca2+. The TEM images presented monodispersed of AgNPs with their size ranging ( 8.2 to 32 nm ). The results from these studies showed that the hydrogel has an excellent performance in swelling ratio and vitro degradation. Furthermore, the wound healing activity of the hydrogel was examined via measuring the closure of wound and the second group treated with hydrogel revealed a significant healing activity compared to the control group. The hydrogel activity against bacteria and fungi was also measures for 72 h and the results showed excellent performance. These results suggested that the cross-linked hydrogel based on (HEC/HA/SA) with AgNPs might be a promising dressing for wounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogels" title="hydrogels">hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyethyl%20cellulose" title=" hydroxyethyl cellulose"> hydroxyethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca2%2B%20cross-linking" title=" Ca2+ cross-linking"> Ca2+ cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title=" hyaluronic acid"> hyaluronic acid</a> </p> <a href="https://publications.waset.org/abstracts/195784/calcium-ion-cross-linked-hecsaha-hydrogel-fabrication-characterization-and-wound-healing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1579</span> Arsenic Removal from Drinking Water by Hybrid Hydrogel-Biochar Matrix: An Understanding of Process Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vibha%20Sinha">Vibha Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumedha%20Chakma"> Sumedha Chakma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic (As) contamination in drinking water is a serious concern worldwide resulting in severe health maladies. To tackle this problem, several hydrogel based matrix which selectively uptake toxic metals from contaminated water has increasingly been examined as a potential practical method for metal removal. The major concern in hydrogels is low stability of matrix, resulting in poor performance. In this study, the potential of hybrid hydrogel-biochar matrix synthesized from natural plant polymers, specific for As removal was explored. Various compositional and functional group changes of the elements contained in the matrix due to the adsorption of As were identified. Moreover, to resolve the stability issue in hydrogel matrix, optimum and effective mixing of hydrogel with biochar was studied. Mixing varied proportions of matrix components at the time of digestion process was tested. Preliminary results suggest that partial premixing methods may increase the stability and reduce cost. Addition of nanoparticles and specific catalysts with different concentrations of As(III) and As(V) under batch conditions was performed to study their role in performance enhancement of the hydrogel matrix. Further, effect of process parameters, optimal uptake conditions and detailed mechanism derived from experimental studies were suitably conducted. This study provides an efficient, specific and a low-cost As removal method that offers excellent regeneration abilities which can be reused for value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20hydrogel-biochar" title=" hybrid hydrogel-biochar"> hybrid hydrogel-biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/93425/arsenic-removal-from-drinking-water-by-hybrid-hydrogel-biochar-matrix-an-understanding-of-process-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1578</span> Clay Hydrogel Nanocomposite for Controlled Small Molecule Release </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaolin%20Li">Xiaolin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Terence%20Turney"> Terence Turney</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Forsythe"> John Forsythe</a>, <a href="https://publications.waset.org/abstracts/search?q=Bryce%20Feltis"> Bryce Feltis</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Wright"> Paul Wright</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinh%20Truong"> Vinh Truong</a>, <a href="https://publications.waset.org/abstracts/search?q=Will%20%20Gates"> Will Gates</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clay-hydrogel nanocomposites have attracted great attention recently, mainly because of their enhanced mechanical properties and ease of fabrication. Moreover, the unique platelet structure of clay nanoparticles enables the incorporation of bioactive molecules, such as proteins or drugs, through ion exchange, adsorption or intercalation. This study seeks to improve the mechanical and rheological properties of a novel hydrogel system, copolymerized from a tetrapodal polyethylene glycol (PEG) thiol and a linear, triblock PEG-PPG-PEG (PPG: polypropylene glycol) α,ω-bispropynoate polymer, with the simultaneous incorporation of various amounts of Na-saturated, montmorillonite clay (MMT) platelets (av. lateral dimension = 200 nm), to form a bioactive three-dimensional network. Although the parent hydrogel has controlled swelling ability and its PEG groups have good affinity for the clay platelets, it suffers from poor mechanical stability and is currently unsuitable for potential applications. Nanocomposite hydrogels containing 4wt% MMT showed a twelve-fold enhancement in compressive strength, reaching 0.75MPa, and also a three-fold acceleration in gelation time, when compared with the parent hydrogel. Interestingly, clay nanoplatelet incorporation into the hydrogel slowed down the rate of its dehydration in air. Preliminary results showed that protein binding by the MMT varied with the nature of the protein, as horseradish peroxidase (HRP) was more strongly bound than bovine serum albumin. The HRP was no longer active when bound, presumably as a result of extensive structural refolding. Further work is being undertaken to assess protein binding behaviour within the nanocomposite hydrogel for potential diabetic wound healing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20molecule" title=" small