CINXE.COM
Frontiers | Current research update on group B streptococcal infection related to obstetrics and gynecology
<!doctype html> <html data-n-head-ssr lang="en" data-n-head="%7B%22lang%22:%7B%22ssr%22:%22en%22%7D%7D"> <head > <link data-n-head="ssr" rel="icon" type="image/png" sizes="16x16" href="https://brand.frontiersin.org/m/ed3f9ce840a03d7/favicon_16-tenantFavicon-Frontiers.png"> <link data-n-head="ssr" rel="icon" type="image/png" sizes="32x32" href="https://brand.frontiersin.org/m/ed3f9ce840a03d7/favicon_32-tenantFavicon-Frontiers.png"> <link data-n-head="ssr" rel="apple-touch-icon" type="image/png" sizes="180x180" href="https://brand.frontiersin.org/m/ed3f9ce840a03d7/favicon_180-tenantFavicon-Frontiers.png"> <title>Frontiers | Current research update on group B streptococcal infection related to obstetrics and gynecology</title><meta data-n-head="ssr" charset="utf-8"><meta data-n-head="ssr" name="viewport" content="width=device-width, initial-scale=1"><meta data-n-head="ssr" data-hid="charset" charset="utf-8"><meta data-n-head="ssr" data-hid="mobile-web-app-capable" name="mobile-web-app-capable" content="yes"><meta data-n-head="ssr" data-hid="apple-mobile-web-app-title" name="apple-mobile-web-app-title" content="Frontiers | Articles"><meta data-n-head="ssr" data-hid="theme-color" name="theme-color" content="#0C4DED"><meta data-n-head="ssr" data-hid="description" property="description" name="description" content="Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pr..."><meta data-n-head="ssr" data-hid="og:title" property="og:title" name="title" content="Frontiers | Current research update on group B streptococcal infection related to obstetrics and gynecology"><meta data-n-head="ssr" data-hid="og:description" property="og:description" name="description" content="Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pr..."><meta data-n-head="ssr" data-hid="keywords" name="keywords" content="Group B streptococcal,Obstetrics and Gynecology,Antibiotic Prophylaxis,Group B streptococcal vaccine,Microbial therapy"><meta data-n-head="ssr" data-hid="og:site_name" property="og:site_name" name="site_name" content="Frontiers"><meta data-n-head="ssr" data-hid="og:image" property="og:image" name="image" content="https://images-provider.frontiersin.org/api/ipx/w=1200&f=png/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-g001.jpg"><meta data-n-head="ssr" data-hid="og:type" property="og:type" name="type" content="article"><meta data-n-head="ssr" data-hid="og:url" property="og:url" name="url" content="https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395673/full"><meta data-n-head="ssr" data-hid="twitter:card" name="twitter:card" content="summary_large_image"><meta data-n-head="ssr" data-hid="citation_volume" name="citation_volume" content="15"><meta data-n-head="ssr" data-hid="citation_journal_title" name="citation_journal_title" content="Frontiers in Pharmacology"><meta data-n-head="ssr" data-hid="citation_publisher" name="citation_publisher" content="Frontiers"><meta data-n-head="ssr" data-hid="citation_journal_abbrev" name="citation_journal_abbrev" content="Front. Pharmacol."><meta data-n-head="ssr" data-hid="citation_issn" name="citation_issn" content="1663-9812"><meta data-n-head="ssr" data-hid="citation_doi" name="citation_doi" content="10.3389/fphar.2024.1395673"><meta data-n-head="ssr" data-hid="citation_firstpage" name="citation_firstpage" content="1395673"><meta data-n-head="ssr" data-hid="citation_language" name="citation_language" content="English"><meta data-n-head="ssr" data-hid="citation_title" name="citation_title" content="Current research update on group B streptococcal infection related to obstetrics and gynecology"><meta data-n-head="ssr" data-hid="citation_keywords" name="citation_keywords" content="Group B streptococcal; Obstetrics and Gynecology; Antibiotic Prophylaxis; Group B streptococcal vaccine; Microbial therapy"><meta data-n-head="ssr" data-hid="citation_abstract" name="citation_abstract" content="<p>Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.</p>"><meta data-n-head="ssr" data-hid="citation_pdf_url" name="citation_pdf_url" content="https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395673/pdf"><meta data-n-head="ssr" data-hid="citation_online_date" name="citation_online_date" content="2024/05/31"><meta data-n-head="ssr" data-hid="citation_publication_date" name="citation_publication_date" content="2024/06/17"><meta data-n-head="ssr" data-hid="citation_author_0" name="citation_author" content="Liu, Ying"><meta data-n-head="ssr" data-hid="citation_author_institution_0" name="citation_author_institution" content="Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, China"><meta data-n-head="ssr" data-hid="citation_author_1" name="citation_author" content="Ai, Hao"><meta data-n-head="ssr" data-hid="citation_author_institution_1" name="citation_author_institution" content="Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, China"><meta data-n-head="ssr" data-hid="dc.identifier" name="dc.identifier" content="doi:10.3389/fphar.2024.1395673"><link data-n-head="ssr" rel="manifest" href="/article-pages/_nuxt/manifest.c499fc0a.json" data-hid="manifest"><link data-n-head="ssr" rel="canonical" href="https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395673/full"><script data-n-head="ssr" data-hid="newrelic-browser-script" type="text/javascript">window.NREUM||(NREUM={});NREUM.info = {"agent":"","beacon":"bam.nr-data.net","errorBeacon":"bam.nr-data.net","licenseKey":"598a124f17","applicationID":"588603994","agentToken":null,"applicationTime":1.690423,"transactionName":"MQcDMkECCkNSW0YMWghNIgldDQFTRxd1IGFJTQ==","queueTime":0,"ttGuid":"8061b0f05d34cfe6"}; (window.NREUM||(NREUM={})).init={privacy:{cookies_enabled:true},ajax:{deny_list:["bam.nr-data.net"]},distributed_tracing:{enabled:true}};(window.NREUM||(NREUM={})).loader_config={agentID:"594400880",accountID:"230385",trustKey:"230385",xpid:"VgUHUl5WGwYIXFdSBAgOUg==",licenseKey:"598a124f17",applicationID:"588603994"};;/*! For license information please see nr-loader-spa-1.274.0.min.js.LICENSE.txt */ (()=>{var e,t,r={8122:(e,t,r)=>{"use strict";r.d(t,{a:()=>i});var n=r(944);function i(e,t){try{if(!e||"object"!=typeof e)return(0,n.R)(3);if(!t||"object"!=typeof t)return(0,n.R)(4);const r=Object.create(Object.getPrototypeOf(t),Object.getOwnPropertyDescriptors(t)),o=0===Object.keys(r).length?e:r;for(let a in o)if(void 0!==e[a])try{if(null===e[a]){r[a]=null;continue}Array.isArray(e[a])&&Array.isArray(t[a])?r[a]=Array.from(new Set([...e[a],...t[a]])):"object"==typeof e[a]&&"object"==typeof t[a]?r[a]=i(e[a],t[a]):r[a]=e[a]}catch(e){(0,n.R)(1,e)}return r}catch(e){(0,n.R)(2,e)}}},2555:(e,t,r)=>{"use strict";r.d(t,{Vp:()=>c,fn:()=>s,x1:()=>u});var n=r(384),i=r(8122);const o={beacon:n.NT.beacon,errorBeacon:n.NT.errorBeacon,licenseKey:void 0,applicationID:void 0,sa:void 0,queueTime:void 0,applicationTime:void 0,ttGuid:void 0,user:void 0,account:void 0,product:void 0,extra:void 0,jsAttributes:{},userAttributes:void 0,atts:void 0,transactionName:void 0,tNamePlain:void 0},a={};function s(e){try{const t=c(e);return!!t.licenseKey&&!!t.errorBeacon&&!!t.applicationID}catch(e){return!1}}function c(e){if(!e)throw new Error("All info objects require an agent identifier!");if(!a[e])throw new Error("Info for ".concat(e," was never set"));return a[e]}function u(e,t){if(!e)throw new Error("All info objects require an agent identifier!");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.info=a[e])}},9417:(e,t,r)=>{"use strict";r.d(t,{D0:()=>h,gD:()=>g,xN:()=>p});var n=r(993);const i=e=>{if(!e||"string"!=typeof e)return!1;try{document.createDocumentFragment().querySelector(e)}catch{return!1}return!0};var o=r(2614),a=r(944),s=r(384),c=r(8122);const u="[data-nr-mask]",d=()=>{const e={mask_selector:"*",block_selector:"[data-nr-block]",mask_input_options:{color:!1,date:!1,"datetime-local":!1,email:!1,month:!1,number:!1,range:!1,search:!1,tel:!1,text:!1,time:!1,url:!1,week:!1,textarea:!1,select:!1,password:!0}};return{ajax:{deny_list:void 0,block_internal:!0,enabled:!0,harvestTimeSeconds:10,autoStart:!0},distributed_tracing:{enabled:void 0,exclude_newrelic_header:void 0,cors_use_newrelic_header:void 0,cors_use_tracecontext_headers:void 0,allowed_origins:void 0},feature_flags:[],generic_events:{enabled:!0,harvestTimeSeconds:30,autoStart:!0},harvest:{tooManyRequestsDelay:60},jserrors:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},logging:{enabled:!0,harvestTimeSeconds:10,autoStart:!0,level:n.p_.INFO},metrics:{enabled:!0,autoStart:!0},obfuscate:void 0,page_action:{enabled:!0},page_view_event:{enabled:!0,autoStart:!0},page_view_timing:{enabled:!0,harvestTimeSeconds:30,autoStart:!0},performance:{capture_marks:!1,capture_measures:!1},privacy:{cookies_enabled:!0},proxy:{assets:void 0,beacon:void 0},session:{expiresMs:o.wk,inactiveMs:o.BB},session_replay:{autoStart:!0,enabled:!1,harvestTimeSeconds:60,preload:!1,sampling_rate:10,error_sampling_rate:100,collect_fonts:!1,inline_images:!1,fix_stylesheets:!0,mask_all_inputs:!0,get mask_text_selector(){return e.mask_selector},set mask_text_selector(t){i(t)?e.mask_selector="".concat(t,",").concat(u):""===t||null===t?e.mask_selector=u:(0,a.R)(5,t)},get block_class(){return"nr-block"},get ignore_class(){return"nr-ignore"},get mask_text_class(){return"nr-mask"},get block_selector(){return e.block_selector},set block_selector(t){i(t)?e.block_selector+=",".concat(t):""!==t&&(0,a.R)(6,t)},get mask_input_options(){return e.mask_input_options},set mask_input_options(t){t&&"object"==typeof t?e.mask_input_options={...t,password:!0}:(0,a.R)(7,t)}},session_trace:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},soft_navigations:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},spa:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},ssl:void 0,user_actions:{enabled:!0}}},l={},f="All configuration objects require an agent identifier!";function h(e){if(!e)throw new Error(f);if(!l[e])throw new Error("Configuration for ".concat(e," was never set"));return l[e]}function p(e,t){if(!e)throw new Error(f);l[e]=(0,c.a)(t,d());const r=(0,s.nY)(e);r&&(r.init=l[e])}function g(e,t){if(!e)throw new Error(f);var r=h(e);if(r){for(var n=t.split("."),i=0;i<n.length-1;i++)if("object"!=typeof(r=r[n[i]]))return;r=r[n[n.length-1]]}return r}},5603:(e,t,r)=>{"use strict";r.d(t,{a:()=>c,o:()=>s});var n=r(384),i=r(8122);const o={accountID:void 0,trustKey:void 0,agentID:void 0,licenseKey:void 0,applicationID:void 0,xpid:void 0},a={};function s(e){if(!e)throw new Error("All loader-config objects require an agent identifier!");if(!a[e])throw new Error("LoaderConfig for ".concat(e," was never set"));return a[e]}function c(e,t){if(!e)throw new Error("All loader-config objects require an agent identifier!");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.loader_config=a[e])}},3371:(e,t,r)=>{"use strict";r.d(t,{V:()=>f,f:()=>l});var n=r(8122),i=r(384),o=r(6154),a=r(9324);let s=0;const c={buildEnv:a.F3,distMethod:a.Xs,version:a.xv,originTime:o.WN},u={customTransaction:void 0,disabled:!1,isolatedBacklog:!1,loaderType:void 0,maxBytes:3e4,onerror:void 0,ptid:void 0,releaseIds:{},appMetadata:{},session:void 0,denyList:void 0,timeKeeper:void 0,obfuscator:void 0},d={};function l(e){if(!e)throw new Error("All runtime objects require an agent identifier!");if(!d[e])throw new Error("Runtime for ".concat(e," was never set"));return d[e]}function f(e,t){if(!e)throw new Error("All runtime objects require an agent identifier!");d[e]={...(0,n.a)(t,u),...c},Object.hasOwnProperty.call(d[e],"harvestCount")||Object.defineProperty(d[e],"harvestCount",{get:()=>++s});const r=(0,i.nY)(e);r&&(r.runtime=d[e])}},9324:(e,t,r)=>{"use strict";r.d(t,{F3:()=>i,Xs:()=>o,Yq:()=>a,xv:()=>n});const n="1.274.0",i="PROD",o="CDN",a="^2.0.0-alpha.17"},6154:(e,t,r)=>{"use strict";r.d(t,{A4:()=>s,OF:()=>d,RI:()=>i,WN:()=>h,bv:()=>o,gm:()=>a,lR:()=>f,m:()=>u,mw:()=>c,sb:()=>l});var n=r(1863);const i="undefined"!=typeof window&&!!window.document,o="undefined"!=typeof WorkerGlobalScope&&("undefined"!=typeof self&&self instanceof WorkerGlobalScope&&self.navigator instanceof WorkerNavigator||"undefined"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis.navigator instanceof WorkerNavigator),a=i?window:"undefined"!=typeof WorkerGlobalScope&&("undefined"!=typeof self&&self instanceof WorkerGlobalScope&&self||"undefined"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis),s="complete"===a?.document?.readyState,c=Boolean("hidden"===a?.document?.visibilityState),u=""+a?.location,d=/iPad|iPhone|iPod/.test(a.navigator?.userAgent),l=d&&"undefined"==typeof SharedWorker,f=(()=>{const e=a.navigator?.userAgent?.match(/Firefox[/\s](\d+\.\d+)/);return Array.isArray(e)&&e.length>=2?+e[1]:0})(),h=Date.now()-(0,n.t)()},7295:(e,t,r)=>{"use strict";r.d(t,{Xv:()=>a,gX:()=>i,iW:()=>o});var n=[];function i(e){if(!e||o(e))return!1;if(0===n.length)return!0;for(var t=0;t<n.length;t++){var r=n[t];if("*"===r.hostname)return!1;if(s(r.hostname,e.hostname)&&c(r.pathname,e.pathname))return!1}return!0}function o(e){return void 0===e.hostname}function a(e){if(n=[],e&&e.length)for(var t=0;t<e.length;t++){let r=e[t];if(!r)continue;0===r.indexOf("http://")?r=r.substring(7):0===r.indexOf("https://")&&(r=r.substring(8));const i=r.indexOf("/");let o,a;i>0?(o=r.substring(0,i),a=r.substring(i)):(o=r,a="");let[s]=o.split(":");n.push({hostname:s,pathname:a})}}function s(e,t){return!(e.length>t.length)&&t.indexOf(e)===t.length-e.length}function c(e,t){return 0===e.indexOf("/")&&(e=e.substring(1)),0===t.indexOf("/")&&(t=t.substring(1)),""===e||e===t}},1687:(e,t,r)=>{"use strict";r.d(t,{Ak:()=>c,Ze:()=>l,x3:()=>u});var n=r(7836),i=r(3606),o=r(860),a=r(2646);const s={};function c(e,t){const r={staged:!1,priority:o.P3[t]||0};d(e),s[e].get(t)||s[e].set(t,r)}function u(e,t){e&&s[e]&&(s[e].get(t)&&s[e].delete(t),h(e,t,!1),s[e].size&&f(e))}function d(e){if(!e)throw new Error("agentIdentifier required");s[e]||(s[e]=new Map)}function l(e="",t="feature",r=!1){if(d(e),!e||!s[e].get(t)||r)return h(e,t);s[e].get(t).staged=!0,f(e)}function f(e){const t=Array.from(s[e]);t.every((([e,t])=>t.staged))&&(t.sort(((e,t)=>e[1].priority-t[1].priority)),t.forEach((([t])=>{s[e].delete(t),h(e,t)})))}function h(e,t,r=!0){const o=e?n.ee.get(e):n.ee,s=i.i.handlers;if(!o.aborted&&o.backlog&&s){if(r){const e=o.backlog[t],r=s[t];if(r){for(let t=0;e&&t<e.length;++t)p(e[t],r);Object.entries(r).forEach((([e,t])=>{Object.values(t||{}).forEach((t=>{t[0]?.on&&t[0]?.context()instanceof a.y&&t[0].on(e,t[1])}))}))}}o.isolatedBacklog||delete s[t],o.backlog[t]=null,o.emit("drain-"+t,[])}}function p(e,t){var r=e[1];Object.values(t[r]||{}).forEach((t=>{var r=e[0];if(t[0]===r){var n=t[1],i=e[3],o=e[2];n.apply(i,o)}}))}},7836:(e,t,r)=>{"use strict";r.d(t,{P:()=>c,ee:()=>u});var n=r(384),i=r(8990),o=r(3371),a=r(2646),s=r(5607);const c="nr@context:".concat(s.W),u=function e(t,r){var n={},s={},d={},l=!1;try{l=16===r.length&&(0,o.f)(r).isolatedBacklog}catch(e){}var f={on:p,addEventListener:p,removeEventListener:function(e,t){var r=n[e];if(!r)return;for(var i=0;i<r.length;i++)r[i]===t&&r.splice(i,1)},emit:function(e,r,n,i,o){!1!==o&&(o=!0);if(u.aborted&&!i)return;t&&o&&t.emit(e,r,n);for(var a=h(n),c=g(e),d=c.length,l=0;l<d;l++)c[l].apply(a,r);var p=v()[s[e]];p&&p.push([f,e,r,a]);return a},get:m,listeners:g,context:h,buffer:function(e,t){const r=v();if(t=t||"feature",f.aborted)return;Object.entries(e||{}).forEach((([e,n])=>{s[n]=t,t in r||(r[t]=[])}))},abort:function(){f._aborted=!0,Object.keys(f.backlog).forEach((e=>{delete f.backlog[e]}))},isBuffering:function(e){return!!v()[s[e]]},debugId:r,backlog:l?{}:t&&"object"==typeof t.backlog?t.backlog:{},isolatedBacklog:l};return Object.defineProperty(f,"aborted",{get:()=>{let e=f._aborted||!1;return e||(t&&(e=t.aborted),e)}}),f;function h(e){return e&&e instanceof a.y?e:e?(0,i.I)(e,c,(()=>new a.y(c))):new a.y(c)}function p(e,t){n[e]=g(e).concat(t)}function g(e){return n[e]||[]}function m(t){return d[t]=d[t]||e(f,t)}function v(){return f.backlog}}(void 0,"globalEE"),d=(0,n.Zm)();d.ee||(d.ee=u)},2646:(e,t,r)=>{"use strict";r.d(t,{y:()=>n});class n{constructor(e){this.contextId=e}}},9908:(e,t,r)=>{"use strict";r.d(t,{d:()=>n,p:()=>i});var n=r(7836).ee.get("handle");function i(e,t,r,i,o){o?(o.buffer([e],i),o.emit(e,t,r)):(n.buffer([e],i),n.emit(e,t,r))}},3606:(e,t,r)=>{"use strict";r.d(t,{i:()=>o});var n=r(9908);o.on=a;var i=o.handlers={};function o(e,t,r,o){a(o||n.d,i,e,t,r)}function a(e,t,r,i,o){o||(o="feature"),e||(e=n.d);var a=t[o]=t[o]||{};(a[r]=a[r]||[]).push([e,i])}},3878:(e,t,r)=>{"use strict";function n(e,t){return{capture:e,passive:!1,signal:t}}function i(e,t,r=!1,i){window.addEventListener(e,t,n(r,i))}function o(e,t,r=!1,i){document.addEventListener(e,t,n(r,i))}r.d(t,{DD:()=>o,jT:()=>n,sp:()=>i})},5607:(e,t,r)=>{"use strict";r.d(t,{W:()=>n});const n=(0,r(9566).bz)()},9566:(e,t,r)=>{"use strict";r.d(t,{LA:()=>s,ZF:()=>c,bz:()=>a,el:()=>u});var n=r(6154);const i="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx";function o(e,t){return e?15&e[t]:16*Math.random()|0}function a(){const e=n.gm?.crypto||n.gm?.msCrypto;let t,r=0;return e&&e.getRandomValues&&(t=e.getRandomValues(new Uint8Array(30))),i.split("").map((e=>"x"===e?o(t,r++).toString(16):"y"===e?(3&o()|8).toString(16):e)).join("")}function s(e){const t=n.gm?.crypto||n.gm?.msCrypto;let r,i=0;t&&t.getRandomValues&&(r=t.getRandomValues(new Uint8Array(e)));const a=[];for(var s=0;s<e;s++)a.push(o(r,i++).toString(16));return a.join("")}function c(){return s(16)}function u(){return s(32)}},2614:(e,t,r)=>{"use strict";r.d(t,{BB:()=>a,H3:()=>n,g:()=>u,iL:()=>c,tS:()=>s,uh:()=>i,wk:()=>o});const n="NRBA",i="SESSION",o=144e5,a=18e5,s={STARTED:"session-started",PAUSE:"session-pause",RESET:"session-reset",RESUME:"session-resume",UPDATE:"session-update"},c={SAME_TAB:"same-tab",CROSS_TAB:"cross-tab"},u={OFF:0,FULL:1,ERROR:2}},1863:(e,t,r)=>{"use strict";function n(){return Math.floor(performance.now())}r.d(t,{t:()=>n})},7485:(e,t,r)=>{"use strict";r.d(t,{D:()=>i});var n=r(6154);function i(e){if(0===(e||"").indexOf("data:"))return{protocol:"data"};try{const t=new URL(e,location.href),r={port:t.port,hostname:t.hostname,pathname:t.pathname,search:t.search,protocol:t.protocol.slice(0,t.protocol.indexOf(":")),sameOrigin:t.protocol===n.gm?.location?.protocol&&t.host===n.gm?.location?.host};return r.port&&""!==r.port||("http:"===t.protocol&&(r.port="80"),"https:"===t.protocol&&(r.port="443")),r.pathname&&""!==r.pathname?r.pathname.startsWith("/")||(r.pathname="/".concat(r.pathname)):r.pathname="/",r}catch(e){return{}}}},944:(e,t,r)=>{"use strict";function n(e,t){"function"==typeof console.debug&&console.debug("New Relic Warning: https://github.com/newrelic/newrelic-browser-agent/blob/main/docs/warning-codes.md#".concat(e),t)}r.d(t,{R:()=>n})},5284:(e,t,r)=>{"use strict";r.d(t,{t:()=>c,B:()=>s});var n=r(7836),i=r(6154);const o="newrelic";const a=new Set,s={};function c(e,t){const r=n.ee.get(t);s[t]??={},e&&"object"==typeof e&&(a.has(t)||(r.emit("rumresp",[e]),s[t]=e,a.add(t),function(e={}){try{i.gm.dispatchEvent(new CustomEvent(o,{detail:e}))}catch(e){}}({loaded:!0})))}},8990:(e,t,r)=>{"use strict";r.d(t,{I:()=>i});var n=Object.prototype.hasOwnProperty;function i(e,t,r){if(n.call(e,t))return e[t];var i=r();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(e,t,{value:i,writable:!0,enumerable:!1}),i}catch(e){}return e[t]=i,i}},6389:(e,t,r)=>{"use strict";function n(e,t=500,r={}){const n=r?.leading||!1;let i;return(...r)=>{n&&void 0===i&&(e.apply(this,r),i=setTimeout((()=>{i=clearTimeout(i)}),t)),n||(clearTimeout(i),i=setTimeout((()=>{e.apply(this,r)}),t))}}function i(e){let t=!1;return(...r)=>{t||(t=!0,e.apply(this,r))}}r.d(t,{J:()=>i,s:()=>n})},3304:(e,t,r)=>{"use strict";r.d(t,{A:()=>o});var n=r(7836);const i=()=>{const e=new WeakSet;return(t,r)=>{if("object"==typeof r&&null!==r){if(e.has(r))return;e.add(r)}return r}};function o(e){try{return JSON.stringify(e,i())??""}catch(e){try{n.ee.emit("internal-error",[e])}catch(e){}return""}}},5289:(e,t,r)=>{"use strict";r.d(t,{GG:()=>o,sB:()=>a});var n=r(3878);function i(){return"undefined"==typeof document||"complete"===document.readyState}function o(e,t){if(i())return e();(0,n.sp)("load",e,t)}function a(e){if(i())return e();(0,n.DD)("DOMContentLoaded",e)}},384:(e,t,r)=>{"use strict";r.d(t,{NT:()=>o,US:()=>d,Zm:()=>a,bQ:()=>c,dV:()=>s,nY:()=>u,pV:()=>l});var n=r(6154),i=r(1863);const o={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net"};function a(){return n.gm.NREUM||(n.gm.NREUM={}),void 0===n.gm.newrelic&&(n.gm.newrelic=n.gm.NREUM),n.gm.NREUM}function s(){let e=a();return e.o||(e.o={ST:n.gm.setTimeout,SI:n.gm.setImmediate,CT:n.gm.clearTimeout,XHR:n.gm.XMLHttpRequest,REQ:n.gm.Request,EV:n.gm.Event,PR:n.gm.Promise,MO:n.gm.MutationObserver,FETCH:n.gm.fetch,WS:n.gm.WebSocket}),e}function c(e,t){let r=a();r.initializedAgents??={},t.initializedAt={ms:(0,i.t)(),date:new Date},r.initializedAgents[e]=t}function u(e){let t=a();return t.initializedAgents?.[e]}function d(e,t){a()[e]=t}function l(){return function(){let e=a();const t=e.info||{};e.info={beacon:o.beacon,errorBeacon:o.errorBeacon,...t}}(),function(){let e=a();const t=e.init||{};e.init={...t}}(),s(),function(){let e=a();const t=e.loader_config||{};e.loader_config={...t}}(),a()}},2843:(e,t,r)=>{"use strict";r.d(t,{u:()=>i});var n=r(3878);function i(e,t=!1,r,i){(0,n.DD)("visibilitychange",(function(){if(t)return void("hidden"===document.visibilityState&&e());e(document.visibilityState)}),r,i)}},8139:(e,t,r)=>{"use strict";r.d(t,{u:()=>f});var n=r(7836),i=r(3434),o=r(8990),a=r(6154);const s={},c=a.gm.XMLHttpRequest,u="addEventListener",d="removeEventListener",l="nr@wrapped:".concat(n.P);function f(e){var t=function(e){return(e||n.ee).get("events")}(e);if(s[t.debugId]++)return t;s[t.debugId]=1;var r=(0,i.YM)(t,!0);function f(e){r.inPlace(e,[u,d],"-",p)}function p(e,t){return e[1]}return"getPrototypeOf"in Object&&(a.RI&&h(document,f),h(a.gm,f),h(c.prototype,f)),t.on(u+"-start",(function(e,t){var n=e[1];if(null!==n&&("function"==typeof n||"object"==typeof n)){var i=(0,o.I)(n,l,(function(){var e={object:function(){if("function"!=typeof n.handleEvent)return;return n.handleEvent.apply(n,arguments)},function:n}[typeof n];return e?r(e,"fn-",null,e.name||"anonymous"):n}));this.wrapped=e[1]=i}})),t.on(d+"-start",(function(e){e[1]=this.wrapped||e[1]})),t}function h(e,t,...r){let n=e;for(;"object"==typeof n&&!Object.prototype.hasOwnProperty.call(n,u);)n=Object.getPrototypeOf(n);n&&t(n,...r)}},3434:(e,t,r)=>{"use strict";r.d(t,{Jt:()=>o,YM:()=>c});var n=r(7836),i=r(5607);const o="nr@original:".concat(i.W);var a=Object.prototype.hasOwnProperty,s=!1;function c(e,t){return e||(e=n.ee),r.inPlace=function(e,t,n,i,o){n||(n="");const a="-"===n.charAt(0);for(let s=0;s<t.length;s++){const c=t[s],u=e[c];d(u)||(e[c]=r(u,a?c+n:n,i,c,o))}},r.flag=o,r;function r(t,r,n,s,c){return d(t)?t:(r||(r=""),nrWrapper[o]=t,function(e,t,r){if(Object.defineProperty&&Object.keys)try{return Object.keys(e).forEach((function(r){Object.defineProperty(t,r,{get:function(){return e[r]},set:function(t){return e[r]=t,t}})})),t}catch(e){u([e],r)}for(var n in e)a.call(e,n)&&(t[n]=e[n])}(t,nrWrapper,e),nrWrapper);function nrWrapper(){var o,a,d,l;try{a=this,o=[...arguments],d="function"==typeof n?n(o,a):n||{}}catch(t){u([t,"",[o,a,s],d],e)}i(r+"start",[o,a,s],d,c);try{return l=t.apply(a,o)}catch(e){throw i(r+"err",[o,a,e],d,c),e}finally{i(r+"end",[o,a,l],d,c)}}}function i(r,n,i,o){if(!s||t){var a=s;s=!0;try{e.emit(r,n,i,t,o)}catch(t){u([t,r,n,i],e)}s=a}}}function u(e,t){t||(t=n.ee);try{t.emit("internal-error",e)}catch(e){}}function d(e){return!(e&&"function"==typeof e&&e.apply&&!e[o])}},9300:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.ajax},3333:(e,t,r)=>{"use strict";r.d(t,{TZ:()=>n,Zp:()=>i,mq:()=>s,nf:()=>a,qN:()=>o});const n=r(860).K7.genericEvents,i=["auxclick","click","copy","keydown","paste","scrollend"],o=["focus","blur"],a=4,s=1e3},6774:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.jserrors},993:(e,t,r)=>{"use strict";r.d(t,{ET:()=>o,TZ:()=>a,p_:()=>i});var n=r(860);const i={ERROR:"ERROR",WARN:"WARN",INFO:"INFO",DEBUG:"DEBUG",TRACE:"TRACE"},o="log",a=n.K7.logging},3785:(e,t,r)=>{"use strict";r.d(t,{R:()=>c,b:()=>u});var n=r(9908),i=r(1863),o=r(860),a=r(3969),s=r(993);function c(e,t,r={},c=s.p_.INFO){(0,n.p)(a.xV,["API/logging/".concat(c.toLowerCase(),"/called")],void 0,o.K7.metrics,e),(0,n.p)(s.ET,[(0,i.t)(),t,r,c],void 0,o.K7.logging,e)}function u(e){return"string"==typeof e&&Object.values(s.p_).some((t=>t===e.toUpperCase().trim()))}},3969:(e,t,r)=>{"use strict";r.d(t,{TZ:()=>n,XG:()=>s,rs:()=>i,xV:()=>a,z_:()=>o});const n=r(860).K7.metrics,i="sm",o="cm",a="storeSupportabilityMetrics",s="storeEventMetrics"},6630:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.pageViewEvent},782:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.pageViewTiming},6344:(e,t,r)=>{"use strict";r.d(t,{BB:()=>d,G4:()=>o,Qb:()=>l,TZ:()=>i,Ug:()=>a,_s:()=>s,bc:()=>u,yP:()=>c});var n=r(2614);const i=r(860).K7.sessionReplay,o={RECORD:"recordReplay",PAUSE:"pauseReplay",REPLAY_RUNNING:"replayRunning",ERROR_DURING_REPLAY:"errorDuringReplay"},a=.12,s={DomContentLoaded:0,Load:1,FullSnapshot:2,IncrementalSnapshot:3,Meta:4,Custom:5},c={[n.g.ERROR]:15e3,[n.g.FULL]:3e5,[n.g.OFF]:0},u={RESET:{message:"Session was reset",sm:"Reset"},IMPORT:{message:"Recorder failed to import",sm:"Import"},TOO_MANY:{message:"429: Too Many Requests",sm:"Too-Many"},TOO_BIG:{message:"Payload was too large",sm:"Too-Big"},CROSS_TAB:{message:"Session Entity was set to OFF on another tab",sm:"Cross-Tab"},ENTITLEMENTS:{message:"Session Replay is not allowed and will not be started",sm:"Entitlement"}},d=5e3,l={API:"api"}},5270:(e,t,r)=>{"use strict";r.d(t,{Aw:()=>c,CT:()=>u,SR:()=>s});var n=r(384),i=r(9417),o=r(7767),a=r(6154);function s(e){return!!(0,n.dV)().o.MO&&(0,o.V)(e)&&!0===(0,i.gD)(e,"session_trace.enabled")}function c(e){return!0===(0,i.gD)(e,"session_replay.preload")&&s(e)}function u(e,t){const r=t.correctAbsoluteTimestamp(e);return{originalTimestamp:e,correctedTimestamp:r,timestampDiff:e-r,originTime:a.WN,correctedOriginTime:t.correctedOriginTime,originTimeDiff:Math.floor(a.WN-t.correctedOriginTime)}}},3738:(e,t,r)=>{"use strict";r.d(t,{He:()=>i,Kp:()=>s,Lc:()=>u,Rz:()=>d,TZ:()=>n,bD:()=>o,d3:()=>a,jx:()=>l,uP:()=>c});const n=r(860).K7.sessionTrace,i="bstResource",o="resource",a="-start",s="-end",c="fn"+a,u="fn"+s,d="pushState",l=1e3},3962:(e,t,r)=>{"use strict";r.d(t,{AM:()=>o,O2:()=>s,Qu:()=>c,TZ:()=>a,ih:()=>u,tC:()=>i});var n=r(860);const i=["click","keydown","submit"],o="api",a=n.K7.softNav,s={INITIAL_PAGE_LOAD:"",ROUTE_CHANGE:1,UNSPECIFIED:2},c={INTERACTION:1,AJAX:2,CUSTOM_END:3,CUSTOM_TRACER:4},u={IP:"in progress",FIN:"finished",CAN:"cancelled"}},7378:(e,t,r)=>{"use strict";r.d(t,{$p:()=>x,BR:()=>b,Kp:()=>R,L3:()=>y,Lc:()=>c,NC:()=>o,SG:()=>d,TZ:()=>i,U6:()=>p,UT:()=>m,d3:()=>w,dT:()=>f,e5:()=>A,gx:()=>v,l9:()=>l,oW:()=>h,op:()=>g,rw:()=>u,tH:()=>E,uP:()=>s,wW:()=>T,xq:()=>a});var n=r(384);const i=r(860).K7.spa,o=["click","submit","keypress","keydown","keyup","change"],a=999,s="fn-start",c="fn-end",u="cb-start",d="api-ixn-",l="remaining",f="interaction",h="spaNode",p="jsonpNode",g="fetch-start",m="fetch-done",v="fetch-body-",b="jsonp-end",y=(0,n.dV)().o.ST,w="-start",R="-end",x="-body",T="cb"+R,A="jsTime",E="fetch"},4234:(e,t,r)=>{"use strict";r.d(t,{W:()=>o});var n=r(7836),i=r(1687);class o{constructor(e,t){this.agentIdentifier=e,this.ee=n.ee.get(e),this.featureName=t,this.blocked=!1}deregisterDrain(){(0,i.x3)(this.agentIdentifier,this.featureName)}}},7767:(e,t,r)=>{"use strict";r.d(t,{V:()=>o});var n=r(9417),i=r(6154);const o=e=>i.RI&&!0===(0,n.gD)(e,"privacy.cookies_enabled")},425:(e,t,r)=>{"use strict";r.d(t,{j:()=>j});var n=r(860),i=r(2555),o=r(3371),a=r(9908),s=r(7836),c=r(1687),u=r(5289),d=r(6154),l=r(944),f=r(3969),h=r(384),p=r(6344);const g=["setErrorHandler","finished","addToTrace","addRelease","addPageAction","setCurrentRouteName","setPageViewName","setCustomAttribute","interaction","noticeError","setUserId","setApplicationVersion","start",p.G4.RECORD,p.G4.PAUSE,"log","wrapLogger"],m=["setErrorHandler","finished","addToTrace","addRelease"];var v=r(1863),b=r(2614),y=r(993),w=r(3785),R=r(2646),x=r(3434);function T(e,t,r,n){if("object"!=typeof t||!t||"string"!=typeof r||!r||"function"!=typeof t[r])return(0,l.R)(29);const i=function(e){return(e||s.ee).get("logger")}(e),o=(0,x.YM)(i),a=new R.y(s.P);return a.level=n.level,a.customAttributes=n.customAttributes,o.inPlace(t,[r],"wrap-logger-",a),i}function A(){const e=(0,h.pV)();g.forEach((t=>{e[t]=(...r)=>function(t,...r){let n=[];return Object.values(e.initializedAgents).forEach((e=>{e&&e.api?e.exposed&&e.api[t]&&n.push(e.api[t](...r)):(0,l.R)(38,t)})),n.length>1?n:n[0]}(t,...r)}))}const E={};var S=r(9417),N=r(5603),O=r(5284);const _=e=>{const t=e.startsWith("http");e+="/",r.p=t?e:"https://"+e};let I=!1;function j(e,t={},g,R){let{init:x,info:j,loader_config:P,runtime:C={},exposed:k=!0}=t;C.loaderType=g;const L=(0,h.pV)();j||(x=L.init,j=L.info,P=L.loader_config),(0,S.xN)(e.agentIdentifier,x||{}),(0,N.a)(e.agentIdentifier,P||{}),j.jsAttributes??={},d.bv&&(j.jsAttributes.isWorker=!0),(0,i.x1)(e.agentIdentifier,j);const H=(0,S.D0)(e.agentIdentifier),D=[j.beacon,j.errorBeacon];I||(H.proxy.assets&&(_(H.proxy.assets),D.push(H.proxy.assets)),H.proxy.beacon&&D.push(H.proxy.beacon),A(),(0,h.US)("activatedFeatures",O.B),e.runSoftNavOverSpa&&=!0===H.soft_navigations.enabled&&H.feature_flags.includes("soft_nav")),C.denyList=[...H.ajax.deny_list||[],...H.ajax.block_internal?D:[]],C.ptid=e.agentIdentifier,(0,o.V)(e.agentIdentifier,C),e.ee=s.ee.get(e.agentIdentifier),void 0===e.api&&(e.api=function(e,t,h=!1){t||(0,c.Ak)(e,"api");const g={};var R=s.ee.get(e),x=R.get("tracer");E[e]=b.g.OFF,R.on(p.G4.REPLAY_RUNNING,(t=>{E[e]=t}));var A="api-",S=A+"ixn-";function N(t,r,n,o){const a=(0,i.Vp)(e);return null===r?delete a.jsAttributes[t]:(0,i.x1)(e,{...a,jsAttributes:{...a.jsAttributes,[t]:r}}),I(A,n,!0,o||null===r?"session":void 0)(t,r)}function O(){}g.log=function(e,{customAttributes:t={},level:r=y.p_.INFO}={}){(0,a.p)(f.xV,["API/log/called"],void 0,n.K7.metrics,R),(0,w.R)(R,e,t,r)},g.wrapLogger=(e,t,{customAttributes:r={},level:i=y.p_.INFO}={})=>{(0,a.p)(f.xV,["API/wrapLogger/called"],void 0,n.K7.metrics,R),T(R,e,t,{customAttributes:r,level:i})},m.forEach((e=>{g[e]=I(A,e,!0,"api")})),g.addPageAction=I(A,"addPageAction",!0,n.K7.genericEvents),g.setPageViewName=function(t,r){if("string"==typeof t)return"/"!==t.charAt(0)&&(t="/"+t),(0,o.f)(e).customTransaction=(r||"http://custom.transaction")+t,I(A,"setPageViewName",!0)()},g.setCustomAttribute=function(e,t,r=!1){if("string"==typeof e){if(["string","number","boolean"].includes(typeof t)||null===t)return N(e,t,"setCustomAttribute",r);(0,l.R)(40,typeof t)}else(0,l.R)(39,typeof e)},g.setUserId=function(e){if("string"==typeof e||null===e)return N("enduser.id",e,"setUserId",!0);(0,l.R)(41,typeof e)},g.setApplicationVersion=function(e){if("string"==typeof e||null===e)return N("application.version",e,"setApplicationVersion",!1);(0,l.R)(42,typeof e)},g.start=()=>{try{(0,a.p)(f.xV,["API/start/called"],void 0,n.K7.metrics,R),R.emit("manual-start-all")}catch(e){(0,l.R)(23,e)}},g[p.G4.RECORD]=function(){(0,a.p)(f.xV,["API/recordReplay/called"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.RECORD,[],void 0,n.K7.sessionReplay,R)},g[p.G4.PAUSE]=function(){(0,a.p)(f.xV,["API/pauseReplay/called"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.PAUSE,[],void 0,n.K7.sessionReplay,R)},g.interaction=function(e){return(new O).get("object"==typeof e?e:{})};const _=O.prototype={createTracer:function(e,t){var r={},i=this,o="function"==typeof t;return(0,a.p)(f.xV,["API/createTracer/called"],void 0,n.K7.metrics,R),h||(0,a.p)(S+"tracer",[(0,v.t)(),e,r],i,n.K7.spa,R),function(){if(x.emit((o?"":"no-")+"fn-start",[(0,v.t)(),i,o],r),o)try{return t.apply(this,arguments)}catch(e){const t="string"==typeof e?new Error(e):e;throw x.emit("fn-err",[arguments,this,t],r),t}finally{x.emit("fn-end",[(0,v.t)()],r)}}}};function I(e,t,r,i){return function(){return(0,a.p)(f.xV,["API/"+t+"/called"],void 0,n.K7.metrics,R),i&&(0,a.p)(e+t,[(0,v.t)(),...arguments],r?null:this,i,R),r?void 0:this}}function j(){r.e(478).then(r.bind(r,8778)).then((({setAPI:t})=>{t(e),(0,c.Ze)(e,"api")})).catch((e=>{(0,l.R)(27,e),R.abort()}))}return["actionText","setName","setAttribute","save","ignore","onEnd","getContext","end","get"].forEach((e=>{_[e]=I(S,e,void 0,h?n.K7.softNav:n.K7.spa)})),g.setCurrentRouteName=h?I(S,"routeName",void 0,n.K7.softNav):I(A,"routeName",!0,n.K7.spa),g.noticeError=function(t,r){"string"==typeof t&&(t=new Error(t)),(0,a.p)(f.xV,["API/noticeError/called"],void 0,n.K7.metrics,R),(0,a.p)("err",[t,(0,v.t)(),!1,r,!!E[e]],void 0,n.K7.jserrors,R)},d.RI?(0,u.GG)((()=>j()),!0):j(),g}(e.agentIdentifier,R,e.runSoftNavOverSpa)),void 0===e.exposed&&(e.exposed=k),I=!0}},8374:(e,t,r)=>{r.nc=(()=>{try{return document?.currentScript?.nonce}catch(e){}return""})()},860:(e,t,r)=>{"use strict";r.d(t,{$J:()=>o,K7:()=>n,P3:()=>i});const n={ajax:"ajax",genericEvents:"generic_events",jserrors:"jserrors",logging:"logging",metrics:"metrics",pageAction:"page_action",pageViewEvent:"page_view_event",pageViewTiming:"page_view_timing",sessionReplay:"session_replay",sessionTrace:"session_trace",softNav:"soft_navigations",spa:"spa"},i={[n.pageViewEvent]:1,[n.pageViewTiming]:2,[n.metrics]:3,[n.jserrors]:4,[n.spa]:5,[n.ajax]:6,[n.sessionTrace]:7,[n.softNav]:8,[n.sessionReplay]:9,[n.logging]:10,[n.genericEvents]:11},o={[n.pageViewTiming]:"events",[n.ajax]:"events",[n.spa]:"events",[n.softNav]:"events",[n.metrics]:"jserrors",[n.jserrors]:"jserrors",[n.sessionTrace]:"browser/blobs",[n.sessionReplay]:"browser/blobs",[n.logging]:"browser/logs",[n.genericEvents]:"ins"}}},n={};function i(e){var t=n[e];if(void 0!==t)return t.exports;var o=n[e]={exports:{}};return r[e](o,o.exports,i),o.exports}i.m=r,i.d=(e,t)=>{for(var r in t)i.o(t,r)&&!i.o(e,r)&&Object.defineProperty(e,r,{enumerable:!0,get:t[r]})},i.f={},i.e=e=>Promise.all(Object.keys(i.f).reduce(((t,r)=>(i.f[r](e,t),t)),[])),i.u=e=>({212:"nr-spa-compressor",249:"nr-spa-recorder",478:"nr-spa"}[e]+"-1.274.0.min.js"),i.o=(e,t)=>Object.prototype.hasOwnProperty.call(e,t),e={},t="NRBA-1.274.0.PROD:",i.l=(r,n,o,a)=>{if(e[r])e[r].push(n);else{var s,c;if(void 0!==o)for(var u=document.getElementsByTagName("script"),d=0;d<u.length;d++){var l=u[d];if(l.getAttribute("src")==r||l.getAttribute("data-webpack")==t+o){s=l;break}}if(!s){c=!0;var f={478:"sha512-1vUqEfJPB8Pihje9mv5CfYgkitO1FWcS+UQb84DbXqP8oYctRv4/lzl/MzNLPlRhcY1WVDBGL20I8vm6s2VV7g==",249:"sha512-Y/BeZAh6VSTmUtUNmS5XdyKxL92s30Fyyj8xVW76HSPxcKItL4+x2+kGMZc8pMJnUpZDz1L4eftZQAJh3D8NnA==",212:"sha512-Gn2tQ3qog5Yhrx/gRutkSTYPp+7nkKFt4/mIXg99LxcNpMDAYJZDBYmAACdoHNM86+iq1F3cBcQotFNzjIX8bw=="};(s=document.createElement("script")).charset="utf-8",s.timeout=120,i.nc&&s.setAttribute("nonce",i.nc),s.setAttribute("data-webpack",t+o),s.src=r,0!==s.src.indexOf(window.location.origin+"/")&&(s.crossOrigin="anonymous"),f[a]&&(s.integrity=f[a])}e[r]=[n];var h=(t,n)=>{s.onerror=s.onload=null,clearTimeout(p);var i=e[r];if(delete e[r],s.parentNode&&s.parentNode.removeChild(s),i&&i.forEach((e=>e(n))),t)return t(n)},p=setTimeout(h.bind(null,void 0,{type:"timeout",target:s}),12e4);s.onerror=h.bind(null,s.onerror),s.onload=h.bind(null,s.onload),c&&document.head.appendChild(s)}},i.r=e=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},i.p="https://js-agent.newrelic.com/",(()=>{var e={38:0,788:0};i.f.j=(t,r)=>{var n=i.o(e,t)?e[t]:void 0;if(0!==n)if(n)r.push(n[2]);else{var o=new Promise(((r,i)=>n=e[t]=[r,i]));r.push(n[2]=o);var a=i.p+i.u(t),s=new Error;i.l(a,(r=>{if(i.o(e,t)&&(0!==(n=e[t])&&(e[t]=void 0),n)){var o=r&&("load"===r.type?"missing":r.type),a=r&&r.target&&r.target.src;s.message="Loading chunk "+t+" failed.\n("+o+": "+a+")",s.name="ChunkLoadError",s.type=o,s.request=a,n[1](s)}}),"chunk-"+t,t)}};var t=(t,r)=>{var n,o,[a,s,c]=r,u=0;if(a.some((t=>0!==e[t]))){for(n in s)i.o(s,n)&&(i.m[n]=s[n]);if(c)c(i)}for(t&&t(r);u<a.length;u++)o=a[u],i.o(e,o)&&e[o]&&e[o][0](),e[o]=0},r=self["webpackChunk:NRBA-1.274.0.PROD"]=self["webpackChunk:NRBA-1.274.0.PROD"]||[];r.forEach(t.bind(null,0)),r.push=t.bind(null,r.push.bind(r))})(),(()=>{"use strict";i(8374);var e=i(944),t=i(6344),r=i(9566);class n{agentIdentifier;constructor(e=(0,r.LA)(16)){this.agentIdentifier=e}#e(t,...r){if("function"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}addPageAction(e,t){return this.#e("addPageAction",e,t)}setPageViewName(e,t){return this.#e("setPageViewName",e,t)}setCustomAttribute(e,t,r){return this.#e("setCustomAttribute",e,t,r)}noticeError(e,t){return this.#e("noticeError",e,t)}setUserId(e){return this.#e("setUserId",e)}setApplicationVersion(e){return this.#e("setApplicationVersion",e)}setErrorHandler(e){return this.#e("setErrorHandler",e)}addRelease(e,t){return this.#e("addRelease",e,t)}log(e,t){return this.#e("log",e,t)}}class o extends n{#e(t,...r){if("function"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}start(){return this.#e("start")}finished(e){return this.#e("finished",e)}recordReplay(){return this.#e(t.G4.RECORD)}pauseReplay(){return this.#e(t.G4.PAUSE)}addToTrace(e){return this.#e("addToTrace",e)}setCurrentRouteName(e){return this.#e("setCurrentRouteName",e)}interaction(){return this.#e("interaction")}wrapLogger(e,t,r){return this.#e("wrapLogger",e,t,r)}}var a=i(860),s=i(9417);const c=Object.values(a.K7);function u(e){const t={};return c.forEach((r=>{t[r]=function(e,t){return!0===(0,s.gD)(t,"".concat(e,".enabled"))}(r,e)})),t}var d=i(425);var l=i(1687),f=i(4234),h=i(5289),p=i(6154),g=i(5270),m=i(7767),v=i(6389);class b extends f.W{constructor(e,t,r=!0){super(e.agentIdentifier,t),this.auto=r,this.abortHandler=void 0,this.featAggregate=void 0,this.onAggregateImported=void 0,!1===e.init[this.featureName].autoStart&&(this.auto=!1),this.auto?(0,l.Ak)(e.agentIdentifier,t):this.ee.on("manual-start-all",(0,v.J)((()=>{(0,l.Ak)(e.agentIdentifier,this.featureName),this.auto=!0,this.importAggregator(e)})))}importAggregator(t,r={}){if(this.featAggregate||!this.auto)return;let n;this.onAggregateImported=new Promise((e=>{n=e}));const o=async()=>{let o;try{if((0,m.V)(this.agentIdentifier)){const{setupAgentSession:e}=await i.e(478).then(i.bind(i,6526));o=e(t)}}catch(t){(0,e.R)(20,t),this.ee.emit("internal-error",[t]),this.featureName===a.K7.sessionReplay&&this.abortHandler?.()}try{if(t.sharedAggregator)await t.sharedAggregator;else{t.sharedAggregator=i.e(478).then(i.bind(i,9337));const{EventAggregator:e}=await t.sharedAggregator;t.sharedAggregator=new e}if(!this.#t(this.featureName,o))return(0,l.Ze)(this.agentIdentifier,this.featureName),void n(!1);const{lazyFeatureLoader:e}=await i.e(478).then(i.bind(i,6103)),{Aggregate:a}=await e(this.featureName,"aggregate");this.featAggregate=new a(t,r),n(!0)}catch(t){(0,e.R)(34,t),this.abortHandler?.(),(0,l.Ze)(this.agentIdentifier,this.featureName,!0),n(!1),this.ee&&this.ee.abort()}};p.RI?(0,h.GG)((()=>o()),!0):o()}#t(e,t){switch(e){case a.K7.sessionReplay:return(0,g.SR)(this.agentIdentifier)&&!!t;case a.K7.sessionTrace:return!!t;default:return!0}}}var y=i(6630);class w extends b{static featureName=y.T;constructor(e,t=!0){super(e,y.T,t),this.importAggregator(e)}}var R=i(384);var x=i(9908),T=i(2843),A=i(3878),E=i(782),S=i(1863);class N extends b{static featureName=E.T;constructor(e,t=!0){super(e,E.T,t),p.RI&&((0,T.u)((()=>(0,x.p)("docHidden",[(0,S.t)()],void 0,E.T,this.ee)),!0),(0,A.sp)("pagehide",(()=>(0,x.p)("winPagehide",[(0,S.t)()],void 0,E.T,this.ee))),this.importAggregator(e))}}var O=i(3969);class _ extends b{static featureName=O.TZ;constructor(e,t=!0){super(e,O.TZ,t),this.importAggregator(e)}}var I=i(6774),j=i(3304);class P{constructor(e,t,r,n,i){this.name="UncaughtError",this.message="string"==typeof e?e:(0,j.A)(e),this.sourceURL=t,this.line=r,this.column=n,this.__newrelic=i}}function C(e){return H(e)?e:new P(void 0!==e?.message?e.message:e,e?.filename||e?.sourceURL,e?.lineno||e?.line,e?.colno||e?.col,e?.__newrelic)}function k(e){const t="Unhandled Promise Rejection";if(!e?.reason)return;if(H(e.reason))try{return e.reason.message=t+": "+e.reason.message,C(e.reason)}catch(t){return C(e.reason)}const r=C(e.reason);return r.message=t+": "+r?.message,r}function L(e){if(e.error instanceof SyntaxError&&!/:\d+$/.test(e.error.stack?.trim())){const t=new P(e.message,e.filename,e.lineno,e.colno,e.error.__newrelic);return t.name=SyntaxError.name,t}return H(e.error)?e.error:C(e)}function H(e){return e instanceof Error&&!!e.stack}class D extends b{static featureName=I.T;#r=!1;constructor(e,r=!0){super(e,I.T,r);try{this.removeOnAbort=new AbortController}catch(e){}this.ee.on("internal-error",(e=>{this.abortHandler&&(0,x.p)("ierr",[C(e),(0,S.t)(),!0,{},this.#r],void 0,this.featureName,this.ee)})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.#r=e})),p.gm.addEventListener("unhandledrejection",(e=>{this.abortHandler&&(0,x.p)("err",[k(e),(0,S.t)(),!1,{unhandledPromiseRejection:1},this.#r],void 0,this.featureName,this.ee)}),(0,A.jT)(!1,this.removeOnAbort?.signal)),p.gm.addEventListener("error",(e=>{this.abortHandler&&(0,x.p)("err",[L(e),(0,S.t)(),!1,{},this.#r],void 0,this.featureName,this.ee)}),(0,A.jT)(!1,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var M=i(8990);let K=1;const U="nr@id";function V(e){const t=typeof e;return!e||"object"!==t&&"function"!==t?-1:e===p.gm?0:(0,M.I)(e,U,(function(){return K++}))}function G(e){if("string"==typeof e&&e.length)return e.length;if("object"==typeof e){if("undefined"!=typeof ArrayBuffer&&e instanceof ArrayBuffer&&e.byteLength)return e.byteLength;if("undefined"!=typeof Blob&&e instanceof Blob&&e.size)return e.size;if(!("undefined"!=typeof FormData&&e instanceof FormData))try{return(0,j.A)(e).length}catch(e){return}}}var F=i(8139),B=i(7836),W=i(3434);const z={},q=["open","send"];function Z(t){var r=t||B.ee;const n=function(e){return(e||B.ee).get("xhr")}(r);if(z[n.debugId]++)return n;z[n.debugId]=1,(0,F.u)(r);var i=(0,W.YM)(n),o=p.gm.XMLHttpRequest,a=p.gm.MutationObserver,s=p.gm.Promise,c=p.gm.setInterval,u="readystatechange",d=["onload","onerror","onabort","onloadstart","onloadend","onprogress","ontimeout"],l=[],f=p.gm.XMLHttpRequest=function(t){const r=new o(t),a=n.context(r);try{n.emit("new-xhr",[r],a),r.addEventListener(u,(s=a,function(){var e=this;e.readyState>3&&!s.resolved&&(s.resolved=!0,n.emit("xhr-resolved",[],e)),i.inPlace(e,d,"fn-",y)}),(0,A.jT)(!1))}catch(t){(0,e.R)(15,t);try{n.emit("internal-error",[t])}catch(e){}}var s;return r};function h(e,t){i.inPlace(t,["onreadystatechange"],"fn-",y)}if(function(e,t){for(var r in e)t[r]=e[r]}(o,f),f.prototype=o.prototype,i.inPlace(f.prototype,q,"-xhr-",y),n.on("send-xhr-start",(function(e,t){h(e,t),function(e){l.push(e),a&&(g?g.then(b):c?c(b):(m=-m,v.data=m))}(t)})),n.on("open-xhr-start",h),a){var g=s&&s.resolve();if(!c&&!s){var m=1,v=document.createTextNode(m);new a(b).observe(v,{characterData:!0})}}else r.on("fn-end",(function(e){e[0]&&e[0].type===u||b()}));function b(){for(var e=0;e<l.length;e++)h(0,l[e]);l.length&&(l=[])}function y(e,t){return t}return n}var Y="fetch-",X=Y+"body-",J=["arrayBuffer","blob","json","text","formData"],Q=p.gm.Request,ee=p.gm.Response,te="prototype";const re={};function ne(e){const t=function(e){return(e||B.ee).get("fetch")}(e);if(!(Q&&ee&&p.gm.fetch))return t;if(re[t.debugId]++)return t;function r(e,r,n){var i=e[r];"function"==typeof i&&(e[r]=function(){var e,r=[...arguments],o={};t.emit(n+"before-start",[r],o),o[B.P]&&o[B.P].dt&&(e=o[B.P].dt);var a=i.apply(this,r);return t.emit(n+"start",[r,e],a),a.then((function(e){return t.emit(n+"end",[null,e],a),e}),(function(e){throw t.emit(n+"end",[e],a),e}))})}return re[t.debugId]=1,J.forEach((e=>{r(Q[te],e,X),r(ee[te],e,X)})),r(p.gm,"fetch",Y),t.on(Y+"end",(function(e,r){var n=this;if(r){var i=r.headers.get("content-length");null!==i&&(n.rxSize=i),t.emit(Y+"done",[null,r],n)}else t.emit(Y+"done",[e],n)})),t}var ie=i(7485),oe=i(5603);class ae{constructor(e){this.agentIdentifier=e}generateTracePayload(e){if(!this.shouldGenerateTrace(e))return null;var t=(0,oe.o)(this.agentIdentifier);if(!t)return null;var n=(t.accountID||"").toString()||null,i=(t.agentID||"").toString()||null,o=(t.trustKey||"").toString()||null;if(!n||!i)return null;var a=(0,r.ZF)(),s=(0,r.el)(),c=Date.now(),u={spanId:a,traceId:s,timestamp:c};return(e.sameOrigin||this.isAllowedOrigin(e)&&this.useTraceContextHeadersForCors())&&(u.traceContextParentHeader=this.generateTraceContextParentHeader(a,s),u.traceContextStateHeader=this.generateTraceContextStateHeader(a,c,n,i,o)),(e.sameOrigin&&!this.excludeNewrelicHeader()||!e.sameOrigin&&this.isAllowedOrigin(e)&&this.useNewrelicHeaderForCors())&&(u.newrelicHeader=this.generateTraceHeader(a,s,c,n,i,o)),u}generateTraceContextParentHeader(e,t){return"00-"+t+"-"+e+"-01"}generateTraceContextStateHeader(e,t,r,n,i){return i+"@nr=0-1-"+r+"-"+n+"-"+e+"----"+t}generateTraceHeader(e,t,r,n,i,o){if(!