molecule"> small molecule</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a> </p> <a href="https://publications.waset.org/abstracts/67488/clay-hydrogel-nanocomposite-for-controlled-small-molecule-release" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1577</span> Formulation and Ex Vivo Evaluation of Solid Lipid Nanoparticles Based Hydrogel for Intranasal Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pramod%20Jagtap">Pramod Jagtap</a>, <a href="https://publications.waset.org/abstracts/search?q=Kisan%20Jadhav"> Kisan Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Dand"> Neha Dand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Risperidone (RISP) is an antipsychotic agent and has low water solubility and nontargeted delivery results in numerous side effects. Hence, an attempt was made to develop SLNs hydrogel for intranasal delivery of RISP to achieve maximum bioavailability and reduction of side effects. RISP loaded SLNs composed of 1.65% (w/v) lipid mass were produced by high shear homogenization (HSH) coupled ultrasound (US) method using glyceryl monostearate (GMS) or Imwitor 900K (solid lipid). The particles were loaded with 0.2% (w/v) of the RISP & surface-tailored with a 2.02% (w/v) non-ionic surfactant Tween® 80. Optimization was done using 32 factorial design using Design Expert® software. The prepared SLNs dispersion incorporated into Polycarbophil AA1 hydrogel (0.5% w/v). The final gel formulation was evaluated for entrapment efficiency, particle size, rheological properties, X ray diffraction, in vitro diffusion, ex vivo permeation using sheep nasal mucosa and histopathological studies for nasocilliary toxicity. The entrapment efficiency of optimized SLNs was found to be 76 ± 2 %, polydispersity index <0.3., particle size 278 ± 5 nm. This optimized batch was incorporated into hydrogel. The pH was found to be 6.4 ± 0.14. The rheological behaviour of hydrogel formulation revealed no thixotropic behaviour. In histopathology study, there was no nasocilliary toxicity observed in nasal mucosa after ex vivo permeation. X-ray diffraction data shows drug was in amorphous form. Ex vivo permeation study shows controlled release profile of drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ex%20vivo" title="ex vivo">ex vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=risperidone" title=" risperidone"> risperidone</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticles" title=" solid lipid nanoparticles"> solid lipid nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/20704/formulation-and-ex-vivo-evaluation-of-solid-lipid-nanoparticles-based-hydrogel-for-intranasal-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1576</span> Optimization of Hydrogel Conductive Nanocomposite as Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20M.%20Elsaeed">Shimaa M. Elsaeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20K.%20Farag"> Reem K. Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Nassar"> Ibrahim M. Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogel conductive polymer nanocomposite fabricated via in-situ polymerization of polyaniline (PANI) inside thermosensitive hydrogels based on hydroxy ethyl meth acrylate (HEMA) copolymer with 2-acrylamido-2-methyl propane sulfonic acid (AMPS). SEM micrographs show the nanometric size of the conductive material (polyaniline, PANI) dispersed in the hydrogel matrix. The swelling parameters of hydrogel are measured. The incorporation of PANI improves the mechanical properties and swelling up to 30,000% without breaking. X-ray diffraction shows that typical polyaniline crystallization is formed in composite, which is advantageous to increase the electrical conductivity of the composite hydrogel. Open-circuit voltage (I-V) curve fill factor of the highest photo-conversion efficiency and enhanced to use in solar cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20polymer" title=" conductive polymer"> conductive polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/42489/optimization-of-hydrogel-conductive-nanocomposite-as-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1575</span> Functional Slow Release of Encapsulated Ibuprofen in Cross-linked Gellan Gum Hydrogel for Tissue Engineering Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Jannah%20Mohd%20Sebri">Nor Jannah Mohd Sebri</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Anuar%20Mat%20Amin"> Khairul Anuar Mat Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dication cross-linked gellan gum hydrogel loaded with Ibuprofen with excellent mechanical properties had been synthesized as potential candidate for non-toxic biocompatible polymer material in tissue engineering. The gellan gum hydrogel with 5% Ibuprofen had produced a slow release profile with total drug release time of 25 hours as a resulting low swelling value recorded at 22+0.5%. Its compressive strength, 200.13+21 kPa was highest of all other hydrogel ratio of 0.5% and 1.0% Ibuprofen incorporation. Young’s Modulus of the hydrogel with 5% Ibuprofen was recorded at 1.8+0.01 MPa, indicating good gel strength in which it is capable of withstanding a fair amount of subjected force during topical wound dressing application. Excellent mechanical properties, together with slow release profile, make the ibuprofen-loaded hydrogel a prospect candidate as biocompatible extracellular matrices in wound management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gellan%20gum" title="gellan gum">gellan gum</a>, <a href="https://publications.waset.org/abstracts/search?q=ibuprofen" title=" ibuprofen"> ibuprofen</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20drug%20release" title=" slow drug release"> slow drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/19329/functional-slow-release-of-encapsulated-ibuprofen-in-cross-linked-gellan-gum-hydrogel-for-tissue-engineering-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1574</span> Physicochemical Attributes of Pectin Hydrogel and Its Wound Healing Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Khaizan%20Anuar">Nor Khaizan Anuar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Karimah%20Aziz"> Nur Karimah Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tin%20Wui%20Wong"> Tin Wui Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Sazali%20Hamzah"> Ahmad Sazali Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Rozita%20Wan%20Engah"> Wan Rozita Wan Engah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physicochemical attributes and wound healing activity of pectin hydrogel in rat models, following partial thickness thermal injury were investigated. The pectin hydrogel was prepared by solvent evaporation method with the aid of glutaraldehyde as crosslinking agent and glycerol as plasticizer. The physicochemical properties were mainly evaluated using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy, while the wound healing activity was examined by the macroscopic images, wound size reduction and histological evaluation using haematoxylin and eosin (H&E) stain for 14 days. The DSC and FTIR analysis suggested that pectin hydrogel exhibited higher extent of polymer-polymer interaction at O-H functional group in comparison to the unprocessed pectin. This was indicated by the increase of endothermic enthalpy values from 139.35 ± 13.06 J/g of unprocessed pectin to 156.23 ± 2.86 J/g of pectin hydrogel, as well as the decrease of FTIR wavenumber corresponding to O-H at 3432.07 ± 0.49 cm-1 of unprocessed pectin to 3412.62 ± 13.06 cm-1 of pectin hydrogel. Rats treated with pectin hydrogel had significantly smaller wound size (Student’s t-test, p<0.05) when compared to the untreated group starting from day 7 until day 14. H&E staining indicated that wounds received pectin hydrogel had more fibroblasts, blood vessels and collagen bundles on day 14 in comparison to the untreated rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pectin" title="pectin">pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a>, <a href="https://publications.waset.org/abstracts/search?q=wound" title=" wound"> wound</a> </p> <a href="https://publications.waset.org/abstracts/43465/physicochemical-attributes-of-pectin-hydrogel-and-its-wound-healing-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1573</span> Silver Nanoparticles Loaded Cellulose Nanofibers (Cnf)/mesoporous Bioactive Glass Hydrogels For Periodontitis Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anika%20Pallapothu">Anika Pallapothu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Periodontitis, a severe gum disease, poses a significant threat to the integrity of bone and soft tissues supporting teeth, primarily initiated by bacterial accumulation around the gum line. Conventional treatments like scaling/root planning and plaque removal are widely employed, but integrating modern technologies such as nanotechnology holds promise for innovative therapeutic approaches. This study explores the utilization of silver nanoparticles encapsulated within cellulose nanofiber (CNF) and mesoporous bioactive glass hydrogel matrices for periodontitis management. Silver nanoparticles exhibit potent antimicrobial properties by disrupting microbial cell membranes, inducing reactive oxygen species (ROS) generation, and interfering with vital cellular processes like ATP production and nucleic acid synthesis. Mesoporous bioactive glass, renowned for its high surface area, osteoconductive, and bioactivity, presents a favorable platform for pharmaceutical applications. Incorporating CNF enhances the properties of the hydrogel due to its biocompatibility, biodegradability, and water absorption capacity. The proposed composite material is anticipated to exert beneficial effects in periodontitis treatment by demonstrating antibacterial and anti-inflammatory activities, offering a promising avenue for future therapeutic interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodontitis" title="periodontitis">periodontitis</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanofibers" title=" cellulose nanofibers"> cellulose nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20bioactive%20glass" title=" mesoporous bioactive glass"> mesoporous bioactive glass</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory%20activity" title=" anti-inflammatory activity"> anti-inflammatory activity</a> </p> <a href="https://publications.waset.org/abstracts/185316/silver-nanoparticles-loaded-cellulose-nanofibers-cnfmesoporous-bioactive-glass-hydrogels-for-periodontitis-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1572</span> Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patr%C3%ADcia%20Severino">Patrícia Severino</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciana%20Nalone"> Luciana Nalone</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Martins"> Daniele Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Chaud"> Marco Chaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Classius%20Ferreira"> Classius Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiane%20Bani"> Cristiane Bani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Albuquerque"> Ricardo Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticle" title=" silver nanoparticle"> silver nanoparticle</a> </p> <a href="https://publications.waset.org/abstracts/99420/polymer-nanocomposite-containing-silver-nanoparticles-for-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1571</span> A Thermosensitive Polypeptide Hydrogel for Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Chi%20Cheng">Chih-Chi Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Yu%20Lin"> Ji-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ming%20Chu"> I-Ming Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we synthesized a thermosensitive polypeptide hydrogel by