("function"==typeof p.gm?.btoa))return null;var a={v:[0,1],d:{ty:"Browser",ac:n,ap:i,id:e,tr:t,ti:r}};return o&&n!==o&&(a.d.tk=o),btoa((0,j.A)(a))}shouldGenerateTrace(e){return this.isDtEnabled()&&this.isAllowedOrigin(e)}isAllowedOrigin(e){var t=!1,r={};if((0,s.gD)(this.agentIdentifier,"distributed_tracing")&&(r=(0,s.D0)(this.agentIdentifier).distributed_tracing),e.sameOrigin)t=!0;else if(r.allowed_origins instanceof Array)for(var n=0;n<r.allowed_origins.length;n++){var i=(0,ie.D)(r.allowed_origins[n]);if(e.hostname===i.hostname&&e.protocol===i.protocol&&e.port===i.port){t=!0;break}}return t}isDtEnabled(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.enabled}excludeNewrelicHeader(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.exclude_newrelic_header}useNewrelicHeaderForCors(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!1!==e.cors_use_newrelic_header}useTraceContextHeadersForCors(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.cors_use_tracecontext_headers}}var se=i(9300),ce=i(7295),ue=["load","error","abort","timeout"],de=ue.length,le=(0,R.dV)().o.REQ,fe=(0,R.dV)().o.XHR;class he extends b{static featureName=se.T;constructor(e,t=!0){super(e,se.T,t),this.dt=new ae(e.agentIdentifier),this.handler=(e,t,r,n)=>(0,x.p)(e,t,r,n,this.ee);try{const e={xmlhttprequest:"xhr",fetch:"fetch",beacon:"beacon"};p.gm?.performance?.getEntriesByType("resource").forEach((t=>{if(t.initiatorType in e&&0!==t.responseStatus){const r={status:t.responseStatus},n={rxSize:t.transferSize,duration:Math.floor(t.duration),cbTime:0};pe(r,t.name),this.handler("xhr",[r,n,t.startTime,t.responseEnd,e[t.initiatorType]],void 0,a.K7.ajax)}}))}catch(e){}ne(this.ee),Z(this.ee),function(e,t,r,n){function i(e){var t=this;t.totalCbs=0,t.called=0,t.cbTime=0,t.end=R,t.ended=!1,t.xhrGuids={},t.lastSize=null,t.loadCaptureCalled=!1,t.params=this.params||{},t.metrics=this.metrics||{},e.addEventListener("load",(function(r){T(t,e)}),(0,A.jT)(!1)),p.lR||e.addEventListener("progress",(function(e){t.lastSize=e.loaded}),(0,A.jT)(!1))}function o(e){this.params={method:e[0]},pe(this,e[1]),this.metrics={}}function s(t,r){e.loader_config.xpid&&this.sameOrigin&&r.setRequestHeader("X-NewRelic-ID",e.loader_config.xpid);var i=n.generateTracePayload(this.parsedOrigin);if(i){var o=!1;i.newrelicHeader&&(r.setRequestHeader("newrelic",i.newrelicHeader),o=!0),i.traceContextParentHeader&&(r.setRequestHeader("traceparent",i.traceContextParentHeader),i.traceContextStateHeader&&r.setRequestHeader("tracestate",i.traceContextStateHeader),o=!0),o&&(this.dt=i)}}function c(e,r){var n=this.metrics,i=e[0],o=this;if(n&&i){var a=G(i);a&&(n.txSize=a)}this.startTime=(0,S.t)(),this.body=i,this.listener=function(e){try{"abort"!==e.type||o.loadCaptureCalled||(o.params.aborted=!0),("load"!==e.type||o.called===o.totalCbs&&(o.onloadCalled||"function"!=typeof r.onload)&&"function"==typeof o.end)&&o.end(r)}catch(e){try{t.emit("internal-error",[e])}catch(e){}}};for(var s=0;s<de;s++)r.addEventListener(ue[s],this.listener,(0,A.jT)(!1))}function u(e,t,r){this.cbTime+=e,t?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&"function"==typeof r.onload||"function"!=typeof this.end||this.end(r)}function d(e,t){var r=""+V(e)+!!t;this.xhrGuids&&!this.xhrGuids[r]&&(this.xhrGuids[r]=!0,this.totalCbs+=1)}function l(e,t){var r=""+V(e)+!!t;this.xhrGuids&&this.xhrGuids[r]&&(delete this.xhrGuids[r],this.totalCbs-=1)}function f(){this.endTime=(0,S.t)()}function h(e,r){r instanceof fe&&"load"===e[0]&&t.emit("xhr-load-added",[e[1],e[2]],r)}function g(e,r){r instanceof fe&&"load"===e[0]&&t.emit("xhr-load-removed",[e[1],e[2]],r)}function m(e,t,r){t instanceof fe&&("onload"===r&&(this.onload=!0),("load"===(e[0]&&e[0].type)||this.onload)&&(this.xhrCbStart=(0,S.t)()))}function v(e,r){this.xhrCbStart&&t.emit("xhr-cb-time",[(0,S.t)()-this.xhrCbStart,this.onload,r],r)}function b(e){var t,r=e[1]||{};if("string"==typeof e[0]?0===(t=e[0]).length&&p.RI&&(t=""+p.gm.location.href):e[0]&&e[0].url?t=e[0].url:p.gm?.URL&&e[0]&&e[0]instanceof URL?t=e[0].href:"function"==typeof e[0].toString&&(t=e[0].toString()),"string"==typeof t&&0!==t.length){t&&(this.parsedOrigin=(0,ie.D)(t),this.sameOrigin=this.parsedOrigin.sameOrigin);var i=n.generateTracePayload(this.parsedOrigin);if(i&&(i.newrelicHeader||i.traceContextParentHeader))if(e[0]&&e[0].headers)s(e[0].headers,i)&&(this.dt=i);else{var o={};for(var a in r)o[a]=r[a];o.headers=new Headers(r.headers||{}),s(o.headers,i)&&(this.dt=i),e.length>1?e[1]=o:e.push(o)}}function s(e,t){var r=!1;return t.newrelicHeader&&(e.set("newrelic",t.newrelicHeader),r=!0),t.traceContextParentHeader&&(e.set("traceparent",t.traceContextParentHeader),t.traceContextStateHeader&&e.set("tracestate",t.traceContextStateHeader),r=!0),r}}function y(e,t){this.params={},this.metrics={},this.startTime=(0,S.t)(),this.dt=t,e.length>=1&&(this.target=e[0]),e.length>=2&&(this.opts=e[1]);var r,n=this.opts||{},i=this.target;"string"==typeof i?r=i:"object"==typeof i&&i instanceof le?r=i.url:p.gm?.URL&&"object"==typeof i&&i instanceof URL&&(r=i.href),pe(this,r);var o=(""+(i&&i instanceof le&&i.method||n.method||"GET")).toUpperCase();this.params.method=o,this.body=n.body,this.txSize=G(n.body)||0}function w(e,t){if(this.endTime=(0,S.t)(),this.params||(this.params={}),(0,ce.iW)(this.params))return;let n;this.params.status=t?t.status:0,"string"==typeof this.rxSize&&this.rxSize.length>0&&(n=+this.rxSize);const i={txSize:this.txSize,rxSize:n,duration:(0,S.t)()-this.startTime};r("xhr",[this.params,i,this.startTime,this.endTime,"fetch"],this,a.K7.ajax)}function R(e){const t=this.params,n=this.metrics;if(!this.ended){this.ended=!0;for(let t=0;t<de;t++)e.removeEventListener(ue[t],this.listener,!1);t.aborted||(0,ce.iW)(t)||(n.duration=(0,S.t)()-this.startTime,this.loadCazptureCalled||4!==e.readyState?null==t.status&&(t.status=0):T(this,e),n.cbTime=this.cbTime,r("xhr",[t,n,this.startTime,this.endTime,"xhr"],this,a.K7.ajax))}}function T(e,r){e.params.status=r.status;var n=function(e,t){var r=e.responseType;return"json"===r&&null!==t?t:"arraybuffer"===r||"blob"===r||"json"===r?G(e.response):"text"===r||""===r||void 0===r?G(e.responseText):void 0}(r,e.lastSize);if(n&&(e.metrics.rxSize=n),e.sameOrigin){var i=r.getResponseHeader("X-NewRelic-App-Data");i&&((0,x.p)(O.rs,["Ajax/CrossApplicationTracing/Header/Seen"],void 0,a.K7.metrics,t),e.params.cat=i.split(", ").pop())}e.loadCaptureCalled=!0}t.on("new-xhr",i),t.on("open-xhr-start",o),t.on("open-xhr-end",s),t.on("send-xhr-start",c),t.on("xhr-cb-time",u),t.on("xhr-load-added",d),t.on("xhr-load-removed",l),t.on("xhr-resolved",f),t.on("addEventListener-end",h),t.on("removeEventListener-end",g),t.on("fn-end",v),t.on("fetch-before-start",b),t.on("fetch-start",y),t.on("fn-start",m),t.on("fetch-done",w)}(e,this.ee,this.handler,this.dt),this.importAggregator(e)}}function pe(e,t){var r=(0,ie.D)(t),n=e.params||e;n.hostname=r.hostname,n.port=r.port,n.protocol=r.protocol,n.host=r.hostname+":"+r.port,n.pathname=r.pathname,e.parsedOrigin=r,e.sameOrigin=r.sameOrigin}const ge={},me=["pushState","replaceState"];function ve(e){const t=function(e){return(e||B.ee).get("history")}(e);return!p.RI||ge[t.debugId]++||(ge[t.debugId]=1,(0,W.YM)(t).inPlace(window.history,me,"-")),t}var be=i(3738);const{He:ye,bD:we,d3:Re,Kp:xe,TZ:Te,Lc:Ae,uP:Ee,Rz:Se}=be;class Ne extends b{static featureName=Te;constructor(e,t=!0){super(e,Te,t);if(!(0,m.V)(this.agentIdentifier))return void this.deregisterDrain();const r=this.ee;let n;ve(r),this.eventsEE=(0,F.u)(r),this.eventsEE.on(Ee,(function(e,t){this.bstStart=(0,S.t)()})),this.eventsEE.on(Ae,(function(e,t){(0,x.p)("bst",[e[0],t,this.bstStart,(0,S.t)()],void 0,a.K7.sessionTrace,r)})),r.on(Se+Re,(function(e){this.time=(0,S.t)(),this.startPath=location.pathname+location.hash})),r.on(Se+xe,(function(e){(0,x.p)("bstHist",[location.pathname+location.hash,this.startPath,this.time],void 0,a.K7.sessionTrace,r)}));try{n=new PerformanceObserver((e=>{const t=e.getEntries();(0,x.p)(ye,[t],void 0,a.K7.sessionTrace,r)})),n.observe({type:we,buffered:!0})}catch(e){}this.importAggregator(e,{resourceObserver:n})}}var Oe=i(2614);class _e extends b{static featureName=t.TZ;#i;#o;constructor(e,r=!0){let n;super(e,t.TZ,r),this.replayRunning=!1,this.#o=e;try{n=JSON.parse(localStorage.getItem("".concat(Oe.H3,"_").concat(Oe.uh)))}catch(e){}(0,g.SR)(e.agentIdentifier)&&this.ee.on(t.G4.RECORD,(()=>this.#a())),this.#s(n)?(this.#i=n?.sessionReplayMode,this.#c()):this.importAggregator(e),this.ee.on("err",(e=>{this.replayRunning&&(this.errorNoticed=!0,(0,x.p)(t.G4.ERROR_DURING_REPLAY,[e],void 0,this.featureName,this.ee))})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.replayRunning=e}))}#s(e){return e&&(e.sessionReplayMode===Oe.g.FULL||e.sessionReplayMode===Oe.g.ERROR)||(0,g.Aw)(this.agentIdentifier)}#u=!1;async#c(e){if(!this.#u){this.#u=!0;try{const{Recorder:t}=await Promise.all([i.e(478),i.e(249)]).then(i.bind(i,8589));this.recorder??=new t({mode:this.#i,agentIdentifier:this.agentIdentifier,trigger:e,ee:this.ee}),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording}catch(e){}this.importAggregator(this.#o,{recorder:this.recorder,errorNoticed:this.errorNoticed})}}#a(){this.featAggregate?this.featAggregate.mode!==Oe.g.FULL&&this.featAggregate.initializeRecording(Oe.g.FULL,!0):(this.#i=Oe.g.FULL,this.#c(t.Qb.API),this.recorder&&this.recorder.parent.mode!==Oe.g.FULL&&(this.recorder.parent.mode=Oe.g.FULL,this.recorder.stopRecording(),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording))}}var Ie=i(3962);class je extends b{static featureName=Ie.TZ;constructor(e,t=!0){if(super(e,Ie.TZ,t),!p.RI||!(0,R.dV)().o.MO)return;const r=ve(this.ee);Ie.tC.forEach((e=>{(0,A.sp)(e,(e=>{a(e)}),!0)}));const n=()=>(0,x.p)("newURL",[(0,S.t)(),""+window.location],void 0,this.featureName,this.ee);r.on("pushState-end",n),r.on("replaceState-end",n);try{this.removeOnAbort=new AbortController}catch(e){}(0,A.sp)("popstate",(e=>(0,x.p)("newURL",[e.timeStamp,""+window.location],void 0,this.featureName,this.ee)),!0,this.removeOnAbort?.signal);let i=!1;const o=new((0,R.dV)().o.MO)(((e,t)=>{i||(i=!0,requestAnimationFrame((()=>{(0,x.p)("newDom",[(0,S.t)()],void 0,this.featureName,this.ee),i=!1})))})),a=(0,v.s)((e=>{(0,x.p)("newUIEvent",[e],void 0,this.featureName,this.ee),o.observe(document.body,{attributes:!0,childList:!0,subtree:!0,characterData:!0})}),100,{leading:!0});this.abortHandler=function(){this.removeOnAbort?.abort(),o.disconnect(),this.abortHandler=void 0},this.importAggregator(e,{domObserver:o})}}var Pe=i(7378);const Ce={},ke=["appendChild","insertBefore","replaceChild"];function Le(e){const t=function(e){return(e||B.ee).get("jsonp")}(e);if(!p.RI||Ce[t.debugId])return t;Ce[t.debugId]=!0;var r=(0,W.YM)(t),n=/[?&](?:callback|cb)=([^&#]+)/,i=/(.*)\.([^.]+)/,o=/^(\w+)(\.|$)(.*)$/;function a(e,t){if(!e)return t;const r=e.match(o),n=r[1];return a(r[3],t[n])}return r.inPlace(Node.prototype,ke,"dom-"),t.on("dom-start",(function(e){!function(e){if(!e||"string"!=typeof e.nodeName||"script"!==e.nodeName.toLowerCase())return;if("function"!=typeof e.addEventListener)return;var o=(s=e.src,c=s.match(n),c?c[1]:null);var s,c;if(!o)return;var u=function(e){var t=e.match(i);if(t&&t.length>=3)return{key:t[2],parent:a(t[1],window)};return{key:e,parent:window}}(o);if("function"!=typeof u.parent[u.key])return;var d={};function l(){t.emit("jsonp-end",[],d),e.removeEventListener("load",l,(0,A.jT)(!1)),e.removeEventListener("error",f,(0,A.jT)(!1))}function f(){t.emit("jsonp-error",[],d),t.emit("jsonp-end",[],d),e.removeEventListener("load",l,(0,A.jT)(!1)),e.removeEventListener("error",f,(0,A.jT)(!1))}r.inPlace(u.parent,[u.key],"cb-",d),e.addEventListener("load",l,(0,A.jT)(!1)),e.addEventListener("error",f,(0,A.jT)(!1)),t.emit("new-jsonp",[e.src],d)}(e[0])})),t}const He={};function De(e){const t=function(e){return(e||B.ee).get("promise")}(e);if(He[t.debugId])return t;He[t.debugId]=!0;var r=t.context,n=(0,W.YM)(t),i=p.gm.Promise;return i&&function(){function e(r){var o=t.context(),a=n(r,"executor-",o,null,!1);const s=Reflect.construct(i,[a],e);return t.context(s).getCtx=function(){return o},s}p.gm.Promise=e,Object.defineProperty(e,"name",{value:"Promise"}),e.toString=function(){return i.toString()},Object.setPrototypeOf(e,i),["all","race"].forEach((function(r){const n=i[r];e[r]=function(e){let i=!1;[...e||[]].forEach((e=>{this.resolve(e).then(a("all"===r),a(!1))}));const o=n.apply(this,arguments);return o;function a(e){return function(){t.emit("propagate",[null,!i],o,!1,!1),i=i||!e}}}})),["resolve","reject"].forEach((function(r){const n=i[r];e[r]=function(e){const r=n.apply(this,arguments);return e!==r&&t.emit("propagate",[e,!0],r,!1,!1),r}})),e.prototype=i.prototype;const o=i.prototype.then;i.prototype.then=function(...e){var i=this,a=r(i);a.promise=i,e[0]=n(e[0],"cb-",a,null,!1),e[1]=n(e[1],"cb-",a,null,!1);const s=o.apply(this,e);return a.nextPromise=s,t.emit("propagate",[i,!0],s,!1,!1),s},i.prototype.then[W.Jt]=o,t.on("executor-start",(function(e){e[0]=n(e[0],"resolve-",this,null,!1),e[1]=n(e[1],"resolve-",this,null,!1)})),t.on("executor-err",(function(e,t,r){e[1](r)})),t.on("cb-end",(function(e,r,n){t.emit("propagate",[n,!0],this.nextPromise,!1,!1)})),t.on("propagate",(function(e,r,n){this.getCtx&&!r||(this.getCtx=function(){if(e instanceof Promise)var r=t.context(e);return r&&r.getCtx?r.getCtx():this})}))}(),t}const Me={},Ke="setTimeout",Ue="setInterval",Ve="clearTimeout",Ge="-start",Fe=[Ke,"setImmediate",Ue,Ve,"clearImmediate"];function Be(e){const t=function(e){return(e||B.ee).get("timer")}(e);if(Me[t.debugId]++)return t;Me[t.debugId]=1;var r=(0,W.YM)(t);return r.inPlace(p.gm,Fe.slice(0,2),Ke+"-"),r.inPlace(p.gm,Fe.slice(2,3),Ue+"-"),r.inPlace(p.gm,Fe.slice(3),Ve+"-"),t.on(Ue+Ge,(function(e,t,n){e[0]=r(e[0],"fn-",null,n)})),t.on(Ke+Ge,(function(e,t,n){this.method=n,this.timerDuration=isNaN(e[1])?0:+e[1],e[0]=r(e[0],"fn-",this,n)})),t}const We={};function ze(e){const t=function(e){return(e||B.ee).get("mutation")}(e);if(!p.RI||We[t.debugId])return t;We[t.debugId]=!0;var r=(0,W.YM)(t),n=p.gm.MutationObserver;return n&&(window.MutationObserver=function(e){return this instanceof n?new n(r(e,"fn-")):n.apply(this,arguments)},MutationObserver.prototype=n.prototype),t}const{TZ:qe,d3:Ze,Kp:Ye,$p:Xe,wW:Je,e5:Qe,tH:$e,uP:et,rw:tt,Lc:rt}=Pe;class nt extends b{static featureName=qe;constructor(e,t=!0){if(super(e,qe,t),!p.RI)return;try{this.removeOnAbort=new AbortController}catch(e){}let r,n=0;const i=this.ee.get("tracer"),o=Le(this.ee),a=De(this.ee),s=Be(this.ee),c=Z(this.ee),u=this.ee.get("events"),d=ne(this.ee),l=ve(this.ee),f=ze(this.ee);function h(e,t){l.emit("newURL",[""+window.location,t])}function g(){n++,r=window.location.hash,this[et]=(0,S.t)()}function m(){n--,window.location.hash!==r&&h(0,!0);var e=(0,S.t)();this[Qe]=~~this[Qe]+e-this[et],this[rt]=e}function v(e,t){e.on(t,(function(){this[t]=(0,S.t)()}))}this.ee.on(et,g),a.on(tt,g),o.on(tt,g),this.ee.on(rt,m),a.on(Je,m),o.on(Je,m),this.ee.on("fn-err",((...t)=>{t[2]?.__newrelic?.[e.agentIdentifier]||(0,x.p)("function-err",[...t],void 0,this.featureName,this.ee)})),this.ee.buffer([et,rt,"xhr-resolved"],this.featureName),u.buffer([et],this.featureName),s.buffer(["setTimeout"+Ye,"clearTimeout"+Ze,et],this.featureName),c.buffer([et,"new-xhr","send-xhr"+Ze],this.featureName),d.buffer([$e+Ze,$e+"-done",$e+Xe+Ze,$e+Xe+Ye],this.featureName),l.buffer(["newURL"],this.featureName),f.buffer([et],this.featureName),a.buffer(["propagate",tt,Je,"executor-err","resolve"+Ze],this.featureName),i.buffer([et,"no-"+et],this.featureName),o.buffer(["new-jsonp","cb-start","jsonp-error","jsonp-end"],this.featureName),v(d,$e+Ze),v(d,$e+"-done"),v(o,"new-jsonp"),v(o,"jsonp-end"),v(o,"cb-start"),l.on("pushState-end",h),l.on("replaceState-end",h),window.addEventListener("hashchange",h,(0,A.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener("load",h,(0,A.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener("popstate",(function(){h(0,n>1)}),(0,A.jT)(!0,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var it=i(3333);class ot extends b{static featureName=it.TZ;constructor(e,t=!0){super(e,it.TZ,t);const r=[e.init.page_action.enabled,e.init.performance.capture_marks,e.init.performance.capture_measures,e.init.user_actions.enabled];p.RI&&e.init.user_actions.enabled&&(it.Zp.forEach((e=>(0,A.sp)(e,(e=>(0,x.p)("ua",[e],void 0,this.featureName,this.ee)),!0))),it.qN.forEach((e=>(0,A.sp)(e,(e=>(0,x.p)("ua",[e],void 0,this.featureName,this.ee)))))),r.some((e=>e))?this.importAggregator(e):this.deregisterDrain()}}var at=i(993),st=i(3785);class ct extends b{static featureName=at.TZ;constructor(e,t=!0){super(e,at.TZ,t);const r=this.ee;this.ee.on("wrap-logger-end",(function([e]){const{level:t,customAttributes:n}=this;(0,st.R)(r,e,n,t)})),this.importAggregator(e)}}new class extends o{constructor(t,r){super(r),p.gm?(this.features={},(0,R.bQ)(this.agentIdentifier,this),this.desiredFeatures=new Set(t.features||[]),this.desiredFeatures.add(w),this.runSoftNavOverSpa=[...this.desiredFeatures].some((e=>e.featureName===a.K7.softNav)),(0,d.j)(this,t,t.loaderType||"agent"),this.run()):(0,e.R)(21)}get config(){return{info:this.info,init:this.init,loader_config:this.loader_config,runtime:this.runtime}}run(){try{const t=u(this.agentIdentifier),r=[...this.desiredFeatures];r.sort(((e,t)=>a.P3[e.featureName]-a.P3[t.featureName])),r.forEach((r=>{if(!t[r.featureName]&&r.featureName!==a.K7.pageViewEvent)return;if(this.runSoftNavOverSpa&&r.featureName===a.K7.spa)return;if(!this.runSoftNavOverSpa&&r.featureName===a.K7.softNav)return;const n=function(e){switch(e){case a.K7.ajax:return[a.K7.jserrors];case a.K7.sessionTrace:return[a.K7.ajax,a.K7.pageViewEvent];case a.K7.sessionReplay:return[a.K7.sessionTrace];case a.K7.pageViewTiming:return[a.K7.pageViewEvent];default:return[]}}(r.featureName).filter((e=>!(e in this.features)));n.length>0&&(0,e.R)(36,{targetFeature:r.featureName,missingDependencies:n}),this.features[r.featureName]=new r(this)}))}catch(t){(0,e.R)(22,t);for(const e in this.features)this.features[e].abortHandler?.();const r=(0,R.Zm)();delete r.initializedAgents[this.agentIdentifier]?.api,delete r.initializedAgents[this.agentIdentifier]?.features,delete this.sharedAggregator;return r.ee.get(this.agentIdentifier).abort(),!1}}}({features:[he,w,N,Ne,_e,_,D,ot,ct,je,nt],loaderType:"spa"})})()})();</script><link rel="preload" href="/article-pages/_nuxt/4764e3b.js" as="script"><link rel="preload" href="/article-pages/_nuxt/8e7ee66.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/468b299.css" as="style"><link rel="preload" href="/article-pages/_nuxt/232bf4b.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/6a64fd3.css" as="style"><link rel="preload" href="/article-pages/_nuxt/3b10072.js" as="script"><link rel="preload" href="/article-pages/_nuxt/a07a553.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/e5cdfa1.css" as="style"><link rel="preload" href="/article-pages/_nuxt/94ee25c.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/82a0061.css" as="style"><link rel="preload" href="/article-pages/_nuxt/5465e0e.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/d80c00c.css" as="style"><link rel="preload" href="/article-pages/_nuxt/fb04c78.js" as="script"><link rel="preload" href="/article-pages/_nuxt/f8f682e.js" as="script"><link rel="stylesheet" href="/article-pages/_nuxt/css/468b299.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/6a64fd3.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/e5cdfa1.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/82a0061.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/d80c00c.css"> <meta property="fb:admins" content="1841006843"> </head> <body > <button class="BypassBlock__firstEl"></button> <a href="#main-content" class="BypassBlock__wrapper"> <span class="BypassBlock__button">Skip to main content</span> </a> <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://tag-manager.frontiersin.org/ns.html?id=GTM-M322FV2>m_auth=owVbWxfaJr21yQv1fe1cAQ>m_preview=env-1>m_cookies_win=x" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div data-server-rendered="true" id="__nuxt"><div id="__layout"><div theme="purple" class="ArticleLayout"><nav class="Ibar"><h1 class="acc-hidden">Top bar navigation</h1> <div class="Ibar__main"><div class="Ibar__wrapper"><button aria-label="Open Menu" data-event="iBar-btn-openMenu" class="Ibar__burger"></button> <div class="Ibar__logo"><a href="//www.frontiersin.org/" aria-label="Frontiershome" data-event="iBar-a-home" class="Ibar__logo__link"><svg viewBox="0 0 2811 590" fill="none" xmlns="http://www.w3.org/2000/svg" class="Ibar__logo__svg"><path d="M633.872 234.191h-42.674v-57.246h42.674c0-19.776 2.082-35.389 5.204-48.92 4.164-13.53 9.368-23.939 17.695-31.225 8.326-8.326 18.735-13.53 32.266-16.653 13.531-3.123 29.143-5.204 47.878-5.204h21.858c7.286 0 14.572 1.04 21.857 1.04v62.451c-8.326-1.041-16.653-2.082-23.939-2.082-10.408 0-17.694 1.041-23.939 4.164-6.245 3.122-9.368 10.408-9.368 22.898v13.531h53.083v57.246h-53.083v213.372h-89.512V234.191zM794.161 176.945h86.39v47.879h1.041c6.245-17.694 16.653-30.185 31.225-39.552 14.572-9.368 31.225-13.531 49.96-13.531h10.409c3.122 0 7.286 1.041 10.408 2.082v81.185c-6.245-2.082-11.449-3.122-16.653-4.163-5.204-1.041-11.449-1.041-16.654-1.041-11.449 0-20.816 2.082-29.143 5.204-8.327 3.123-15.613 8.327-20.817 14.572-5.204 6.245-10.408 12.49-12.49 20.817-3.123 8.326-4.163 15.612-4.163 23.939v133.228h-88.472V176.945h-1.041zM989.84 312.254c0-19.776 3.122-39.552 10.41-56.205 7.28-17.695 16.65-32.266 29.14-45.797 12.49-13.531 27.06-22.899 44.76-30.185 17.69-7.285 36.43-11.449 57.24-11.449 20.82 0 39.56 4.164 57.25 11.449 17.69 7.286 32.27 17.695 45.8 30.185 12.49 12.49 22.9 28.102 29.14 45.797 7.29 17.694 10.41 36.429 10.41 56.205 0 20.817-3.12 39.552-10.41 57.246-7.29 17.695-16.65 32.266-29.14 44.756-12.49 12.49-28.11 22.899-45.8 30.185-17.69 7.286-36.43 11.449-57.25 11.449-20.81 0-40.59-4.163-57.24-11.449-17.7-7.286-32.27-17.695-44.76-30.185-12.49-12.49-21.86-28.102-29.14-44.756-7.288-17.694-10.41-36.429-10.41-57.246zm88.47 0c0 8.327 1.04 17.694 3.12 26.021 2.09 9.368 5.21 16.653 9.37 23.939 4.16 7.286 9.37 13.531 16.65 17.695 7.29 4.163 15.62 7.285 26.03 7.285 10.4 0 18.73-2.081 26.02-7.285 7.28-4.164 12.49-10.409 16.65-17.695 4.16-7.286 7.29-15.612 9.37-23.939 2.08-9.368 3.12-17.694 3.12-26.021 0-8.327-1.04-17.694-3.12-26.021-2.08-9.368-5.21-16.653-9.37-23.939-4.16-7.286-9.37-13.531-16.65-17.695-7.29-5.204-15.62-7.285-26.02-7.285-10.41 0-18.74 2.081-26.03 7.285-7.28 5.205-12.49 10.409-16.65 17.695-4.16 7.286-7.28 15.612-9.37 23.939-2.08 9.368-3.12 17.694-3.12 26.021zM1306.25 176.945h86.39v37.47h1.04c4.17-7.286 9.37-13.531 15.62-18.735 6.24-5.204 13.53-10.408 20.81-14.572 7.29-4.163 15.62-7.286 23.94-9.367 8.33-2.082 16.66-3.123 24.98-3.123 22.9 0 40.6 4.164 53.09 11.449 13.53 7.286 22.89 16.654 29.14 27.062 6.24 10.409 10.41 21.858 12.49 34.348 2.08 12.49 2.08 22.898 2.08 33.307v172.779h-88.47V316.417v-27.061c0-9.368-1.04-16.654-4.16-23.94-3.13-7.286-7.29-12.49-13.53-16.653-6.25-4.164-15.62-6.245-27.07-6.245-8.32 0-15.61 2.081-21.85 5.204-6.25 3.122-11.45 7.286-14.58 13.531-4.16 5.204-6.24 11.449-8.32 18.735s-3.12 14.572-3.12 21.858v145.717h-88.48V176.945zM1780.88 234.19h-55.17v122.819c0 10.408 3.12 17.694 8.33 20.817 6.24 3.122 13.53 5.204 22.9 5.204 4.16 0 7.28 0 11.45-1.041h11.45v65.573c-8.33 0-15.62 1.041-23.94 2.082-8.33 1.04-16.66 1.041-23.94 1.041-18.74 0-34.35-2.082-46.84-5.205-12.49-3.122-21.86-8.326-29.14-15.612-7.29-7.286-12.49-16.654-14.58-29.144-3.12-12.49-4.16-27.062-4.16-45.797V234.19h-44.76v-57.246h44.76V94.717h88.47v82.227h55.17v57.246zM1902.66 143.639h-88.48V75.984h88.48v67.655zm-89.52 33.307h88.48v270.618h-88.48V176.946zM2024.43 334.111c1.04 18.735 6.25 33.307 16.66 44.756 10.4 11.449 24.98 16.653 43.71 16.653 10.41 0 20.82-2.081 30.19-7.286 9.36-5.204 16.65-12.49 20.81-22.898h83.27c-4.16 15.613-10.41 29.144-19.78 40.593-9.36 11.449-19.77 20.817-31.22 28.102-12.49 7.286-24.98 12.491-39.55 16.654-14.57 3.122-29.15 5.204-43.72 5.204-21.86 0-41.63-3.122-60.37-9.367-18.73-6.246-34.34-15.613-46.83-28.103-12.49-12.49-22.9-27.062-30.19-45.797-7.28-17.694-10.41-38.511-10.41-60.369 0-20.817 4.17-39.552 11.45-57.246 7.29-17.694 17.7-32.266 31.23-44.756 13.53-12.49 29.14-21.858 46.83-29.144 17.7-7.286 36.43-10.408 56.21-10.408 23.94 0 45.8 4.163 63.49 12.49 17.7 8.327 33.31 19.776 44.76 35.389 11.45 15.612 20.81 32.266 26.02 52.042 5.2 19.776 8.33 41.633 7.28 64.532h-199.84v-1.041zm110.33-49.961c-1.04-15.612-6.24-28.102-15.61-39.551-9.37-10.409-21.86-16.654-37.47-16.654s-28.1 5.204-38.51 15.613c-10.41 10.408-16.66 23.939-18.74 40.592h110.33zM2254.46 176.945h86.39v47.879h1.04c6.25-17.694 16.65-30.185 31.23-39.552 14.57-9.368 31.22-13.531 49.96-13.531h10.4c3.13 0 7.29 1.041 10.41 2.082v81.185c-6.24-2.082-11.45-3.122-16.65-4.163-5.21-1.041-11.45-1.041-16.65-1.041-11.45 0-20.82 2.082-29.15 5.204-8.32 3.123-15.61 8.327-20.81 14.572-6.25 6.245-10.41 12.49-12.49 20.817-3.13 8.326-4.17 15.612-4.17 23.939v133.228h-88.47V176.945h-1.04zM2534.45 359.091c0 7.286 1.04 12.49 4.16 17.694 3.12 5.204 6.24 9.368 10.41 12.49 4.16 3.123 9.36 5.204 14.57 7.286 6.24 2.082 11.45 2.082 17.69 2.082 4.17 0 8.33 0 13.53-2.082 5.21-1.041 9.37-3.123 13.53-5.204 4.17-2.082 7.29-5.204 10.41-9.368 3.13-4.163 4.17-8.327 4.17-13.531 0-5.204-2.09-9.367-5.21-12.49-3.12-3.122-7.28-6.245-11.45-8.327-4.16-2.081-9.36-4.163-14.57-5.204-5.2-1.041-9.37-2.081-13.53-3.122-13.53-3.123-28.1-6.245-42.67-9.368-14.58-3.122-28.11-7.286-40.6-12.49-12.49-6.245-22.9-13.531-30.18-23.939-8.33-10.409-11.45-23.94-11.45-42.675 0-16.653 4.16-30.184 11.45-40.592 8.33-10.409 17.69-18.736 30.18-24.981 12.49-6.245 26.02-10.408 40.6-13.53 14.57-3.123 28.1-4.164 41.63-4.164 14.57 0 29.14 1.041 43.71 4.164 14.58 2.081 27.07 7.285 39.56 13.53 12.49 6.245 21.85 15.613 29.14 27.062 7.29 11.45 11.45 26.021 12.49 43.716h-82.23c0-10.409-4.16-18.736-11.45-23.94-7.28-4.163-16.65-7.286-28.1-7.286-4.16 0-8.32 0-12.49 1.041-4.16 1.041-8.32 1.041-12.49 2.082-4.16 1.041-7.28 3.122-9.37 6.245-2.08 3.122-4.16 6.245-4.16 11.449 0 6.245 3.12 11.449 10.41 15.613 6.24 4.163 14.57 7.286 24.98 10.408 10.41 2.082 20.82 5.204 32.27 7.286 11.44 2.082 22.89 4.163 33.3 6.245 13.53 3.123 24.98 7.286 33.31 13.531 9.37 6.245 15.61 12.49 20.82 19.776 5.2 7.286 9.36 14.572 11.45 21.858 2.08 7.285 3.12 13.53 3.12 19.776 0 17.694-4.17 33.306-11.45 45.796-8.33 12.491-17.7 21.858-30.19 30.185-12.49 7.286-26.02 12.49-41.63 16.653-15.61 3.123-31.22 5.204-45.8 5.204-15.61 0-32.26-1.04-47.87-4.163-15.62-3.122-29.15-8.327-41.64-15.612a83.855 83.855 0 01-30.18-30.185c-8.33-12.49-12.49-28.102-12.49-46.838h84.31v-2.081z" fill="#FFFFFF" class="Ibar__logo__text"></path> <path d="M0 481.911V281.028l187.351-58.287v200.882L0 481.911z" fill="#8BC53F"></path> <path d="M187.351 423.623V222.741l126.983 87.431v200.882l-126.983-87.431z" fill="#EBD417"></path> <path d="M126.982 569.341L0 481.911l187.351-58.287 126.983 87.43-187.352 58.287z" fill="#034EA1"></path> <path d="M183.188 212.331l51.001-116.574 65.573 155.085-51.001 116.574-65.573-155.085z" fill="#712E74"></path> <path d="M248.761 367.415l51.001-116.574 171.739-28.102-49.96 115.533-172.78 29.143z" fill="#009FD1"></path> <path d="M299.762 250.842L234.189 95.757l171.739-28.103 65.573 155.085-171.739 28.103z" fill="#F6921E"></path> <path d="M187.352 222.741L59.328 198.802 44.757 71.819 172.78 95.76l14.572 126.982z" fill="#DA2128"></path> <path d="M172.78 95.758L44.757 71.818l70.777-70.776 128.023 23.94-70.777 70.776z" fill="#25BCBD"></path> <path d="M258.129 153.005l-70.777 69.736-14.571-126.982 70.777-70.778 14.571 128.024z" fill="#00844A"></path></svg></a></div> <a aria-label="Frontiers in Pharmacology" href="//www.frontiersin.org/journals/pharmacology" data-event="iBar-a-journalHome" class="Ibar__journalName"><div logoClass="Ibar__logo--mixed" class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Pharmacology</span></div></div></a> <div parent-data-event="iBar" class="Ibar__dropdown Ibar__dropdown--aboutUs"><button class="Ibar__dropdown__trigger"><!----> About us </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About us </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Who we are</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/mission" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Mission and values</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/history" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">History</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/leadership" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Leadership</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/awards" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Awards</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Impact and progress</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/impact" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">Frontiers' impact</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://progressreport.frontiersin.org/?utm_source=fweb&utm_medium=frep&utm_campaign=pr20" target="_blank" data-event="iBar-aboutUs_1-a_impactAndProgress">Progress Report 2022</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/progress-reports" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">All progress reports</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Publishing model</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/how-we-publish" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">How we publish</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Open access</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/fee-policy" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Fee policy</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/peer-review" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Peer review</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-integrity" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research integrity</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-topics" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research Topics</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Services</li> <li class="Ibar__dropdown__about__block__item"><a href="https://publishingpartnerships.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_3-a_services">Societies</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/open-access-agreements/consortia" target="_self" data-event="iBar-aboutUs_3-a_services">National consortia</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access-agreements" target="_self" data-event="iBar-aboutUs_3-a_services">Institutional partnerships</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/collaborators" target="_self" data-event="iBar-aboutUs_3-a_services">Collaborators</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">More from Frontiers</li> <li class="Ibar__dropdown__about__block__item"><a href="https://forum.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Forum</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersplanetprize.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Planet Prize</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://pressoffice.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Press office</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.orgabout/sustainability" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Sustainability</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://careers.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Career opportunities</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/contact" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Contact us</a></li></ul></div></div></div> <a href="https://www.frontiersin.org/journals" data-event="iBar-a-allJournals" class="Ibar__link">All journals</a><a href="https://www.frontiersin.org/articles" data-event="iBar-a-allArticles" class="Ibar__link">All articles</a> <a href="https://www.frontiersin.org/submission/submit?domainid=1&fieldid=62&specialtyid=0&entitytype=2&entityid=176" data-event="iBar-a-submit" class="Ibar__button Ibar__submit">Submit your research</a> <div class="Ibar__spacer"></div> <a href="/search" aria-label="Search" data-event="iBar-a-search" class="Ibar__icon Ibar__icon--search"><span>Search</span></a> <!----> <!----> <!----> <div class="Ibar__userArea"></div></div></div> <div class="Ibar__menu Ibar__menu--journal"><div class="Ibar__menu__header"><div class="Ibar__logo"><div class="Ibar__logo"><a href="//www.frontiersin.org/" aria-label="Frontiershome" data-event="iBar-a-home" class="Ibar__logo__link"><svg viewBox="0 0 2811 590" fill="none" xmlns="http://www.w3.org/2000/svg" class="Ibar__logo__svg"><path d="M633.872 234.191h-42.674v-57.246h42.674c0-19.776 2.082-35.389 5.204-48.92 4.164-13.53 9.368-23.939 17.695-31.225 8.326-8.326 18.735-13.53 32.266-16.653 13.531-3.123 29.143-5.204 47.878-5.204h21.858c7.286 0 14.572 1.04 21.857 1.04v62.451c-8.326-1.041-16.653-2.082-23.939-2.082-10.408 0-17.694 1.041-23.939 4.164-6.245 3.122-9.368 10.408-9.368 22.898v13.531h53.083v57.246h-53.083v213.372h-89.512V234.191zM794.161 176.945h86.39v47.879h1.041c6.245-17.694 16.653-30.185 31.225-39.552 14.572-9.368 31.225-13.531 49.96-13.531h10.409c3.122 0 7.286 1.041 10.408 2.082v81.185c-6.245-2.082-11.449-3.122-16.653-4.163-5.204-1.041-11.449-1.041-16.654-1.041-11.449 0-20.816 2.082-29.143 5.204-8.327 3.123-15.613 8.327-20.817 14.572-5.204 6.245-10.408 12.49-12.49 20.817-3.123 8.326-4.163 15.612-4.163 23.939v133.228h-88.472V176.945h-1.041zM989.84 312.254c0-19.776 3.122-39.552 10.41-56.205 7.28-17.695 16.65-32.266 29.14-45.797 12.49-13.531 27.06-22.899 44.76-30.185 17.69-7.285 36.43-11.449 57.24-11.449 20.82 0 39.56 4.164 57.25 11.449 17.69 7.286 32.27 17.695 45.8 30.185 12.49 12.49 22.9 28.102 29.14 45.797 7.29 17.694 10.41 36.429 10.41 56.205 0 20.817-3.12 39.552-10.41 57.246-7.29 17.695-16.65 32.266-29.14 44.756-12.49 12.49-28.11 22.899-45.8 30.185-17.69 7.286-36.43 11.449-57.25 11.449-20.81 0-40.59-4.163-57.24-11.449-17.7-7.286-32.27-17.695-44.76-30.185-12.49-12.49-21.86-28.102-29.14-44.756-7.288-17.694-10.41-36.429-10.41-57.246zm88.47 0c0 8.327 1.04 17.694 3.12 26.021 2.09 9.368 5.21 16.653 9.37 23.939 4.16 7.286 9.37 13.531 16.65 17.695 7.29 4.163 15.62 7.285 26.03 7.285 10.4 0 18.73-2.081 26.02-7.285 7.28-4.164 12.49-10.409 16.65-17.695 4.16-7.286 7.29-15.612 9.37-23.939 2.08-9.368 3.12-17.694 3.12-26.021 0-8.327-1.04-17.694-3.12-26.021-2.08-9.368-5.21-16.653-9.37-23.939-4.16-7.286-9.37-13.531-16.65-17.695-7.29-5.204-15.62-7.285-26.02-7.285-10.41 0-18.74 2.081-26.03 7.285-7.28 5.205-12.49 10.409-16.65 17.695-4.16 7.286-7.28 15.612-9.37 23.939-2.08 9.368-3.12 17.694-3.12 26.021zM1306.25 176.945h86.39v37.47h1.04c4.17-7.286 9.37-13.531 15.62-18.735 6.24-5.204 13.53-10.408 20.81-14.572 7.29-4.163 15.62-7.286 23.94-9.367 8.33-2.082 16.66-3.123 24.98-3.123 22.9 0 40.6 4.164 53.09 11.449 13.53 7.286 22.89 16.654 29.14 27.062 6.24 10.409 10.41 21.858 12.49 34.348 2.08 12.49 2.08 22.898 2.08 33.307v172.779h-88.47V316.417v-27.061c0-9.368-1.04-16.654-4.16-23.94-3.13-7.286-7.29-12.49-13.53-16.653-6.25-4.164-15.62-6.245-27.07-6.245-8.32 0-15.61 2.081-21.85 5.204-6.25 3.122-11.45 7.286-14.58 13.531-4.16 5.204-6.24 11.449-8.32 18.735s-3.12 14.572-3.12 21.858v145.717h-88.48V176.945zM1780.88 234.19h-55.17v122.819c0 10.408 3.12 17.694 8.33 20.817 6.24 3.122 13.53 5.204 22.9 5.204 4.16 0 7.28 0 11.45-1.041h11.45v65.573c-8.33 0-15.62 1.041-23.94 2.082-8.33 1.04-16.66 1.041-23.94 1.041-18.74 0-34.35-2.082-46.84-5.205-12.49-3.122-21.86-8.326-29.14-15.612-7.29-7.286-12.49-16.654-14.58-29.144-3.12-12.49-4.16-27.062-4.16-45.797V234.19h-44.76v-57.246h44.76V94.717h88.47v82.227h55.17v57.246zM1902.66 143.639h-88.48V75.984h88.48v67.655zm-89.52 33.307h88.48v270.618h-88.48V176.946zM2024.43 334.111c1.04 18.735 6.25 33.307 16.66 44.756 10.4 11.449 24.98 16.653 43.71 16.653 10.41 0 20.82-2.081 30.19-7.286 9.36-5.204 16.65-12.49 20.81-22.898h83.27c-4.16 15.613-10.41 29.144-19.78 40.593-9.36 11.449-19.77 20.817-31.22 28.102-12.49 7.286-24.98 12.491-39.55 16.654-14.57 3.122-29.15 5.204-43.72 5.204-21.86 0-41.63-3.122-60.37-9.367-18.73-6.246-34.34-15.613-46.83-28.103-12.49-12.49-22.9-27.062-30.19-45.797-7.28-17.694-10.41-38.511-10.41-60.369 0-20.817 4.17-39.552 11.45-57.246 7.29-17.694 17.7-32.266 31.23-44.756 13.53-12.49 29.14-21.858 46.83-29.144 17.7-7.286 36.43-10.408 56.21-10.408 23.94 0 45.8 4.163 63.49 12.49 17.7 8.327 33.31 19.776 44.76 35.389 11.45 15.612 20.81 32.266 26.02 52.042 5.2 19.776 8.33 41.633 7.28 64.532h-199.84v-1.041zm110.33-49.961c-1.04-15.612-6.24-28.102-15.61-39.551-9.37-10.409-21.86-16.654-37.47-16.654s-28.1 5.204-38.51 15.613c-10.41 10.408-16.66 23.939-18.74 40.592h110.33zM2254.46 176.945h86.39v47.879h1.04c6.25-17.694 16.65-30.185 31.23-39.552 14.57-9.368 31.22-13.531 49.96-13.531h10.4c3.13 0 7.29 1.041 10.41 2.082v81.185c-6.24-2.082-11.45-3.122-16.65-4.163-5.21-1.041-11.45-1.041-16.65-1.041-11.45 0-20.82 2.082-29.15 5.204-8.32 3.123-15.61 8.327-20.81 14.572-6.25 6.245-10.41 12.49-12.49 20.817-3.13 8.326-4.17 15.612-4.17 23.939v133.228h-88.47V176.945h-1.04zM2534.45 359.091c0 7.286 1.04 12.49 4.16 17.694 3.12 5.204 6.24 9.368 10.41 12.49 4.16 3.123 9.36 5.204 14.57 7.286 6.24 2.082 11.45 2.082 17.69 2.082 4.17 0 8.33 0 13.53-2.082 5.21-1.041 9.37-3.123 13.53-5.204 4.17-2.082 7.29-5.204 10.41-9.368 3.13-4.163 4.17-8.327 4.17-13.531 0-5.204-2.09-9.367-5.21-12.49-3.12-3.122-7.28-6.245-11.45-8.327-4.16-2.081-9.36-4.163-14.57-5.204-5.2-1.041-9.37-2.081-13.53-3.122-13.53-3.123-28.1-6.245-42.67-9.368-14.58-3.122-28.11-7.286-40.6-12.49-12.49-6.245-22.9-13.531-30.18-23.939-8.33-10.409-11.45-23.94-11.45-42.675 0-16.653 4.16-30.184 11.45-40.592 8.33-10.409 17.69-18.736 30.18-24.981 12.49-6.245 26.02-10.408 40.6-13.53 14.57-3.123 28.1-4.164 41.63-4.164 14.57 0 29.14 1.041 43.71 4.164 14.58 2.081 27.07 7.285 39.56 13.53 12.49 6.245 21.85 15.613 29.14 27.062 7.29 11.45 11.45 26.021 12.49 43.716h-82.23c0-10.409-4.16-18.736-11.45-23.94-7.28-4.163-16.65-7.286-28.1-7.286-4.16 0-8.32 0-12.49 1.041-4.16 1.041-8.32 1.041-12.49 2.082-4.16 1.041-7.28 3.122-9.37 6.245-2.08 3.122-4.16 6.245-4.16 11.449 0 6.245 3.12 11.449 10.41 15.613 6.24 4.163 14.57 7.286 24.98 10.408 10.41 2.082 20.82 5.204 32.27 7.286 11.44 2.082 22.89 4.163 33.3 6.245 13.53 3.123 24.98 7.286 33.31 13.531 9.37 6.245 15.61 12.49 20.82 19.776 5.2 7.286 9.36 14.572 11.45 21.858 2.08 7.285 3.12 13.53 3.12 19.776 0 17.694-4.17 33.306-11.45 45.796-8.33 12.491-17.7 21.858-30.19 30.185-12.49 7.286-26.02 12.49-41.63 16.653-15.61 3.123-31.22 5.204-45.8 5.204-15.61 0-32.26-1.04-47.87-4.163-15.62-3.122-29.15-8.327-41.64-15.612a83.855 83.855 0 01-30.18-30.185c-8.33-12.49-12.49-28.102-12.49-46.838h84.31v-2.081z" fill="#FFFFFF" class="Ibar__logo__text"></path> <path d="M0 481.911V281.028l187.351-58.287v200.882L0 481.911z" fill="#8BC53F"></path> <path d="M187.351 423.623V222.741l126.983 87.431v200.882l-126.983-87.431z" fill="#EBD417"></path> <path d="M126.982 569.341L0 481.911l187.351-58.287 126.983 87.43-187.352 58.287z" fill="#034EA1"></path> <path d="M183.188 212.331l51.001-116.574 65.573 155.085-51.001 116.574-65.573-155.085z" fill="#712E74"></path> <path d="M248.761 367.415l51.001-116.574 171.739-28.102-49.96 115.533-172.78 29.143z" fill="#009FD1"></path> <path d="M299.762 250.842L234.189 95.757l171.739-28.103 65.573 155.085-171.739 28.103z" fill="#F6921E"></path> <path d="M187.352 222.741L59.328 198.802 44.757 71.819 172.78 95.76l14.572 126.982z" fill="#DA2128"></path> <path d="M172.78 95.758L44.757 71.818l70.777-70.776 128.023 23.94-70.777 70.776z" fill="#25BCBD"></path> <path d="M258.129 153.005l-70.777 69.736-14.571-126.982 70.777-70.778 14.571 128.024z" fill="#00844A"></path></svg></a></div></div> <button aria-label="Close Menu" data-event="iBarMenu-btn-closeMenu" class="Ibar__close"></button></div> <div class="Ibar__menu__wrapper"><div class="Ibar__menu__journal"><a href="//www.frontiersin.org/journals/pharmacology" data-event="iBarMenu-a-journalHome"><div class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Pharmacology</span></div></div></a> <div parent-data-event="iBarMenu" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> Sections </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> Sections </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <ul class="Ibar__dropdown__sections"><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/cardiovascular-and-smooth-muscle-pharmacology" data-event="iBarJournal-sections-a_id_182">Cardiovascular and Smooth Muscle Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/drug-metabolism-and-transport" data-event="iBarJournal-sections-a_id_199">Drug Metabolism and Transport</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/drugs-outcomes-research-and-policies" data-event="iBarJournal-sections-a_id_202">Drugs Outcomes Research and Policies</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/elsi-in-science-and-genetics" data-event="iBarJournal-sections-a_id_650">ELSI in Science and Genetics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/ethnopharmacology" data-event="iBarJournal-sections-a_id_184">Ethnopharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/experimental-pharmacology-and-drug-discovery" data-event="iBarJournal-sections-a_id_183">Experimental Pharmacology and Drug Discovery</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/gastrointestinal-and-hepatic-pharmacology" data-event="iBarJournal-sections-a_id_186">Gastrointestinal and Hepatic Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/inflammation-pharmacology" data-event="iBarJournal-sections-a_id_188">Inflammation Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/integrative-and-regenerative-pharmacology" data-event="iBarJournal-sections-a_id_178">Integrative and Regenerative Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/neuropharmacology" data-event="iBarJournal-sections-a_id_26">Neuropharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/obstetric-and-pediatric-pharmacology" data-event="iBarJournal-sections-a_id_196">Obstetric and Pediatric Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacoepidemiology" data-event="iBarJournal-sections-a_id_2186">Pharmacoepidemiology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacogenetics-and-pharmacogenomics" data-event="iBarJournal-sections-a_id_198">Pharmacogenetics and Pharmacogenomics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacology-of-anti-cancer-drugs" data-event="iBarJournal-sections-a_id_192">Pharmacology of Anti-Cancer Drugs</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacology-of-infectious-diseases" data-event="iBarJournal-sections-a_id_2216">Pharmacology of Infectious Diseases</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacology-of-ion-channels-and-channelopathies" data-event="iBarJournal-sections-a_id_179">Pharmacology of Ion Channels and Channelopathies</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/predictive-toxicology" data-event="iBarJournal-sections-a_id_195">Predictive Toxicology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/renal-pharmacology" data-event="iBarJournal-sections-a_id_1357">Renal Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/respiratory-pharmacology" data-event="iBarJournal-sections-a_id_190">Respiratory Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/translational-pharmacology" data-event="iBarJournal-sections-a_id_1251">Translational Pharmacology</a></li></ul></div></div> <a href="//www.frontiersin.org/journals/pharmacology/articles" data-event="iBar-a-articles" class="Ibar__link">Articles</a><a href="//www.frontiersin.org/journals/pharmacology/research-topics" data-event="iBar-a-researchTopics" class="Ibar__link">Research Topics</a><a href="//www.frontiersin.org/journals/pharmacology/editors" data-event="iBar-a-editorialBoard" class="Ibar__link">Editorial board</a> <div parent-data-event="iBarMenu" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> About journal </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About journal </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Scope</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-editors" target="_self" data-event="iBar-aboutJournal_0-a_scope">Field chief editors</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-scope" target="_self" data-event="iBar-aboutJournal_0-a_scope">Mission & scope</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-facts" target="_self" data-event="iBar-aboutJournal_0-a_scope">Facts</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-submission" target="_self" data-event="iBar-aboutJournal_0-a_scope">Journal sections</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-open" target="_self" data-event="iBar-aboutJournal_0-a_scope">Open access statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#copyright-statement" target="_self" data-event="iBar-aboutJournal_0-a_scope">Copyright statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-quality" target="_self" data-event="iBar-aboutJournal_0-a_scope">Quality</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">For authors</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/why-submit" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Why submit?