copolymerizing poloxamer (PLX) and poly(ʟ-alanine) with ʟ-lysine segments at the both ends to form PLX-b-poly(ʟ-alanine-lysine) (Lys-Ala-PLX-Ala-Lys) copolymers. Poly(ʟ-alanine) is the hydrophobic chain of Lys-Ala-PLX-Ala-Lys copolymers which was designed to capture the hydrophobic agents. The synthesis was examined by 1H NMR and showed that Lys-Ala-PLX-Ala-Lys copolymers were successfully synthesized. At the concentration range of 3-7 wt%, the aqueous copolymer solution underwent sol-gel transition near the physiological temperature and exhibited changes in its secondary structure content, as evidenced by FTIR. The excellent viability of cells cultured within the scaffold was observed after 72 hr of incubation. Also, negatively charged bovine serum albumin was incorporated into the hydrogel without diminishing material integrity and shows good release profile. In the animal study, the results also indicated that Lys-Ala-PLX-Ala-Lys hydrogel has high potential in wound dressing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypeptide%20thermosensitive%20hydrogel" title="polypeptide thermosensitive hydrogel">polypeptide thermosensitive hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=tacrolimus" title=" tacrolimus"> tacrolimus</a>, <a href="https://publications.waset.org/abstracts/search?q=vascularized%20composite%20allotransplantation" title=" vascularized composite allotransplantation"> vascularized composite allotransplantation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustain%20release" title=" sustain release"> sustain release</a> </p> <a href="https://publications.waset.org/abstracts/66746/a-thermosensitive-polypeptide-hydrogel-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1570</span> Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Berdous">D. Berdous</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ferfera-Harrar"> H. Ferfera-Harrar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N&rsquo;-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em> bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent%20Hydrogel" title=" superabsorbent Hydrogel"> superabsorbent Hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/53585/green-synthesis-of-nanosilver-loaded-hydrogel-nanocomposites-for-antibacterial-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1569</span> Chitosan Hydrogel Containing Nitric Oxide Donors with Potent Antibacterial Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milena%20Trevisan%20Pelegrino">Milena Trevisan Pelegrino</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruna%20De%20Araujo%20Lima"> Bruna De Araujo Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B4nica%20%20H.%20M.%20Do%20Nascimento"> Mônica H. M. Do Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Christiane%20B.%20Lombello"> Christiane B. Lombello</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Brocchi"> Marcelo Brocchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amedea%20B.%20Seabra"> Amedea B. Seabra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitric oxide (NO) is a small molecule involved in a wide range of physiological and pathophysiological processes, including vasodilatation, control of inflammatory pain, wound healing, and antibacterial activities. As NO is a free radical, the design of drugs that generates therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL) - chitosan (CS) hydrogel, in an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial and biocompatibility properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior, and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications, at physiological and skin temperatures. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which correspondents to 1 mmol·L-1 of GSNO). Interesting, the concentration range in which the NO-releasing hydrogel demonstrated antibacterial effect was not found toxic to Vero mammalian cell. Thus, GSNO-PL/CS hydrogel is suitable biomaterial for topical NO delivery applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=S-nitrosothiols" title=" S-nitrosothiols"> S-nitrosothiols</a> </p> <a href="https://publications.waset.org/abstracts/91507/chitosan-hydrogel-containing-nitric-oxide-donors-with-potent-antibacterial-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1568</span> Preparation of Biomedical Hydrogels Using Phenolic Compounds and Electron Beam Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Sadeghi">Farnaz Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moslem%20Tavakol"> Moslem Tavakol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an attempt has been made to prepare a physically cross-linked gel by cooling of tannic acid (TA)-polyvinyl alcohol (PVA) solution that subsequently convert to antibacterial chemically cross-linked hydrogel by using electron beam irradiation. PVA is known for its biocompatibility and hydrophilicity, and TA is known for being a natural compound which can serve as a cross-linking agent and a therapeutic agent. Swelling behavior, gel content, pore size, and mechanical properties of hydrogels which prepared at 14, 28, and 56 (kGy) with different ratios of polymers were investigated. PVA-TA hydrogel showed sustained release of tannic acid as approximately 20% and 50% of loaded TA released from the hydrogel after 4 and 72 h release time. We found that gel content decreased and the moisture retention capability increased by an increase in TA composition. In addition, PVA-TA hydrogels showed a good antibacterial activity against S.aureus. MTT analysis indicated that close to 83% of fibroblast cells remained viable after 48 h exposure to hydrogel extract. Moreover, the cooling of 10% PVA solution containing 0.5 and 0.75% w/v tannic acid to room and refrigerator, respectively, led to formation of physical gel that did not present any flow index after inversion of hydrogel cast. According to the results, the hydrogel prepared by electron beam irradiation of blended PVA-TA solution could be further investigated as a promising candidate for wound healing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly%20vinyl%20alcohol" title="poly vinyl alcohol">poly vinyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=tannic%20acid" title=" tannic acid"> tannic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20beam%20irradiation" title=" electron beam irradiation"> electron beam irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20wound%20dressing" title=" hydrogel wound dressing"> hydrogel wound dressing</a> </p> <a href="https://publications.waset.org/abstracts/141746/preparation-of-biomedical-hydrogels-using-phenolic-compounds-and-electron-beam-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1567</span> Self-Healing Hydrogel Triggered by Magnetic Microspheres to Control Glutathione Release for Cartilage Repair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I-Yun%20Cheng">I-Yun Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Yu%20Chiang"> Min-Yu Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shwu-Jen%20Chang"> Shwu-Jen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=San-Yuan%20Chen"> San-Yuan Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoarthritis (OA) is among the most challenging joint diseases, and as far as we know, there is currently no exact and effective cure for it because it has low self-repair ability due to lack of blood vessels and low cell density in articular cartilage. So far, there have been several methods developed to treat cartilage disorder. The most common method is to treat the high molecular weight of hyaluronic acid (HA) injection, but it will degrade after a period of time, so the patients need to inject HA repeatedly. In recent years, self-healing hydrogel has drawn considerable attention because it can recover its initial mechanical properties after damaged and further increase the lifetime of the hydrogel. Here, we aim to develop a self-healable composite hydrogel combined with magnetic microspheres to trigger glutathione(GSH) release for promoting cartilage repair. We use HA-cyclodextrin (CD) as host polymer and poly(acrylic acid)-ferrocene (pAA-Fc) as guest polymer to form the self-healable HA-pAA hydrogel by host and guest interaction where various graft amount of pAA-Fc (pAA:Fc= 1:2, 1:1.5, 1:1, 2:1, 4:1) was conducted to develop different mechanical strength hydrogel. The rheology analysis showed that the 4:1 of pAA-Fc has higher mechanical strength than other formulations. On the other hand, iron oxide nanoparticle, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI) were used to synthesize porous magnetic microspheres via double emulsification water-in-oil-in-water (W/O/W) to increase GSH loading which acted as a reductant to control the hydrogel crosslink density and promote hydrogel self-healing. The results show that the porous magnetic microspheres can be loaded with 70% of GSH and sustained release about 50% of GSH after 24 hours. More importantly, the HA-pAA composite hydrogel can self-heal rapidly within 24 hours when suffering external force destruction by releasing GSH from the magnetic microspheres. Therefore, the developed the HA-pAA composite hydrogel combined with GSH-loaded magnetic microspheres can be in-vivo guided to damaged OA surface for inducing the cartilage repair by controlling the crosslinking of self-healing hydrogel via GSH release. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=articular%20cartilage" title="articular cartilage">articular cartilage</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20microsphere" title=" magnetic microsphere"> magnetic microsphere</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoarthritis" title=" osteoarthritis"> osteoarthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing%20hydrogel" title=" self-healing hydrogel"> self-healing hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/106078/self-healing-hydrogel-triggered-by-magnetic-microspheres-to-control-glutathione-release-for-cartilage-repair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1566</span> Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mallikarjunachari%20Gangapuram">Mallikarjunachari Gangapuram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hematite" title="hematite">hematite</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-DMA" title=" nano-DMA"> nano-DMA</a> </p> <a href="https://publications.waset.org/abstracts/74372/tuning-nanomechanical-properties-of-stimuli-responsive-hydrogel-nanocomposite-thin-films-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1565</span> Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Salehi">S. S. Salehi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shamloo"> A. Shamloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cartilage%20tissue%20engineering" title="cartilage tissue engineering">cartilage tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a> </p> <a href="https://publications.waset.org/abstracts/65407/design-and-fabrication-of-a-scaffold-with-appropriate-features-for-cartilage-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1564</span> Swelling Behaviour of Kappa Carrageenan Hydrogel in Neutral Salt Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sperisa%20Distantina">Sperisa Distantina</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadilah%20Fadilah"> Fadilah Fadilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mujtahid%20Kaavessina"> Mujtahid Kaavessina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogel films were prepared from kappa carrageenan by crosslinking with glutaraldehyde. Carrageenan films extracted from <em>Kappaphycus alvarezii</em> seaweed were immersed in glutaraldehyde solution for 2 min and then cured at 110 &deg;C for 25 min. The obtained crosslinked films were washed with ethanol to remove the unreacted glutaraldehyde and then air dried to