</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/article-types" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Article types</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/author-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Author guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/editor-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Editor guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/publishing-fees" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Publishing fees</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/submission-checklist" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Submission checklist</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/contact-editorial-office" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Contact editorial office</a></li></ul></div></div></div></div> <div parent-data-event="iBarMenu" class="Ibar__dropdown Ibar__dropdown--aboutUs"><button class="Ibar__dropdown__trigger"><!----> About us </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About us </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Who we are</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/mission" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Mission and values</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/history" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">History</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/leadership" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Leadership</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/awards" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Awards</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Impact and progress</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/impact" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">Frontiers' impact</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://progressreport.frontiersin.org/?utm_source=fweb&utm_medium=frep&utm_campaign=pr20" target="_blank" data-event="iBar-aboutUs_1-a_impactAndProgress">Progress Report 2022</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/progress-reports" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">All progress reports</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Publishing model</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/how-we-publish" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">How we publish</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Open access</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/fee-policy" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Fee policy</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/peer-review" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Peer review</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-integrity" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research integrity</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-topics" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research Topics</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Services</li> <li class="Ibar__dropdown__about__block__item"><a href="https://publishingpartnerships.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_3-a_services">Societies</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/open-access-agreements/consortia" target="_self" data-event="iBar-aboutUs_3-a_services">National consortia</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access-agreements" target="_self" data-event="iBar-aboutUs_3-a_services">Institutional partnerships</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/collaborators" target="_self" data-event="iBar-aboutUs_3-a_services">Collaborators</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">More from Frontiers</li> <li class="Ibar__dropdown__about__block__item"><a href="https://forum.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Forum</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersplanetprize.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Planet Prize</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://pressoffice.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Press office</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.orgabout/sustainability" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Sustainability</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://careers.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Career opportunities</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/contact" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Contact us</a></li></ul></div></div></div> <a href="https://www.frontiersin.org/journals" data-event="iBar-a-allJournals" class="Ibar__link">All journals</a><a href="https://www.frontiersin.org/articles" data-event="iBar-a-allArticles" class="Ibar__link">All articles</a> <!----> <!----> <!----> <a href="https://www.frontiersin.org/submission/submit?domainid=1&fieldid=62&specialtyid=0&entitytype=2&entityid=176" data-event="iBarMenu-a-submit" class="Ibar__button Ibar__submit">Submit your research</a></div></div> <div class="Ibar__journal"><div class="Ibar__wrapper Ibar__wrapper--journal"><a aria-label="Frontiers in Pharmacology" href="//www.frontiersin.org/journals/pharmacology" data-event="iBarJournal-a-journalHome" class="Ibar__journalName"><div class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Pharmacology</span></div></div></a> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> Sections </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> Sections </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <ul class="Ibar__dropdown__sections"><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/cardiovascular-and-smooth-muscle-pharmacology" data-event="iBarJournal-sections-a_id_182">Cardiovascular and Smooth Muscle Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/drug-metabolism-and-transport" data-event="iBarJournal-sections-a_id_199">Drug Metabolism and Transport</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/drugs-outcomes-research-and-policies" data-event="iBarJournal-sections-a_id_202">Drugs Outcomes Research and Policies</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/elsi-in-science-and-genetics" data-event="iBarJournal-sections-a_id_650">ELSI in Science and Genetics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/ethnopharmacology" data-event="iBarJournal-sections-a_id_184">Ethnopharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/experimental-pharmacology-and-drug-discovery" data-event="iBarJournal-sections-a_id_183">Experimental Pharmacology and Drug Discovery</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/gastrointestinal-and-hepatic-pharmacology" data-event="iBarJournal-sections-a_id_186">Gastrointestinal and Hepatic Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/inflammation-pharmacology" data-event="iBarJournal-sections-a_id_188">Inflammation Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/integrative-and-regenerative-pharmacology" data-event="iBarJournal-sections-a_id_178">Integrative and Regenerative Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/neuropharmacology" data-event="iBarJournal-sections-a_id_26">Neuropharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/obstetric-and-pediatric-pharmacology" data-event="iBarJournal-sections-a_id_196">Obstetric and Pediatric Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacoepidemiology" data-event="iBarJournal-sections-a_id_2186">Pharmacoepidemiology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacogenetics-and-pharmacogenomics" data-event="iBarJournal-sections-a_id_198">Pharmacogenetics and Pharmacogenomics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacology-of-anti-cancer-drugs" data-event="iBarJournal-sections-a_id_192">Pharmacology of Anti-Cancer Drugs</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacology-of-infectious-diseases" data-event="iBarJournal-sections-a_id_2216">Pharmacology of Infectious Diseases</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacology-of-ion-channels-and-channelopathies" data-event="iBarJournal-sections-a_id_179">Pharmacology of Ion Channels and Channelopathies</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/predictive-toxicology" data-event="iBarJournal-sections-a_id_195">Predictive Toxicology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/renal-pharmacology" data-event="iBarJournal-sections-a_id_1357">Renal Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/respiratory-pharmacology" data-event="iBarJournal-sections-a_id_190">Respiratory Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/translational-pharmacology" data-event="iBarJournal-sections-a_id_1251">Translational Pharmacology</a></li></ul></div></div> <a href="//www.frontiersin.org/journals/pharmacology/articles" data-event="iBar-a-articles" class="Ibar__link">Articles</a><a href="//www.frontiersin.org/journals/pharmacology/research-topics" data-event="iBar-a-researchTopics" class="Ibar__link">Research Topics</a><a href="//www.frontiersin.org/journals/pharmacology/editors" data-event="iBar-a-editorialBoard" class="Ibar__link">Editorial board</a> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> About journal </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About journal </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Scope</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-editors" target="_self" data-event="iBar-aboutJournal_0-a_scope">Field chief editors</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-scope" target="_self" data-event="iBar-aboutJournal_0-a_scope">Mission & scope</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-facts" target="_self" data-event="iBar-aboutJournal_0-a_scope">Facts</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-submission" target="_self" data-event="iBar-aboutJournal_0-a_scope">Journal sections</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-open" target="_self" data-event="iBar-aboutJournal_0-a_scope">Open access statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#copyright-statement" target="_self" data-event="iBar-aboutJournal_0-a_scope">Copyright statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-quality" target="_self" data-event="iBar-aboutJournal_0-a_scope">Quality</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">For authors</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/why-submit" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Why submit?</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/article-types" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Article types</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/author-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Author guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/editor-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Editor guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/publishing-fees" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Publishing fees</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/submission-checklist" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Submission checklist</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/contact-editorial-office" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Contact editorial office</a></li></ul></div></div></div> <div class="Ibar__spacer"></div></div></div> <div class="Ibar__journal Ibar__journal--mix"><div class="Ibar__wrapper Ibar__wrapper--journal"><div class="Ibar__logo"><a href="//www.frontiersin.org/" aria-label="Frontiershome" data-event="iBar-a-home" class="Ibar__logo__link"><svg viewBox="0 0 2811 590" fill="none" xmlns="http://www.w3.org/2000/svg" class="Ibar__logo__svg"><path d="M633.872 234.191h-42.674v-57.246h42.674c0-19.776 2.082-35.389 5.204-48.92 4.164-13.53 9.368-23.939 17.695-31.225 8.326-8.326 18.735-13.53 32.266-16.653 13.531-3.123 29.143-5.204 47.878-5.204h21.858c7.286 0 14.572 1.04 21.857 1.04v62.451c-8.326-1.041-16.653-2.082-23.939-2.082-10.408 0-17.694 1.041-23.939 4.164-6.245 3.122-9.368 10.408-9.368 22.898v13.531h53.083v57.246h-53.083v213.372h-89.512V234.191zM794.161 176.945h86.39v47.879h1.041c6.245-17.694 16.653-30.185 31.225-39.552 14.572-9.368 31.225-13.531 49.96-13.531h10.409c3.122 0 7.286 1.041 10.408 2.082v81.185c-6.245-2.082-11.449-3.122-16.653-4.163-5.204-1.041-11.449-1.041-16.654-1.041-11.449 0-20.816 2.082-29.143 5.204-8.327 3.123-15.613 8.327-20.817 14.572-5.204 6.245-10.408 12.49-12.49 20.817-3.123 8.326-4.163 15.612-4.163 23.939v133.228h-88.472V176.945h-1.041zM989.84 312.254c0-19.776 3.122-39.552 10.41-56.205 7.28-17.695 16.65-32.266 29.14-45.797 12.49-13.531 27.06-22.899 44.76-30.185 17.69-7.285 36.43-11.449 57.24-11.449 20.82 0 39.56 4.164 57.25 11.449 17.69 7.286 32.27 17.695 45.8 30.185 12.49 12.49 22.9 28.102 29.14 45.797 7.29 17.694 10.41 36.429 10.41 56.205 0 20.817-3.12 39.552-10.41 57.246-7.29 17.695-16.65 32.266-29.14 44.756-12.49 12.49-28.11 22.899-45.8 30.185-17.69 7.286-36.43 11.449-57.25 11.449-20.81 0-40.59-4.163-57.24-11.449-17.7-7.286-32.27-17.695-44.76-30.185-12.49-12.49-21.86-28.102-29.14-44.756-7.288-17.694-10.41-36.429-10.41-57.246zm88.47 0c0 8.327 1.04 17.694 3.12 26.021 2.09 9.368 5.21 16.653 9.37 23.939 4.16 7.286 9.37 13.531 16.65 17.695 7.29 4.163 15.62 7.285 26.03 7.285 10.4 0 18.73-2.081 26.02-7.285 7.28-4.164 12.49-10.409 16.65-17.695 4.16-7.286 7.29-15.612 9.37-23.939 2.08-9.368 3.12-17.694 3.12-26.021 0-8.327-1.04-17.694-3.12-26.021-2.08-9.368-5.21-16.653-9.37-23.939-4.16-7.286-9.37-13.531-16.65-17.695-7.29-5.204-15.62-7.285-26.02-7.285-10.41 0-18.74 2.081-26.03 7.285-7.28 5.205-12.49 10.409-16.65 17.695-4.16 7.286-7.28 15.612-9.37 23.939-2.08 9.368-3.12 17.694-3.12 26.021zM1306.25 176.945h86.39v37.47h1.04c4.17-7.286 9.37-13.531 15.62-18.735 6.24-5.204 13.53-10.408 20.81-14.572 7.29-4.163 15.62-7.286 23.94-9.367 8.33-2.082 16.66-3.123 24.98-3.123 22.9 0 40.6 4.164 53.09 11.449 13.53 7.286 22.89 16.654 29.14 27.062 6.24 10.409 10.41 21.858 12.49 34.348 2.08 12.49 2.08 22.898 2.08 33.307v172.779h-88.47V316.417v-27.061c0-9.368-1.04-16.654-4.16-23.94-3.13-7.286-7.29-12.49-13.53-16.653-6.25-4.164-15.62-6.245-27.07-6.245-8.32 0-15.61 2.081-21.85 5.204-6.25 3.122-11.45 7.286-14.58 13.531-4.16 5.204-6.24 11.449-8.32 18.735s-3.12 14.572-3.12 21.858v145.717h-88.48V176.945zM1780.88 234.19h-55.17v122.819c0 10.408 3.12 17.694 8.33 20.817 6.24 3.122 13.53 5.204 22.9 5.204 4.16 0 7.28 0 11.45-1.041h11.45v65.573c-8.33 0-15.62 1.041-23.94 2.082-8.33 1.04-16.66 1.041-23.94 1.041-18.74 0-34.35-2.082-46.84-5.205-12.49-3.122-21.86-8.326-29.14-15.612-7.29-7.286-12.49-16.654-14.58-29.144-3.12-12.49-4.16-27.062-4.16-45.797V234.19h-44.76v-57.246h44.76V94.717h88.47v82.227h55.17v57.246zM1902.66 143.639h-88.48V75.984h88.48v67.655zm-89.52 33.307h88.48v270.618h-88.48V176.946zM2024.43 334.111c1.04 18.735 6.25 33.307 16.66 44.756 10.4 11.449 24.98 16.653 43.71 16.653 10.41 0 20.82-2.081 30.19-7.286 9.36-5.204 16.65-12.49 20.81-22.898h83.27c-4.16 15.613-10.41 29.144-19.78 40.593-9.36 11.449-19.77 20.817-31.22 28.102-12.49 7.286-24.98 12.491-39.55 16.654-14.57 3.122-29.15 5.204-43.72 5.204-21.86 0-41.63-3.122-60.37-9.367-18.73-6.246-34.34-15.613-46.83-28.103-12.49-12.49-22.9-27.062-30.19-45.797-7.28-17.694-10.41-38.511-10.41-60.369 0-20.817 4.17-39.552 11.45-57.246 7.29-17.694 17.7-32.266 31.23-44.756 13.53-12.49 29.14-21.858 46.83-29.144 17.7-7.286 36.43-10.408 56.21-10.408 23.94 0 45.8 4.163 63.49 12.49 17.7 8.327 33.31 19.776 44.76 35.389 11.45 15.612 20.81 32.266 26.02 52.042 5.2 19.776 8.33 41.633 7.28 64.532h-199.84v-1.041zm110.33-49.961c-1.04-15.612-6.24-28.102-15.61-39.551-9.37-10.409-21.86-16.654-37.47-16.654s-28.1 5.204-38.51 15.613c-10.41 10.408-16.66 23.939-18.74 40.592h110.33zM2254.46 176.945h86.39v47.879h1.04c6.25-17.694 16.65-30.185 31.23-39.552 14.57-9.368 31.22-13.531 49.96-13.531h10.4c3.13 0 7.29 1.041 10.41 2.082v81.185c-6.24-2.082-11.45-3.122-16.65-4.163-5.21-1.041-11.45-1.041-16.65-1.041-11.45 0-20.82 2.082-29.15 5.204-8.32 3.123-15.61 8.327-20.81 14.572-6.25 6.245-10.41 12.49-12.49 20.817-3.13 8.326-4.17 15.612-4.17 23.939v133.228h-88.47V176.945h-1.04zM2534.45 359.091c0 7.286 1.04 12.49 4.16 17.694 3.12 5.204 6.24 9.368 10.41 12.49 4.16 3.123 9.36 5.204 14.57 7.286 6.24 2.082 11.45 2.082 17.69 2.082 4.17 0 8.33 0 13.53-2.082 5.21-1.041 9.37-3.123 13.53-5.204 4.17-2.082 7.29-5.204 10.41-9.368 3.13-4.163 4.17-8.327 4.17-13.531 0-5.204-2.09-9.367-5.21-12.49-3.12-3.122-7.28-6.245-11.45-8.327-4.16-2.081-9.36-4.163-14.57-5.204-5.2-1.041-9.37-2.081-13.53-3.122-13.53-3.123-28.1-6.245-42.67-9.368-14.58-3.122-28.11-7.286-40.6-12.49-12.49-6.245-22.9-13.531-30.18-23.939-8.33-10.409-11.45-23.94-11.45-42.675 0-16.653 4.16-30.184 11.45-40.592 8.33-10.409 17.69-18.736 30.18-24.981 12.49-6.245 26.02-10.408 40.6-13.53 14.57-3.123 28.1-4.164 41.63-4.164 14.57 0 29.14 1.041 43.71 4.164 14.58 2.081 27.07 7.285 39.56 13.53 12.49 6.245 21.85 15.613 29.14 27.062 7.29 11.45 11.45 26.021 12.49 43.716h-82.23c0-10.409-4.16-18.736-11.45-23.94-7.28-4.163-16.65-7.286-28.1-7.286-4.16 0-8.32 0-12.49 1.041-4.16 1.041-8.32 1.041-12.49 2.082-4.16 1.041-7.28 3.122-9.37 6.245-2.08 3.122-4.16 6.245-4.16 11.449 0 6.245 3.12 11.449 10.41 15.613 6.24 4.163 14.57 7.286 24.98 10.408 10.41 2.082 20.82 5.204 32.27 7.286 11.44 2.082 22.89 4.163 33.3 6.245 13.53 3.123 24.98 7.286 33.31 13.531 9.37 6.245 15.61 12.49 20.82 19.776 5.2 7.286 9.36 14.572 11.45 21.858 2.08 7.285 3.12 13.53 3.12 19.776 0 17.694-4.17 33.306-11.45 45.796-8.33 12.491-17.7 21.858-30.19 30.185-12.49 7.286-26.02 12.49-41.63 16.653-15.61 3.123-31.22 5.204-45.8 5.204-15.61 0-32.26-1.04-47.87-4.163-15.62-3.122-29.15-8.327-41.64-15.612a83.855 83.855 0 01-30.18-30.185c-8.33-12.49-12.49-28.102-12.49-46.838h84.31v-2.081z" fill="#FFFFFF" class="Ibar__logo__text"></path> <path d="M0 481.911V281.028l187.351-58.287v200.882L0 481.911z" fill="#8BC53F"></path> <path d="M187.351 423.623V222.741l126.983 87.431v200.882l-126.983-87.431z" fill="#EBD417"></path> <path d="M126.982 569.341L0 481.911l187.351-58.287 126.983 87.43-187.352 58.287z" fill="#034EA1"></path> <path d="M183.188 212.331l51.001-116.574 65.573 155.085-51.001 116.574-65.573-155.085z" fill="#712E74"></path> <path d="M248.761 367.415l51.001-116.574 171.739-28.102-49.96 115.533-172.78 29.143z" fill="#009FD1"></path> <path d="M299.762 250.842L234.189 95.757l171.739-28.103 65.573 155.085-171.739 28.103z" fill="#F6921E"></path> <path d="M187.352 222.741L59.328 198.802 44.757 71.819 172.78 95.76l14.572 126.982z" fill="#DA2128"></path> <path d="M172.78 95.758L44.757 71.818l70.777-70.776 128.023 23.94-70.777 70.776z" fill="#25BCBD"></path> <path d="M258.129 153.005l-70.777 69.736-14.571-126.982 70.777-70.778 14.571 128.024z" fill="#00844A"></path></svg></a></div> <a aria-label="Frontiers in Pharmacology" href="//www.frontiersin.org/journals/pharmacology" data-event="iBarJournal-a-journalHome" class="Ibar__journalName"><div logoClass="Ibar__logo--mixed" class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Pharmacology</span></div></div></a> <div class="Ibar__spacer"></div> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> Sections </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> Sections </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <ul class="Ibar__dropdown__sections"><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/cardiovascular-and-smooth-muscle-pharmacology" data-event="iBarJournal-sections-a_id_182">Cardiovascular and Smooth Muscle Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/drug-metabolism-and-transport" data-event="iBarJournal-sections-a_id_199">Drug Metabolism and Transport</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/drugs-outcomes-research-and-policies" data-event="iBarJournal-sections-a_id_202">Drugs Outcomes Research and Policies</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/elsi-in-science-and-genetics" data-event="iBarJournal-sections-a_id_650">ELSI in Science and Genetics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/ethnopharmacology" data-event="iBarJournal-sections-a_id_184">Ethnopharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/experimental-pharmacology-and-drug-discovery" data-event="iBarJournal-sections-a_id_183">Experimental Pharmacology and Drug Discovery</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/gastrointestinal-and-hepatic-pharmacology" data-event="iBarJournal-sections-a_id_186">Gastrointestinal and Hepatic Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/inflammation-pharmacology" data-event="iBarJournal-sections-a_id_188">Inflammation Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/integrative-and-regenerative-pharmacology" data-event="iBarJournal-sections-a_id_178">Integrative and Regenerative Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/neuropharmacology" data-event="iBarJournal-sections-a_id_26">Neuropharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/obstetric-and-pediatric-pharmacology" data-event="iBarJournal-sections-a_id_196">Obstetric and Pediatric Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacoepidemiology" data-event="iBarJournal-sections-a_id_2186">Pharmacoepidemiology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacogenetics-and-pharmacogenomics" data-event="iBarJournal-sections-a_id_198">Pharmacogenetics and Pharmacogenomics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacology-of-anti-cancer-drugs" data-event="iBarJournal-sections-a_id_192">Pharmacology of Anti-Cancer Drugs</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacology-of-infectious-diseases" data-event="iBarJournal-sections-a_id_2216">Pharmacology of Infectious Diseases</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/pharmacology-of-ion-channels-and-channelopathies" data-event="iBarJournal-sections-a_id_179">Pharmacology of Ion Channels and Channelopathies</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/predictive-toxicology" data-event="iBarJournal-sections-a_id_195">Predictive Toxicology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/renal-pharmacology" data-event="iBarJournal-sections-a_id_1357">Renal Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/respiratory-pharmacology" data-event="iBarJournal-sections-a_id_190">Respiratory Pharmacology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/pharmacology/sections/translational-pharmacology" data-event="iBarJournal-sections-a_id_1251">Translational Pharmacology</a></li></ul></div></div> <a href="//www.frontiersin.org/journals/pharmacology/articles" data-event="iBar-a-articles" class="Ibar__link">Articles</a><a href="//www.frontiersin.org/journals/pharmacology/research-topics" data-event="iBar-a-researchTopics" class="Ibar__link">Research Topics</a><a href="//www.frontiersin.org/journals/pharmacology/editors" data-event="iBar-a-editorialBoard" class="Ibar__link">Editorial board</a> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> About journal </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About journal </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Scope</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-editors" target="_self" data-event="iBar-aboutJournal_0-a_scope">Field chief editors</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-scope" target="_self" data-event="iBar-aboutJournal_0-a_scope">Mission & scope</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-facts" target="_self" data-event="iBar-aboutJournal_0-a_scope">Facts</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-submission" target="_self" data-event="iBar-aboutJournal_0-a_scope">Journal sections</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-open" target="_self" data-event="iBar-aboutJournal_0-a_scope">Open access statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#copyright-statement" target="_self" data-event="iBar-aboutJournal_0-a_scope">Copyright statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/about#about-quality" target="_self" data-event="iBar-aboutJournal_0-a_scope">Quality</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">For authors</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/why-submit" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Why submit?</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/article-types" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Article types</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/author-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Author guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/editor-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Editor guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/publishing-fees" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Publishing fees</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/submission-checklist" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Submission checklist</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/pharmacology/for-authors/contact-editorial-office" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Contact editorial office</a></li></ul></div></div></div> <div class="Ibar__spacer"></div> <a href="https://www.frontiersin.org/submission/submit?domainid=1&fieldid=62&specialtyid=0&entitytype=2&entityid=176" data-event="iBarJournal-a-submit" class="Ibar__button Ibar__submit"><span>Submit</span> <span>聽your research</span></a> <a href="/search" aria-label="Search" data-event="iBar-a-search" class="Ibar__icon Ibar__icon--search"><span>Search</span></a> <!----> <!----> <!----> <div class="Ibar__userArea"></div></div></div></nav> <div class="ArticlePage"><div><div class="Layout Layout--withAside Layout--withIbarMix ArticleDetails"><!----> <aside class="Layout__aside"><div class="ArticleDetails__wrapper"><div class="ArticleDetails__aside"><div class="ArticleDetails__aside__responsiveButtons"><div id="FloatingButtonsEl" class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--type ActionsDropDown__button--icon"><span class="ActionsDropDown__button__label">Download article</span></button> <div class="ActionsDropDown__menuWrapper"><!----> <ul class="ActionsDropDown__menu"><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/pdf" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-pdf" class="ActionsDropDown__option"> Download PDF </a></li><li><a href="http://www.readcube.com/articles/10.3389/fphar.2024.1395673" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-readCube" class="ActionsDropDown__option"> ReadCube </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/epub" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-epub" class="ActionsDropDown__option"> EPUB </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/xml/nlm" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-nlmXml" class="ActionsDropDown__option"> XML (NLM) </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div> <div class="ArticleDetails__aside__responsiveButtons__items"><!----> <div class="ArticleDetailsShare__responsive"><button aria-label="Open share options" class="ArticleDetailsShare__trigger"></button> <div class="ArticleDetailsShare"><h5 class="ArticleDetailsShare__title">Share on</h5> <ul class="ArticleDetailsShare__list"><li class="ArticleDetailsShare__item"><a href="https://www.twitter.com/share?url=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395673/full" target="_blank" title="Share on X" aria-label="Share on X" class="ArticleDetailsShare__link ArticleDetailsShare__link--x"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.linkedin.com/share?url=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395673/full" target="_blank" title="Share on Linkedin" aria-label="Share on Linkedin" class="ArticleDetailsShare__link ArticleDetailsShare__link--linkedin"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.facebook.com/sharer/sharer.php?u=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395673/full" target="_blank" title="Share on Facebook" aria-label="Share on Facebook" class="ArticleDetailsShare__link ArticleDetailsShare__link--facebook"></a></li></ul></div></div> <div class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--typeIconButton ActionsDropDown__button--iconQuote"><!----></button> <div class="ActionsDropDown__menuWrapper"><div class="ActionsDropDown__mobileTitle"> Export citation </div> <ul class="ActionsDropDown__menu"><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/endNote" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-endNote" class="ActionsDropDown__option"> EndNote </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/reference" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-referenceManager" class="ActionsDropDown__option"> Reference Manager </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/text" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-simpleTextFile" class="ActionsDropDown__option"> Simple Text file </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/bibTex" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-bibTex" class="ActionsDropDown__option"> BibTex </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div></div></div> <div class="TotalViews"><div class="TotalViews__data"><div class="TotalViews__data__metrics"><div class="TotalViews__data__metrics__number"> 1,275 </div> <div class="TotalViews__data__metrics__text"><div class="TotalViews__data__metrics__label">Total views</div></div></div> <div class="TotalViews__data__metrics"><div class="TotalViews__data__metrics__number"> 431 </div> <div class="TotalViews__data__metrics__text"><div class="TotalViews__data__metrics__label">Downloads</div></div></div> <!----> <div class="ImpactMetricsInfoPopover"><button aria-label="Open impact metrics info" class="ImpactMetricsInfoPopover__button"></button> <div class="ImpactMetricsInfoPopover__tooltip"><button aria-label="Close impact metrics info" class="ImpactMetricsInfoPopover__tooltip__closeButton"></button> <div class="ImpactMetricsInfoPopover__tooltip__text"> Citation numbers are available from Dimensions </div></div></div></div> <div class="TotalViews__viewImpactLink"><span class="Link__wrapper"><a aria-label="View article impact" href="http://loop-impact.frontiersin.org/impact/article/1395673#totalviews/views" target="_blank" data-event="customLink-link-a_viewArticleImpact" class="Link Link--linkType Link--maincolor Link--medium Link--icon Link--chevronRight Link--right"><span>View article impact</span></a></span></div> <div class="TotalViews__altmetric"><div data-badge-popover="bottom" data-badge-type="donut" data-doi="10.3389/fphar.2024.1395673" data-condensed="true" data-link-target="new" class="altmetric-embed"></div> <span class="Link__wrapper"><a aria-label="View altmetric score" href="https://www.altmetric.com/details/doi/10.3389/fphar.2024.1395673" target="_blank" data-event="customLink-link-a_viewAltmetricScore" class="Link Link--linkType Link--maincolor Link--medium Link--icon Link--chevronRight Link--right"><span>View altmetric score</span></a></span></div></div> <div class="ArticleDetailsShare"><h5 class="ArticleDetailsShare__title">Share on</h5> <ul class="ArticleDetailsShare__list"><li class="ArticleDetailsShare__item"><a href="https://www.twitter.com/share?url=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395673/full" target="_blank" title="Share on X" aria-label="Share on X" class="ArticleDetailsShare__link ArticleDetailsShare__link--x"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.linkedin.com/share?url=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395673/full" target="_blank" title="Share on Linkedin" aria-label="Share on Linkedin" class="ArticleDetailsShare__link ArticleDetailsShare__link--linkedin"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.facebook.com/sharer/sharer.php?u=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1395673/full" target="_blank" title="Share on Facebook" aria-label="Share on Facebook" class="ArticleDetailsShare__link ArticleDetailsShare__link--facebook"></a></li></ul></div> <div class="ArticleDetailsEditors"><div class="ArticleDetailsEditors__editors"><div class="ArticleDetailsEditors__title">Edited by</div> <a href="https://loop.frontiersin.org/people/2306927/overview" data-event="editorInfo-a-adrianOo" class="ArticleDetailsEditors__ediorInfo"><figure class="Avatar Avatar--size-32"><img src="https://loop.frontiersin.org/images/profile/2306927/32" alt="Adrian Oo" class="Avatar__img is-inside-mask"></figure> <div class="ArticleDetailsEditors__ediorInfo__info"><div class="ArticleDetailsEditors__ediorInfo__name"> Adrian Oo </div> <div class="ArticleDetailsEditors__ediorInfo__affiliation"> National University of Singapore, Singapore </div></div></a></div></div> <div class="ArticleDetailsEditors"><div class="ArticleDetailsEditors__editors"><div class="ArticleDetailsEditors__title">Reviewed by</div> <a href="https://loop.frontiersin.org/people/212007/overview" data-event="editorInfo-a-adzzieShazleenAzman" class="ArticleDetailsEditors__ediorInfo"><figure class="Avatar Avatar--size-32"><img src="https://loop.frontiersin.org/images/profile/212007/32" alt="Adzzie Shazleen Azman" class="Avatar__img is-inside-mask"></figure> <div class="ArticleDetailsEditors__ediorInfo__info"><div class="ArticleDetailsEditors__ediorInfo__name"> Adzzie Shazleen Azman </div> <div class="ArticleDetailsEditors__ediorInfo__affiliation"> Monash University Malaysia, Malaysia </div></div></a><a href="https://loop.frontiersin.org/people/2683183/overview" data-event="editorInfo-a-zhiXianKong" class="ArticleDetailsEditors__ediorInfo"><figure class="Avatar Avatar--size-32"><img src="https://loop.frontiersin.org/images/profile/2683183/32" alt="Zhi Xian Kong" class="Avatar__img is-inside-mask"></figure> <div class="ArticleDetailsEditors__ediorInfo__info"><div class="ArticleDetailsEditors__ediorInfo__name"> Zhi Xian Kong </div> <div class="ArticleDetailsEditors__ediorInfo__affiliation"> University of Malaya, Malaysia </div></div></a></div></div> <div class="ArticleDetailsGlossary ArticleDetailsGlossary--open"><button class="ArticleDetailsGlossary__header"><div class="ArticleDetailsGlossary__header__title">Table of contents</div> <div class="ArticleDetailsGlossary__header__arrow"></div></button> <div class="ArticleDetailsGlossary__content"><ul class="flyoutJournal"><li><a href="#h1">Abstract</a></li><li><a href="#h2">1 Introduction of GBS</a></li><li><a href="#h3">2 Virulence Factors</a></li><li><a href="#h4">3 Antibiotic resistance in GBS</a></li><li><a href="#h5">4 GBS related clinical diseases in obstetrics and gynecology</a></li><li><a href="#h6">5 Prevention, detection, and treatment of GBS</a></li><li><a href="#h7">6 GBS Vaccine</a></li><li><a href="#h8">7 Conclusion</a></li><li><a href="#h9">Author contributions</a></li><li><a href="#h10">Funding</a></li><li><a href="#h11">Conflict of interest</a></li><li><a href="#h12">Publisher’s note</a></li><li><a href="#h13">References</a></li></ul></div></div> <!----> <div class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--typeOutline ActionsDropDown__button--iconQuote"><span class="ActionsDropDown__button__label">Export citation</span></button> <div class="ActionsDropDown__menuWrapper"><!----> <ul class="ActionsDropDown__menu"><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/endNote" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-endNote" class="ActionsDropDown__option"> EndNote </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/reference" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-referenceManager" class="ActionsDropDown__option"> Reference Manager </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/text" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-simpleTextFile" class="ActionsDropDown__option"> Simple Text file </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/bibTex" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-bibTex" class="ActionsDropDown__option"> BibTex </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div> <div class="CheckForUpdates"><button data-target="crossmark" data-event="checkForUpdates-btn-openModal" class="CheckForUpdates__link"><img src="/article-pages/_nuxt/img/crossmark.5c8ec60.svg" alt="Crossmark icon" class="CheckForUpdates__link__img"> <div class="CheckForUpdates__link__text">Check for updates</div></button></div> <!----> <!----></div> <!----> <div><div class="FloatingButtons"><!----> <div class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--type ActionsDropDown__button--iconDownload"><span class="ActionsDropDown__button__label">Download article</span></button> <div class="ActionsDropDown__menuWrapper"><div class="ActionsDropDown__mobileTitle"> Download </div> <ul class="ActionsDropDown__menu"><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/pdf" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-pdf" class="ActionsDropDown__option"> Download PDF </a></li><li><a href="http://www.readcube.com/articles/10.3389/fphar.2024.1395673" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-readCube" class="ActionsDropDown__option"> ReadCube </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/epub" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-epub" class="ActionsDropDown__option"> EPUB </a></li><li><a href="/journals/pharmacology/articles/10.3389/fphar.2024.1395673/xml/nlm" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-nlmXml" class="ActionsDropDown__option"> XML (NLM) </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div></div> <!----></div></div></aside> <main class="Layout__main"><!----> <section class="ArticleDetails__main"><div class="ArticleLayoutHeader"><div class="ArticleLayoutHeader__info"><h2 class="ArticleLayoutHeader__info__title">REVIEW article</h2> <div class="ArticleLayoutHeader__info__journalDate"><span>Front. Pharmacol.</span><span>, 17 June 2024</span></div> <div class="ArticleLayoutHeader__info__journalDate"> Sec. Pharmacology of Infectious Diseases </div> <div class="ArticleLayoutHeader__info__doiVolume"><span> Volume 15 - 2024 | </span> <a href="https://doi.org/10.3389/fphar.2024.1395673" class="ArticleLayoutHeader__info__doi"> https://doi.org/10.3389/fphar.2024.1395673 </a></div> <!----></div> <!----> <div class="ArticleLayoutHeader__isPartOfRT"><span class="ArticleLayoutHeader__isPartOfRT__label">This article is part of the Research Topic</span> <span class="ArticleLayoutHeader__isPartOfRT__title">Raising the bar: Advancing therapeutic strategies for fighting communicable and noncommunicable diseases</span> <span class="Link__wrapper"><a aria-label="View all 9 articles" href="https://www.frontiersin.org/research-topics/57447/raising-the-bar-advancing-therapeutic-strategies-for-fighting-communicable-and-noncommunicable-diseases/articles" target="_self" data-event="customLink-link-a_viewAll9Articles" class="Link Link--linkType Link--maincolor Link--medium Link--icon Link--chevronRight Link--right"><span>View all 9 articles</span></a></span></div></div> <div class="ArticleDetails__main__content"><div class="ArticleDetails__main__content__main ArticleDetails__main__content__main--fullArticle"><div class="JournalAbstract"><div class="JournalAbstract__titleWrapper"><h1>Current research update on group B streptococcal infection related to obstetrics and gynecology</h1> <!----></div> <!----></div> <div class="JournalFullText"><div class="JournalAbstract"><a id="h1" name="h1"></a><div class="authors"><span class="author-wrapper"><a href="https://loop.frontiersin.org/people/2243969" class="user-id-2243969"><img class="pr5" src="https://loop.frontiersin.org/images/profile/2243969/74" onerror="this.onerror=null;this.src='https://loop.frontiersin.org/cdn/images/profile/default_32.jpg';" alt="Ying Liu">Ying Liu</a></span><span class="author-wrapper"><a href="https://loop.frontiersin.org/people/2673124" class="user-id-2673124"><img class="pr5" src="https://loop.frontiersin.org/images/profile/2673124/74" onerror="this.onerror=null;this.src='https://loop.frontiersin.org/cdn/images/profile/default_32.jpg';" alt="Hao Ai