constant weights. The aim of this research was to study the swelling degree behaviour of the hydrogel film to neutral salts solution, namely NaCl, KCl, and CaCl<sub>2</sub>. The results showed that swelling degree of crosslinked films varied non-monotonically with salinity of NaCl. Swelling degree decreased with the increasing of KCl concentration. Swelling degree of crosslinked film in CaCl<sub>2 </sub>solution was lower than that in NaCl and in KCl solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carrageenan" title="carrageenan">carrageenan</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=glutaraldehyde" title=" glutaraldehyde"> glutaraldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling" title=" swelling"> swelling</a> </p> <a href="https://publications.waset.org/abstracts/46588/swelling-behaviour-of-kappa-carrageenan-hydrogel-in-neutral-salt-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1563</span> Osteogenesis in Thermo-Sensitive Hydrogel Using Mesenchymal Stem Cell Derived from Human Turbinate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Reum%20Son">A. Reum Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Seon%20Kwon"> Jin Seon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Hun%20Park"> Seung Hun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai%20Bang%20Lee"> Hai Bang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Suk%20Kim"> Moon Suk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These days, stem cell therapy is focused on for promising source of treatment in clinical human disease. As a supporter of stem cells, in situ-forming hydrogels with growth factors and cells appear to be a promising approach in tissue engineering. To examine osteogenic differentiation of hTMSCs which is one of mesenchymal stem cells in vivo in an injectable hydrogel, we use a methoxy polyethylene glycol-polycaprolactone blockcopolymer (MPEG-PCL) solution with osteogenic factors. We synthesized MPEG-PCL hydrogel and measured viscosity to check sol-gel transition. In order to demonstrate osteogenic ability of hTMSCs, we conducted in vitro osteogenesis experiment. Then, to confirm the cell cytotoxicity, we performed WST-1 with hTMSCs and MPEG-PCL. As the result of in vitro experiment, we implanted cell and hydrogel mixture into animal model and checked degree of osteogenesis with histological analysis and amount of expression genes. Through these experimental data, MPEG-PCL hydrogel has sol-gel transition in temperature change and is biocompatible with stem cells. In histological analysis and gene expression, hTMSCs are very good source of osteogenesis with hydrogel and will use it to tissue engineering as important treatment method. hTMSCs could be a good adult stem cell source for usability of isolation and high proliferation. When hTMSCs are used as cell therapy method with in situ-formed hydrogel, they may provide various benefits like a noninvasive alternative for bone tissue engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injectable%20hydrogel" title="injectable hydrogel">injectable hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenic%20differentiation" title=" osteogenic differentiation"> osteogenic differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/9285/osteogenesis-in-thermo-sensitive-hydrogel-using-mesenchymal-stem-cell-derived-from-human-turbinate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1562</span> Magnetic Nanoparticles for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachinkumar%20Patil">Sachinkumar Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Patil"> Sonali Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shitalkumar%20Patil"> Shitalkumar Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title=" cancer therapy"> cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/31421/magnetic-nanoparticles-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1561</span> Quantitative Evaluation of Diabetic Foot Wound Healing Using Hydrogel Nanosilver Based Dressing vs. Traditional Dressing: A Prospective Randomized Control Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20A.%20Yahia">Ehsan A. Yahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20E.%20El-Sharkawey"> Ayman E. El-Sharkawey</a>, <a href="https://publications.waset.org/abstracts/search?q=Magda%20M.%20Bayoumi"> Magda M. Bayoumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Wound dressings perform a crucial role in cutaneous wound management due to their ability to protect wounds and promote dermal and epidermal tissue regeneration. Aim: To evaluate the effectiveness of using hydrogel/nano silver-based dressing vs. traditional dressing on diabetic foot wound healing. Methods: Sixty patients with type-2 diabetes hospitalized for diabetic foot wound treatment were recruited from selected Surgical departments. A prospective randomized control study was carried. Results: The results showed that the percentage of a reduction rate of the ulcer by the third week of the treatment in the hydrogel/nano silver-based dressing group was higher (15.11%) than in the traditional wound dressing group (33.44%). Moreover, the mean ulcer size "sq mm" in the hydrogel/nano silver-based dressing group recognized a faster healing rate (15.11±7.89) and considerably lesser in comparison to the traditional in the third week (21.65±8.4). Conclusion: The hydrogel/nanosilver-based dressing showed better results than traditional dressing in managing diabetic ulcer foot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20care" title=" wound care"> wound care</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20foot" title=" diabetic foot"> diabetic foot</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20dressing" title=" wound dressing"> wound dressing</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanosilver" title=" hydrogel nanosilver"> hydrogel nanosilver</a> </p> <a href="https://publications.waset.org/abstracts/152560/quantitative-evaluation-of-diabetic-foot-wound-healing-using-hydrogel-nanosilver-based-dressing-vs-traditional-dressing-a-prospective-randomized-control-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1560</span> Experimental and Finite Element Analysis of Large Deformation Characteristics of Magnetic Responsive Hydrogel Nanocomposites Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mallikarjunachari%20Gangapuram">Mallikarjunachari Gangapuram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stimuli-responsive hydrogel nanocomposite membranes are gaining significant attention these days due to their potential applications in various engineering fields. For example, sensors, soft actuators, drug delivery, remote controlled therapy, water treatment, shape morphing, and magnetic refrigeration are few advanced applications of hydrogel nanocomposite membranes. In this work, hydrogel nanocomposite membranes are synthesized by embedding nanometer-sized (diameter - 300 nm) Fe₃O₄ magnetic particles into the polyvinyl alcohol (PVA) polymer. To understand the large deformation characteristics of these membranes, a well-known experimental method ball indentation technique is used. Different designing parameters such as membrane thickness, the concentration of magnetic particles and ball diameter on the viscoelastic properties are studied. All the experiments are carried out without and with a static magnetic field. Finite element simulations are carried out to validate the experimental results. It is observed, the creep response decreases and Young’s modulus increases as the thickness and concentration of magnetic particles increases. Image analysis revealed the hydrogel membranes are undergone global deformation for ball diameter 18 mm and local deformation when the diameter decreases from 18 mm to 0.5 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20indentation" title="ball indentation">ball indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20membranes" title=" hydrogel membranes"> hydrogel membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young&#039;s modulus"> Young&#039;s modulus</a> </p> <a href="https://publications.waset.org/abstracts/105918/experimental-and-finite-element-analysis-of-large-deformation-characteristics-of-magnetic-responsive-hydrogel-nanocomposites-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1559</span> Effects of Injectable Thermosensitive Hydrogel Containing Chitosan as a Barrier for Prevention of Post-operative Peritoneal Adhesion in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Javanmardi">Sara Javanmardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sepehr%20Aziziz"> Sepehr Aziziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Baharak%20Divband"> Baharak Divband</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Firouzamandi"> Masoumeh Firouzamandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post-operative adhesions are the most common cause of intestinal obstruction, female infertility and chronic abdominal pain. We developed a novel approach for preventing post-operative peritoneal adhesions using a biodegradable and thermosensitive curcumin hydrogel in rats. Thirteen male Sprague-Dawley rats were assigned randomly into five groups of six animals each: In SHAM group, the cecum was exteriorized, gently manipulated and sent back into the abdomen. In CONTROL group, the surgical abrasion was performed with no further treatment. In Hydrogel group, surgical abrasion was performed with local application of blank hydrogel (1 mL). In Curcumin group, surgical abrasion was performed with local application of curcumin (1 mL). In CUR/HGEL group, surgical abrasion was performed with local application of curcumin hydrogel (1 mL). On day 10, adhesions were assessed using a standardized scale (Evans model), and samples were collected for the Real-time PCR. Real-time PCR was performed to determine mRNA levels of VCAM-1, ICAM-1 and GAPDH. The macroscopic adhesion intensity showed statistically significant differences between the CUR/HGEL and other groups (P=0.0005). The findings of the present study revealed there were statistically significant differences between the groups regarding adhesion band length and numbers (P<0.0001). The protein and mRNA expression of VCAM-1 and ICAM-1 in secal tissues were significantly down regulated due to curcumin-hydrogel application in CUR/HGEL compared to other groups (p<0.05). The thermosensitive hydrogel could reduce the severity and even prevent formation of intra-abdominal adhesion. Curcumin hydrogel could serve as a potential barrier agent to prevent post-operative peritoneal adhesion in rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peritoneal%20adhesion" title="peritoneal adhesion">peritoneal adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumijn" title=" curcumijn"> curcumijn</a>, <a href="https://publications.waset.org/abstracts/search?q=ICAM-1" title=" ICAM-1"> ICAM-1</a>, <a href="https://publications.waset.org/abstracts/search?q=VCAM-1" title=" VCAM-1"> VCAM-1</a> </p> <a href="https://publications.waset.org/abstracts/168220/effects-of-injectable-thermosensitive-hydrogel-containing-chitosan-as-a-barrier-for-prevention-of-post-operative-peritoneal-adhesion-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1558</span> Mass Transfer of Paracetamol from the Crosslinked Carrageenan-Polyvinyl Alcohol Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sperisa%20Distantina">Sperisa Distantina</a>, <a href="https://publications.waset.org/abstracts/search?q=Rieke%20Ulfha%20Noviyanti"> Rieke Ulfha Noviyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Sutriyani"> Sri Sutriyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadilah%20Fadilah"> Fadilah Fadilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mujtahid%20Kaavessina"> Mujtahid Kaavessina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, carrageenan