">Hao Ai</a>*</span></div><ul class="notes"><li>Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning, China</li></ul><p class="mb15">Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.</p><div class="clear"></div></div><div class="JournalFullText"><a id="h2" name="h2"></a><h2>1 Introduction of GBS</h2><a id="h2-1" name="h2-1"></a><h3 class="pt0">1.1 Microbiology</h3><p class="mb0">Group B streptococcal (GBS) is a Gram-positive, beta-hemolytic bacterium that appears as round or elliptical chains of cocci, usually in pairs or short chains, with a cell diameter of approximately 0.5–1.5 μm (<a href="#B32">Burcham et al., 2019</a>). GBS is mainly classified based on its polysaccharide antigens, with at least ten different types of polysaccharide antigens identified (<a href="#B210">Tiruvayipati et al., 2021</a>). The most common classification method is based on the capsular polysaccharide (CPS), which divides GBS into types Ia, Ib, II, III, IV, and others (<a href="#B29">Bianchi-Jassir et al., 2020</a>). GBS is commonly found in the human digestive and reproductive tracts and typically ferments carbohydrates to produce lactic acid and carbon dioxide gas during the fermentation process (<a href="#B76">Goel et al., 2020</a>). GBS requires a culture medium rich in blood components for growth and thrives in an acidic environment with a pH range of 5–6.5 (<a href="#B30">Bnfaga et al., 2023</a>). GBS is sensitive to multiple antibiotics but may also exhibit some resistance (<a href="#B102">Koide et al., 2019</a>). The genome size of GBS is approximately 2-3 Mbp. Its genome is a circular chromosome containing numerous coding and non-coding sequences. The structure and arrangement of the genome may vary among different strains. GBS exhibits genetic diversity, meaning that different strains may have distinct genome compositions and variations (<a href="#B119">Liu et al., 2023</a>). The gene expression of GBS is influenced by complex regulatory networks, including transcription factors and other regulatory proteins, which help the bacterium adapt to and survive in different environments (<a href="#B66">Erickson Keesha et al., 2017</a>). The GBS genome encodes many factors (<a href="#B198">Spencer et al., 2019</a>) associated with pathogenicity, such as capsule polysaccharides, surface proteins, hemolysins, and enterotoxins. These factors play important roles in pathogenicity and the interaction with the host (<a href="#B173">Rajagopal, 2009</a>).</p><p class="mb0">Genomic analysis plays an important role in studying the genetic characteristics and pathogenic mechanisms of GBS (<a href="#B184">Schindler et al., 2023</a>). Through sequencing technology (<a href="#B166">Preenanka and Safeena, 2023</a>), the complete genome sequence of GBS can be obtained, which can then be used to study aspects such as genome structure, gene coding, and function. By comparing and analyzing the genome sequences of different strains, differences between different strains can be revealed, such as genome rearrangements and single nucleotide polymorphism (SNP) variations, and further research can be conducted on their relationship with pathogenicity. Transcriptome analysis techniques can be used to study changes in gene expression of GBS under different environmental conditions (<a href="#B194">Sitkiewicz et al., 2009</a>), revealing its adaptability and biological characteristics. The pathogenic mechanisms of GBS include several aspects (<a href="#B237">Zadoks et al., 2011</a>): the polysaccharide capsule of GBS is one of its main pathogenic factors. The capsule polysaccharide helps bacteria evade attacks from the host immune system and enhances their resistance to phagocytic cells, thereby increasing the chances of infection (<a href="#B225">Wang et al., 2022a</a>). Surface proteins of GBS are also an important part of its pathogenic mechanisms (<a href="#B232">Xu et al., 2022</a>). Surface proteins can bind to receptors on host cell surfaces, promoting bacterial adhesion and invasion. Some surface proteins also exhibit variability, making it more difficult for bacteria to be recognized and eliminated by the immune system. GBS produces hemolysins (<a href="#B176">Rosa-Fraile et al., 2014</a>), which can destroy the membranes of host cells, leading to cell lysis and further promoting bacterial invasion and spread. GBS also causes inflammation through cell infiltration (<a href="#B107">Kuperwaser et al., 2023</a>). It can stimulate host immune cells to release inflammatory mediators such as cytokines and chemokines, leading to tissue inflammation and damage. When infected with GBS, the host immune system produces specific antibodies and cellular immune responses. However, bacteria can interfere with host immune responses through various mechanisms, such as inhibiting cytokine production, evading phagocytosis by immune cells, and developing resistance, thereby enhancing their survival and reproduction. GBS is one of the main pathogens causing preterm birth and neonatal death (<a href="#B112">Le Gallou et al., 2023</a>). GBS infections have certain epidemiological characteristics worldwide (<a href="#B189">Shabayek et al., 2018</a>), influenced by factors such as geographic location, population demographics, and healthcare practices (<a href="#B192">Sidky and Thomas, 2002</a>). The distribution and prevalence of GBS infections can differ significantly across various parts of the world, often due to environmental factors, climate, and the presence of specific GBS strains, which can affect local population susceptibility and the effectiveness of regional health strategies. Age distribution, genetic predispositions among certain populations, and socio-economic factors can influence the rate of GBS colonization and infection, leading to variations in disease incidence and outcomes among different demographic groups (<a href="#B11">Alizzi et al., 2022</a>). The availability and implementation of screening and prevention measures, such as intrapartum antibiotic prophylaxis for GBS-positive pregnant women, greatly influence the incidence of neonatal GBS infections, with variations in healthcare quality and policies impacting overall disease management and outcomes (<a href="#B186">Schuchat, 1995</a>). GBS is one of the main causes of preterm birth and neonatal death (<a href="#B241">Zhu and Lin, 2021</a>). The main mode of transmission of GBS is vertical transmission (<a href="#B135">Mei et al., 2023</a>), that is, transmission from an infected individual to a newborn or uninfected pregnant woman. Other modes of transmission include close contact transmission and healthcare-associated infections, but they are relatively rare. Under normal circumstances, the human immune system has a certain degree of protection against GBS (<a href="#B105">Korir et al., 2017</a>). However, newborns and immunocompromised individuals are susceptible to infection. To prevent GBS infection, many countries and regions have implemented a series of preventive strategies, such as prenatal screening and prophylactic administration of antibiotics (<a href="#B220">Vieira et al., 2019</a>).</p><p class="mb0">The diagnostic methods of GBS are commonly used techniques in research and clinical practice. For the diagnosis of maternal infection, amniotic fluid samples can be cultured to detect the growth of GBS (<a href="#B183">Sayres et al., 2023</a>). For screening of maternal infection, commonly used methods involve collecting vaginal and/or rectal samples for culture (<a href="#B161">Pierański et al., 2023</a>). Screening before delivery is an important preventive strategy, especially for the diagnosis of neonatal infection, which can be detected through blood culture to determine the presence of GBS infection. Molecular biology techniques such as polymerase chain reaction (PCR) can detect the nucleic acid of GBS with high sensitivity and specificity (<a href="#B59">d'Otreppe et al., 2023</a>). Understanding the susceptibility of GBS to antibiotics can guide the selection of clinical treatment (<a href="#B87">Husen et al., 2023</a>). Commonly used antibiotic susceptibility testing methods include: disc diffusion method (<a href="#B211">Totadhri et al., 2022</a>), where paper discs containing different antibiotics are placed on a culture medium to observe the relationship between bacterial growth and inhibition zones; broth dilution method (<a href="#B201">Stepanović et al., 2003</a>), which gradually dilutes different concentrations of antibiotics in a culture medium to observe the minimum inhibitory concentration; E-test (<a href="#B157">Persson et al., 2008</a>), which uses a gradient concentration of antibiotics on a strip to observe the relative position between bacterial growth and inhibition zones. These methods can be used to determine the susceptibility of GBS to a specific antibiotic, helping doctors choose appropriate drugs for treatment.</p><p class="mb0">Preventing and controlling GBS infections is crucial for high-risk populations such as newborns and pregnant women. It is recommended to screen pregnant women for GBS colonization in the vagina and rectum, typically during late pregnancy (around 35–37 weeks). This can help detect the presence of GBS carriage and take appropriate preventive measures. For pregnant women who test positive for GBS carriage, it is advised to receive intravenous antibiotic prophylaxis during labor to reduce the risk of neonatal infection (<a href="#B79">Gurudas et al., 2022</a>). Commonly used antibiotics include penicillin and ceftriaxone (<a href="#B9">Ali et al., 2022a</a>), with specific antibiotic choices based on local treatment guidelines. If the mother is at risk of GBS infection, the newborn usually undergoes special observation and monitoring after birth. For high-risk newborns, antibiotic treatment may be needed to prevent infection. Necessary isolation and protective measures should be implemented in neonatal intensive care units or other settings prone to infection outbreaks to minimize the risk of pathogen transmission. Education and awareness campaigns about GBS infection should be conducted for healthcare workers, pregnant women, and families to enhance understanding and consciousness of prevention and control measures. Strengthening surveillance and reporting mechanisms, tracking the epidemiological characteristics of infection cases, and promptly implementing public health interventions are essential to reduce the spread and occurrence of GBS infections.</p><a id="h3" name="h3"></a><h2>2 Virulence Factors</h2><p class="mb15">GBS commonly colonizes the human genital tract and is one of the major pathogens during the perinatal period (<a href="#B14">Armistead et al., 2019</a>). It can cause infections in pregnant women and, in severe cases, even jeopardize the lives of newborns. GBS possesses multiple virulence factors that are associated with bacterial adhesion, immune evasion, and invasive damage. These virulence factors enable the bacteria to persist within the human body, increasing the likelihood of transmission and worsening the infection, thereby affecting patient prognosis. GBS virulence factors elucidated in this review are shown in <a href="#F1">Figure 1</a>.</p><div class="DottedLine"></div><div class="Imageheaders">Figure 1</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-g001.jpg" name="Figure1" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-g001.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-g001.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-g001.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-g001.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-g001.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-g001.jpg" alt="www.frontiersin.org" id="F1" loading="lazy"> </picture> </a><p><b>Figure 1</b>. Summary of GBS virulence factors elucidated in this review, with their mechanisms.</p></div><div class="clear"></div><div class="DottedLine"></div><a id="h3-1" name="h3-1"></a><h3 class="pt0">2.1 Adherence-associated virulence factors</h3><p class="mb0">Fibrinogen-binding proteins (Fbs) are crucial proteins found on GBS (<a href="#B33">Buscetta et al., 2014</a>). Three types of Fbs proteins have been identified: FbsA, FbsB, and FbsC. These proteins adhere to human skin cells to facilitate the colonization of GBS in the vaginal area. FbsA promotes bacterial adhesion to mucosal surfaces and increases their sensitivity to phagocytosis. FbsB is involved in the formation of bacterial biofilms and facilitates the invasion of lung epithelial cells by interacting with fibrinogen. Conversely, the loss of FbsC significantly impairs the adhesion, invasion, and biofilm formation abilities of the bacteria. FbsC, a pivotal factor in the brain colonization process by GBS, is notably absent in the notably aggressive ST17 strains, which are a sequence type known for their heightened virulence and strong association with serious neonatal infections, such as meningitis (<a href="#B96">Kardos et al., 2019</a>; <a href="#B233">Yao et al., 2020</a>). These findings are of significant importance in understanding the adhesion, invasion, and colonization mechanisms of GBS (<a href="#B122">Liu et al., 2022</a>).</p><p class="mb0">Serine-rich repeat proteins (Srr), which are rich in serine and characterized by amino acid sequence variations, can be divided into two subtypes, Srr1 and Srr2, in GBS (<a href="#B37">Chan et al., 2020</a>). These proteins not only mediate invasion of endothelial cells by the bacteria but also assist in bacterial adherence by locking onto docking mechanisms. The process referred to as “locking onto docking mechanisms” implies the precise attachment or binding of these proteins to specific structures or receptors on the surface of host cells. This binding can be likened to inserting a key into a lock, where the Srr proteins (the “key”) have a specific molecular structure that allows them to securely attach to certain cell surface receptors or structures (the “dock”). This interaction facilitates bacterial adherence and invasion into host cells, thereby aiding the infection process. Through this precise docking mechanism, Srr proteins help to solidify the initial contact between GBS and the cells, further facilitating bacterial invasion and colonization. This mechanism is crucial not only for the pathogen’s adherence phase but also plays a role in its subsequent penetration through cellular barriers and dissemination within the host. Understanding this mechanism is therefore of significant importance for developing new strategies to combat pathogens that employ such mechanisms for infection. Most strains of GBS express Srr1, which promotes better adherence to the vaginal epithelium through its binding to human fibrinogen. Additionally, Srr1 enhances stability by inhibiting proteolytic activities through glycosylation, thereby prolonging bacterial adhesion and persistence. The stability enhanced by Srr1 refers to the structural and functional stability of the Srr1 protein itself on the surface of GBS bacteria. This stability is crucial for the prolonged adhesion and persistence of the bacteria on host tissues, such as the vaginal epithelium. Glycosylation of Srr1, a biochemical process in which a carbohydrate is covalently attached to the protein, plays a key role in this context. This glycosylation process can protect Srr1 from being degraded by proteolytic enzymes present in the host environment. Proteolytic enzymes are capable of breaking down proteins into peptides or amino acids, which could potentially disrupt the adherence mechanism of the bacteria to host cells. Therefore, by inhibiting proteolytic activities through glycosylation, Srr1 maintains its integrity and functionality longer, promoting a more stable bacterial adherence to host tissues. On the other hand, Srr2, a homologue of Srr1, is associated with the highly virulent clonal complex CC17. It exhibits stronger binding to human fibrinogen than Srr1 and strains expressing Srr2 are more pathogenic compared to those lacking Srr2. While Srr1 is expressed more abundantly in GBS, it cannot bind to plasminogen and plasmin, whereas Srr2 effectively interacts with them to enhance adherence strength. The interaction between bacterial surface proteins and host proteins plays a crucial role in the virulence of pathogens. In the case of GBS, the glycoproteins Srr1 and Srr2 have been identified as key players in adherence strength. While Srr1 is the most dominant glycoprotein, it is unable to bind to plasminogen and plasmin (<a href="#B122">Liu et al., 2022</a>). On the other hand, Srr2 effectively interacts with plasminogen and plasmin, enhancing adherence strength (<a href="#B122">Liu et al., 2022</a>). This difference in binding capabilities between Srr1 and Srr2 highlights the importance of specific protein interactions in bacterial pathogenicity. In a similar context, <em>Staphylococcus aureus</em> has been shown to utilize adhesive virulence factors to resist host defenses. The staphylokinase (SAK) protein interacts with the serine protease domain of plasmin, enhancing resistance to digestion (<a href="#B175">Risser et al., 2022</a>). This interaction with plasmin is crucial for the pathogen’s ability to evade host immune responses. Additionally, the molecular interactions of human plasminogen with fibronectin-binding proteins further emphasize the significance of protein-protein interactions in bacterial adherence and virulence (<a href="#B175">Risser et al., 2022</a>). Overall, the ability of bacterial surface proteins to interact with host proteins such as plasminogen and plasmin is a key determinant of pathogenicity. While some proteins like Srr1 lack the ability to bind to these host proteins, others like Srr2 can effectively interact with them to enhance adherence strength. The structures of Srr1 and Srr2 are highly conserved in GBS, and vaccination with the corresponding “latch peptide” has been shown to provide serotype-independent protection against relevant infections in mice (<a href="#B116">Lin et al., 2017</a>).</p><p class="mb0">The laminin-binding protein (Lmb) (<a href="#B197">Spellerberg et al., 1999</a>) in GBS, encoded by the <em>lmb</em> gene, facilitates adherence of the bacteria to extracellular matrix molecules in the human body and binds to the major component of the basement membrane, laminin. Lmb participates in the regulation of intracellular metal homeostasis by coordinating zinc ions with histidine residues to form a tetrahedral structure. This enables the control of zinc influx and efflux in bacterial cells, thereby prolonging survival in the human body and promoting pathogenicity. Bacteria lacking Lmb not only exhibit reduced invasiveness towards human brain microvascular endothelial cells and impaired neurotropism but also display decreased resistance to zinc ions. Lmb mediates the attachment of GBS to human laminin, facilitating bacterial colonization and invasion (<a href="#B122">Liu et al., 2022</a>). The <em>lmb</em> gene encodes Lmb, which plays a crucial role in binding to laminin, a component of host cells, thereby increasing GBS’s pathogenic potential (<a href="#B14">Armistead et al., 2019</a>). Additionally, Lmb promotes GBS adherence to host tissues, reflecting changes in GBS pathogenicity (<a href="#B214">Upadhyay et al., 2022</a>). Studies have shown that Lmb, along with other virulence factors such as hypervirulent GBS adhesin (HvgA), contributes to the high pathogenicity of certain GBS strains (<a href="#B191">Shimizu et al., 2020</a>; <a href="#B94">Kamińska et al., 2024</a>). Furthermore, Lmb is identified as an immunogenic protein of GBS, interacting with host immune cells and potentially modulating host immune responses (<a href="#B56">Dobrut and Brzychczy-Włoch, 2022</a>). The crystal structure of Lmb has been elucidated, providing insights into its function and potential as a target for therapeutic interventions (<a href="#B172">Ragunathan et al., 2013</a>). Overall, the laminin-binding protein Lmb is a critical virulence factor in GBS pathogenicity, highlighting its importance in the colonization and invasion processes of this pathogen (<a href="#B121">Liu et al., 2019</a>; <a href="#B109">Lacasse et al., 2022</a>).</p><p class="mb0">The immunogenic bacterial adhesin (BibA) (<a href="#B179">Santi et al., 2007</a>) is a cell wall-anchored protein produced by GBS that promotes bacterial adherence to the surface of human cervical and lung epithelial cells. This protein can also interfere with the host’s antimicrobial defense mechanisms, such as phagocytosis by white blood cells, by regulating the interaction between the bacteria and complement C4-binding protein, thereby aiding the survival of GBS in the bloodstream. A report suggest that BibA is a strong and specific vaccine target. It demonstrated in a mouse model that a vaccine formulation containing BibA induced the production of protective antibodies against GBS, which could help prevent vaginal colonization and invasive infections caused by this bacterium (<a href="#B58">Dos Santos et al., 2020</a>).</p><p class="mb0">The hypervirulent GBS adhesin (HvgA) is a cell wall-anchored protein specific to the highly pathogenic clone CC17 of GBS (<a href="#B113">Li et al., 2019</a>). It is closely associated with the development of late-onset diseases (LOD), such as neonatal meningitis (<a href="#B162">Pietrocola et al., 2018</a>). Enhanced expression of HvgA facilitates bacterial adherence to intestinal epithelial cells, choroid plexus epithelial cells, and microvascular endothelial cells that constitute the blood-brain barrier (BBB). In a mouse experiment, HvgA-expressing GBS showed greater ability to colonize and penetrate the blood-brain barrier compared to strains lacking HvgA, leading to severe consequences. This suggests that GBS, under the mediation of HvgA, can breach the blood-brain barrier and cause central nervous system infections (<a href="#B97">Kekic et al., 2021</a>).</p><p class="mb0">The pili (PI) of GBS are considered essential structures for promoting bacterial colonization, biofilm formation, and central nervous system invasion (<a href="#B48">Danne and Dramsi, 2012</a>). The genes encoding these pili are categorized into two types: <em>Pili-1</em> (<em>PI-1</em>) and <em>Pili-2</em> (<em>PI-2</em>). Among them, <em>PI-2</em> is further divided into two subtypes, <em>PI-2a</em> and <em>PI-2b</em>. While the genes for pili may be present in varying degrees in the bacterial genome, a single strain of GBS may express only one type of pili. The GBS pili consist of three structural protein subunits: pili associated adhesin (PilA) at the tip, pili shaft backbone protein (PilB), and pili anchor (PilC) at the base. Research has shown that PilA enhances bacterial adherence to vaginal and cervical epithelial cells (<a href="#B158">Pezzicoli et al., 2008</a>), while the biofilm synthesized by PilB is involved in bacterial invasion and resistance to phagocytosis (<a href="#B131">Maeda et al., 2021</a>). One study has found that since almost all GBS strains possess pili, a vaccine containing conserved components of the pili island would provide high-level protection against the majority of GBS strains (<a href="#B133">Margarit et al., 2009</a>).</p><a id="h3-2" name="h3-2"></a><h3 class="pt0">2.2 Bacterial immune evasion related virulence factors</h3><p class="mb0">The capsular polysaccharide (CPS) of GBS aids in bacterial colonization and survival in the human body. CPS is an important virulence factor that mediates immune evasion. Its specificity is determined by the specific arrangement of sugars within each polysaccharide repeat unit. GBS can be classified into 10 CPS serotypes (Ia, Ib, II-IX). All 10 serotypes can cause disease, although the types and rates of disease vary among different serotypes (<a href="#B114">Lin E. et al., 2021</a>). The distribution of CPS serotypes is influenced by factors such as geographic region and ethnicity (<a href="#B229">Wu et al., 2019</a>). CPS not only resists phagocytosis by immune cells but also inhibits the activation of neutrophils and macrophages, thereby helping the bacteria evade the immune defenses of the host. It also promotes biofilm formation and interferes with complement defense, playing an important role in the infection process. GBS CPS contains α2,3-linked sialic acid residues (Sia), which effectively inhibit platelet-mediated killing of GBS, counteract antibacterial components produced by platelets, and can bind to the Siglec-9 receptor on the surface of platelets, thus inhibiting platelet activation (<a href="#B14">Armistead et al., 2019</a>). CPS is an important target for vaccine development. Monovalent vaccines designed based on common CPS serotypes (Ia, Ib, II, III, and V) have entered phase I clinical trials (<a href="#B21">Baker et al., 1999</a>; <a href="#B19">Baker et al., 2000</a>; <a href="#B22">Baker et al., 2003</a>; <a href="#B20">Baker et al., 2004</a>). Trivalent vaccines targeting serotypes Ia, Ib, and III have shown high levels of specificity, safety, and tolerance in infants (<a href="#B130">Madhi et al., 2017</a>; <a href="#B205">Swamy et al., 2020</a>). A hexavalent vaccine containing serotypes Ia, Ib, II, III, IV, and V has been developed by BUURMAN et al. and it is the most comprehensive vaccine to date, including the largest number of serotypes (<a href="#B34">Buurman et al., 2019</a>). Animal experimental results have shown that this hexavalent vaccine has a good immunogenicity and is expected to apply for clinical trials.</p><p class="mb0">ALP family proteins are commonly expressed virulence factors in GBS that are also associated with immune evasion (<a href="#B153">Paoletti and Kasper, 2019</a>; <a href="#B115">Lin L. et al., 2021</a>). This family of proteins includes ALP-C, ALP-1, ALP-2, ALP-3, ALP-4, and Rib, encoded by the genes <em>bca</em>, <em>alp1</em>, <em>alp2</em>, <em>alp3</em>, <em>alp4</em>, and <em>rib</em>, respectively, and their amino acid sequences exhibit homology (<a href="#B72">Furfaro et al., 2018</a>). A study has found that antibodies designed against ALP family proteins in mouse models attenuate infections caused by homologous GBS strains, indicating that loss of the repetitive gene sequences in this protein family is a mechanism by which bacteria interact with and evade the human immune system (<a href="#B153">Paoletti and Kasper, 2019</a>). Beta-C protein, which is similar to ALP-C and encoded by the <em>bac</em> gene, can bind to IgA antibodies and inhibit complement-mediated phagocytosis. Immunizing pregnant mice with this protein immunogen protects newborn mice from invasive GBS infection, possibly by accelerating the phagocytosis of bacteria by white blood cells (<a href="#B238">Zastempowska et al., 2022</a>). On the other hand, since over 90% of GBS strains express one or more proteins from this family, the ALP protein family is a highly specific vaccine target (<a href="#B73">Gabrielsen et al., 2017</a>). Vaccines based on the highly immunogenic N-terminal domain of ALP-C and Rib (GBS-NN) have completed phase I clinical trials, resulting in over 30 times increase in GBS-specific antibodies in the sera of 240 female participants (<a href="#B117">Lin et al., 2018</a>).</p><p class="mb0">Streptococcal C5a peptidase from GBS is encoded by the <em>scpB</em> gene and is a serine protease. It can cleave the neutrophil chemoattractant C5a, thereby interrupting complement activation. It also functions as an allergenic toxin involved in the invasion of epithelial cells (<a href="#B189">Shabayek et al., 2018</a>), inhibits neutrophil recruitment (<a href="#B213">Tulyaprawat et al., 2021</a>), and aids in GBS binding to fibronectin, facilitating the invasion of human epithelial cells (<a href="#B122">Liu et al., 2022</a>). Bone marrow-derived mast cells (BMMC) contain abundant factor XIIIA (FXIIIA), which has been recently demonstrated to crosslink fibrinogen through the contribution of <em>scpB</em> gene, increasing the capture probability of GBS within fibrin thrombi and assisting in host defense against GBS infection (<a href="#B163">Piliponsky et al., 2022</a>). C5a peptidase is highly conserved and widely expressed in GBS. Researchers further evaluated the potential as a vaccine antigen by using a mouse model. They encapsulated C5a peptidase in microspheres and inoculated mice, finding that mice immunized with C5a peptidase encapsulated microspheres exhibited a high immune response against GBS, and the mortality rate was significantly reduced compared to mice not receiving C5a peptidase encapsulated microspheres (<a href="#B180">Santillan et al., 2008</a>; <a href="#B181">Santillan et al., 2011</a>).</p><a id="h3-3" name="h3-3"></a><h3 class="pt0">2.3 Bacterial invasion associated virulence factors</h3><p class="mb0">GBS belonging to beta-hemolytic streptococci produces β-hemolysin encoded by the <em>cyl E</em> gene and the CAMP factor encoded by the <em>cfb</em> gene, which cause various tissue damage by lysing human cells (<a href="#B122">Liu et al., 2022</a>). β-hemolysin itself possesses lytic properties, disrupting cell membrane structure and function, leading to cytolysis and cell death. Transcription of the <em>cyl E</em> gene and production of hemolysin are negatively regulated by the CovR/S two-component system, promoting the release of inflammatory factors by host cells to enhance bacterial damage to the host (<a href="#B104">Koo et al., 2019</a>). The CAMP factor aggregates on the cell membrane surface, forming dispersed pores that induce cell lysis. A crucial phenotypic test used in clinical laboratories to identify GBS is the CAMP test, which is based on the synergy between the CAMP factor and β-hemolysin from <em>Staphylococcus aureus</em>, resulting in the lysis of blood cells and the formation of a characteristic arrowhead-shaped hemolytic zone (<a href="#B122">Liu et al., 2022</a>).</p><p class="mb0">Streptococcal fibronectin-binding protein A (SfbA) is highly conserved in GBS and facilitates the invasion of GBS into human vaginal and cervical cells, brain microvascular endothelial cells, and astrocytes, but it does not enhance GBS adhesion to host cells (<a href="#B189">Shabayek et al., 2018</a>). Additionally, SfbA plays a crucial role in the interaction between GBS and the blood-brain barrier and in the pathogenesis of GBS meningitis. Immunization targeting SfbA can help prevent neonatal GBS meningitis infection (<a href="#B143">Mu et al., 2014</a>). The fibronectin-binding protein encoded by the <em>pavA</em> gene is an extracellular surface protein of GBS that is involved in GBS colonization. This protein, along with SfbA, contributes to GBS colonization and establishment of the ecological niche in the vagina (<a href="#B75">Gendrin et al., 2018</a>; <a href="#B235">Yoshida et al., 2021</a>). The pathogenesis of streptococcal infections is a complex process involving various virulence factors and regulatory mechanisms. One such factor is the fibronectin-binding protein A gene, which plays a crucial role in the adherence of streptococci to host cells. A study has shown that disruption of genes encoding fibronectin-binding proteins can reduce bacterial adherence to human endothelial cells (<a href="#B52">Deng et al., 2019</a>). Additionally, fibronectin-binding proteins have been implicated in promoting inflammation during the pathogenesis of meningitis caused by <em>streptococci</em> (<a href="#B52">Deng et al., 2019</a>).</p><p class="mb0">Hyaluronidase, an extracellular enzyme released by GBS, is encoded by the <em>hylB</em> gene. This enzyme degrades hyaluronic acid polymers, which are present in the extracellular matrix of human cells, into disaccharide units, disrupting cellular signaling and promoting the expression of inflammatory mediators. It has the capability to break down hyaluronic acid in the connective tissue matrix, disintegrate proteoglycans in connective tissues, and regulate the immune response during colonization and invasion by the bacteria, suppressing the production of reactive oxygen species (ROS) and resisting the action of neutrophils (<a href="#B45">Coleman et al., 2021</a>; <a href="#B108">Kurian and Modi, 2022</a>). Most importantly, hyaluronidase can breach the barrier between mother and fetus, allowing GBS to ascend from the vagina to the fetus, leading to fatal infections in the fetus (<a href="#B122">Liu et al., 2022</a>). GBS virulence factors with their specific targets and mechanisms are shown in <a href="#T1">Table 1</a>.</p><div class="DottedLine"></div><div class="Imageheaders">Table 1</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t001.jpg" name="Table1" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t001.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t001.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t001.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t001.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t001.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t001.jpg" alt="www.frontiersin.org" id="T1" loading="lazy"> </picture> </a><p><b>Table 1</b>. Summary of GBS virulence factors with their specific targets, mechanisms and references.</p></div><div class="clear"></div><div class="DottedLine"></div><a id="h4" name="h4"></a><h2>3 Antibiotic resistance in GBS</h2><p class="mb15">GBS poses considerable risks for both expectant mothers and their babies. In pregnant women, it can lead to serious infections such as sepsis, inflammation of the fetal membranes known as chorioamnionitis, and postpartum endometritis. Additionally, GBS can cause adverse pregnancy outcomes, including premature rupture of membranes, miscarriage, preterm delivery, and intrauterine growth restriction. Late-pregnancy colonization by GBS stands as a major threat for neonatal infection (<a href="#B38">Chattopadhyay et al., 2011</a>), with approximately 1%–2% of newborns from GBS colonization-positive mothers contracting invasive infections (<a href="#B236">Yu et al., 2011</a>). These newborns primarily suffer from sepsis and meningitis that are both aggressive and life-threatening. Consequently, such infections have high mortality and disability rates, jeopardizing the health and wellbeing of the affected neonates.</p><p class="mb15">The implementation of intrapartum antibiotic prophylaxis (IAP) strategies has significantly reduced the incidence and adverse impacts of perinatal GBS infections in European and American countries (<a href="#B141">MMWR, 1997</a>). However, the overuse of antibiotics in recent years has led to growing concerns about the emergence of antibiotic-resistant GBS strains on a global scale. Understanding the resistance patterns of GBS is of critical importance for guiding the rational use of antibiotics in clinical settings.</p><a id="h4-1" name="h4-1"></a><h3 class="pt0">3.1 Penicillin resistance in GBS and its underlying mechanisms</h3><p class="mb0">Compared to the high resistance rates observed with erythromycin and clindamycin, numerous studies have confirmed that GBS retains high sensitivity towards penicillin, which remains the preferred drug for the prophylactic treatment of GBS infections (<a href="#B218">Verani et al., 2010</a>). However, with the rising use of antibiotics, a change in sensitivity has been detected. Since 1994, reports of GBS strains with reduced penicillin susceptibility (PRGBS) have emerged sporadically. Since 2008, there has been evidence suggesting an increasing trend in the minimum inhibitory concentration (MIC) values of penicillin against GBS, indicating a tendency towards resistance (<a href="#B99">Kimura et al., 2008</a>; <a href="#B147">Nagano et al., 2012</a>). PRGBS resistant to beta-lactam antibiotics is an important emerging problem. Cases of PRGBS have been reported in regions such as Hong Kong (<a href="#B43">Chu et al., 2007</a>), the United States (<a href="#B47">Dahesh et al., 2008</a>), Canada (<a href="#B124">Longtin et al., 2011</a>), and Japan (<a href="#B99">Kimura et al., 2008</a>), with MIC values reaching from 0.25 to 1.00 mg/L. In Japan, studies have shown a high isolation rate of multidrug-resistant (MDR) group B streptococci with reduced penicillin susceptibility in Japan, indicating a growing issue with antibiotic resistance in this region (<a href="#B8">Ali et al., 2022b</a>; <a href="#B103">Koide et al., 2022</a>; <a href="#B98">Khan et al., 2023</a>; <a href="#B219">Verma et al., 2023</a>). Currently, the mechanisms underlying the reduced sensitivity of GBS to penicillin are not fully understood. Japanese researchers have attributed the decrease in penicillin susceptibility to mutations in the genes encoding penicillin-binding proteins (PBPs), specifically <em>PBP1A</em>, <em>PBP2B</em>, and <em>PBP2X</em> genes [101–103]. Notably, amino acid substitutions V405A and Q557E in <em>PBP2X</em> gene have been found to form unstable proteins, leading to a reduction and weakened affinity of the associated penicillin-binding proteins, which is a major mechanism of decreased penicillin sensitivity in GBS (<a href="#B215">Uruén et al., 2022</a>). Moreover, multiple amino acid substitutions in PBPs 2X, 2B, and 1A have been discovered (<a href="#B99">Kimura et al., 2008</a>; <a href="#B147">Nagano et al., 2012</a>). Research in Canada on PRGBS identified amino acid substitutions in multiple PBPs but did not find the V405A and Q557E substitutions in <em>PBP2X</em> gene (V405A refers to a substitution where valine (V) at position 405 in the protein sequence is replaced by alanine (A), and Q557E refers to a substitution where glutamine (Q) at position 557 is replaced by glutamic acid (E)) (<a href="#B124">Longtin et al., 2011</a>).</p><a id="h4-2" name="h4-2"></a><h3 class="pt0">3.2 Resistance to erythromycin and clindamycin in GBS and its underlying mechanisms</h3><p class="mb0">Penicillin is the front-line treatment for both prevention and management of GBS infections. For those allergic to penicillin, clindamycin and erythromycin serve as the primary alternatives and are used by approximately 20% of GBS carriers. With the increasing use of these drugs, there has been a global rise in resistance to erythromycin and clindamycin (<a href="#B182">Savoia et al., 2008</a>; <a href="#B177">Sadowy et al., 2010</a>).</p><p class="mb0">The resistance rate of GBS among pregnant women has been a growing concern in recent years. Studies from various regions have reported high rates of antimicrobial resistance in GBS isolates. Du et al. (<a href="#B60">Du et al., 2021</a>) found that in Vietnamese pregnant women, the multidrug-resistance rate was 59.19%, with 8.46% of isolates resistant to six to seven antibiotics. Similarly, Bae et al. (<a href="#B18">Bae et al., 2022</a>) reported a nationwide GBS colonization rate of 10.6% in pregnant Korean women. Furthermore, Du et al. (<a href="#B217">Van Du et al., 2021</a>) highlighted the importance of considering the high rates of erythromycin, clindamycin, and multidrug resistance in GBS as a risk factor for neonates. This is supported by Hsu et al. (<a href="#B83">Hsu et al., 2023</a>), who found that serotype Ib GBS strains had significantly higher rates of resistance to erythromycin and clindamycin compared to other serotypes. Moreover, Wang et al. (<a href="#B222">Wang et al., 2023</a>) conducted a systematic review and meta-analysis in China, indicating a concerning emergence of penicillin resistance among GBS strains. This aligns with the findings of Verma et al. (<a href="#B219">Verma et al., 2023</a>), who reported the highest resistance rate for penicillin among all tested antibiotics in GBS isolates of Indian origin.</p><p class="mb0">GBS exhibits resistance to macrolide(M), clindamycin(L), and Streptogramin B(SB), together classified as the MLS group, encompassing three distinct yet functionally related types of antibiotics. There are three predominant mechanisms of GBS resistance to macrolide antibiotics:</p><p class="mb0">M Phenotype Resistance: The resistance mechanism involves active efflux, where efflux pumps extrude the antibiotic out of the cell, leading to resistance. The efflux pump-related proteins are encoded by <em>mef</em> genes, which confer resistance to 14- and 15-membered ring macrolides but sensitivity to 16-membered macrolides, clindamycin, and Streptogramin B. This typically results in moderate-level resistance, with erythromycin MIC ranging from 1 to 32 mg/L. The <em>mefA</em> gene, one of two subtypes of the <em>mef</em> gene, is located on the Tn1207.1 transposon in pyogenic streptococci (<a href="#B16">Bacciaglia et al., 2007</a>).</p><p class="mb0">MLSB Phenotype Resistance: The mechanism involves an alteration in ribosomal target sites, primarily mediated by <em>erm</em> genes encoding ribosomal methylases that methylate a single adenine residue in 23SrRNA. This methylation reduces the affinity of the macrolide antibiotics to the ribosomal binding sites (<a href="#B125">Lopardo et al., 2005</a>). <em>erm</em> gene-mediated macrolide resistance is generally of a high level, with erythromycin MIC values exceeding 256 mg/L, and cross-resistance occurs with clindamycin and Streptogramin B. The MLSB phenotype is divided into constitutive (cMLSB) and inducible (iMLSB) types. cMLSB occurs when <em>erm</em> genes are stably expressed, which results in resistance to erythromycin, clindamycin, and other MLS group members. iMLSB relates to scenarios where the <em>erm</em> genes require inducers to express resistance to clindamycin; erythromycin can act as such an inducer. Otherwise, clindamycin sensitivity might appear <em>in vitro</em> tests (<a href="#B190">Shen et al., 2005</a>).</p><p class="mb0">Both the M phenotype resistance and iMLSB resistance appear with erythromycin resistance but clindamycin sensitivity (<a href="#B7">Akdoğan Kittana et al., 2019</a>). The presence of erythromycin ribosome methylase (<em>erm</em>) genes has been linked to the expression of inducible clindamycin resistance in <em>Staphylococcus aureus</em> (<a href="#B82">Heyar et al., 2020</a>). However, the prevalence of iMLSB phenotype may vary depending on the study population, with lower rates observed in rural areas where antimicrobial exposure is limited (<a href="#B82">Heyar et al., 2020</a>). In clinical settings, it is crucial to accurately identify clindamycin resistance, as studies have shown that a significant proportion of <em>Staphylococcus aureus</em> isolates can exhibit inducible clindamycin resistance, which may be misidentified as clindamycin susceptible using standard methods (<a href="#B152">Padekar et al., 2020</a>). The cMLSB phenotype has been reported as the predominant form of resistance, followed by the iMLSB phenotype in some studies (<a href="#B106">Kumar Chaudhary and Piya, 2021</a>). To differentiate these two phenotypes, the National Committee for Clinical Laboratory Standards (NCCLS) in the United States recommended the D-test in 2004. This involves placing a clindamycin disk (2 μg/disk) 20 mm away from an erythromycin disk (15 μg/disk), incubating at 35°C for 16–18 h. A “D” shape flattening or blunting of the inhibition zone adjacent to the erythromycin disc indicates a positive D-test, suggesting inducible clindamycin resistance (iMLSB type); otherwise, the test is negative (M type resistance) (<a href="#B17">Back et al., 2012</a>). The D-test distinguishes iMLSB resistance and corrects clindamycin sensitivity results, aiding in rational pharmacotherapy.</p><p class="mb0">L Phenotype Resistance: This resistance is due to adenylation. Enzymes encoded by the <em>linB</em> and <em>lnu</em> genes mediate the inactivation of lincosamide antibiotics (<a href="#B49">de Azavedo et al., 2001</a>; <a href="#B67">Faccone et al., 2010</a>; <a href="#B187">Seo et al., 2010</a>). It is characterized by sensitivity to erythromycin and resistance to clindamycin. Studies such as by Lu et al. indicated that 4.5% of GBS strains are L phenotype resistant (<a href="#B126">Lu et al., 2014</a>), with the prevalence of the <em>linB</em> gene being significantly lower than reported in Korea, suggesting geographical variation in L phenotype resistance and <em>linB</em> gene carriage. The <em>linB</em> gene, which is linked to clindamycin resistance, can lead to an L phenotype, conferring resistance to lincosamides only (<a href="#B178">Santana et al., 2020</a>). The presence of antibiotic resistance genes, such as <em>linB</em>, in GBS strains highlights the importance of monitoring and understanding geographical variation in resistance patterns to inform treatment strategies and vaccine design (<a href="#B178">Santana et al., 2020</a>; <a href="#B25">Barros, 2021</a>; <a href="#B144">Mudzana et al., 2021</a>). The inactivation of lincosamide antibiotics mediated by the <em>lnu</em> gene was first reported in <em>Enterococcus faecium HM1025</em> (<a href="#B31">Bozdogan et al., 1999</a>). L phenotype resistance regulated by the <em>lnuB</em> gene has been documented in various regions, including Latin America, Canada, Korea, and Spain (<a href="#B13">Arana et al., 2014</a>).</p><a id="h4-3" name="h4-3"></a><h3 class="pt0">3.3 Mechanisms of GBS resistance to telithromycin</h3><p class="mb0">A study from the United States between 2001 and 2004 indicated a 53.5% resistance rate to erythromycin in GBS, while the non-susceptibility rate for tetracycline was only 1.5% (<a href="#B55">DiPersio and DiPersio, 2006</a>). Research in China has shown that among pregnant women colonized with GBS, non-susceptibility rates for erythromycin, clarithromycin, and azithromycin all exceeded 85.0%, while for tetracycline it was only 31.0%. This suggests a sensitivity to tetracycline despite resistance to other macrolides (<a href="#B223">Wang et al., 2015</a>).</p><p class="mb0">Telithromycin, the first ketolide and a 14-membered ring macrolide, demonstrates a strong affinity towards bacterial ribosomes, enabling it to counteract common macrolide antibiotic resistance mechanisms. These mechanisms include methyltransferase enzymatic activity encoded by the <em>ermB</em> gene, which results in the dimethylation of an adenine residue at the N-6 position on the 23SrRNA, and ribosomal protein variations that interfere with the binding of macrolides to bacteria. Telithromycin has been proven to exhibit greater antimicrobial activity against erythromycin-resistant strains, as confirmed in <em>Streptococcus pneumoniae</em> (<a href="#B68">Farrell and Felmingham, 2004</a>; <a href="#B207">Takaya et al., 2010</a>).</p><a id="h4-4" name="h4-4"></a><h3 class="pt0">3.4 Resistance to fluoroquinolone antibiotics in GBS and the mechanisms involved</h3><p class="mb0">In 2003, Japan first reported the isolation of fluoroquinolone-resistant GBS strains, although the initial rate was low. Then several countries and regions have reported the emergence of GBS isolates resistant to fluoroquinolones (<a href="#B10">Ali et al., 2020</a>; <a href="#B81">Hayes et al., 2020</a>). In Taiwan the resistance rate to quinolones ranges between 0.3% and 5.0%, and all GBS strains resistant to levofloxacin also exhibited higher MIC values for ciprofloxacin, gatifloxacin, moxifloxacin, and gemifloxacin (<a href="#B17">Back et al., 2012</a>). In 2014, Italy first reported the presence of levofloxacin-resistant GBS strains with a resistance rate of 1.4% (<a href="#B160">Piccinelli et al., 2015a</a>), and another study in the same year reported a resistance rate of 3.4% (<a href="#B159">Piccinelli et al., 2015b</a>). Mutations in the quinolone resistance-determining regions (QRDRs) of genes encoding the topoisomerase IV subunit C (ParC) and the DNA gyrase subunit A (GyrA) have been closely associated with GBS resistance to fluoroquinolone antibiotics (<a href="#B227">Wehbeh et al., 2005</a>; <a href="#B145">Murayama et al., 2009</a>). Double mutations in GyrA Ser-81 to Leu and in ParC Ser-79 to Phe or Tyr are associated with high-level resistance to levofloxacin. Additional mutations have been discovered in ParC, such as Asp-83 to Tyr and Asp-83 to Asn. Similar mutations have also been found in GyrB, but their significance is yet to be clarified (<a href="#B159">Piccinelli et al., 2015b</a>). Clinical isolates of GBS resistant to levofloxacin have been reported to belong predominantly to clonal complex III/ST19. Wang et al. found that the resistance rate of III/ST19 GBS strains to levofloxacin reached 92.9%, with 75% of the levofloxacin-resistant strains belonging to CC19, whereas all III/ST17 type GBS strains were sensitive to levofloxacin (<a href="#B221">Wang et al., 2013</a>). Research in Italy indicated that the majority of levofloxacin-resistant GBS strains were of the Ib/ST19 type, also within the CC19 (<a href="#B159">Piccinelli et al., 2015b</a>). It is speculated that the sensitivity of levofloxacin in bacteria may be related to their molecular biological characteristics and serotype, suggesting possible clonal spread.</p><a id="h4-5" name="h4-5"></a><h3 class="pt0">3.5 Resistance to tetracycline in GBS and the underlying mechanisms</h3><p class="mb0">Research both nationally and internationally has consistently shown high rates of resistance to tetracycline in GBS. Resistance rates reported include 62% in Canada, 80% in Italy, 97% in Brazil, and 98% in Egypt (<a href="#B188">Shabayek and Abdalla, 2014</a>; <a href="#B159">Piccinelli et al., 2015b</a>). The tetracycline resistance gene primarily involves <em>tetM</em> (<a href="#B78">Granlund et al., 2010</a>), which encodes ribosomal protection proteins. In China, <em>tetM</em> and <em>tetO</em> genes are the main tetracycline resistance genes found in GBS, with the detection of <em>tetK</em> and <em>tetL</em> genes also reported (<a href="#B86">Huiling et al., 2010</a>; <a href="#B89">Jia-de, 2010</a>). In Brazil, resistance is predominantly due to the <em>tetM</em> gene (99.3%), with a 1.8% carriage rate for <em>tetO</em> (<a href="#B63">Dutra et al., 2014</a>). In Egypt, <em>tetM</em> is also the main resistance gene, with an individual carriage rate of 83.7%, and the presence of <em>tetL</em>, <em>tetK</em>, and <em>tetO</em> genes has been detected (<a href="#B188">Shabayek and Abdalla, 2014</a>). Tetracyclines are known to affect the development of teeth and bones in children, and due to concerns about severe hepatorenal toxicity reactions, its use has been largely discontinued in pediatric clinical practice for many years. However, the problem of tetracycline resistance remains very serious in China (<a href="#B123">Liu et al., 2021</a>). This issue may be related to the overuse of these antibiotics in agriculture and food animals, as well as the stable resistance of bacteria to this class of antibiotics. Further investigation is warranted into this matter.</p><a id="h4-6" name="h4-6"></a><h3 class="pt0">3.6 Vancomycin resistance in GBS</h3><p class="mb0">Due to rising resistance rates to erythromycin and clindamycin, vancomycin is sometimes necessary for the prevention and treatment of GBS infections in patients allergic to penicillin. Park et al. explored two laboratory-confirmed cases of invasive GBS strains resistant to vancomycin (<a href="#B154">Park et al., 2014</a>). This study employed PCR amplification with primers, EG1 and, EG2 to produce a sequence similar to the vanG (941bp) of <em>Enterococci</em> and confirmed that the strains contained sequences corresponding to vanW, vanG and vanXY, with sequence similarities of 89.8%, 91.0%, and 95.7%, respectively. One of the isolates had a 2658bp tandem repeat sequence completely identical to the vanG of <em>Enterococcus faecalis</em>. Since there was no epidemiological link between the strains, it is conjectured that independent mechanisms of resistance acquisition exist. Further research is needed, in conjunction with clinical outcomes, to investigate their origins and patterns of spread.</p><a id="h4-7" name="h4-7"></a><h3 class="pt0">3.7 Multidrug resistance in GBS</h3><p class="mb0">In recent years, the problem of drug resistance in GBS has become increasingly serious globally, with reports emerging of multidrug-resistant GBS strains (<a href="#B208">Talebi Bezmin Abadi et al., 2019</a>). Additionally, a study revealed an increasing trend in macrolide-resistant GBS isolates (<a href="#B98">Khan et al., 2023</a>). PRGBS is capable of surviving and spreading in hospital settings, leading to nosocomial infections. There is a potential risk of global transmission and epidemic spread in the future.</p><p class="mb0">GBS colonization is a significant risk factor for various adverse outcomes in pregnant women and neonates. Studies have shown that GBS colonization in the vaginal tract is associated with preterm birth (<a href="#B209">Tano et al., 2021</a>) and neonatal GBS early-onset disease (<a href="#B241">Zhu and Lin, 2021</a>). The prevalence of GBS colonization varies depending on the detection method used, with enrichment media improving the detection rate (<a href="#B196">Song et al., 2022</a>). In the context of GBS colonization and infection, alternative antimicrobials such as cefazolin have been explored as prophylactic regimens, especially in situations where penicillins are contraindicated or unavailable (<a href="#B12">Antonello et al., 2020</a>). Additionally, the relationship between the gut microbiota composition in pregnant women colonized with GBS and maternal blood routine as well as neonatal blood-gas analysis has been investigated to understand the interplay between GBS colonization and adverse birth outcomes (<a href="#B226">Wang et al., 2022b</a>). Furthermore, the prevalence and clinical relevance of colonization with methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) in the obstetric population have been studied to assess the potential impact on both mother and child (<a href="#B26">Bauters et al., 2022</a>). Maternal GBS colonization has been identified as a major risk factor for neonatal GBS infection, emphasizing the importance of understanding and addressing GBS colonization in pregnant women (<a href="#B90">Jung et al., 2021</a>).</p><p class="mb0">The epidemiology of multidrug-resistant GBS remains a significant concern globally, with studies focusing on different aspects of this pathogen. Huang et al. (<a href="#B85">Huang et al., 2019</a>) reviewed data from China to determine the maternal GBS colonization rate, incidence of invasive GBS disease in infants, and associated clinical outcomes. The systematic literature review reveals that in mainland China, the maternal GBS colonization rate varies from 3.7% to 14.52%, and the incidence of invasive GBS disease in infants is 0.55–1.79 per 1000 live births, indicating a significant health concern with Serotype III being the most prevalent. The available data in China suggest that specific GBS serotypes are predominant in causing disease. This comprehensive analysis highlights the varied prevalence of GBS colonization among pregnant women in China and the consequent risks of invasive GBS diseases in infants, with relatively high fatality rates. Furthermore, the study underscores the potential of immunization strategies targeting pregnant women, focusing on vaccines covering the major serotypes (Ia, Ib, II, III, and V) identified, to significantly mitigate the burden of GBS infections. Kao et al. (<a href="#B95">Kao et al., 2019</a>) focused on the clinical characteristics and impacts of emerging serotype III sequence type 17 GBS invasive infections in infants in Taiwan. The study aimed to determine serotype distribution, antimicrobial resistance, clinical features, and molecular characteristics of invasive GBS isolates. The study identifies significant variations in serotype distribution, antimicrobial resistance profiles, clinical manifestations, and molecular characteristics of invasive GBS isolates from Taiwanese infants. This research highlights the diversity of GBS serotypes affecting Taiwanese infants, each with distinct antimicrobial resistance and clinical characteristics, emphasizing the need for tailored healthcare strategies. It also suggests the importance of continued surveillance and molecular epidemiological studies to better understand and combat GBS infection in this vulnerable population. Slotved et al. (<a href="#B195">Slotved and Hoffmann, 2020</a>) analyzed the epidemiology of invasive GBS infections in Denmark from 2005 to 2018, presenting data on serotype distribution and antibiotic susceptibility in all age groups. The study reveals a significant increase in the incidence of invasive GBS infections among the elderly in Denmark from 2005 to 2018, alongside a rise in resistance to erythromycin and clindamycin. While the incidence of early-onset and late-onset GBS disease in newborns remained stable and low, there was a notable rise in GBS infections in older adults, particularly in those aged 65 and above. Additionally, the study observed an increasing trend in antibiotic resistance among GBS isolates, underscoring the need for ongoing surveillance and tailored antibiotic stewardship programs. In contrast, Choi et al. (<a href="#B41">Choi et al., 2021</a>) discussed recent epidemiological changes in GBS among pregnant Korean women, highlighting the evolving nature of GBS epidemiology. The study indicates an increase in GBS colonization rates among pregnant Korean women to levels comparable with those in Western countries, along with notable antimicrobial resistance. The colonization rate of GBS in pregnant Korean women is 19.8%, showing an upward trend and aligning with rates in Western countries. Additionally, there is a significant presence of antimicrobial resistance, particularly to clindamycin, erythromycin, and tetracycline, underscoring the importance of periodic and comprehensive epidemiological studies to guide prevention and treatment strategies. Additionally, Zhang et al. (<a href="#B239">Zhang et al., 2021</a>) conducted a retrospective study in Shanxi, China, focusing on the molecular characterization of pathogenic GBS strains, with a high incidence of sequence type 10 strains in infants and pregnant women. A high prevalence of ST10 was found in both pregnant women (44.4%) and infants (72.2%) with GBS, highlighting its significant role in regional infections. The majority of GBS isolates harbored the pilus island combinations PI-1+PI-2a, indicating its potential importance in the pathogenesis and transmission of GBS, thus suggesting targets for future interventions and vaccine development.</p><p class="mb0">The treatment of infections caused by MDR pathogens poses a significant challenge in clinical practice. Various studies have explored different therapeutic interventions and their outcomes in combating MDR infections. Nørgaard et al. (<a href="#B150">Nørgaard et al., 2019</a>) conducted a systematic review to identify current antimicrobial treatment options for infections with MDR Gram-negative bacteria. The study found that monotherapy and colistin combination therapy showed clinical and microbiological success rates ranging from 70% to 100%, depending on the infection site and severity. In the context of specific bacterial infections, Liu et al. (<a href="#B118">Liu et al., 2020</a>) investigated the influence of Autoinducer-2 (AI-2) on tetracycline resistance in <em>Streptococcus suis</em>. The study demonstrated that the addition of exogenous AI-2 led to an increase in MIC compared to the wild type strain, highlighting the importance of exploring new approaches to combating antimicrobial resistance. Furthermore, Xiangru et al. (<a href="#B230">Xiangru et al., 2023</a>) evaluated the clinical efficacy of Buzhong Yiqi decoction (BZYQ) in the treatment of hospital-acquired pneumonia (HAP) with multi-drug-resistant bacteria (MDRB). The study reported a higher clinical success rate and pathogen eradication rate in the intervention group compared to the control group, indicating the potential of BZYQ as a treatment option for MDRB infections.</p><p class="mb0">Therefore, epidemiological surveillance of GBS, assessment of PRGBS, and evaluation of multidrug-resistant genotypes are of crucial importance (<a href="#B147">Nagano et al., 2012</a>). Antibiotic resistance in GBS with their specific targets and mechanisms are shown in <a href="#T2">Table 2</a>.</p><div class="DottedLine"></div><div class="Imageheaders">Table 2</div><div class="FigureDesc"><a href="https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t002.jpg" name="Table2" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t002.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t002.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t002.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t002.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t002.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/1395673/fphar-15-1395673-HTML-r1/image_m/fphar-15-1395673-t002.jpg" alt="www.frontiersin.org" id="T2" loading="lazy"> </picture> </a><p><b>Table 2</b>. Summary of Antibiotic resistance in Group B <em>Streptococcus</em> with their specific targets, mechanisms and references.</p></div><div class="clear"></div><div class="DottedLine"></div><a id="h5" name="h5"></a><h2>4 GBS related clinical diseases in obstetrics and gynecology</h2><a id="h5-1" name="h5-1"></a><h3 class="pt0">4.1 GBS infection in non-pregnant women</h3><p class="mb0">The incidence of GBS disease is increasing in non-pregnant adults or adults with impaired immune function, especially among those with underlying conditions. Approximately 20%–70% of infections are nosocomial (<a href="#B140">Miselli et al., 2022</a>). Several clinical diseases have been confirmed to be caused by GBS infection. The most common diseases are skin and soft tissue infections (<a href="#B6">Akbari et al., 2023</a>), and GBS can also cause vaginal infections in non-pregnant women. This infection can cause symptoms such as vaginal inflammation (<a href="#B209">Tano et al., 2021</a>), abnormal vaginal discharge (<a href="#B54">Dilrukshi et al., 2021</a>), and itching (<a href="#B209">Tano et al., 2021</a>). GBS is also one of the common pathogens that cause urinary tract infections in non-pregnant women (<a href="#B23">Balasubramanian et al., 2023</a>). Urinary tract infections can cause symptoms such as frequent urination, urgency, and pain during urination. Although GBS infection is not usually considered a sexually transmitted disease, it can be transmitted to non-pregnant women through sexual contact (<a href="#B64">El Beitune et al., 2006</a>). In this case, the infection may affect areas such as the vagina, cervix, and urethra. Non-pregnant individuals with compromised immune function (<a href="#B27">Bebien et al., 2012</a>), such as those receiving immunosuppressive therapy, with chronic diseases, or undergoing chemotherapy, may be more susceptible to GBS infection. For GBS infection in non-pregnant women, the general approach includes diagnosis and laboratory testing by a healthcare professional to determine the presence of GBS infection. If the infection is confirmed, appropriate antibiotic treatment such as penicillin or other antibiotics may be prescribed to eliminate bacterial infection. Symptomatic measures such as pain relief and anti-itch treatment can also be taken.</p><a id="h5-2" name="h5-2"></a><h3 class="pt0">4.2 GBS infection in pregnant women</h3><p class="mb0">GBS infection in pregnant women can manifest as asymptomatic clinical infection or progress to sepsis. GBS infection can cause maternal bacterial urinary tract infections, pyelonephritis, postpartum mastitis, and endometritis (<a href="#B204">Sundin et al., 2021</a>). Among systemic GBS infections in mothers, serotypes Ia, III, and VI account for the majority (<a href="#B24">Barro et al., 2023</a>). GBS infection is also associated with premature birth, premature rupture of membranes, chorioamnionitis, fetal infection, and stillbirth. Approximately 1%–3% of infected newborns will develop early-onset disease within 7 days after birth (<a href="#B167">Preventing neonatal group B streptococcal infection, 2011</a>). The main causes of early-onset neonatal infection are vertical transmission from the mother and GBS infection of the amniotic membranes. Over 95% of early-onset infections are related to GBS serotypes Ia, Ib, II, III, IV, and V. Among newborns with early-onset infection, 80%–85% will develop sepsis (<a href="#B193">Simonsen et al., 2014</a>), 10% will develop pneumonia (<a href="#B69">Finsterer, 2022</a>), and 5%–10% will develop meningitis (<a href="#B132">Manzanares et al., 2023</a>). Meningitis is a late-onset disease that occurs between 6 days and more than 90 days after birth. Currently, there is limited understanding of the pathogenesis of late-onset GBS infection (<a href="#B50">Delara et al., 2023</a>), which may be related to vertical transmission, nosocomial infection, or community-acquired infection. Serotype III GBS is highly associated with meningitis (<a href="#B84">Hsu et al., 2021</a>). Recent studies have shown that preterm birth is a major risk factor for late-onset GBS infection (<a href="#B77">Gonçalves et al., 2022</a>; <a href="#B40">Choi et al., 2023</a>; <a href="#B155">Paul et al., 2023</a>). In addition to meningitis, clinical manifestations of late-onset infection also include bacteremia and osteoarticular infections (<a href="#B171">Raabe et al., 2019</a>). Currently, there are no effective preventive measures for GBS infection in pregnant women. Extremely late-onset GBS infection refers to GBS infection in infants older than 3 months. The risk factors for extremely late-onset GBS infection are similar to those for late-onset infection. However, most cases of extremely late-onset GBS infection occur in preterm or extremely low birth weight infants (<a href="#B120">Liu and Tong, 2019</a>; <a href="#B203">Suffolk et al., 2019</a>). Infants with extremely late-onset GBS infection are more susceptible to immunodeficiency disorders. The most common clinical manifestations of extremely late-onset GBS infection are bacteremia and meningitis.</p><p class="mb0">In infants infected with GBS, the mortality rate of early-onset infection is about 2%–3%, while the mortality rate of late-onset infection is about 1%–3% (<a href="#B202">Stephens et al., 2023</a>). In premature infants, the mortality rate of early-onset GBS infection is approximately 20%–30%, and the mortality rate of late-onset infection is about 5%–8%. Although infants infected with GBS can survive, their 10-year survival rate is very low (<a href="#B91">Kalliola et al., 1999</a>), and they often require multiple hospitalizations within the first 5 years of life. Research has found that children with GBS infection are three times more likely to die or be hospitalized within 11 years after birth (<a href="#B164">Platt and Gilson, 1994</a>). GBS infection can increase the risk of permanent neurological disabilities such as cerebral palsy and epilepsy. 51% of infants with GBS meningitis can grow up, while 25% of infants with GBS meningitis have mild to moderate neurological disabilities, and the remaining infants with GBS meningitis will develop severe neurological or functional impairments. Therefore, early detection and prevention of GBS infection in newborns and infants is crucial.</p><p class="mb0">According to the recommendation of CDC, GBS screening should be performed in pregnant women between 36 weeks 0/7 days and 37 weeks 6/7 days (approximately 5 weeks before delivery) (<a href="#B218">Verani et al., 2010</a>). If the screening result is positive for GBS, antibiotics should be given during delivery to prevent infection. If GBS is found in the vaginal flora of pregnant women at any time, regardless of the concentration, it indicates an overgrowth of GBS. If the concentration of bacteria in the urine is higher than 105 CFU/mL at any time during pregnancy, antibiotic treatment should be given to the pregnant woman before delivery, and intrauterine injection should be performed during delivery. If the concentration of bacteria in the urine is lower than 105 CFU/mL, antibiotic treatment before delivery is not necessary, but antibiotic prophylaxis during delivery is still necessary. For pregnant women who have already given birth or have premature rupture of membranes before 36 weeks of pregnancy, antibiotic prophylaxis will be continued until the baby is born. GBS screening in pregnant women significantly reduces the incidence of early-onset GBS infection in newborns, reducing it by nearly 85% compared to no screening (<a href="#B80">Hanson et al., 2022</a>). However, late-onset infection is not prevented.</p><p class="mb0">Penicillin G is the preferred drug for prophylaxis against GBS infection due to its low cost, low toxicity, and narrow spectrum of antibacterial activity (<a href="#B88">Ikebe et al., 2023</a>). According to the guidelines of the American Academy of Pediatrics, antibiotics should be administered at least 4 h before delivery to ensure that the concentration of Penicillin G in the amniotic fluid and placental circulation reaches a sufficient level, thereby reducing the transmission of GBS from mother to baby. If a pregnant woman is allergic to beta-lactam antibiotics, cefazolin should be used instead. Pregnant women who are sensitive to clindamycin should receive clindamycin treatment, while those who are resistant to clindamycin should receive vancomycin treatment (<a href="#B61">Duffy et al., 2022</a>). Unlike conventional antibiotic treatment, antibiotic prophylaxis is used only as “local antibiotic treatment”. “Comprehensive antibiotic treatment” is a method used to eradicate <em>Helicobacter pylori</em> (<a href="#B127">Luo et al., 2023</a>), which has been classified as a class I human carcinogen by the World Health Organization’s International Agency for Research on Cancer. This high-dose antibiotic therapy can eradicate <em>Helicobacter pylori</em> colonization and treat gastric cancer. However, in the field of obstetrics, this “comprehensive antibiotic treatment” cannot be implemented because it may cause serious harm to the health of both the mother and the fetus, including fatal diseases or chronic disabilities.</p><p class="mb0">However, there are also certain limitations to prophylactic antibiotic treatment. Due to the risk of allergic reactions, the necessity of conducting antimicrobial sensitivity tests on pregnant women is increasingly being emphasized. Some research reports indicate that the rate at which maternal antibodies are transferred to newborns is approximately 0.5–0.7, indicating a relatively poor effectiveness of prophylactic antibiotic treatment (<a href="#B46">Dad et al., 2021</a>).</p><a id="h5-3" name="h5-3"></a><h3 class="pt0">4.3 GBS infection and the microbiota of pregnant women</h3><p class="mb0">GBS infection is closely related to the microecology of pregnant women. Microecology refers to the balance between beneficial bacteria (such as <em>Lactobacillus</em>) and other microorganisms in the human body (<a href="#B137">Mejia et al., 2023</a>). Under normal circumstances, the vagina and intestines of healthy pregnant women may carry a certain amount of GBS, but it maintains a balance with other beneficial bacteria. However, certain factors may lead to an imbalance in microecology, causing GBS to overgrow and cause infection.</p><p class="mb0">GBS primarily colonizes in the vagina, where there is a normal presence of <em>Lactobacillus</em> and other beneficial bacteria that maintain an acidic environment by producing substances such as lactic acid (<a href="#B100">Kling et al., 2009</a>), inhibiting the growth of pathogens. When the number or balance of <em>Lactobacillus</em> in the vagina decreases or becomes imbalanced, the proliferation and risk of GBS infection increase. In addition, the gut microbiota is closely related to the microecology of other parts of the body. Imbalances in the gut microbiota can affect overall immune system function and the colonization and infection process of GBS.</p><p class="mb0">During pregnancy, the immune system undergoes a series of regulatory changes to tolerate the fetus (<a href="#B206">Sweeney et al., 2020</a>). These changes may affect the immune response to GBS infection. When immune system regulation becomes imbalanced, the risk of GBS infection may increase. Imbalances in vaginal microecology usually involve a lack of <em>Lactobacillus</em> and excessive growth of other pathogenic microorganisms (<a href="#B136">Mei and Li, 2022</a>). Bacterial vaginosis is a mixed infection caused by an imbalance in normal vaginal flora, where <em>lactobacillus</em> is reduced and other bacteria multiply, mostly anaerobic bacteria (<a href="#B93">Kamga et al., 2019</a>). Bacterial vaginosis and aerobic vaginitis are considered to be associated with various severe obstetric complications, such as preterm birth, miscarriage, premature rupture of membranes, fetal infection, and low birth weight infants (<a href="#B42">Choi et al., 2022</a>). Abnormal vaginal flora can lead to cervical shortening, resulting in preterm birth. Bacterial vaginosis often accompanies an increase in GBS infection (<a href="#B231">Xiao et al., 2023</a>). <em>Lactobacillus</em> count significantly decreases and <em>streptococcus</em> count increases in pregnant women with bacterial vaginosis (<a href="#B142">Mohammed et al., 2020</a>). Therefore, the balance of microecology in pregnant women is crucial for preventing GBS infection.</p><p class="mb0">There are some strategies that can help maintain or improve the balance of microecology in pregnant women, such as consuming foods rich in <em>lactobacillus</em> and probiotics, such as yogurt and fermented foods, which help maintain gut health (<a href="#B200">Sroka-Oleksiak et al., 2020</a>). Excessive or inappropriate use of antibiotics can disrupt beneficial bacteria and lead to an imbalance in microecology (<a href="#B170">Pulingam et al., 2022</a>). Antibiotics should be used under the guidance of a doctor. Long-term exposure to high-stress environments can also affect the balance of microecology. Pregnant women can reduce stress through appropriate rest, relaxation techniques, and stress management.</p><a id="h6" name="h6"></a><h2>5 Prevention, detection, and treatment of GBS</h2><a id="h6-1" name="h6-1"></a><h3 class="pt0">5.1 Intrapartum antibiotic prophylaxis</h3><p class="mb0">Intrapartum antibiotic chemoprophylaxis (IAP) is an effective strategy for preventing early-onset neonatal GBS disease by inhibiting or reducing the colonization of GBS within the maternal genitourinary and gastrointestinal tracts, which in turn reduces the vertical transmission of GBS to the newborn (<a href="#B111">Le Doare et al., 2017</a>). In the 1990s, the incidence of GBS-EOD (early-onset disease) in live births in the United States was 1.80 per 1,000. However, following the widespread implementation of the IAP policy, the incidence dropped significantly to 0.23 per 1,000 in 2015, representing an 80% decrease (<a href="#B148">Nanduri et al., 2019</a>). IAP has been proven to be an effective means for preventing early-onset GBS disease in newborns. The approach to IAP currently represents the most widely used strategy to prevent GBS infections in pregnant women in many developed countries (<a href="#B151">Nuccitelli et al., 2015</a>). The criteria for administering IAP are primarily based on the colonization status of GBS in the pregnant woman and/or an assessment of perinatal clinical risk factors. The basis for these assessments may vary among different countries or regions (<a href="#B212">Tsega et al., 2015</a>; <a href="#B224">Wang et al., 2021</a>).</p><p class="mb0">In 1996, the American College of Obstetricians and Gynecologists (ACOG) recommended in its guidelines on preventing neonatal GBS-EOD that IAP should be determined by a combination of microbiological screening and assessment of risk factors (<a href="#B5">ACOG committee opinion, 1996</a>). However, the revised guidelines from the U.S. Centers for Disease Control and Prevention (CDC) in 2002 emphasized the greater efficacy of microbiological screening, and recommended IAP for women with positive GBS bacteriuria, those with a history of neonatal GBS infection, or those with unknown GBS status but presenting labor risk factors (<a href="#B185">Schrag et al., 2002</a>). Countries such as the United Kingdom and the Netherlands do not advocate for microbiological screening of pregnant women around the time of delivery, opting instead to rely on an assessment of clinical risk factors to determine whether to administer IAP (<a href="#B5">ACOG committee opinion, 1996</a>). The decision to use risk factor assessments over microbiological screening is informed by the cost of screening tests and a desire to prevent the overuse of antibiotics (<a href="#B111">Le Doare et al., 2017</a>).</p><p class="mb0">A systematic review in 2017, which included IAP policies from 60 countries, identified the following major risk factors for prioritizing IAP: 1) Preterm birth (<37 weeks); 2) Premature rupture of membranes; 3) Prolonged duration of membrane rupture; 4) Positive GBS bacteriuria; 5) History of neonatal GBS infection; 6) Maternal fever (temperature >38°C); 7) Intra-amniotic infection. Of the 60 countries, 25 implemented an IAP policy based on clinical risk factors, and all (60/60) countries recommended IAP for women with a history of neonatal GBS infection. Most countries (23/25) recommended IAP for cases with prolonged duration after membrane rupture, premature rupture of membranes for >18 h (PROM), or maternal GBS bacteriuria (<a href="#B111">Le Doare et al., 2017</a>).</p><p class="mb0">β-Lactam antibiotics exhibit high sensitivity against GBS and have always been the drugs of choice for the prevention or treatment of GBS infections. Nevertheless, drug sensitivity monitoring data indicate that in recent years, there has been a reduction in GBS sensitivity to β-lactam antibiotics, including penicillin (<a href="#B47">Dahesh et al., 2008</a>; <a href="#B124">Longtin et al., 2011</a>; <a href="#B138">Metcalf et al., 2017</a>; <a href="#B234">Yi et al., 2019</a>), and high levels of resistance to secondary antibiotics such as erythromycin and clindamycin (<a href="#B110">Lamagni et al., 2013</a>). Additionally, resistance to other antibiotics, like fluoroquinolones and tetracyclines, is also on the rise (<a href="#B147">Nagano et al., 2012</a>; <a href="#B223">Wang et al., 2015</a>).</p><p class="mb0">Intrapartum intravenous administration of penicillin is the preferred IAP treatment protocol due to its efficacy (<a href="#B168">Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, 2020</a>). In case of penicillin allergy, clindamycin is used. Six countries recommend cephalosporins instead of penicillin, and four South American countries and two Asian countries, concerned about the risk of clindamycin-resistant strains in penicillin-allergic patients, suggest adding vancomycin as an alternative (<a href="#B111">Le Doare et al., 2017</a>). In the 2020 guidelines, ACOG also recommends intravenous penicillin or ampicillin as the first-line treatment. For pregnant women with a low-risk penicillin allergy or uncertain severity of allergy, cefazolin is recommended. For those with a high-risk allergic response, clindamycin treatment can be considered after confirming the GBS strain’s sensitivity to this antibiotic (<a href="#B168">Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, 2020</a>).</p><a id="h6-2" name="h6-2"></a><h3 class="pt0">5.2 Various detection methods for GBS</h3><p class="mb0">In the detection of tumors caused by GBS, a combined screening and diagnostic method for GBS infection and gynecological malignancies is usually used (<a href="#B4">Achten et al., 2020</a>). The doctor will ask the patient if there are any symptoms of infection or any previous infection records. Physical examinations may include vaginal examinations, cervical smears, and endometrial biopsies to check for any abnormal signs. Cervical smears are a commonly used screening method that involves collecting cervical cells and observing them under a microscope to look for abnormal cells or lesions (<a href="#B92">Kamal, 2022</a>). This method can help detect cervical cancer and other early abnormalities. Human papillomavirus (HPV) is closely associated with the development of cervical cancer (<a href="#B199">Sravani et al., 2023</a>). HPV virus screening can detect HPV infections, including high-risk types of the virus (<a href="#B74">Gavinski and DiNardo, 2023</a>). This screening method can help detect infections early and take appropriate further actions. In some cases, specific biomarkers or blood tests can be used to assess the risk or diagnose malignancies. For example, in the screening and diagnosis of endometrial cancer, the levels of CA-125 (<a href="#B165">Pourmadadi et al., 2023</a>) and other related markers in the blood can be measured to assess the level of risk.</p><a id="h6-3" name="h6-3"></a><h3 class="pt0">5.3 Microbial therapy</h3><p class="mb0">The current administration methods of antibiotics have low cost and wide applicability, making them a better method for preventing GBS infections, especially in countries with low socioeconomic status or limited resources. However, the use of antibiotics still has limitations due to the increased risk of allergic reactions and serious risks to newborns. In this regard, microbiota therapy can serve as an alternative treatment method (<a href="#B146">Nader-Macías et al., 2021</a>). Microbiota therapy has become a hot topic in obstetrics, gynecology, and translational research fields. Some studies have reported on the treatment of gut microbiota, such as fecal microbiota transplantation (FMT) (<a href="#B39">Cheng and Fischer, 2023</a>), for cancer treatment. In addition, a research report has shown that the composition of gut microbiota can regulate immune response mechanisms (<a href="#B53">de Vos et al., 2022</a>), such as anti-tumor activity, thereby producing interactions between microbiota and tumors. This microbiota regulation mechanism may be direct, but its specific downstream pathways still need to be elucidated. For general microbiota therapy, known biomarkers are used as diagnostic tools to screen and monitor patients. Microbiota-based treatment methods are used to treat various diseases and are applied in different ways (<a href="#B65">Elinav et al., 2019</a>), including dietary interventions, probiotics, prebiotics, postbiotics, bacteriophage therapy, and fecal microbiota transplantation. Each method has its advantages and disadvantages. Probiotics are considered relatively safe (<a href="#B71">Fugaban et al., 2021</a>). However, they do not target specific diseases and only provide a temporary therapeutic response. In addition, the effectiveness of probiotic therapy depends on specific microbial colonies and the gut microenvironment (<a href="#B240">Zhao et al., 2023</a>). Bacteriophage therapy is a highly specific targeted treatment method (<a href="#B44">Cold et al., 2020</a>). However, an important limitation of bacteriophage therapy is its narrow host range, where a bacteriophage can only kill certain strains of the same bacteria species and cannot kill multiple strains or different bacteria species (<a href="#B15">Azam and Tanji, 2019</a>).</p><p class="mb0">These different microbiota-based treatment methods can also be applied as new approaches to treat patients with GBS infection in the vaginal microbiota. As mentioned earlier, poor vaginal microbiota is closely associated with gynecologic malignancies and adverse obstetric outcomes, and adjusting the vaginal microbiota may potentially alter the incidence of GBS infection in pregnant women. Microbiota-based treatment methods can be similar to those used for the gut microbiota. Probiotics can be used to rebalance the vaginal flora, mainly by increasing the number of <em>lactobacilli</em>. Synbiotics, which combine probiotics and prebiotics, aim to overcome the limitations of probiotics, specifically their dependence on <em>lactobacilli</em> (<a href="#B35">Calder et al., 2022</a>). However, symbiosis may require a specific environment. Bacteriophages bind to specific receptors on bacterial cell walls and deliver engineered therapeutic materials into host cells, resulting in promising effects. Biofilm disruptors are another treatment option (<a href="#B174">Reza et al., 2019</a>). Polymicrobial infections produce biofilms on the vaginal epithelium and generate short-chain fatty acids, ultimately increasing the vaginal environment’s pH and leading to vaginal inflammation. A report has indicated that using antibiotics alone can reduce microbial diversity and restore populations of <em>lactobacilli</em> but cannot completely destroy biofilms (<a href="#B149">Nitzan et al., 2016</a>). Therefore, antibiotic therapy combined with biofilm disruptor adjuvants would be a more comprehensive treatment approach.</p><p class="mb0">Finally, vaginal microbiota transplantation is another microbial therapy for treating vaginal diseases (<a href="#B228">Wei and Chen, 2021</a>). In this treatment method, volunteers are recruited and undergo medical evaluations. Their vaginal microbiota is assessed through microscopic evaluations. After screening, the best vaginal microbiota is transplanted into the recipient’s vagina. Vaginal microbiota transplantation significantly alleviates patients’ symptoms and successfully restores the composition of vaginal microbiota, including increased <em>lactobacillus</em> count. However, this relatively new method still remains controversial. Therefore, full supervision should be implemented throughout the screening process to minimize the risk of potential disease transmission, especially those that may lead to antibiotic resistance in microbes.</p><a id="h7" name="h7"></a><h2>6 GBS Vaccine</h2><p class="mb15">While GBS remains highly sensitive to first-line β-lactam antibiotics, the widespread implementation of IAP comes with an extensive use of antibiotics, which may enhance the resistance of GBS. It can also disrupt the body’s microecology, leading to an imbalance of microbial communities. Moreover, the transfer of resistance genes can result in a greater prevalence of antibiotic-resistant pathogens across humans, animals, and the environment (<a href="#B134">McGee et al., 2021</a>). Therefore, the development of alternative interventions to replace intrapartum antibiotic treatment has become an area of keen interest. The research and application of GBS vaccines have emerged as a promising solution. Currently, there are three main types of vaccines under investigation: capsular polysaccharide vaccines, conjugate vaccine, and protein-based vaccines.</p><a id="h7-1" name="h7-1"></a><h3 class="pt0">6.1 Preventive vaccination with GBS vaccine</h3><p class="mb0">In order to reduce the global incidence and mortality rate of neonatal infections related to GBS, it is crucial to develop a vaccine against GBS (<a href="#B128">Madhi et al., 2023</a>). It is estimated that vaccinating 70% of pregnant women with a GBS vaccine could prevent nearly 50,000 deaths related to GBS infections and 170,000 cases of preterm birth each year. However, there is currently no licensed vaccine available for preventing GBS. In 2016, the World Health Organization held consultations specifically on the development of maternal immunization vaccines and declared an urgent need for a vaccine to prevent mother-to-child transmission of GBS in order to protect the health and lives of infants worldwide (<a href="#B101">Kobayashi et al., 2016</a>). It also proposed a strategic goal of developing a safe, effective, and affordable GBS vaccine for pregnant women to prevent neonatal deaths, stillbirths, and GBS-related diseases. Currently, two GBS vaccines have entered Phase II or III clinical trials. The first is a multivalent conjugate vaccine aimed at targeting the majority of pathogenic serotypes, while the other is a protein subunit vaccine (<a href="#B62">Duke et al., 2021</a>). The multivalent conjugate vaccine has the potential to prevent 95% of GBS infections in pregnant women, 99% of stillbirths, and 99% of neonatal GBS infections by targeting the majority of pathogenic serotypes. The protein-based vaccine approach provides broader protection against all GBS serotypes (<a href="#B57">Dominguez and Randis, 2022</a>). Pharmaceutical companies such as Pfizer and MinervaX have been working on developing GBS vaccines. Pfizer recently announced that the U.S. Food and Drug Administration has designated their investigational GBS vaccine (<a href="#B2">Absalon et al., 2022</a>), Bacterial GBS 6 (PF-06760805), for prevention of the six most prominent GBS serotypes that account for 98% of GBS disease cases. MinervaX is developing a GBS candidate vaccine based on traditional multivalent conjugate technology and is preparing for Phase III clinical trials (<a href="#B156">Pawlowski et al., 2022</a>). In low- and middle-income countries, the vaccine will greatly improve the occurrence of GBS infectious diseases and make it possible to prevent the majority of GBS-related diseases (<a href="#B169">Procter et al., 2023</a>). Despite the advantages of GBS vaccines, their limitations include high cost, lack of coverage for all GBS strains, and the possibility of resistance. Therefore, some researchers believe it is important to detect GBS before infection progresses or develops into a severe condition.</p><a id="h7-2" name="h7-2"></a><h3 class="pt0">6.2 Capsular polysaccharide vaccines</h3><p class="mb0">Capsular polysaccharide (CPS) is one of the virulence factors of GBS, which enables the bacteria to evade the host’s immune response. GBS uses its capsular polysaccharide to inhibit complement deposition and resist phagocytosis by immune cells. Additionally, CPS promotes the formation of biofilms and hampers the binding of antimicrobial peptides and Neutrophil Extracellular Traps (NETs), thereby enhancing the invasive capability of GBS. Based on the antigenic components of GBS capsular polysaccharides, GBS can be classified into ten serotypes: Ia, Ib, II, III, IV, V, VI, VII, VIII, and IX (<a href="#B36">Carreras-Abad et al., 2020</a>).</p><p class="mb0">CPS vaccines refer to vaccines developed by targeting the highly expressed CPS on the surface of GBS as the antigen and conducting research on CPS-specific antibodies. Currently, the phase I and phase II clinical trials for CPS vaccines have preliminarily confirmed their safety and efficacy. However, the immunogenicity and reactogenicity of CPS vaccines are generally low. Additionally, the IgM produced does not cross the placenta, providing only short-term protection to the fetus and no significant protection to neonates. Moreover, due to considerable structural differences between the CPS of different serotypes and the absence of cross-protective effects, the immunological protection range of monovalent vaccines is limited. Consequently, CPS vaccines have not yet been adopted for clinical use (<a href="#B139">Mettu et al., 2020</a>).</p><a id="h7-3" name="h7-3"></a><h3 class="pt0">6.3 Conjugate vaccine</h3><p class="mb0">Conjugate CPS vaccines aim to enhance immunogenicity through the covalent bonding of GBS’s own capsular polysaccharide with carrier proteins, thereby inducing the production of IgG and the memory of T-cells and B-cells (<a href="#B3">Aceil et al., 2022</a>). The early development of CPS conjugate vaccines involved the covalent attachment of tetanus toxoid (TT) to type III CPS to form a monovalent conjugate vaccine (III-TT). Currently, monovalent, bivalent, and trivalent vaccines targeting GBS serotypes Ia, Ib, II, III, and V have been researched in non-pregnant and pregnant women, demonstrating safety and efficacy in phase I and phase II clinical trials (<a href="#B22">Baker et al., 2003</a>; <a href="#B129">Madhi et al., 2016</a>). In 2021, Absalon et al. evaluated the safety and immunogenicity of a novel hexavalent vaccine (GBS6) for serotypes Ia, Ib, II, III, IV, and V, which proved to be safe and effective in healthy, non-pregnant adults through phase I and II clinical trials (<a href="#B1">Absalon et al., 2021</a>). Future research will further investigate the vaccine’s effects in varying populations and its capacity to transfer antibodies to newborns.