extracted from seaweed Eucheuma cottonii was mixed with polyvinyl alcohol (PVA) and then crosslinked using glutaraldehyde (GA). The obtained hydrogel films were applied to control the drug release rate of paracetamol. The aim of this research was to develop a mathematical model that can be used to describe the mass transfer rate of paracetamol from the hydrogel film into buffer solution. The effect of weight ratio carrageenan-PVA (5: 0, 1: 0.5, 1: 1, 1: 2, 0: 5) on the parameters of the mathematical model was investigated also. Based on the experimental data, the proposed mathematical model could describe the mass transfer rate of paracetamol. The weight ratio of carrageenan-PVA greatly affected the amount of paracetamol absorbed in the hydrogel film and the mass transfer rate of paracetamol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carrageenan-PVA" title="carrageenan-PVA">carrageenan-PVA</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking" title=" crosslinking"> crosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=glutaraldehyde" title=" glutaraldehyde"> glutaraldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=paracetamol" title=" paracetamol"> paracetamol</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/67260/mass-transfer-of-paracetamol-from-the-crosslinked-carrageenan-polyvinyl-alcohol-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1557</span> Spectrophotometric Evaluation of Custom Microalgae-Based Bioink Formulations for Optimized Green Bioprinting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubusuyi%20Ayowole">Olubusuyi Ayowole</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Khoda"> Bashir Khoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials—Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC) – TEMPO, and CarboxyMethyl Cellulose (CMC)—are chosen for their scaffolding capabilities. Bioink development and analysis of their impact on cell proliferation and morphology are conducted. Chlorella microalgae cell growth within hydrogel compositions is probed using absorbance measurements, with additional assessment of shear thinning properties. Notably, NFC exhibits reduced shear thinning compared to CMC. Results reveal that while mono-hydrogel substrates with pronounced adhesion inhibit Chlorella cell proliferation, Alginate fosters increased cell concentration alongside a slight viscosity rise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20bioprinting" title="green bioprinting">green bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20bioprinting" title=" 3d bioprinting"> 3d bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae%20cell" title=" microalgae cell"> microalgae cell</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20hydrogel%20scaffolds" title=" hybrid hydrogel scaffolds"> hybrid hydrogel scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometric%20analysis" title=" spectrophotometric analysis"> spectrophotometric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bioink%20development" title=" bioink development"> bioink development</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning%20properties" title=" shear thinning properties"> shear thinning properties</a> </p> <a href="https://publications.waset.org/abstracts/188298/spectrophotometric-evaluation-of-custom-microalgae-based-bioink-formulations-for-optimized-green-bioprinting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1556</span> Formulation and in Vitro Characterization of Bioactives Loaded Polymeric Nanoparticle Incorporated into Multiphase Hydrogel System for the Treatment of Infected Burn Wound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Kant%20Panik">Rajni Kant Panik</a>, <a href="https://publications.waset.org/abstracts/search?q=Deependra%20Singh"> Deependra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manju%20Singh"> Manju Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite significant advances in the treatment of severe burn injury, infection and sepsis persist as frequent causes of morbidity and mortality for burn victims due to extensive compromise of the skin and contiguous tissue that serve as a protective barrier against microbial invasion. In the setting of a burn wound infection, Staphylococcus aureus is the most commonly isolated pathogens from bloodstream infections in burn care hospitals. We aimed to develop a biocompatible system of Poly vinyl alcohol (PVA)-sodium alginate hydrogel carrying multiple drugs- catalase and mupirocin in controlled manner for effective and complete burn wound healing. PLGA nanoparticles of Catalase and mupirocin were prepared by homogenization method and optimized system was incorporated in PVA-sodium alginate slurry. PVA-sodium alginate hydrogels were prepared by freeze thaw method. The prepared dispersion was casted into films to prepare multiphase hydrogel system and characterized by in vitro and in vivo studies. The study clearly showed the beneficial effect of antioxidant enzyme and antibiotic in the treatment of infected burn wound, as evidenced by the reduced incidence of wound infection and the shortening of healing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burn%20wound" title="burn wound">burn wound</a>, <a href="https://publications.waset.org/abstracts/search?q=catalase" title=" catalase"> catalase</a>, <a href="https://publications.waset.org/abstracts/search?q=mupirocin" title=" mupirocin"> mupirocin</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a> </p> <a href="https://publications.waset.org/abstracts/30091/formulation-and-in-vitro-characterization-of-bioactives-loaded-polymeric-nanoparticle-incorporated-into-multiphase-hydrogel-system-for-the-treatment-of-infected-burn-wound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=52">52</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogel%20nanoparticles&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10