</p><a id="h7-4" name="h7-4"></a><h3 class="pt0">6.4 Protein-based vaccine</h3><p class="mb0">CPS vaccines offer protection limited to specific serotypes, presenting significant constraints. On the other hand, protein vaccines are created from proteins common to all serotypes of CPS, providing a broader protective range. Moreover, protein vaccines may prevent serotype replacement or switching problems that might arise with the use of CPS vaccines (<a href="#B57">Dominguez and Randis, 2022</a>).</p><p class="mb0">Current research has been focusing extensively on protein vaccines made by fusing the N-terminus of GBS surface Alpha C (αC) protein and Rib protein to produce a vaccine (GBS-NN). In 2021, Fischer et al. published the results of a phase I clinical trial for the GBS-NN vaccine, confirming its safety and immunogenicity in healthy women (<a href="#B70">Fischer et al., 2021</a>). Building upon this in 2022, Pawlowski et al. demonstrated that the vaccine consisting of αC-N and Rib-N induced strong and persistent IgG and IgA responses against the homotypic αC-N (<a href="#B156">Pawlowski et al., 2022</a>). It also elicited variable immune responses to heterotypic Alpha-like proteins (Alp1∼3). The study further confirmed that the IgG elicited by the GBS-NN vaccine was predominantly IgG1, which is an effective antibody subtype transferred to the fetus during the later stages of pregnancy through the placenta. Researchers are now developing additional GBS protein vaccines based on the different structural domains of the N-terminus of Alpha-like proteins.</p><a id="h8" name="h8"></a><h2>7 Conclusion</h2><p class="mb15">The presence of GBS implies that infants and newborns may experience severe clinical outcomes. However, for elderly individuals with GBS infection, the lethality of the infection itself is relatively low. Considering the potential role of GBS in the development of gynecologic malignancies, although GBS may not be the sole major cause, it is a key factor leading to adverse outcomes. GBS may play a crucial role in the development of severe clinical symptoms, but its detection becomes challenging due to interference from many other factors. GBS can even act as a powerful dormant pathogen, manipulating and regulating other bacteria, thereby resulting in serious clinical consequences. Therefore, it is crucial to study the interaction and impact mechanisms between GBS and bacteria and the host environment. More research is needed in the future to examine the pathogenesis and mechanisms of action of GBS, such as high-throughput sequencing technologies like RNA-seq, metagenomics, and metabolomics. In addition, professional discussions and collaborative research should be encouraged to develop better management strategies for GBS, aiming to control and reduce the maternal and infant mortality and morbidity caused by GBS infections. This comprehensive approach not only allows for better understanding of GBS but also contributes to the health of pregnant women and newborns nationwide and even globally.</p><a id="h9" name="h9"></a><h2>Author contributions</h2><p class="mb0">YL: Writing–original draft. HA: Writing–review and editing.</p><a id="h10" name="h10"></a><h2>Funding</h2><p class="mb0">The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This study was provided financial support from the following projects: Liaoning Province Science and Technology Program Joint Program Fund Project (grant no. 2023-MSLH-059), Postgraduate Education Teaching Research and Reform Project of Jinzhou Medical University (grant no. YJ2023-018), Jie Bang Gua Shuai Project of Science & Technology Department of Liaoning Province (grant no. 2022JH1/10800070), Basic Scientific Research Project of Colleges and Universities of Education Department of Liaoning Province (Key project) (grant no. 1821240403), 2023 Jinzhou Medical University first-class discipline construction project.</p><a id="h11" name="h11"></a><h2>Conflict of interest</h2><p class="mb0">The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p><a id="h12" name="h12"></a><h2>Publisher’s note</h2><p class="mb15">All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.</p><a id="h13" name="h13"></a><h2>References</h2><div class="References"><p class="ReferencesCopy1"><a name="B1" id="B1"></a>Absalon, J., Segall, N., Block, S. L., Center, K. J., Scully, I. L., Giardina, P. C., et al. (2021). Safety and immunogenicity of a novel hexavalent group B streptococcus conjugate vaccine in healthy, non-pregnant adults: a phase 1/2, randomised, placebo-controlled, observer-blinded, dose-escalation trial. <em>Lancet Infect. Dis.</em> 21 (2), 263–274. doi:10.1016/S1473-3099(20)30478-3</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32891191/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/S1473-3099(20)30478-3">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+a+novel+hexavalent+group+B+streptococcus+conjugate+vaccine+in+healthy,+non-pregnant+adults:+a+phase+1/2,+randomised,+placebo-controlled,+observer-blinded,+dose-escalation+trial&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B2" id="B2"></a>Absalon, J., Simon, R., Radley, D., Giardina, P. C., Koury, K., Jansen, K. U., et al. (2022). Advances towards licensure of a maternal vaccine for the prevention of invasive group B streptococcus disease in infants: a discussion of different approaches. <em>Hum. vaccines Immunother.</em> 18 (1), 2037350. doi:10.1080/21645515.2022.2037350</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1080/21645515.2022.2037350">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advances+towards+licensure+of+a+maternal+vaccine+for+the+prevention+of+invasive+group+B+streptococcus+disease+in+infants:+a+discussion+of+different+approaches&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B3" id="B3"></a>Aceil, J., Paschall, A. V., Knoot, C. J., Robinson, L. S., Scott, N. E., Feldman, M. F., et al. (2022). Immunogenicity and protective efficacy of a prototype pneumococcal bioconjugate vaccine. <em>Vaccine</em> 40 (42), 6107–6113. doi:10.1016/j.vaccine.2022.09.018</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36115800/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.vaccine.2022.09.018">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Immunogenicity+and+protective+efficacy+of+a+prototype+pneumococcal+bioconjugate+vaccine&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B4" id="B4"></a>Achten, N. B., Dorigo-Zetsma, J. W., van Rossum, A. M. C., Oostenbrink, R., and Plötz, F. B. (2020). Risk-based maternal group B Streptococcus screening strategy is compatible with the implementation of neonatal early-onset sepsis calculator. <em>Clin. Exp. Pediatr.</em> 63 (10), 406–410. doi:10.3345/cep.2020.00094</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32299178/">PubMed Abstract</a> | <a href="https://doi.org/10.3345/cep.2020.00094">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Risk-based+maternal+group+B+Streptococcus+screening+strategy+is+compatible+with+the+implementation+of+neonatal+early-onset+sepsis+calculator&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B5" id="B5"></a>ACOG committee opinion (1996). ACOG committee opinion. Prevention of early-onset group B streptococcal disease in newborns. Number 173--June 1996. Committee on Obstetric Practice. American College of Obstetrics and Gynecologists. <em>Int. J. Gynaecol. obstetrics official organ Int. Fed. Gynaecol. Obstetrics</em> 54 (2), 197–205. doi:10.1016/S0020-7292(96)90083-1</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/9236325/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/S0020-7292(96)90083-1">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ACOG+committee+opinion.+Prevention+of+early-onset+group+B+streptococcal+disease+in+newborns.+Number+173--June+1996.+Committee+on+Obstetric+Practice.+American+College+of+Obstetrics+and+Gynecologists&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B6" id="B6"></a>Akbari, M. S., Keogh, R. A., Radin, J. N., Sanchez-Rosario, Y., Johnson, M. D. L., Horswill, A. R., et al. (2023). The impact of nutritional immunity on Group B streptococcal pathogenesis during wound infection. <em>mBio</em> 14, e0030423. doi:10.1128/mbio.00304-23</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/37358277/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/mbio.00304-23">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+impact+of+nutritional+immunity+on+Group+B+streptococcal+pathogenesis+during+wound+infection&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B7" id="B7"></a>Akdoğan Kittana, F. N., Mustak, I. B., Hascelik, G., Saricam, S., Gurler, N., and Diker, K. S. (2019). Erythromycin-resistant Streptococcus pneumoniae: phenotypes, genotypes, transposons and pneumococcal vaccine coverage rates. <em>J. Med. Microbiol.</em> 68 (6), 874–881. doi:10.1099/jmm.0.000995</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31116101/">PubMed Abstract</a> | <a href="https://doi.org/10.1099/jmm.0.000995">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Erythromycin-resistant+Streptococcus+pneumoniae:+phenotypes,+genotypes,+transposons+and+pneumococcal+vaccine+coverage+rates&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B8" id="B8"></a>Ali, M., Alamin, M. A., Ali G, A., Alzubaidi, K., Ali, B., Ismail, A., et al. (2022b). Microbiological and clinical characteristics of invasive Group B Streptococcal blood stream infections in children and adults from Qatar. <em>BMC Infect. Dis.</em> 22 (1), 881. doi:10.1186/s12879-022-07801-9</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36434535/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12879-022-07801-9">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Microbiological+and+clinical+characteristics+of+invasive+Group+B+Streptococcal+blood+stream+infections+in+children+and+adults+from+Qatar&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B9" id="B9"></a>Ali, M., Alamin, M. A., G, A. A., Alzubaidi, K., Ali, B., Ismail, A., et al. (2022a). Microbiological and clinical characteristics of invasive Group B Streptococcal blood stream infections in children and adults from Qatar. <em>BMC Infect. Dis.</em> 22 (1), 881. doi:10.1186/s12879-022-07801-9</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36434535/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12879-022-07801-9">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Microbiological+and+clinical+characteristics+of+invasive+Group+B+Streptococcal+blood+stream+infections+in+children+and+adults+from+Qatar&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B10" id="B10"></a>Ali, M. M., Woldeamanuel, Y., Asrat, D., Fenta, D. A., Beall, B., Schrag, S., et al. (2020). Features of Streptococcus agalactiae strains recovered from pregnant women and newborns attending different hospitals in Ethiopia. <em>BMC Infect. Dis.</em> 20 (1), 848. doi:10.1186/s12879-020-05581-8</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33198686/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12879-020-05581-8">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Features+of+Streptococcus+agalactiae+strains+recovered+from+pregnant+women+and+newborns+attending+different+hospitals+in+Ethiopia&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B11" id="B11"></a>Alizzi, M., Rathnayake, R., Sivabalan, P., Emeto, T. I., and Norton, R. (2022). Group B streptococcal bacteraemia: changing trends in a tropical region of Australia. <em>Intern. Med. J.</em> 52 (5), 800–807. doi:10.1111/imj.15164</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33346947/">PubMed Abstract</a> | <a href="https://doi.org/10.1111/imj.15164">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+bacteraemia:+changing+trends+in+a+tropical+region+of+Australia&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B12" id="B12"></a>Antonello, V. S., Dallé, J., Dall'Oglio, E., Ramos, S., Bassols, F., and Jimenez, M. F. (2020). Alternative antimicrobials for prophylaxis of the Group B Streptococcus maternal-fetal disease. <em>J. Infect. Dev. Ctries.</em> 14 (6), 664–668. doi:10.3855/jidc.12180</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32683359/">PubMed Abstract</a> | <a href="https://doi.org/10.3855/jidc.12180">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Alternative+antimicrobials+for+prophylaxis+of+the+Group+B+Streptococcus+maternal-fetal+disease&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B13" id="B13"></a>Arana, D. M., Rojo-Bezares, B., Torres, C., and Alós, J. I. (2014). First clinical isolate in Europe of clindamycin-resistant group B Streptococcus mediated by the lnu(B) gene. <em>Rev. espanola Quimioter. publicacion Of. Soc. Espanola Quimioter.</em> 27 (2), 106–109.</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24940891/">PubMed Abstract</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=First+clinical+isolate+in+Europe+of+clindamycin-resistant+group+B+Streptococcus+mediated+by+the+lnu(B)+gene&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B14" id="B14"></a>Armistead, B., Oler, E., Adams Waldorf, K., and Rajagopal, L. (2019). The double life of group B Streptococcus: asymptomatic colonizer and potent pathogen. <em>J. Mol. Biol.</em> 431 (16), 2914–2931. doi:10.1016/j.jmb.2019.01.035</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30711542/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.jmb.2019.01.035">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+double+life+of+group+B+Streptococcus:+asymptomatic+colonizer+and+potent+pathogen&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B15" id="B15"></a>Azam, A. H., and Tanji, Y. (2019). Peculiarities of <em>Staphylococcus aureus</em> phages and their possible application in phage therapy. <em>Appl. Microbiol. Biotechnol.</em> 103 (11), 4279–4289. doi:10.1007/s00253-019-09810-2</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30997551/">PubMed Abstract</a> | <a href="https://doi.org/10.1007/s00253-019-09810-2">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Peculiarities+of+Staphylococcus+aureus+phages+and+their+possible+application+in+phage+therapy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B16" id="B16"></a>Bacciaglia, A., Brenciani, A., Varaldo, P. E., and Giovanetti, E. (2007). SmaI typeability and tetracycline susceptibility and resistance in <em>Streptococcus pyogenes</em> isolates with efflux-mediated erythromycin resistance. <em>Antimicrob. agents Chemother.</em> 51 (8), 3042–3043. doi:10.1128/AAC.00249-07</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/17562795/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.00249-07">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SmaI+typeability+and+tetracycline+susceptibility+and+resistance+in+Streptococcus+pyogenes+isolates+with+efflux-mediated+erythromycin+resistance&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B17" id="B17"></a>Back, E. E., O'Grady, E. J., and Back, J. D. (2012). High rates of perinatal group B Streptococcus clindamycin and erythromycin resistance in an upstate New York hospital. <em>Antimicrob. agents Chemother.</em> 56 (2), 739–742. doi:10.1128/AAC.05794-11</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22143529/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.05794-11">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+rates+of+perinatal+group+B+Streptococcus+clindamycin+and+erythromycin+resistance+in+an+upstate+New+York+hospital&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B18" id="B18"></a>Bae, H. G., Hong, J., Kim, Y. J., Lee, K. R., Lee, K., Choi, S. J., et al. (2022). A retrospective national study on colonization rate and antimicrobial susceptibility of Streptococcus agalactiae in pregnant Korean women, 2018-2020. <em>Yonsei Med. J.</em> 63 (8), 717–723. doi:10.3349/ymj.2022.63.8.717</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35914753/">PubMed Abstract</a> | <a href="https://doi.org/10.3349/ymj.2022.63.8.717">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+retrospective+national+study+on+colonization+rate+and+antimicrobial+susceptibility+of+Streptococcus+agalactiae+in+pregnant+Korean+women,+2018-2020&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B19" id="B19"></a>Baker, C. J., Paoletti, L. C., Rench, M. A., Guttormsen, H.-K., Carey, V. J., Hickman, M. E., et al. (2000). Use of capsular polysaccharide—tetanus toxoid conjugate vaccine for type II group B Streptococcus in healthy women. <em>J. Infect. Dis.</em> 182 (4), 1129–1138. doi:10.1086/315839</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/10979909/">PubMed Abstract</a> | <a href="https://doi.org/10.1086/315839">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Use+of+capsular+polysaccharide芒聙聰tetanus+toxoid+conjugate+vaccine+for+type+II+group+B+Streptococcus+in+healthy+women&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B20" id="B20"></a>Baker, C. J., Paoletti, L. C., Rench, M. A., Guttormsen, H. K., Edwards, M. S., and Kasper, D. L. (2004). Immune response of healthy women to 2 different group B streptococcal type V capsular polysaccharide-protein conjugate vaccines. <em>J. Infect. Dis.</em> 189 (6), 1103–1112. doi:10.1086/382193</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/14999615/">PubMed Abstract</a> | <a href="https://doi.org/10.1086/382193">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Immune+response+of+healthy+women+to+2+different+group+B+streptococcal+type+V+capsular+polysaccharide-protein+conjugate+vaccines&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B21" id="B21"></a>Baker, C. J., Paoletti, L. C., Wessels, M. R., Guttormsen, H.-K., Rench, M. A., Hickman, M. E., et al. (1999). Safety and immunogenicity of capsular polysaccharide—tetanus toxoid conjugate vaccines for group B streptococcal types Ia and Ib. <em>J. Infect. Dis.</em> 179 (1), 142–150. doi:10.1086/314574</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/9841833/">PubMed Abstract</a> | <a href="https://doi.org/10.1086/314574">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+capsular+polysaccharide芒聙聰tetanus+toxoid+conjugate+vaccines+for+group+B+streptococcal+types+Ia+and+Ib&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B22" id="B22"></a>Baker, C. J., Rench, M. A., and McInnes, P. (2003). Immunization of pregnant women with group B streptococcal type III capsular polysaccharide-tetanus toxoid conjugate vaccine. <em>Vaccine</em> 21 (24), 3468–3472. doi:10.1016/s0264-410x(03)00353-0</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/12850362/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/s0264-410x(03)00353-0">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Immunization+of+pregnant+women+with+group+B+streptococcal+type+III+capsular+polysaccharide-tetanus+toxoid+conjugate+vaccine&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B23" id="B23"></a>Balasubramanian, N., Pounpandi, P., Varatharaju, G., Shanmugaiah, V., Balakrishnan, K., and Thirunarayan, M. A. (2023). Distribution of virulence genes and biofilm characterization of human isolates of Streptococcus agalactiae: a pilot study. <em>Colloids surfaces B, Biointerfaces</em> 223, 113151. doi:10.1016/j.colsurfb.2023.113151</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36738701/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.colsurfb.2023.113151">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distribution+of+virulence+genes+and+biofilm+characterization+of+human+isolates+of+Streptococcus+agalactiae:+a+pilot+study&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B24" id="B24"></a>Barro, C., Salloum, M., Lim, S., Delputte, P., and Le Doare, K. (2023). Simultaneous carriage of multiple serotypes of Group B Streptococcus: systematic review and meta-analysis. <em>Vaccine</em> 41 (1), 15–22. doi:10.1016/j.vaccine.2022.11.024</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36435703/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.vaccine.2022.11.024">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Simultaneous+carriage+of+multiple+serotypes+of+Group+B+Streptococcus:+systematic+review+and+meta-analysis&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B25" id="B25"></a>Barros, R. R. (2021). Antimicrobial resistance among beta-hemolytic Streptococcus in Brazil: an overview. <em>Antibiotics</em> 10 (8), 973. doi:10.3390/antibiotics10080973</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34439023/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/antibiotics10080973">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+resistance+among+beta-hemolytic+Streptococcus+in+Brazil:+an+overview&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B26" id="B26"></a>Bauters, E., Jonckheere, S., Dehaene, I., Vandecandelaere, P., Argudín, M. A., and Page, G. (2022). Prevalence and clinical relevance of colonization with methicillin-resistant <em>Staphylococcus aureus</em> in the obstetric population. <em>J. maternal-fetal neonatal Med. official J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet</em> 35 (25), 8186–8191. doi:10.1080/14767058.2021.1966411</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1080/14767058.2021.1966411">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence+and+clinical+relevance+of+colonization+with+methicillin-resistant+Staphylococcus+aureus+in+the+obstetric+population&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B27" id="B27"></a>Bebien, M., Hensler, M. E., Davanture, S., Hsu, L. C., Karin, M., Park, J. M., et al. (2012). The pore-forming toxin β hemolysin/cytolysin triggers p38 MAPK-dependent IL-10 production in macrophages and inhibits innate immunity. <em>PLoS Pathog.</em> 8 (7), e1002812. doi:10.1371/journal.ppat.1002812</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22829768/">PubMed Abstract</a> | <a href="https://doi.org/10.1371/journal.ppat.1002812">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+pore-forming+toxin+脦虏+hemolysin/cytolysin+triggers+p38+MAPK-dependent+IL-10+production+in+macrophages+and+inhibits+innate+immunity&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B28" id="B28"></a>Beres, S. B., Zhu, L., Pruitt, L., Olsen, R. J., Faili, A., Kayal, S., et al. (2022). Integrative reverse genetic analysis identifies polymorphisms contributing to decreased antimicrobial agent susceptibility in Streptococcus pyogenes. <em>mBio</em> 13 (1), e0361821. doi:10.1128/mbio.03618-21</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35038921/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/mbio.03618-21">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integrative+reverse+genetic+analysis+identifies+polymorphisms+contributing+to+decreased+antimicrobial+agent+susceptibility+in+Streptococcus+pyogenes&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B29" id="B29"></a>Bianchi-Jassir, F., Paul, P., To, K. N., Carreras-Abad, C., Seale, A. C., Jauneikaite, E., et al. (2020). Systematic review of Group B Streptococcal capsular types, sequence types and surface proteins as potential vaccine candidates. <em>Vaccine</em> 38 (43), 6682–6694. doi:10.1016/j.vaccine.2020.08.052</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32888741/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.vaccine.2020.08.052">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Systematic+review+of+Group+B+Streptococcal+capsular+types,+sequence+types+and+surface+proteins+as+potential+vaccine+candidates&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B30" id="B30"></a>Bnfaga, A. A., Lee, K. W., Than, L. T. L., and Amin-Nordin, S. (2023). Antimicrobial and immunoregulatory effects of Lactobacillus delbrueckii 45E against genitourinary pathogens. <em>J. Biomed. Sci.</em> 30 (1), 19. doi:10.1186/s12929-023-00913-7</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36959635/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12929-023-00913-7">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+and+immunoregulatory+effects+of+Lactobacillus+delbrueckii+45E+against+genitourinary+pathogens&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B31" id="B31"></a>Bozdogan, B., Berrezouga, L., Kuo, M. S., Yurek, D. A., Farley, K. A., Stockman, B. J., et al. (1999). A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. <em>Antimicrob. agents Chemother.</em> 43 (4), 925–929. doi:10.1128/AAC.43.4.925</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/10103201/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.43.4.925">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+resistance+gene,+linB,+conferring+resistance+to+lincosamides+by+nucleotidylation+in+Enterococcus+faecium+HM1025&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B32" id="B32"></a>Burcham, L. R., Spencer, B. L., Keeler, L. R., Runft, D. L., Patras, K. A., Neely, M. N., et al. (2019). Determinants of Group B streptococcal virulence potential amongst vaginal clinical isolates from pregnant women. <em>PloS one</em> 14 (12), e0226699. doi:10.1371/journal.pone.0226699</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31851721/">PubMed Abstract</a> | <a href="https://doi.org/10.1371/journal.pone.0226699">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Determinants+of+Group+B+streptococcal+virulence+potential+amongst+vaginal+clinical+isolates+from+pregnant+women&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B33" id="B33"></a>Buscetta, M., Papasergi, S., Firon, A., Pietrocola, G., Biondo, C., Mancuso, G., et al. (2014). FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions. <em>J. Biol. Chem.</em> 289 (30), 21003–21015. doi:10.1074/jbc.M114.553073</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24904056/">PubMed Abstract</a> | <a href="https://doi.org/10.1074/jbc.M114.553073">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FbsC,+a+novel+fibrinogen-binding+protein,+promotes+Streptococcus+agalactiae-host+cell+interactions&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B34" id="B34"></a>Buurman, E. T., Timofeyeva, Y., Gu, J., Kim, J. H., Kodali, S., Liu, Y., et al. (2019). A novel hexavalent capsular polysaccharide conjugate vaccine (GBS6) for the prevention of neonatal group B streptococcal infections by maternal immunization. <em>J. Infect. Dis.</em> 220 (1), 105–115. doi:10.1093/infdis/jiz062</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30778554/">PubMed Abstract</a> | <a href="https://doi.org/10.1093/infdis/jiz062">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+hexavalent+capsular+polysaccharide+conjugate+vaccine+(GBS6)+for+the+prevention+of+neonatal+group+B+streptococcal+infections+by+maternal+immunization&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B35" id="B35"></a>Calder, P. C., Ortega, E. F., Meydani, S. N., Adkins, Y., Stephensen, C. B., Thompson, B., et al. (2022). Nutrition, immunosenescence, and infectious disease: an overview of the scientific evidence on micronutrients and on modulation of the gut microbiota. <em>Adv. Nutr. (Bethesda, Md)</em> 13 (5), S1–s26. doi:10.1093/advances/nmac052</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1093/advances/nmac052">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nutrition,+immunosenescence,+and+infectious+disease:+an+overview+of+the+scientific+evidence+on+micronutrients+and+on+modulation+of+the+gut+microbiota&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B36" id="B36"></a>Carreras-Abad, C., Ramkhelawon, L., Heath, P. T., and Le Doare, K. (2020). A vaccine against group B Streptococcus: recent advances. <em>Infect. drug Resist.</em> 13, 1263–1272. doi:10.2147/IDR.S203454</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32425562/">PubMed Abstract</a> | <a href="https://doi.org/10.2147/IDR.S203454">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+vaccine+against+group+B+Streptococcus:+recent+advances&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B37" id="B37"></a>Chan, J. M., Gori, A., Nobbs, A. H., and Heyderman, R. S. (2020). Streptococcal serine-rich repeat proteins in colonization and disease. <em>Front. Microbiol.</em> 11, 593356. doi:10.3389/fmicb.2020.593356</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33193266/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fmicb.2020.593356">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Streptococcal+serine-rich+repeat+proteins+in+colonization+and+disease&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B38" id="B38"></a>Chattopadhyay, D., Carey, A. J., Caliot, E., Webb, R. I., Layton, J. R., Wang, Y., et al. (2011). Phylogenetic lineage and pilus protein Spb1/SAN1518 affect opsonin-independent phagocytosis and intracellular survival of Group B Streptococcus. <em>Microbes Infect.</em> 13 (4), 369–382. doi:10.1016/j.micinf.2010.12.009</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21238599/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.micinf.2010.12.009">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phylogenetic+lineage+and+pilus+protein+Spb1/SAN1518+affect+opsonin-independent+phagocytosis+and+intracellular+survival+of+Group+B+Streptococcus&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B39" id="B39"></a>Cheng, Y. W., and Fischer, M. (2023). Fecal microbiota transplantation. <em>Clin. colon rectal Surg.</em> 36 (2), 151–156. doi:10.1055/s-0043-1760865</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36844708/">PubMed Abstract</a> | <a href="https://doi.org/10.1055/s-0043-1760865">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fecal+microbiota+transplantation&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B40" id="B40"></a>Choi, E. K., Kim, H. J., Je, B. K., Choi, B. M., and Kim, S. D. (2023). Morbidity and mortality trends in preterm infants of <32 Weeks gestational age with severe intraventricular hemorrhage: a 14-year single-center retrospective study. <em>J. Korean Neurosurg. Soc.</em> 66 (3), 316–323. doi:10.3340/jkns.2022.0264</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36891659/">PubMed Abstract</a> | <a href="https://doi.org/10.3340/jkns.2022.0264">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Morbidity+and+mortality+trends+in+preterm+infants+of+%3C32+Weeks+gestational+age+with+severe+intraventricular+hemorrhage:+a+14-year+single-center+retrospective+study&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B41" id="B41"></a>Choi, S. J., Kang, J., and Uh, Y. (2021). Recent epidemiological changes in group B Streptococcus among pregnant Korean women. <em>Ann. laboratory Med.</em> 41 (4), 380–385. doi:10.3343/alm.2021.41.4.380</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3343/alm.2021.41.4.380">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+epidemiological+changes+in+group+B+Streptococcus+among+pregnant+Korean+women&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B42" id="B42"></a>Choi, Y., Han, H. S., Chong, G. O., Le, T. M., Nguyen, H. D. T., Lee, O. E., et al. (2022). Updates on group B Streptococcus infection in the field of obstetrics and gynecology. <em>Microorganisms</em> 10 (12), 2398. doi:10.3390/microorganisms10122398</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36557651/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/microorganisms10122398">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Updates+on+group+B+Streptococcus+infection+in+the+field+of+obstetrics+and+gynecology&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B43" id="B43"></a>Chu, Y. W., Tse, C., Tsang, G. K., So, D. K., Fung, J. T., and Lo, J. Y. (2007). Invasive group B Streptococcus isolates showing reduced susceptibility to penicillin in Hong Kong. <em>J. Antimicrob. Chemother.</em> 60 (6), 1407–1409. doi:10.1093/jac/dkm390</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/17959733/">PubMed Abstract</a> | <a href="https://doi.org/10.1093/jac/dkm390">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Invasive+group+B+Streptococcus+isolates+showing+reduced+susceptibility+to+penicillin+in+Hong+Kong&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B44" id="B44"></a>Cold, F., Olsen, N. S., Djurhuus, A., and Hansen, L. H. (2020). Bacteriophage therapy. <em>Ugeskrift laeger</em> 182 (27), V01200041. [Bacteriophage therapy].</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32594993/">PubMed Abstract</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bacteriophage+therapy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B45" id="B45"></a>Coleman, M., Armistead, B., Orvis, A., Quach, P., Brokaw, A., Gendrin, C., et al. (2021). Hyaluronidase impairs neutrophil function and promotes group B Streptococcus invasion and preterm labor in nonhuman primates. <em>mBio</em> 12 (1), e03115. doi:10.1128/mBio.03115-20</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33402537/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/mBio.03115-20">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hyaluronidase+impairs+neutrophil+function+and+promotes+group+B+Streptococcus+invasion+and+preterm+labor+in+nonhuman+primates&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B46" id="B46"></a>Dad, N., Buhmaid, S., and Mulik, V. (2021). Vaccination in pregnancy - the when, what and how? <em>Eur. J. obstetrics, Gynecol. reproductive Biol.</em> 265, 1–6. doi:10.1016/j.ejogrb.2021.08.009</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.ejogrb.2021.08.009">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vaccination+in+pregnancy+-+the+when,+what+and+how?&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B47" id="B47"></a>Dahesh, S., Hensler, M. E., Van Sorge, N. M., Gertz, R. E., Schrag, S., Nizet, V., et al. (2008). Point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to beta-lactam antibiotics. <em>Antimicrob. agents Chemother.</em> 52 (8), 2915–2918. doi:10.1128/AAC.00461-08</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/18541727/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.00461-08">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Point+mutation+in+the+group+B+streptococcal+pbp2x+gene+conferring+decreased+susceptibility+to+beta-lactam+antibiotics&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B48" id="B48"></a>Danne, C., and Dramsi, S. (2012). Pili of Gram-positive bacteria: roles in host colonization. <em>Res. Microbiol.</em> 163 (9), 645–658. doi:10.1016/j.resmic.2012.10.012</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23116627/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.resmic.2012.10.012">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pili+of+Gram-positive+bacteria:+roles+in+host+colonization&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B49" id="B49"></a>de Azavedo, J. C., McGavin, M., Duncan, C., Low, D. E., and McGeer, A. (2001). Prevalence and mechanisms of macrolide resistance in invasive and noninvasive group B streptococcus isolates from Ontario, Canada. <em>Antimicrob. agents Chemother.</em> 45 (12), 3504–3508. doi:10.1128/AAC.45.12.3504-3508.2001</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/11709331/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.45.12.3504-3508.2001">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence+and+mechanisms+of+macrolide+resistance+in+invasive+and+noninvasive+group+B+streptococcus+isolates+from+Ontario,+Canada&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B50" id="B50"></a>Delara, M., Vadlamudi, N. K., and Sadarangani, M. (2023). Strategies to prevent early and late-onset group B streptococcal infection via interventions in pregnancy. <em>Pathog. Basel, Switz.</em> 12 (2), 229. doi:10.3390/pathogens12020229</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3390/pathogens12020229">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Strategies+to+prevent+early+and+late-onset+group+B+streptococcal+infection+via+interventions+in+pregnancy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B51" id="B51"></a>Demczuk, W., Martin, I., Griffith, A., Lefebvre, B., McGeer, A., Tyrrell, G. J., et al. (2022). Linear regression equations to predict β-lactam, macrolide, lincosamide, and fluoroquinolone MICs from molecular antimicrobial resistance determinants in <em>Streptococcus pneumoniae</em>. <em>Antimicrob. agents Chemother.</em> 66 (1), 01370211–e201321. doi:10.1128/AAC.01370-21</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1128/AAC.01370-21">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Linear+regression+equations+to+predict+脦虏-lactam,+macrolide,+lincosamide,+and+fluoroquinolone+MICs+from+molecular+antimicrobial+resistance+determinants+in+Streptococcus+pneumoniae&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B52" id="B52"></a>Deng, L., Spencer, B. L., Holmes, J. A., Mu, R., Rego, S., Weston, T. A., et al. (2019). The Group B Streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis. <em>PLoS Pathog.</em> 15 (6), e1007848. doi:10.1371/journal.ppat.1007848</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31181121/">PubMed Abstract</a> | <a href="https://doi.org/10.1371/journal.ppat.1007848">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Group+B+Streptococcal+surface+antigen+I/II+protein,+BspC,+interacts+with+host+vimentin+to+promote+adherence+to+brain+endothelium+and+inflammation+during+the+pathogenesis+of+meningitis&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B53" id="B53"></a>de Vos, W. M., Tilg, H., Van Hul, M., and Cani, P. D. (2022). Gut microbiome and health: mechanistic insights. <em>Gut</em> 71 (5), 1020–1032. doi:10.1136/gutjnl-2021-326789</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35105664/">PubMed Abstract</a> | <a href="https://doi.org/10.1136/gutjnl-2021-326789">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gut+microbiome+and+health:+mechanistic+insights&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B54" id="B54"></a>Dilrukshi, G. N., Kottahachchi, J., Dissanayake, D., Pathiraja, R. P., Karunasingha, J., Sampath, M. K. A., et al. (2021). Group B Streptococcus colonisation and their antimicrobial susceptibility among pregnant women attending antenatal clinics in tertiary care hospitals in the Western Province of Sri Lanka. <em>J. obstetrics Gynaecol. J. Inst. Obstetrics Gynaecol.</em> 41 (1), 1–6. doi:10.1080/01443615.2020.1716313</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32172646/">PubMed Abstract</a> | <a href="https://doi.org/10.1080/01443615.2020.1716313">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+colonisation+and+their+antimicrobial+susceptibility+among+pregnant+women+attending+antenatal+clinics+in+tertiary+care+hospitals+in+the+Western+Province+of+Sri+Lanka&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B55" id="B55"></a>DiPersio, L. P., and DiPersio, J. R. (2006). High rates of erythromycin and clindamycin resistance among OBGYN isolates of group B Streptococcus. <em>Diagnostic Microbiol. Infect. Dis.</em> 54 (1), 79–82. doi:10.1016/j.diagmicrobio.2005.07.003</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/16368478/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.diagmicrobio.2005.07.003">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+rates+of+erythromycin+and+clindamycin+resistance+among+OBGYN+isolates+of+group+B+Streptococcus&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B56" id="B56"></a>Dobrut, A., and Brzychczy-Włoch, M. (2022). Immunogenic proteins of group B Streptococcus—potential antigens in immunodiagnostic assay for GBS detection. <em>Pathog. Basel, Switz.</em> 11 (1), 43. doi:10.3390/pathogens11010043</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3390/pathogens11010043">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Immunogenic+proteins+of+group+B+Streptococcus芒聙聰potential+antigens+in+immunodiagnostic+assay+for+GBS+detection&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B57" id="B57"></a>Dominguez, K., and Randis, T. M. (2022). Toward the development of a protein-based group B Streptococcus vaccine. <em>Cell. Rep. Med.</em> 3 (2), 100536. doi:10.1016/j.xcrm.2022.100536</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35243427/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.xcrm.2022.100536">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Toward+the+development+of+a+protein-based+group+B+Streptococcus+vaccine&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B58" id="B58"></a>Dos Santos, N. F. B., da Silva, L. R., Costa, F., de Mattos, D. M., de Carvalho, E., Ferreira, L. C. S., et al. (2020). Immunization with a recombinant BibA surface protein confers immunity and protects mice against group B Streptococcus (GBS) vaginal colonization. <em>Vaccine</em> 38 (33), 5286–5296. doi:10.1016/j.vaccine.2020.05.076</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32571719/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.vaccine.2020.05.076">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Immunization+with+a+recombinant+BibA+surface+protein+confers+immunity+and+protects+mice+against+group+B+Streptococcus+(GBS)+vaginal+colonization&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B59" id="B59"></a>dOtreppe, S., Lefèvre, P., Meex, C., Devey, A., Sacheli, R., Gerard, M., et al. (2023). Multicenter performance evaluation of the Revogene(®) GBS DS real-time PCR assay for group B Streptococcus detection during labor. <em>Mol. diagnosis Ther.</em> 27 (5), 611–620. doi:10.1007/s40291-023-00660-3</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1007/s40291-023-00660-3">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multicenter+performance+evaluation+of+the+Revogene(脗庐)+GBS+DS+real-time+PCR+assay+for+group+B+Streptococcus+detection+during+labor&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B60" id="B60"></a>Du, Vu, Thai Dung, P., and Toan, N. L. (2021). al. e: High Rates of Streptococcus Agalactiae Clindamycin and Erythromycin Resistance in Vietnamese Pregnant Women. <em>Res. Square</em>. doi:10.21203/rs.21203.rs-196314/v196311</p><p class="ReferencesCopy2"><a href="https://doi.org/10.21203/rs.21203.rs-196314/v196311">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=al.+e:+High+Rates+of+Streptococcus+Agalactiae+Clindamycin+and+Erythromycin+Resistance+in+Vietnamese+Pregnant+Women&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B61" id="B61"></a>Duffy, C. R., Huang, Y., Andrikopoulou, M., Stern-Ascher, C. N., Wright, J. D., D'Alton, M. E., et al. (2022). Vancomycin during delivery hospitalizations for women with group B streptococcus. <em>J. maternal-fetal neonatal Med. official J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet</em> 35 (5), 898–906. doi:10.1080/14767058.2020.1733520</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1080/14767058.2020.1733520">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vancomycin+during+delivery+hospitalizations+for+women+with+group+B+streptococcus&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B62" id="B62"></a>Duke, J. A., Paschall, A. V., Robinson, L. S., Knoot, C. J., Vinogradov, E., Scott, N. E., et al. (2021). Development and immunogenicity of a prototype multivalent group B Streptococcus bioconjugate vaccine. <em>ACS Infect. Dis.</em> 7 (11), 3111–3123. doi:10.1021/acsinfecdis.1c00415</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34633812/">PubMed Abstract</a> | <a href="https://doi.org/10.1021/acsinfecdis.1c00415">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+and+immunogenicity+of+a+prototype+multivalent+group+B+Streptococcus+bioconjugate+vaccine&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B63" id="B63"></a>Dutra, V. G., Alves, V. M., Olendzki, A. N., Dias, C. A., de Bastos, A. F., Santos, G. O., et al. (2014). Streptococcus agalactiae in Brazil: serotype distribution, virulence determinants and antimicrobial susceptibility. <em>BMC Infect. Dis.</em> 14, 323. doi:10.1186/1471-2334-14-323</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24919844/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/1471-2334-14-323">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Streptococcus+agalactiae+in+Brazil:+serotype+distribution,+virulence+determinants+and+antimicrobial+susceptibility&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B64" id="B64"></a>El Beitune, P., Duarte, G., Maffei, C. M., Quintana, S. M., De Sá Rosa, ESAC, and Nogueira, A. A. (2006). Group B Streptococcus carriers among HIV-1 infected pregnant women: prevalence and risk factors. <em>Eur. J. obstetrics, Gynecol. reproductive Biol.</em> 128 (1-2), 54–58. doi:10.1016/j.ejogrb.2006.02.017</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.ejogrb.2006.02.017">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+carriers+among+HIV-1+infected+pregnant+women:+prevalence+and+risk+factors&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B65" id="B65"></a>Elinav, E., Garrett, W. S., Trinchieri, G., and Wargo, J. (2019). The cancer microbiome. <em>Nat. Rev. Cancer</em> 19 (7), 371–376. doi:10.1038/s41568-019-0155-3</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31186547/">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41568-019-0155-3">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+cancer+microbiome&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B66" id="B66"></a>Erickson Keesha, E., Otoupal Peter, B., and Chatterjee, A. (2017). Transcriptome-level signatures in gene expression and gene expression variability during bacterial adaptive evolution. <em>mSphere</em> 2 (1), e00009. doi:10.1128/mSphere.00009-17</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28217741/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/mSphere.00009-17">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Transcriptome-level+signatures+in+gene+expression+and+gene+expression+variability+during+bacterial+adaptive+evolution&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B67" id="B67"></a>Faccone, D., Lalonardi, F., Abel, S., Machain, M., Errecalde, L., Littvik, A., et al. (2010). Multiple-Clones of Streptococcus agalactiae harbouring lnuB gene. <em>J. Infect. Dev. Ctries.</em> 4 (9), 580–582. doi:10.3855/jidc.941</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21045372/">PubMed Abstract</a> | <a href="https://doi.org/10.3855/jidc.941">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple-Clones+of+Streptococcus+agalactiae+harbouring+lnuB+gene&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B68" id="B68"></a>Farrell, D. J., and Felmingham, D. (2004). Activities of telithromycin against 13,874 Streptococcus pneumoniae isolates collected between 1999 and 2003. <em>Antimicrob. agents Chemother.</em> 48 (5), 1882–1884. doi:10.1128/aac.48.5.1882-1884.2004</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/15105150/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/aac.48.5.1882-1884.2004">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Activities+of+telithromycin+against+13,874+Streptococcus+pneumoniae+isolates+collected+between+1999+and+2003&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B69" id="B69"></a>Finsterer, J. (2022). Triggers of guillain-barré syndrome: Campylobacter jejuni predominates. <em>Int. J. Mol. Sci.</em> 23 (22), 14222. doi:10.3390/ijms232214222</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36430700/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/ijms232214222">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Triggers+of+guillain-barr脙漏+syndrome:+Campylobacter+jejuni+predominates&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B70" id="B70"></a>Fischer, P., Pawlowski, A., Cao, D., Bell, D., Kitson, G., Darsley, M., et al. (2021). Safety and immunogenicity of a prototype recombinant alpha-like protein subunit vaccine (GBS-NN) against Group B Streptococcus in a randomised placebo-controlled double-blind phase 1 trial in healthy adult women. <em>Vaccine</em> 39 (32), 4489–4499. doi:10.1016/j.vaccine.2021.06.046</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34215454/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.vaccine.2021.06.046">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+a+prototype+recombinant+alpha-like+protein+subunit+vaccine+(GBS-NN)+against+Group+B+Streptococcus+in+a+randomised+placebo-controlled+double-blind+phase+1+trial+in+healthy+adult+women&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B71" id="B71"></a>Fugaban, J. I. I., Holzapfel, W. H., and Todorov, S. D. (2021). Probiotic potential and safety assessment of bacteriocinogenic Enterococcus faecium strains with antibacterial activity against Listeria and vancomycin-resistant enterococci. <em>Curr. Res. Microb. Sci.</em> 2, 100070. doi:10.1016/j.crmicr.2021.100070</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34841360/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.crmicr.2021.100070">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Probiotic+potential+and+safety+assessment+of+bacteriocinogenic+Enterococcus+faecium+strains+with+antibacterial+activity+against+Listeria+and+vancomycin-resistant+enterococci&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B72" id="B72"></a>Furfaro, L. L., Chang, B. J., and Payne, M. S. (2018). Perinatal Streptococcus agalactiae epidemiology and surveillance targets. <em>Clin. Microbiol. Rev.</em> 31 (4), e00049. doi:10.1128/CMR.00049-18</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30111577/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/CMR.00049-18">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Perinatal+Streptococcus+agalactiae+epidemiology+and+surveillance+targets&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B73" id="B73"></a>Gabrielsen, C., Mæland, J. A., Lyng, R. V., Radtke, A., and Afset, J. E. (2017). Molecular characteristics of Streptococcus agalactiae strains deficient in alpha-like protein encoding genes. <em>J. Med. Microbiol.</em> 66 (1), 26–33. doi:10.1099/jmm.0.000412</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28032541/">PubMed Abstract</a> | <a href="https://doi.org/10.1099/jmm.0.000412">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Molecular+characteristics+of+Streptococcus+agalactiae+strains+deficient+in+alpha-like+protein+encoding+genes&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B74" id="B74"></a>Gavinski, K., and DiNardo, D. (2023). Cervical cancer screening. <em>Med. Clin. N. Am.</em> 107 (2), 259–269. doi:10.1016/j.mcna.2022.10.006</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36759096/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.mcna.2022.10.006">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cervical+cancer+screening&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B75" id="B75"></a>Gendrin, C., Shubin, N. J., Boldenow, E., Merillat, S., Clauson, M., Power, D., et al. (2018). Mast cell chymase decreases the severity of group B Streptococcus infections. <em>J. allergy Clin. Immunol.</em> 142 (1), 120–129. doi:10.1016/j.jaci.2017.07.042</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28916188/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.jaci.2017.07.042">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mast+cell+chymase+decreases+the+severity+of+group+B+Streptococcus+infections&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B76" id="B76"></a>Goel, N., Wattal, C., Gujral, K., Dhaduk, N., Mansukhani, C., Garg, P., et al. (2020). Group B Streptococcus in Indian pregnant women: its prevalence and risk factors. <em>Indian J. Med. Microbiol.</em> 38 (3 and 4), 357–361. doi:10.4103/ijmm.IJMM_20_333</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33154247/">PubMed Abstract</a> | <a href="https://doi.org/10.4103/ijmm.IJMM_20_333">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+in+Indian+pregnant+women:+its+prevalence+and+risk+factors&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B77" id="B77"></a>Gonçalves, B. P., Procter, S. R., Paul, P., Chandna, J., Lewin, A., Seedat, F., et al. (2022). Group B streptococcus infection during pregnancy and infancy: estimates of regional and global burden. <em>Lancet Glob. health</em> 10 (6), e807–e819. doi:10.1016/S2214-109X(22)00093-6</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35490693/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/S2214-109X(22)00093-6">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcus+infection+during+pregnancy+and+infancy:+estimates+of+regional+and+global+burden&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B78" id="B78"></a>Granlund, M., Axemo, P., Bremme, K., Bryngelsson, A. L., Carlsson Wallin, M., Ekström, C. M., et al. (2010). Antimicrobial resistance in colonizing group B Streptococci before the implementation of a Swedish intrapartum antibiotic prophylaxis program. <em>Eur. J. Clin. Microbiol. Infect. Dis.</em> 29 (10), 1195–1201. doi:10.1007/s10096-010-0877-3</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/20706855/">PubMed Abstract</a> | <a href="https://doi.org/10.1007/s10096-010-0877-3">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+resistance+in+colonizing+group+B+Streptococci+before+the+implementation+of+a+Swedish+intrapartum+antibiotic+prophylaxis+program&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B79" id="B79"></a>Gurudas, G., Arjun, R., Jain, N., Ranganayaki, V., Sasikumar, C., Mohan, V., et al. (2022). Prevalence of Group B Streptococcus in pregnant women in Kerala and relation to neonatal outcomes: a prospective cross-sectional study. <em>J. Trop. Pediatr.</em> 68 (6), fmac092. doi:10.1093/tropej/fmac092</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36306123/">PubMed Abstract</a> | <a href="https://doi.org/10.1093/tropej/fmac092">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+Group+B+Streptococcus+in+pregnant+women+in+Kerala+and+relation+to+neonatal+outcomes:+a+prospective+cross-sectional+study&btnG=">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B80" id="B80"></a>Hanson, S., Nelson, G., Preszler, M., Laible, B., Nazir, J., and Siewert, A. (2022). Antibiotic prescribing practices in group B Streptococcus positive obstetric patients with penicillin allergy. <em>S. D. Med. J. S. D. State Med. Assoc.</em> 75 (10), 462–468. </p><p class="ReferencesCopy2"><a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antibiotic+prescribing+practices+in+group+B+Streptococcus+positive+obstetric+patients+with+penicillin+allergy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B81" id="B81"></a>Hayes, K., O'Halloran, F., and Cotter, L. (2020). A review of antibiotic resistance in Group B Streptococcus: the story so far. <em>Crit. Rev. Microbiol.</em> 46 (3), 253–269. doi:10.1080/1040841X.2020.1758626</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32363979/">PubMed Abstract</a> | <a href="https://doi.org/10.1080/1040841X.2020.1758626">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+of+antibiotic+resistance+in+Group+B+Streptococcus:+the+story+so+far&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B82" id="B82"></a>Heyar, A. K., Kaur, K., Gill, A. K., and Gill, P. K. (2020). Induction of clindamycin resistance in clinical isolates of staphylococcus aureus from a tertiary care hospital. <em>Int. J. Med. Biomed. Stud.</em> 4 (12). doi:10.32553/ijmbs.v4i12.1566</p><p class="ReferencesCopy2"><a href="https://doi.org/10.32553/ijmbs.v4i12.1566">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Induction+of+clindamycin+resistance+in+clinical+isolates+of+staphylococcus+aureus+from+a+tertiary+care+hospital&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B83" id="B83"></a>Hsu, J. F., Chen, Y. N., Chu, S. M., Lee, W. J., Huang, H. R., Chiang, M. C., et al. (2023). Clonal complex 12 serotype Ib Streptococcus agalactiae strain causing complicated sepsis in neonates: clinical features and genetic characteristics. <em>Microbiol. Spectr.</em> 11 (1), e0377822. doi:10.1128/spectrum.03778-22</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36475780/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/spectrum.03778-22">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clonal+complex+12+serotype+Ib+Streptococcus+agalactiae+strain+causing+complicated+sepsis+in+neonates:+clinical+features+and+genetic+characteristics&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B84" id="B84"></a>Hsu, J. F., Lu, J. J., Lin, C., Chu, S. M., Lin, L. C., Lai, M. Y., et al. (2021). Clustered regularly interspaced short palindromic repeat analysis of clonal complex 17 serotype III group B Streptococcus strains causing neonatal invasive diseases. <em>Int. J. Mol. Sci.</em> 22 (21), 11626. doi:10.3390/ijms222111626</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34769055/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/ijms222111626">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clustered+regularly+interspaced+short+palindromic+repeat+analysis+of+clonal+complex+17+serotype+III+group+B+Streptococcus+strains+causing+neonatal+invasive+diseases&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B85" id="B85"></a>Huang, J., Lin, X.-Z., Zhu, Y., and Chen, C. (2019). Epidemiology of group B streptococcal infection in pregnant women and diseased infants in mainland China. <em>Pediatr. Neonatol.</em> 60 (5), 487–495. doi:10.1016/j.pedneo.2019.07.001</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31445795/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.pedneo.2019.07.001">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Epidemiology+of+group+B+streptococcal+infection+in+pregnant+women+and+diseased+infants+in+mainland+China&btnG=">Google Scholar</a></p></div><div class="References" style="margin-bottom:0.5em;"><p class="ReferencesCopy1"><a name="B86" id="B86"></a>Huiling, C., Jia-de, D., Hui-fen, Y., YouMin, L., Yingzi, C., and Xiao-mian, Z. (2010). Detection of erythromycin and tetracycline resistance-related genes in invasive infections due to group B streptococci. <em>Chin. J. Nosocomiology</em> 20, 1354–1357. </p><p class="ReferencesCopy2"><a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+erythromycin+and+tetracycline+resistance-related+genes+in+invasive+infections+due+to+group+B+streptococci&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B87" id="B87"></a>Husen, O., Kannaiyan Abbai, M., Aliyo, A., Daka, D., Gemechu, T., Tilahun, D., et al. (2023). Prevalence, antimicrobial susceptibility pattern and associated factors of group B Streptococcus among pregnant women attending antenatal care at bule hora university teaching hospital, southern Ethiopia. <em>Infect. drug Resist.</em> 16, 4421–4433. doi:10.2147/IDR.S415414</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/37435237/">PubMed Abstract</a> | <a href="https://doi.org/10.2147/IDR.S415414">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence,+antimicrobial+susceptibility+pattern+and+associated+factors+of+group+B+Streptococcus+among+pregnant+women+attending+antenatal+care+at+bule+hora+university+teaching+hospital,+southern+Ethiopia&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B88" id="B88"></a>Ikebe, T., Okuno, R., Uchitani, Y., Takano, M., Yamaguchi, T., Otsuka, H., et al. (2023). Serotype distribution and antimicrobial resistance of Streptococcus agalactiae isolates in nonpregnant adults with streptococcal toxic shock syndrome in Japan in 2014 to 2021. <em>Microbiol. Spectr.</em> 11 (2), e0498722. doi:10.1128/spectrum.04987-22</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36786620/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/spectrum.04987-22">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serotype+distribution+and+antimicrobial+resistance+of+Streptococcus+agalactiae+isolates+in+nonpregnant+adults+with+streptococcal+toxic+shock+syndrome+in+Japan+in+2014+to+2021&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B89" id="B89"></a>Jia-de, D. (2010) Detection of erythromycin and tetracycline resistant-related genes in skin and soft tissue infection due to group B streptococci. <em>Int. J. Lab. Med.</em> 31 (10), 1057–1058. doi:10.3969/j.issn.1673-4130.2010.10.001</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3969/j.issn.1673-4130.2010.10.001">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+erythromycin+and+tetracycline+resistant-related+genes+in+skin+and+soft+tissue+infection+due+to+group+B+streptococci&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B90" id="B90"></a>Jung, Y. J., Huynh, B. T., Seck, A., Bercion, R., Sarr, F. D., Herindrainy, P., et al. (2021). Prevalence and factors associated with maternal group B Streptococcus colonization in Madagascar and Senegal. <em>Am. J. Trop. Med. Hyg.</em> 105 (5), 1339–1346. doi:10.4269/ajtmh.21-0113</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34460418/">PubMed Abstract</a> | <a href="https://doi.org/10.4269/ajtmh.21-0113">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence+and+factors+associated+with+maternal+group+B+Streptococcus+colonization+in+Madagascar+and+Senegal&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B91" id="B91"></a>Kalliola, S., Vuopio-Varkila, J., Takala, A. K., and Eskola, J. (1999). Neonatal group B streptococcal disease in Finland: a ten-year nationwide study. <em>Pediatr. Infect. Dis. J.</em> 18 (9), 806–810. doi:10.1097/00006454-199909000-00012</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/10493342/">PubMed Abstract</a> | <a href="https://doi.org/10.1097/00006454-199909000-00012">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neonatal+group+B+streptococcal+disease+in+Finland:+a+ten-year+nationwide+study&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B92" id="B92"></a>Kamal, M. (2022). Pap smear collection and preparation: key points. <em>CytoJournal</em> 19, 24. doi:10.25259/CMAS_03_05_2021</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35510105/">PubMed Abstract</a> | <a href="https://doi.org/10.25259/CMAS_03_05_2021">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pap+smear+collection+and+preparation:+key+points&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B93" id="B93"></a>Kamga, Y. M., Ngunde, J. P., and Akoachere, J. K. T. (2019). Prevalence of bacterial vaginosis and associated risk factors in pregnant women receiving antenatal care at the Kumba Health District (KHD), Cameroon. <em>BMC pregnancy childbirth</em> 19 (1), 166. doi:10.1186/s12884-019-2312-9</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31077161/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12884-019-2312-9">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+bacterial+vaginosis+and+associated+risk+factors+in+pregnant+women+receiving+antenatal+care+at+the+Kumba+Health+District+(KHD),+Cameroon&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B94" id="B94"></a>Kamińska, D., Ratajczak, M., Nowak-Malczewska, D. M., Karolak, J. A., Kwaśniewski, M., Szumala-Kakol, A., et al. (2024). Macrolide and lincosamide resistance of Streptococcus agalactiae in pregnant women in Poland. <em>Sci. Rep.</em> 14 (1), 3877. doi:10.1038/s41598-024-54521-y</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/38366099/">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41598-024-54521-y">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Macrolide+and+lincosamide+resistance+of+Streptococcus+agalactiae+in+pregnant+women+in+Poland&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B95" id="B95"></a>Kao, Y., Tsai, M.-H., Lai, M.-Y., Chu, S.-M., Huang, H.-R., Chiang, M.-C., et al. (2019). Emerging serotype III sequence type 17 group B streptococcus invasive infection in infants: the clinical characteristics and impacts on outcomes. <em>BMC Infect. Dis.</em> 19 (1), 538. doi:10.1186/s12879-019-4177-y</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31216993/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12879-019-4177-y">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emerging+serotype+III+sequence+type+17+group+B+streptococcus+invasive+infection+in+infants:+the+clinical+characteristics+and+impacts+on+outcomes&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B96" id="B96"></a>Kardos, S., Tóthpál, A., Laub, K., Kristóf, K., Ostorházi, E., Rozgonyi, F., et al. (2019). High prevalence of group B streptococcus ST17 hypervirulent clone among non-pregnant patients from a Hungarian venereology clinic. <em>BMC Infect. Dis.</em> 19 (1), 1009. doi:10.1186/s12879-019-4626-7</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31779587/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12879-019-4626-7">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+prevalence+of+group+B+streptococcus+ST17+hypervirulent+clone+among+non-pregnant+patients+from+a+Hungarian+venereology+clinic&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B97" id="B97"></a>Kekic, D., Gajic, I., Opavski, N., Kojic, M., Vukotic, G., Smitran, A., et al. (2021). Trends in molecular characteristics and antimicrobial resistance of group B streptococci: a multicenter study in Serbia, 2015-2020. <em>Sci. Rep.</em> 11 (1), 540. doi:10.1038/s41598-020-79354-3</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33436658/">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41598-020-79354-3">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Trends+in+molecular+characteristics+and+antimicrobial+resistance+of+group+B+streptococci:+a+multicenter+study+in+Serbia,+2015-2020&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B98" id="B98"></a>Khan, U. B., Portal, E. A. R., Sands, K., Lo, S., Chalker, V. J., Jauneikaite, E., et al. (2023). Genomic analysis reveals new integrative conjugal elements and transposons in GBS conferring antimicrobial resistance. <em>Antibiotics</em> 12 (3), 544. doi:10.3390/antibiotics12030544</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36978411/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/antibiotics12030544">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Genomic+analysis+reveals+new+integrative+conjugal+elements+and+transposons+in+GBS+conferring+antimicrobial+resistance&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B99" id="B99"></a>Kimura, K., Suzuki, S., Wachino, J., Kurokawa, H., Yamane, K., Shibata, N., et al. (2008). First molecular characterization of group B streptococci with reduced penicillin susceptibility. <em>Antimicrob. agents Chemother.</em> 52 (8), 2890–2897. doi:10.1128/AAC.00185-08</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/18490507/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.00185-08">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=First+molecular+characterization+of+group+B+streptococci+with+reduced+penicillin+susceptibility&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B100" id="B100"></a>Kling, D. E., Cavicchio, A. J., Sollinger, C. A., Madoff, L. C., Schnitzer, J. J., and Kinane, T. B. (2009). Lactic acid is a potential virulence factor for group B Streptococcus. <em>Microb. Pathog.</em> 46 (1), 43–52. doi:10.1016/j.micpath.2008.10.009</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/19010409/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.micpath.2008.10.009">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lactic+acid+is+a+potential+virulence+factor+for+group+B+Streptococcus&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B101" id="B101"></a>Kobayashi, M., Vekemans, J., Baker, C. J., Ratner, A. J., Le Doare, K., Schrag, S. J., et al. (2016). Group B Streptococcus vaccine development: present status and future considerations, with emphasis on perspectives for low and middle income countries. <em>F1000Research</em> 5, 2355. doi:10.12688/f1000research.9363.1</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/27803803/">PubMed Abstract</a> | <a href="https://doi.org/10.12688/f1000research.9363.1">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+vaccine+development:+present+status+and+future+considerations,+with+emphasis+on+perspectives+for+low+and+middle+income+countries&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B102" id="B102"></a>Koide, S., Hayashi, W., Taniguchi, Y., Tanaka, H., Kimura, K., Nagano, Y., et al. (2019). Potential effect of selective pressure with different β-lactam molecules on the emergence of reduced susceptibility to β-lactams in group B Streptococci. <em>Microbiol. Immunol.</em> 63 (2), 65–76. doi:10.1111/1348-0421.12667</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30632638/">PubMed Abstract</a> | <a href="https://doi.org/10.1111/1348-0421.12667">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Potential+effect+of+selective+pressure+with+different+脦虏-lactam+molecules+on+the+emergence+of+reduced+susceptibility+to+脦虏-lactams+in+group+B+Streptococci&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B103" id="B103"></a>Koide, S., Nagano, Y., Takizawa, S., Sakaguchi, K., Soga, E., Hayashi, W., et al. (2022). Genomic traits associated with virulence and antimicrobial resistance of invasive group B Streptococcus isolates with reduced penicillin susceptibility from elderly adults. <em>Microbiol. Spectr.</em> 10 (3), 00568222–e100522. doi:10.1128/spectrum.00568-22</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1128/spectrum.00568-22">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Genomic+traits+associated+with+virulence+and+antimicrobial+resistance+of+invasive+group+B+Streptococcus+isolates+with+reduced+penicillin+susceptibility+from+elderly+adults&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B104" id="B104"></a>Koo, J., Escajadillo, T., Zhang, L., Nizet, V., and Lawrence, S. M. (2019). Erythrocyte-coated nanoparticles block cytotoxic effects of group B Streptococcus β-hemolysin/cytolysin. <em>Front. Pediatr.</em> 7, 410. doi:10.3389/fped.2019.00410</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31737584/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fped.2019.00410">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Erythrocyte-coated+nanoparticles+block+cytotoxic+effects+of+group+B+Streptococcus+脦虏-hemolysin/cytolysin&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B105" id="B105"></a>Korir, M. L., Manning, S. D., and Davies, H. D. (2017). Intrinsic maturational neonatal immune deficiencies and susceptibility to group B Streptococcus infection. <em>Clin. Microbiol. Rev.</em> 30 (4), 973–989. doi:10.1128/CMR.00019-17</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28814408/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/CMR.00019-17">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrinsic+maturational+neonatal+immune+deficiencies+and+susceptibility+to+group+B+Streptococcus+infection&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B106" id="B106"></a>Kumar Chaudhary, N., and Piya, R. (2021). Macrolide-lincosamide-streptogramin B resistance among staphylococcus aureus in chitwan medical college teaching hospital, Nepal. <em>Asian J. Pharm. Clin. Res.</em>, 61–65. doi:10.22159/ajpcr.2021.v14i5.41012</p><p class="ReferencesCopy2"><a href="https://doi.org/10.22159/ajpcr.2021.v14i5.41012">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Macrolide-lincosamide-streptogramin+B+resistance+among+staphylococcus+aureus+in+chitwan+medical+college+teaching+hospital,+Nepal&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B107" id="B107"></a>Kuperwaser, F., Avital, G., Vaz, M. J., Noble, K. N., Dammann, A. N., Randis, T. M., et al. (2023). Host inflammatory dynamics reveal placental immune modulation by Group B Streptococcus during pregnancy. <em>Mol. Syst. Biol.</em> 19 (3), e11021. doi:10.15252/msb.202211021</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36744393/">PubMed Abstract</a> | <a href="https://doi.org/10.15252/msb.202211021">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Host+inflammatory+dynamics+reveal+placental+immune+modulation+by+Group+B+Streptococcus+during+pregnancy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B108" id="B108"></a>Kurian, N. K., and Modi, D. (2022). Mechanisms of group B Streptococcus-mediated preterm birth: lessons learnt from animal models. <em>Reproduction Fertil.</em> 3 (3), R109–r120. doi:10.1530/RAF-21-0105</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1530/RAF-21-0105">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mechanisms+of+group+B+Streptococcus-mediated+preterm+birth:+lessons+learnt+from+animal+models&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B109" id="B109"></a>Lacasse, M., Valentin, A.-S., Corvec, S., Bémer, P., Jolivet-Gougeon, A., Plouzeau, C., et al. (2022). Genotypic characterization and biofilm production of group B Streptococcus strains isolated from bone and Joint infections. <em>Microbiol. Spectr.</em> 10 (2), 02329211–e302321. doi:10.1128/spectrum.02329-21</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1128/spectrum.02329-21">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Genotypic+characterization+and+biofilm+production+of+group+B+Streptococcus+strains+isolated+from+bone+and+Joint+infections&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B110" id="B110"></a>Lamagni, T. L., Keshishian, C., Efstratiou, A., Guy, R., Henderson, K. L., Broughton, K., et al. (2013). Emerging trends in the epidemiology of invasive group B streptococcal disease in England and Wales, 1991-2010. <em>Clin. Infect. Dis. official Publ. Infect. Dis. Soc. Am.</em> 57 (5), 682–688. doi:10.1093/cid/cit337</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23845950/">PubMed Abstract</a> | <a href="https://doi.org/10.1093/cid/cit337">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emerging+trends+in+the+epidemiology+of+invasive+group+B+streptococcal+disease+in+England+and+Wales,+1991-2010&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B111" id="B111"></a>Le Doare, K., O'Driscoll, M., Turner, K., Seedat, F., Russell, N. J., Seale, A. C., et al. (2017). Intrapartum antibiotic chemoprophylaxis policies for the prevention of group B streptococcal disease worldwide: systematic review. <em>Clin. Infect. Dis. official Publ. Infect. Dis. Soc. Am.</em> 65 (Suppl. l_2), S143–s151. doi:10.1093/cid/cix654</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1093/cid/cix654">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrapartum+antibiotic+chemoprophylaxis+policies+for+the+prevention+of+group+B+streptococcal+disease+worldwide:+systematic+review&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B112" id="B112"></a>Le Gallou, B., Pastuszka, A., Lemaire, C., Mereghetti, L., and Lanotte, P. (2023). Group B Streptococcus CRISPR1 typing of maternal, fetal, and neonatal infectious disease isolates highlights the importance of CC1 in <em>in utero</em> fetal death. <em>Microbiol. Spectr.</em> 11 (4), e0522122. doi:10.1128/spectrum.05221-22</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/37341591/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/spectrum.05221-22">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+CRISPR1+typing+of+maternal,+fetal,+and+neonatal+infectious+disease+isolates+highlights+the+importance+of+CC1+in+in+utero+fetal+death&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B113" id="B113"></a>Li, J., Ji, W., Gao, K., Zhou, H., Zhang, L., Mu, X., et al. (2019). Molecular characteristics of group B Streptococcus isolates from infants in southern mainland China. <em>BMC Infect. Dis.</em> 19 (1), 812. doi:10.1186/s12879-019-4434-0</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31533652/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12879-019-4434-0">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Molecular+characteristics+of+group+B+Streptococcus+isolates+from+infants+in+southern+mainland+China&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B114" id="B114"></a>Lin, E., Zou, S., Wang, Y., Lee, C. C., Chiu, C. H., and Feng, Y. (2021a). Phylogeny, recombination, and invasiveness of group B Streptococcus revealed by genomic comparisons of its global strains. <em>Eur. J. Clin. Microbiol. Infect. Dis. official Publ. Eur. Soc. Clin. Microbiol.</em> 40 (3), 581–590. doi:10.1007/s10096-020-04067-4</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1007/s10096-020-04067-4">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phylogeny,+recombination,+and+invasiveness+of+group+B+Streptococcus+revealed+by+genomic+comparisons+of+its+global+strains&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B115" id="B115"></a>Lin, L., Huang, X., Yang, H., He, Y., He, X., Huang, J., et al. (2021b). Molecular epidemiology, antimicrobial activity, and virulence gene clustering of Streptococcus agalactiae isolated from dairy cattle with mastitis in China. <em>J. dairy Sci.</em> 104 (4), 4893–4903. doi:10.3168/jds.2020-19139</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33551160/">PubMed Abstract</a> | <a href="https://doi.org/10.3168/jds.2020-19139">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Molecular+epidemiology,+antimicrobial+activity,+and+virulence+gene+clustering+of+Streptococcus+agalactiae+isolated+from+dairy+cattle+with+mastitis+in+China&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B116" id="B116"></a>Lin, S. M., Jang, A. Y., Zhi, Y., Gao, S., Lim, S., Lim, J. H., et al. (2017). Vaccination with a latch peptide provides serotype-independent protection against group B Streptococcus infection in mice. <em>J. Infect. Dis.</em> 217 (1), 93–102. doi:10.1093/infdis/jix565</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29106586/">PubMed Abstract</a> | <a href="https://doi.org/10.1093/infdis/jix565">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vaccination+with+a+latch+peptide+provides+serotype-independent+protection+against+group+B+Streptococcus+infection+in+mice&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B117" id="B117"></a>Lin, S. M., Zhi, Y., Ahn, K. B., Lim, S., and Seo, H. S. (2018). Status of group B streptococcal vaccine development. <em>Clin. Exp. vaccine Res.</em> 7 (1), 76–81. doi:10.7774/cevr.2018.7.1.76</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29399583/">PubMed Abstract</a> | <a href="https://doi.org/10.7774/cevr.2018.7.1.76">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Status+of+group+B+streptococcal+vaccine+development&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B118" id="B118"></a>Liu, B., Yi, L., Li, J., Wang, Y., Mao, C., and Wang, Y. (2020). Autoinducer-2 influences tetracycline resistance in Streptococcus suis by regulating the tet(M) gene via transposon Tn916. <em>Res. veterinary Sci.</em> 128, 269–274. doi:10.1016/j.rvsc.2019.12.007</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31837515/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.rvsc.2019.12.007">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autoinducer-2+influences+tetracycline+resistance+in+Streptococcus+suis+by+regulating+the+tet(M)+gene+via+transposon+Tn916&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B119" id="B119"></a>Liu, D., Tan, W., Wang, H., Li, W., Fu, J., Li, J., et al. (2023). Genetic diversity and genome-wide association study of 13 agronomic traits in 977 Beta vulgaris L. germplasms. <em>BMC genomics</em> 24 (1), 413. doi:10.1186/s12864-023-09522-y</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/37488485/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12864-023-09522-y">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Genetic+diversity+and+genome-wide+association+study+of+13+agronomic+traits+in+977+Beta+vulgaris+L.+germplasms&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B120" id="B120"></a>Liu, H. Q., and Tong, X. M. (2019). A clinical analysis of late-onset sepsis in very low birth weight and extremely low birth weight infants. <em>Zhongguo dang dai er ke za zhi = Chin. J. Contemp. Pediatr.</em> 21 (10), 1038–1043. doi:10.7499/j.issn.1008-8830.2019.10.016</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31642441/">PubMed Abstract</a> | <a href="https://doi.org/10.7499/j.issn.1008-8830.2019.10.016">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+clinical+analysis+of+late-onset+sepsis+in+very+low+birth+weight+and+extremely+low+birth+weight+infants&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B121" id="B121"></a>Liu, Y., Li, L., Huang, T., Wu, W., Liang, W., and Chen, M. (2019). The interaction between phagocytes and Streptococcus agalactiae (GBS) mediated by the activated complement system is the key to GBS inducing acute bacterial meningitis of Tilapia. <em>Animals</em> 9 (10), 818. doi:10.3390/ani9100818</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31623233/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/ani9100818">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+interaction+between+phagocytes+and+Streptococcus+agalactiae+(GBS)+mediated+by+the+activated+complement+system+is+the+key+to+GBS+inducing+acute+bacterial+meningitis+of+Tilapia&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B122" id="B122"></a>Liu, Y., Liu, J., and Group, B. (2022). Group B Streptococcus: virulence factors and pathogenic mechanism. <em>Microorganisms</em> 10 (12), 2483. doi:10.3390/microorganisms10122483</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36557736/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/microorganisms10122483">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus:+virulence+factors+and+pathogenic+mechanism&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B123" id="B123"></a>Liu, Y., Zheng, X., Xu, L., Tong, P., Zhu, M., Peng, B., et al. (2021). Prevalence, antimicrobial resistance, and molecular characterization of <em>Staphylococcus aureus</em> isolated from animals, meats, and market environments in xinjiang, China. <em>Foodborne pathogens Dis.</em> 18 (10), 718–726. doi:10.1089/fpd.2020.2863</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1089/fpd.2020.2863">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence,+antimicrobial+resistance,+and+molecular+characterization+of+Staphylococcus+aureus+isolated+from+animals,+meats,+and+market+environments+in+xinjiang,+China&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B124" id="B124"></a>Longtin, J., Vermeiren, C., Shahinas, D., Tamber, G. S., McGeer, A., Low, D. E., et al. (2011). Novel mutations in a patient isolate of Streptococcus agalactiae with reduced penicillin susceptibility emerging after long-term oral suppressive therapy. <em>Antimicrob. agents Chemother.</em> 55 (6), 2983–2985. doi:10.1128/AAC.01243-10</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21383092/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.01243-10">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Novel+mutations+in+a+patient+isolate+of+Streptococcus+agalactiae+with+reduced+penicillin+susceptibility+emerging+after+long-term+oral+suppressive+therapy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B125" id="B125"></a>Lopardo, H. A., Vidal, P., Sparo, M., Jeric, P., Centron, D., Facklam, R. R., et al. (2005). Six-month multicenter study on invasive infections due to Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis in Argentina. <em>J. Clin. Microbiol.</em> 43 (2), 802–807. doi:10.1128/JCM.43.2.802-807.2005</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/15695683/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/JCM.43.2.802-807.2005">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Six-month+multicenter+study+on+invasive+infections+due+to+Streptococcus+pyogenes+and+Streptococcus+dysgalactiae+subsp.+equisimilis+in+Argentina&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B126" id="B126"></a>Lu, B., Li, D., Cui, Y., Sui, W., Huang, L., and Lu, X. (2014). Epidemiology of Group B streptococcus isolated from pregnant women in Beijing, China. <em>Clin. Microbiol. Infect.</em> 20 (6), O370–O373. doi:10.1111/1469-0691.12416</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24118553/">PubMed Abstract</a> | <a href="https://doi.org/10.1111/1469-0691.12416">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Epidemiology+of+Group+B+streptococcus+isolated+from+pregnant+women+in+Beijing,+China&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B127" id="B127"></a>Luo, Q., Liu, N., Pu, S., Zhuang, Z., Gong, H., and Zhang, D. (2023). A review on the research progress on non-pharmacological therapy of <em>Helicobacter pylori</em>. <em>Front. Microbiol.</em> 14, 1134254. doi:10.3389/fmicb.2023.1134254</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/37007498/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fmicb.2023.1134254">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+on+the+research+progress+on+non-pharmacological+therapy+of+Helicobacter+pylori&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B128" id="B128"></a>Madhi, S. A., Anderson, A. S., Absalon, J., Radley, D., Simon, R., Jongihlati, B., et al. (2023). Potential for maternally administered vaccine for infant group B Streptococcus. <em>N. Engl. J. Med.</em> 389 (3), 215–227. doi:10.1056/NEJMoa2116045</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/37467497/">PubMed Abstract</a> | <a href="https://doi.org/10.1056/NEJMoa2116045">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Potential+for+maternally+administered+vaccine+for+infant+group+B+Streptococcus&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B129" id="B129"></a>Madhi, S. A., Cutland, C. L., Jose, L., Koen, A., Govender, N., Wittke, F., et al. (2016). Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in healthy women and their infants: a randomised phase 1b/2 trial. <em>Lancet Infect. Dis.</em> 16 (8), 923–934. doi:10.1016/S1473-3099(16)00152-3</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/27139805/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/S1473-3099(16)00152-3">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+an+investigational+maternal+trivalent+group+B+streptococcus+vaccine+in+healthy+women+and+their+infants:+a+randomised+phase+1b/2+trial&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B130" id="B130"></a>Madhi, S. A., Koen, A., Cutland, C. L., Jose, L., Govender, N., Wittke, F., et al. (2017). Antibody kinetics and response to routine vaccinations in infants born to women who received an investigational trivalent group B Streptococcus polysaccharide crm197-conjugate vaccine during pregnancy. <em>Clin. Infect. Dis. official Publ. Infect. Dis. Soc. Am.</em> 65 (11), 1897–1904. doi:10.1093/cid/cix666</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1093/cid/cix666">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antibody+kinetics+and+response+to+routine+vaccinations+in+infants+born+to+women+who+received+an+investigational+trivalent+group+B+Streptococcus+polysaccharide+crm197-conjugate+vaccine+during+pregnancy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B131" id="B131"></a>Maeda, T., Fukushima, Y., Yoshida, H., Goto, M., Fujita, T., Tsuyuki, Y., et al. (2021). Biofilm production ability and associated characteristics of Streptococcus agalactiae isolates from companion animals and humans. <em>J. Infect. Chemother. official J. Jpn. Soc. Chemother.</em> 27 (11), 1571–1577. doi:10.1016/j.jiac.2021.06.018</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.jiac.2021.06.018">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Biofilm+production+ability+and+associated+characteristics+of+Streptococcus+agalactiae+isolates+from+companion+animals+and+humans&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B132" id="B132"></a>Manzanares, Á., Prieto-Tato, L. M., Escosa-García, L., Navarro, M., Guillén, S., Penin, M., et al. (2023). Increased risk of group B streptococcal sepsis and meningitis in HIV-exposed uninfected infants in a high-income country. <em>Eur. J. Pediatr.</em> 182 (2), 575–579. doi:10.1007/s00431-022-04710-6</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36383285/">PubMed Abstract</a> | <a href="https://doi.org/10.1007/s00431-022-04710-6">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Increased+risk+of+group+B+streptococcal+sepsis+and+meningitis+in+HIV-exposed+uninfected+infants+in+a+high-income+country&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B133" id="B133"></a>Margarit, I., Rinaudo, C. D., Galeotti, C. L., Maione, D., Ghezzo, C., Buttazzoni, E., et al. (2009). Preventing bacterial infections with pilus-based vaccines: the group B streptococcus paradigm. <em>J. Infect. Dis.</em> 199 (1), 108–115. doi:10.1086/595564</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/19086816/">PubMed Abstract</a> | <a href="https://doi.org/10.1086/595564">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Preventing+bacterial+infections+with+pilus-based+vaccines:+the+group+B+streptococcus+paradigm&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B134" id="B134"></a>McGee, L., Chochua, S., Li, Z., Mathis, S., Rivers, J., Metcalf, B., et al. (2021). Multistate, population-based distributions of candidate vaccine targets, clonal complexes, and resistance features of invasive Group B Streptococci within the US: 2015-2017. <em>Clin. Infect. Dis. official Publ. Infect. Dis. Soc. Am.</em> 72 (6), 1004–1013. doi:10.1093/cid/ciaa151</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1093/cid/ciaa151">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multistate,+population-based+distributions+of+candidate+vaccine+targets,+clonal+complexes,+and+resistance+features+of+invasive+Group+B+Streptococci+within+the+US:+2015-2017&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B135" id="B135"></a>Mei, J. Y., Silverman, N. S., and Group, B. (2023). Group B Streptococcus in pregnancy. <em>Obstetrics Gynecol. Clin. N. Am.</em> 50 (2), 375–387. doi:10.1016/j.ogc.2023.02.009</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.ogc.2023.02.009">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+in+pregnancy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B136" id="B136"></a>Mei, Z., and Li, D. (2022). The role of probiotics in vaginal health. <em>Front. Cell. Infect. Microbiol.</em> 12, 963868. doi:10.3389/fcimb.2022.963868</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35967876/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fcimb.2022.963868">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+role+of+probiotics+in+vaginal+health&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B137" id="B137"></a>Mejia, M. E., Mercado-Evans, V., Zulk, J. J., Ottinger, S., Ruiz, K., Ballard, M. B., et al. (2023). Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. <em>bioRxiv Prepr. Serv. Biol.</em>, 527909. doi:10.1101/2023.02.09.527909</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1101/2023.02.09.527909">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vaginal+microbial+dynamics+and+pathogen+colonization+in+a+humanized+microbiota+mouse+model&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B138" id="B138"></a>Metcalf, B. J., Chochua, S., Gertz, R. E., Hawkins, P. A., Ricaldi, J., Li, Z., et al. (2017). Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. <em>Clin. Microbiol. Infect.</em> 23 (8), 574.e7–574.e14. doi:10.1016/j.cmi.2017.02.021</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28257899/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.cmi.2017.02.021">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Short-read+whole+genome+sequencing+for+determination+of+antimicrobial+resistance+mechanisms+and+capsular+serotypes+of+current+invasive+Streptococcus+agalactiae+recovered+in+the+USA&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B139" id="B139"></a>Mettu, R., Chen, C. Y., and Wu, C. Y. (2020). Synthetic carbohydrate-based vaccines: challenges and opportunities. <em>J. Biomed. Sci.</em> 27 (1), 9. doi:10.1186/s12929-019-0591-0</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31900143/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12929-019-0591-0">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Synthetic+carbohydrate-based+vaccines:+challenges+and+opportunities&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B140" id="B140"></a>Miselli, F., Frabboni, I., Di Martino, M., Zinani, I., Buttera, M., Insalaco, A., et al. (2022). Transmission of Group B Streptococcus in late-onset neonatal disease: a narrative review of current evidence. <em>Ther. Adv. Infect. Dis.</em> 9, 20499361221142732. doi:10.1177/20499361221142732</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36569815/">PubMed Abstract</a> | <a href="https://doi.org/10.1177/20499361221142732">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Transmission+of+Group+B+Streptococcus+in+late-onset+neonatal+disease:+a+narrative+review+of+current+evidence&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B141" id="B141"></a>MMWR (1997). Decreasing incidence of perinatal Group B streptococcal disease--United States, 1993-1995. <em>MMWR Morb. Mortal. Wkly. Rep.</em> 46 (21), 473–477.</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/9182211/">PubMed Abstract</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decreasing+incidence+of+perinatal+Group+B+streptococcal+disease--United+States,+1993-1995&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B142" id="B142"></a>Mohammed, L., Javed, M., Althwanay, A., Ahsan, F., Oliveri, F., Goud, H. K., et al. (2020). Live bacteria supplementation as probiotic for managing fishy, odorous vaginal discharge disease of bacterial vaginosis: an alternative treatment option? <em>Cureus</em> 12 (12), e12362. doi:10.7759/cureus.12362</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33527045/">PubMed Abstract</a> | <a href="https://doi.org/10.7759/cureus.12362">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Live+bacteria+supplementation+as+probiotic+for+managing+fishy,+odorous+vaginal+discharge+disease+of+bacterial+vaginosis:+an+alternative+treatment+option?&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B143" id="B143"></a>Mu, R., Kim, B. J., Paco, C., Del Rosario, Y., Courtney, H. S., and Doran, K. S. (2014). Identification of a group B streptococcal fibronectin binding protein, SfbA, that contributes to invasion of brain endothelium and development of meningitis. <em>Infect. Immun.</em> 82 (6), 2276–2286. doi:10.1128/IAI.01559-13</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24643538/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/IAI.01559-13">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identification+of+a+group+B+streptococcal+fibronectin+binding+protein,+SfbA,+that+contributes+to+invasion+of+brain+endothelium+and+development+of+meningitis&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B144" id="B144"></a>Mudzana, R., Mavenyengwa, R. T., and Gudza-Mugabe, M. (2021). Analysis of virulence factors and antibiotic resistance genes in group B streptococcus from clinical samples. <em>BMC Infect. Dis.</em> 21 (1), 125. doi:10.1186/s12879-021-05820-6</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33509097/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12879-021-05820-6">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+virulence+factors+and+antibiotic+resistance+genes+in+group+B+streptococcus+from+clinical+samples&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B145" id="B145"></a>Murayama, S. Y., Seki, C., Sakata, H., Sunaoshi, K., Nakayama, E., Iwata, S., et al. (2009). Capsular type and antibiotic resistance in Streptococcus agalactiae isolates from patients, ranging from newborns to the elderly, with invasive infections. <em>Antimicrob. agents Chemother.</em> 53 (6), 2650–2653. doi:10.1128/AAC.01716-08</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/19332682/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.01716-08">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Capsular+type+and+antibiotic+resistance+in+Streptococcus+agalactiae+isolates+from+patients,+ranging+from+newborns+to+the+elderly,+with+invasive+infections&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B146" id="B146"></a>Nader-Macías, M. E. F., De Gregorio, P. R., and Silva, J. A. (2021). Probiotic lactobacilli in formulas and hygiene products for the health of the urogenital tract. <em>Pharmacol. Res. Perspect.</em> 9 (5), e00787. doi:10.1002/prp2.787</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34609059/">PubMed Abstract</a> | <a href="https://doi.org/10.1002/prp2.787">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Probiotic+lactobacilli+in+formulas+and+hygiene+products+for+the+health+of+the+urogenital+tract&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B147" id="B147"></a>Nagano, N., Nagano, Y., Toyama, M., Kimura, K., Tamura, T., Shibayama, K., et al. (2012). Nosocomial spread of multidrug-resistant group B streptococci with reduced penicillin susceptibility belonging to clonal complex 1. <em>J. Antimicrob. Chemother.</em> 67 (4), 849–856. doi:10.1093/jac/dkr546</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22210756/">PubMed Abstract</a> | <a href="https://doi.org/10.1093/jac/dkr546">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nosocomial+spread+of+multidrug-resistant+group+B+streptococci+with+reduced+penicillin+susceptibility+belonging+to+clonal+complex+1&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B148" id="B148"></a>Nanduri, S. A., Petit, S., Smelser, C., Apostol, M., Alden, N. B., Harrison, L. H., et al. (2019). Epidemiology of invasive early-onset and late-onset group B streptococcal disease in the United States, 2006 to 2015: multistate laboratory and population-based surveillance. <em>JAMA Pediatr.</em> 173 (3), 224–233. doi:10.1001/jamapediatrics.2018.4826</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30640366/">PubMed Abstract</a> | <a href="https://doi.org/10.1001/jamapediatrics.2018.4826">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Epidemiology+of+invasive+early-onset+and+late-onset+group+B+streptococcal+disease+in+the+United+States,+2006+to+2015:+multistate+laboratory+and+population-based+surveillance&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B149" id="B149"></a>Nitzan, O., Elias, M., Peretz, A., and Saliba, W. (2016). Role of antibiotics for treatment of inflammatory bowel disease. <em>World J. gastroenterology</em> 22 (3), 1078–1087. doi:10.3748/wjg.v22.i3.1078</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26811648/">PubMed Abstract</a> | <a href="https://doi.org/10.3748/wjg.v22.i3.1078">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Role+of+antibiotics+for+treatment+of+inflammatory+bowel+disease&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B150" id="B150"></a>Nørgaard, S. M., Jensen, C. S., Aalestrup, J., Vandenbroucke-Grauls, C., de Boer, M. G. J., and Pedersen, A. B. (2019). Choice of therapeutic interventions and outcomes for the treatment of infections caused by multidrug-resistant gram-negative pathogens: a systematic review. <em>Antimicrob. Resist. Infect. control</em> 8, 170. doi:10.1186/s13756-019-0624-1</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31709047/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s13756-019-0624-1">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Choice+of+therapeutic+interventions+and+outcomes+for+the+treatment+of+infections+caused+by+multidrug-resistant+gram-negative+pathogens:+a+systematic+review&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B151" id="B151"></a>Nuccitelli, A., Rinaudo, C. D., and Maione, D. (2015). Group B Streptococcus vaccine: state of the art. <em>Ther. Adv. vaccines</em> 3 (3), 76–90. doi:10.1177/2051013615579869</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26288735/">PubMed Abstract</a> | <a href="https://doi.org/10.1177/2051013615579869">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+vaccine:+state+of+the+art&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B152" id="B152"></a>Padekar, H., Samal, B., Dash, L., and J, S. (2020). Prevalence of inducible clindamycin resistance among <em>Staphylococcus aureus</em> isolates from a tertiary care hospital. <em>Ip. Int. J. Med. Microbiol. Trop. Dis.</em> 6 (3), 161–164. doi:10.18231/j.ijmmtd.2020.036</p><p class="ReferencesCopy2"><a href="https://doi.org/10.18231/j.ijmmtd.2020.036">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+inducible+clindamycin+resistance+among+Staphylococcus+aureus+isolates+from+a+tertiary+care+hospital&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B153" id="B153"></a>Paoletti, L. C., and Kasper, D. L. (2019). Surface structures of group B Streptococcus important in human immunity. <em>Microbiol. Spectr.</em> 7 (2). doi:10.1128/microbiolspec.GPP3-0001-2017</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30873933/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/microbiolspec.GPP3-0001-2017">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Surface+structures+of+group+B+Streptococcus+important+in+human+immunity&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B154" id="B154"></a>Park, C., Nichols, M., and Schrag, S. J. (2014). Two cases of invasive vancomycin-resistant group B streptococcus infection. <em>N. Engl. J. Med.</em> 370 (9), 885–886. doi:10.1056/NEJMc1308504</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24571775/">PubMed Abstract</a> | <a href="https://doi.org/10.1056/NEJMc1308504">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Two+cases+of+invasive+vancomycin-resistant+group+B+streptococcus+infection&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B155" id="B155"></a>Paul, P., Gonçalves, B. P., Le Doare, K., and Lawn, J. E. (2023). 20 million pregnant women with group B streptococcus carriage: consequences, challenges, and opportunities for prevention. <em>Curr. Opin. Pediatr.</em> 35 (2), 223–230. doi:10.1097/MOP.0000000000001223</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36749143/">PubMed Abstract</a> | <a href="https://doi.org/10.1097/MOP.0000000000001223">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=20+million+pregnant+women+with+group+B+streptococcus+carriage:+consequences,+challenges,+and+opportunities+for+prevention&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B156" id="B156"></a>Pawlowski, A., Lannergård, J., Gonzalez-Miro, M., Cao, D., Larsson, S., Persson, J. J., et al. (2022). A group B Streptococcus alpha-like protein subunit vaccine induces functionally active antibodies in humans targeting homotypic and heterotypic strains. <em>Cell. Rep. Med.</em> 3 (2), 100511. doi:10.1016/j.xcrm.2022.100511</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35243418/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.xcrm.2022.100511">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+group+B+Streptococcus+alpha-like+protein+subunit+vaccine+induces+functionally+active+antibodies+in+humans+targeting+homotypic+and+heterotypic+strains&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B157" id="B157"></a>Persson, E., Berg, S., Bergseng, H., Bergh, K., Valsö-Lyng, R., and Trollfors, B. (2008). Antimicrobial susceptibility of invasive group B streptococcal isolates from south-west Sweden 1988-2001. <em>Scand. J. Infect. Dis.</em> 40 (4), 308–313. doi:10.1080/00365540701678702</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/17918014/">PubMed Abstract</a> | <a href="https://doi.org/10.1080/00365540701678702">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+susceptibility+of+invasive+group+B+streptococcal+isolates+from+south-west+Sweden+1988-2001&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B158" id="B158"></a>Pezzicoli, A., Santi, I., Lauer, P., Rosini, R., Rinaudo, D., Grandi, G., et al. (2008). Pilus backbone contributes to group B Streptococcus paracellular translocation through epithelial cells. <em>J. Infect. Dis.</em> 198 (6), 890–898. doi:10.1086/591182</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/18694342/">PubMed Abstract</a> | <a href="https://doi.org/10.1086/591182">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pilus+backbone+contributes+to+group+B+Streptococcus+paracellular+translocation+through+epithelial+cells&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B159" id="B159"></a>Piccinelli, G., Biscaro, V., Gargiulo, F., Caruso, A., and De Francesco, M. A. (2015b). Characterization and antibiotic susceptibility of Streptococcus agalactiae isolates causing urinary tract infections. <em>Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis.</em> 34, 1–6. doi:10.1016/j.meegid.2015.07.001</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26144658/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.meegid.2015.07.001">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Characterization+and+antibiotic+susceptibility+of+Streptococcus+agalactiae+isolates+causing+urinary+tract+infections&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B160" id="B160"></a>Piccinelli, G., Gargiulo, F., Corbellini, S., Ravizzola, G., Bonfanti, C., Caruso, A., et al. (2015a). Emergence of the first levofloxacin-resistant strains of Streptococcus agalactiae isolated in Italy. <em>Antimicrob. agents Chemother.</em> 59 (4), 2466–2469. doi:10.1128/AAC.05127-14</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/25666148/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.05127-14">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emergence+of+the+first+levofloxacin-resistant+strains+of+Streptococcus+agalactiae+isolated+in+Italy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B161" id="B161"></a>Pierański, M. K., Kosiński, J. G., Szymczak, K., Sadowski, P., and Grinholc, M. (2023). Antimicrobial photodynamic inactivation: an alternative for group B Streptococcus vaginal colonization in a murine experimental model. <em>Antioxidants Basel, Switz.</em> 12 (4), 847. doi:10.3390/antiox12040847</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3390/antiox12040847">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+photodynamic+inactivation:+an+alternative+for+group+B+Streptococcus+vaginal+colonization+in+a+murine+experimental+model&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B162" id="B162"></a>Pietrocola, G., Arciola, C. R., Rindi, S., Montanaro, L., and Speziale, P. (2018). Streptococcus agalactiae non-pilus, cell wall-anchored proteins: involvement in colonization and pathogenesis and potential as vaccine candidates. <em>Front. Immunol.</em> 9, 602. doi:10.3389/fimmu.2018.00602</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29686667/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fimmu.2018.00602">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Streptococcus+agalactiae+non-pilus,+cell+wall-anchored+proteins:+involvement+in+colonization+and+pathogenesis+and+potential+as+vaccine+candidates&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B163" id="B163"></a>Piliponsky, A. M., Sharma, K., Quach, P., Brokaw, A., Nguyen, S., Orvis, A., et al. (2022). Mast cell-derived factor XIIIA contributes to sexual dimorphic defense against group B streptococcal infections. <em>J. Clin. investigation</em> 132 (20), e157999. doi:10.1172/JCI157999</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1172/JCI157999">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mast+cell-derived+factor+XIIIA+contributes+to+sexual+dimorphic+defense+against+group+B+streptococcal+infections&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B164" id="B164"></a>Platt, M. W., and Gilson, G. J. (1994). Group B streptococcal disease in the perinatal period. <em>Am. Fam. physician</em> 49 (2), 434–442.</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/8304264/">PubMed Abstract</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+disease+in+the+perinatal+period&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B165" id="B165"></a>Pourmadadi, M., Moammeri, A., Shamsabadipour, A., Moghaddam, Y. F., Rahdar, A., and Pandey, S. (2023). Application of various optical and electrochemical nanobiosensors for detecting cancer antigen 125 (CA-125): a review. <em>Biosensors</em> 13 (1), 99. doi:10.3390/bios13010099</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36671934/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/bios13010099">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+various+optical+and+electrochemical+nanobiosensors+for+detecting+cancer+antigen+125+(CA-125):+a+review&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B166" id="B166"></a>Preenanka, R., and Safeena, M. P. (2023). Morphological, biological and genomic characterization of lytic phages against Streptococcus agalactiae causing streptococcosis in tilapia. <em>Microb. Pathog.</em> 174, 105919. doi:10.1016/j.micpath.2022.105919</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36460145/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.micpath.2022.105919">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Morphological,+biological+and+genomic+characterization+of+lytic+phages+against+Streptococcus+agalactiae+causing+streptococcosis+in+tilapia&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B167" id="B167"></a>Preventing neonatal group B streptococcal infection (2011). Preventing neonatal group B streptococcal infection. Intrapartum antibiotic prophylaxis in some high-risk situations. <em>Prescrire Int.</em> 20 (114), 72–77.</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21648230/">PubMed Abstract</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Preventing+neonatal+group+B+streptococcal+infection.+Intrapartum+antibiotic+prophylaxis+in+some+high-risk+situations&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B168" id="B168"></a>Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion (2020). Prevention of group B streptococcal early-onset disease in newborns: ACOG committee opinion, number 797. <em>Obstetrics Gynecol.</em> 135 (2), e51–e72. doi:10.1097/AOG.0000000000003668</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31977795/">PubMed Abstract</a> | <a href="https://doi.org/10.1097/AOG.0000000000003668">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevention+of+group+B+streptococcal+early-onset+disease+in+newborns:+ACOG+committee+opinion,+number+797&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B169" id="B169"></a>Procter, S. R., Gonçalves, B. P., Paul, P., Chandna, J., Seedat, F., Koukounari, A., et al. (2023). Maternal immunisation against Group B Streptococcus: a global analysis of health impact and cost-effectiveness. <em>PLoS Med.</em> 20 (3), e1004068. doi:10.1371/journal.pmed.1004068</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36917564/">PubMed Abstract</a> | <a href="https://doi.org/10.1371/journal.pmed.1004068">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maternal+immunisation+against+Group+B+Streptococcus:+a+global+analysis+of+health+impact+and+cost-effectiveness&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B170" id="B170"></a>Pulingam, T., Parumasivam, T., Gazzali, A. M., Sulaiman, A. M., Chee, J. Y., Lakshmanan, M., et al. (2022). Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. <em>Eur. J. Pharm. Sci. official J. Eur. Fed. Pharm. Sci.</em> 170, 106103. doi:10.1016/j.ejps.2021.106103</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.ejps.2021.106103">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+resistance:+prevalence,+economic+burden,+mechanisms+of+resistance+and+strategies+to+overcome&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B171" id="B171"></a>Raabe, V. N., Shane, A. L., and Group, B. (2019). Group B Streptococcus (Streptococcus agalactiae). <em>Microbiol. Spectr.</em> 7 (2). doi:10.1128/microbiolspec.GPP3-0007-2018</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30900541/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/microbiolspec.GPP3-0007-2018">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+(Streptococcus+agalactiae)&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B172" id="B172"></a>Ragunathan, P., Sridaran, D., Weigel, A., Shabayek, S., Spellerberg, B., and Ponnuraj, K. (2013). Metal binding is critical for the folding and function of laminin binding protein, lmb of Streptococcus agalactiae. <em>PloS one</em> 8, e67517. doi:10.1371/journal.pone.0067517</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23826314/">PubMed Abstract</a> | <a href="https://doi.org/10.1371/journal.pone.0067517">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Metal+binding+is+critical+for+the+folding+and+function+of+laminin+binding+protein,+lmb+of+Streptococcus+agalactiae&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B173" id="B173"></a>Rajagopal, L. (2009). Understanding the regulation of Group B Streptococcal virulence factors. <em>Future Microbiol.</em> 4 (2), 201–221. doi:10.2217/17460913.4.2.201</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/19257847/">PubMed Abstract</a> | <a href="https://doi.org/10.2217/17460913.4.2.201">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+the+regulation+of+Group+B+Streptococcal+virulence+factors&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B174" id="B174"></a>Reza, A., Sutton, J. M., and Rahman, K. M. (2019). Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria. <em>Antibiot. Basel, Switz.</em> 8 (4), 229. doi:10.3390/antibiotics8040229</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31752382/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/antibiotics8040229">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effectiveness+of+efflux+pump+inhibitors+as+biofilm+disruptors+and+resistance+breakers+in+gram-negative+(ESKAPEE)+bacteria&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B175" id="B175"></a>Risser, F., López-Morales, J., and Nash, M. A. (2022). Adhesive virulence factors of <em>Staphylococcus aureus</em> resist digestion by coagulation proteases thrombin and plasmin. <em>ACS Bio Med Chem Au</em> 2 (6), 586–599. doi:10.1021/acsbiomedchemau.2c00042</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36573096/">PubMed Abstract</a> | <a href="https://doi.org/10.1021/acsbiomedchemau.2c00042">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adhesive+virulence+factors+of+Staphylococcus+aureus+resist+digestion+by+coagulation+proteases+thrombin+and+plasmin&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B176" id="B176"></a>Rosa-Fraile, M., Dramsi, S., and Spellerberg, B. (2014). Group B streptococcal haemolysin and pigment, a tale of twins. <em>FEMS Microbiol. Rev.</em> 38 (5), 932–946. doi:10.1111/1574-6976.12071</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24617549/">PubMed Abstract</a> | <a href="https://doi.org/10.1111/1574-6976.12071">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+haemolysin+and+pigment,+a+tale+of+twins&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B177" id="B177"></a>Sadowy, E., Matynia, B., and Hryniewicz, W. (2010). Population structure, virulence factors and resistance determinants of invasive, non-invasive and colonizing Streptococcus agalactiae in Poland. <em>J. Antimicrob. Chemother.</em> 65 (9), 1907–1914. doi:10.1093/jac/dkq230</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/20584746/">PubMed Abstract</a> | <a href="https://doi.org/10.1093/jac/dkq230">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Population+structure,+virulence+factors+and+resistance+determinants+of+invasive,+non-invasive+and+colonizing+Streptococcus+agalactiae+in+Poland&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B178" id="B178"></a>Santana, F. A. F., de Oliveira, T. V. L., Filho, M. B. S., da Silva, L. S. C., de Brito, B. B., de Melo, F. F., et al. (2020). Streptococcus agalactiae: identification methods, antimicrobial susceptibility, and resistance genes in pregnant women. <em>World J. Clin. cases</em> 8 (18), 3988–3998. doi:10.12998/wjcc.v8.i18.3988</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33024755/">PubMed Abstract</a> | <a href="https://doi.org/10.12998/wjcc.v8.i18.3988">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Streptococcus+agalactiae:+identification+methods,+antimicrobial+susceptibility,+and+resistance+genes+in+pregnant+women&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B179" id="B179"></a>Santi, I., Scarselli, M., Mariani, M., Pezzicoli, A., Masignani, V., Taddei, A., et al. (2007). BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. <em>Mol. Microbiol.</em> 63 (3), 754–767. doi:10.1111/j.1365-2958.2006.05555.x</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/17212592/">PubMed Abstract</a> | <a href="https://doi.org/10.1111/j.1365-2958.2006.05555.x">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BibA:+a+novel+immunogenic+bacterial+adhesin+contributing+to+group+B+Streptococcus+survival+in+human+blood&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B180" id="B180"></a>Santillan, D. A., Andracki, M. E., and Hunter, S. K. (2008). Protective immunization in mice against group B streptococci using encapsulated C5a peptidase. <em>Am. J. obstetrics Gynecol.</em> 198 (1), 114.e111–e6. doi:10.1016/j.ajog.2007.06.003</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/17905172/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.ajog.2007.06.003">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Protective+immunization+in+mice+against+group+B+streptococci+using+encapsulated+C5a+peptidase&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B181" id="B181"></a>Santillan, D. A., Rai, K. K., Santillan, M. K., Krishnamachari, Y., Salem, A. K., and Hunter, S. K. (2011). Efficacy of polymeric encapsulated C5a peptidase–based group B streptococcus vaccines in a murine model. <em>Am. J. obstetrics Gynecol.</em> 205 (3), 249.e241–e8. doi:10.1016/j.ajog.2011.06.024</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21802065/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.ajog.2011.06.024">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficacy+of+polymeric+encapsulated+C5a+peptidase芒聙聯based+group+B+streptococcus+vaccines+in+a+murine+model&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B182" id="B182"></a>Savoia, D., Gottimer, C., Crocilla, C., and Zucca, M. (2008). Streptococcus agalactiae in pregnant women: phenotypic and genotypic characters. <em>J. Infect.</em> 56 (2), 120–125. doi:10.1016/j.jinf.2007.11.007</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/18166228/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.jinf.2007.11.007">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Streptococcus+agalactiae+in+pregnant+women:+phenotypic+and+genotypic+characters&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B183" id="B183"></a>Sayres, L. C., Younge, N. E., Rikard, B., Corcoran, D. L., Modliszewski, J. L., and Hughes, B. L. (2023). The gestational membrane microbiome in the presence or absence of intraamniotic infection. <em>Am. J. obstetrics Gynecol. MFM</em> 5 (3), 100837. doi:10.1016/j.ajogmf.2022.100837</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.ajogmf.2022.100837">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+gestational+membrane+microbiome+in+the+presence+or+absence+of+intraamniotic+infection&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B184" id="B184"></a>Schindler, Y., Rahav, G., Nissan, I., Treygerman, O., Prajgrod, G., Attia, B. Z., et al. (2023). Group B streptococcus virulence factors associated with different clinical syndromes: asymptomatic carriage in pregnant women and early-onset disease in the newborn. <em>Front. Microbiol.</em> 14, 1093288. doi:10.3389/fmicb.2023.1093288</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36860481/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fmicb.2023.1093288">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcus+virulence+factors+associated+with+different+clinical+syndromes:+asymptomatic+carriage+in+pregnant+women+and+early-onset+disease+in+the+newborn&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B185" id="B185"></a>Schrag, S., Gorwitz, R., Fultz-Butts, K., and Schuchat, A. (2002). Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC. <em>MMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep.</em> 51 (Rr-11), 1–22.</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/12211284/">PubMed Abstract</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevention+of+perinatal+group+B+streptococcal+disease.+Revised+guidelines+from+CDC&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B186" id="B186"></a>Schuchat, A. (1995). Group B streptococcal disease in newborns: a global perspective on prevention. <em>Biomed. Pharmacother. = Biomedecine Pharmacother.</em> 49 (1), 19–25. doi:10.1016/0753-3322(96)82573-X</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/7749075/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/0753-3322(96)82573-X">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+disease+in+newborns:+a+global+perspective+on+prevention&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B187" id="B187"></a>Seo, Y. S., Srinivasan, U., Oh, K. Y., Shin, J. H., Chae, J. D., Kim, M. Y., et al. (2010). Changing molecular epidemiology of group B streptococcus in Korea. <em>J. Korean Med. Sci.</em> 25 (6), 817–823. doi:10.3346/jkms.2010.25.6.817</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/20514299/">PubMed Abstract</a> | <a href="https://doi.org/10.3346/jkms.2010.25.6.817">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Changing+molecular+epidemiology+of+group+B+streptococcus+in+Korea&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B188" id="B188"></a>Shabayek, S., and Abdalla, S. (2014). Macrolide- and tetracycline-resistance determinants of colonizing group B streptococcus in women in Egypt. <em>J. Med. Microbiol.</em> 63 (Pt 10), 1324–1327. doi:10.1099/jmm.0.077057-0</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/25053798/">PubMed Abstract</a> | <a href="https://doi.org/10.1099/jmm.0.077057-0">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Macrolide-+and+tetracycline-resistance+determinants+of+colonizing+group+B+streptococcus+in+women+in+Egypt&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B189" id="B189"></a>Shabayek, S., Spellerberg, B., and Group, B. (2018). Group B streptococcal colonization, molecular characteristics, and epidemiology. <em>Front. Microbiol.</em> 9, 437. doi:10.3389/fmicb.2018.00437</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29593684/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fmicb.2018.00437">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+colonization,+molecular+characteristics,+and+epidemiology&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B190" id="B190"></a>Shen, A. D., Zhang, G. R., Wang, Y. H., and Yang, Y. H. (2005). Susceptibility patterns and mechanisms of macrolide resistance in group B streptococcus isolates. <em>Zhonghua er ke za zhi = Chin. J. Pediatr.</em> 43 (9), 661–664.</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/16191298/">PubMed Abstract</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Susceptibility+patterns+and+mechanisms+of+macrolide+resistance+in+group+B+streptococcus+isolates&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B191" id="B191"></a>Shimizu, A., Tsukagoshi, H., Sekizuka, T., Kuroda, M., Koizumi, A., Fujita, M., et al. (2020). Meningitis and bacteremia by nonhemolytic Group B Streptococcus strain: a whole genome analysis. <em>Microbiol. Immunol.</em> 64 (9), 630–634. doi:10.1111/1348-0421.12826</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32484984/">PubMed Abstract</a> | <a href="https://doi.org/10.1111/1348-0421.12826">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Meningitis+and+bacteremia+by+nonhemolytic+Group+B+Streptococcus+strain:+a+whole+genome+analysis&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B192" id="B192"></a>Sidky, I., and Thomas, M. (2002). Prevalence of Group B streptococcal infection colonisation in pregnant women and their offspring in the Middle East. <em>J. Obstetrics Gynaecol.</em> 22 (2), 179–180. doi:10.1080/01443610120113364</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/12521703/">PubMed Abstract</a> | <a href="https://doi.org/10.1080/01443610120113364">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+Group+B+streptococcal+infection+colonisation+in+pregnant+women+and+their+offspring+in+the+Middle+East&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B193" id="B193"></a>Simonsen, K. A., Anderson-Berry, A. L., Delair, S. F., and Davies, H. D. (2014). Early-onset neonatal sepsis. <em>Clin. Microbiol. Rev.</em> 27 (1), 21–47. doi:10.1128/CMR.00031-13</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24396135/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/CMR.00031-13">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Early-onset+neonatal+sepsis&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B194" id="B194"></a>Sitkiewicz, I., Green, N. M., Guo, N., Bongiovanni, A. M., Witkin, S. S., and Musser, J. M. (2009). Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid. <em>PloS one</em> 4 (7), e6114. doi:10.1371/journal.pone.0006114</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/19568429/">PubMed Abstract</a> | <a href="https://doi.org/10.1371/journal.pone.0006114">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Transcriptome+adaptation+of+group+B+Streptococcus+to+growth+in+human+amniotic+fluid&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B195" id="B195"></a>Slotved, H. C., and Hoffmann, S. (2020). The epidemiology of invasive group B Streptococcus in Denmark from 2005 to 2018. <em>Front. public health</em> 8, 40. doi:10.3389/fpubh.2020.00040</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32211361/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fpubh.2020.00040">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+epidemiology+of+invasive+group+B+Streptococcus+in+Denmark+from+2005+to+2018&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B196" id="B196"></a>Song, K. E., Hwang, N., Ham, J. Y., Cha, H. H., Chong, G. O., and Lee, N. Y. (2022). Prevalence of group B Streptococcus colonization in pregnant women at a university hospital in Korea. <em>Clin. Lab.</em> 68 (8). doi:10.7754/Clin.Lab.2021.211126</p><p class="ReferencesCopy2"><a href="https://doi.org/10.7754/Clin.Lab.2021.211126">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+group+B+Streptococcus+colonization+in+pregnant+women+at+a+university+hospital+in+Korea&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B197" id="B197"></a>Spellerberg, B., Rozdzinski, E., Martin, S., Weber-Heynemann, J., Schnitzler, N., Lütticken, R., et al. (1999). Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. <em>Infect. Immun.</em> 67 (2), 871–878. doi:10.1128/IAI.67.2.871-878.1999</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/9916102/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/IAI.67.2.871-878.1999">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lmb,+a+protein+with+similarities+to+the+LraI+adhesin+family,+mediates+attachment+of+Streptococcus+agalactiae+to+human+laminin&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B198" id="B198"></a>Spencer, B. L., Deng, L., Patras, K. A., Burcham, Z. M., Sanches, G. F., Nagao, P. E., et al. (2019). Cas9 contributes to group B streptococcal colonization and disease. <em>Front. Microbiol.</em> 10, 1930. doi:10.3389/fmicb.2019.01930</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31497003/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fmicb.2019.01930">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cas9+contributes+to+group+B+streptococcal+colonization+and+disease&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B199" id="B199"></a>Sravani, A. B., Ghate, V., and Lewis, S. (2023). Human papillomavirus infection, cervical cancer and the less explored role of trace elements. <em>Biol. trace Elem. Res.</em> 201 (3), 1026–1050. doi:10.1007/s12011-022-03226-2</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35467267/">PubMed Abstract</a> | <a href="https://doi.org/10.1007/s12011-022-03226-2">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Human+papillomavirus+infection,+cervical+cancer+and+the+less+explored+role+of+trace+elements&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B200" id="B200"></a>Sroka-Oleksiak, A., Gosiewski, T., Pabian, W., Gurgul, A., Kapusta, P., Ludwig-Słomczyńska, A. H., et al. (2020). Next-generation sequencing as a tool to detect vaginal microbiota disturbances during pregnancy. <em>Microorganisms</em> 8 (11), 1813. doi:10.3390/microorganisms8111813</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33217908/">PubMed Abstract</a> | <a href="https://doi.org/10.3390/microorganisms8111813">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Next-generation+sequencing+as+a+tool+to+detect+vaginal+microbiota+disturbances+during+pregnancy&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B201" id="B201"></a>Stepanović, S., Djukić, S., Veljković, M., Arsić, B., Garalejić, E., and Ranin, L. (2003). Antimicrobial activity of human follicular fluids. <em>Gynecol. obstetric investigation</em> 56 (3), 173–178. doi:10.1159/000074103</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1159/000074103">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+activity+of+human+follicular+fluids&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B202" id="B202"></a>Stephens, K., Charnock-Jones, D. S., and Smith, G. C. S. (2023). Group B Streptococcus and the risk of perinatal morbidity and mortality following term labor. <em>Am. J. obstetrics Gynecol.</em> 228 (5s), S1305–s1312. doi:10.1016/j.ajog.2022.07.051</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.ajog.2022.07.051">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+and+the+risk+of+perinatal+morbidity+and+mortality+following+term+labor&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B203" id="B203"></a>Suffolk, R., Agertoft, L., Johansen, M., and Zachariassen, G. (2019). Late-onset group B streptococcus infections and severe bronchopulmonary dysplasia in an extremely preterm born infant. <em>BMJ case Rep.</em> 12 (7), e229255. doi:10.1136/bcr-2019-229255</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31350226/">PubMed Abstract</a> | <a href="https://doi.org/10.1136/bcr-2019-229255">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Late-onset+group+B+streptococcus+infections+and+severe+bronchopulmonary+dysplasia+in+an+extremely+preterm+born+infant&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B204" id="B204"></a>Sundin, C. S., Rigg, K., and Ellis, K. K. (2021). Maternal sepsis: presentation, course, treatment, and outcomes. <em>MCN Am. J. maternal child Nurs.</em> 46, 155–160. doi:10.1097/NMC.0000000000000712</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1097/NMC.0000000000000712">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maternal+sepsis:+presentation,+course,+treatment,+and+outcomes&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B205" id="B205"></a>Swamy, G. K., Metz, T. D., Edwards, K. M., Soper, D. E., Beigi, R. H., Campbell, J. D., et al. (2020). Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in pregnant women and their infants: results from a randomized placebo-controlled phase II trial. <em>Vaccine</em> 38 (44), 6930–6940. doi:10.1016/j.vaccine.2020.08.056</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32883555/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.vaccine.2020.08.056">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+an+investigational+maternal+trivalent+group+B+streptococcus+vaccine+in+pregnant+women+and+their+infants:+results+from+a+randomized+placebo-controlled+phase+II+trial&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B206" id="B206"></a>Sweeney, E. L., Gardiner, S., Tickner, J., Trim, L., Beagley, K. W., Carey, A. J., et al. (2020). Group B Streptococcus serotypes Ia and V induce differential vaginal immune responses that may contribute to long term colonization of the female reproductive tract. <em>Am. J. reproductive Immunol.</em> 83 (1), e13199. doi:10.1111/aji.13199</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31626718/">PubMed Abstract</a> | <a href="https://doi.org/10.1111/aji.13199">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+serotypes+Ia+and+V+induce+differential+vaginal+immune+responses+that+may+contribute+to+long+term+colonization+of+the+female+reproductive+tract&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B207" id="B207"></a>Takaya, A., Kitagawa, N., Kuroe, Y., Endo, K., Okazaki, M., Yokoyama, E., et al. (2010). Mutational analysis of reduced telithromycin susceptibility of Streptococcus pneumoniae isolated clinically in Japan. <em>FEMS Microbiol. Lett.</em> 307 (1), 87–93. doi:10.1111/j.1574-6968.2010.01962.x</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/20402783/">PubMed Abstract</a> | <a href="https://doi.org/10.1111/j.1574-6968.2010.01962.x">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mutational+analysis+of+reduced+telithromycin+susceptibility+of+Streptococcus+pneumoniae+isolated+clinically+in+Japan&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B208" id="B208"></a>Talebi Bezmin Abadi, A., Rizvanov, A. A., Haertlé, T., and Blatt, N. L. (2019). World health organization report: current crisis of antibiotic resistance. <em>BioNanoScience</em> 9 (4), 778–788. doi:10.1007/s12668-019-00658-4</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1007/s12668-019-00658-4">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=World+health+organization+report:+current+crisis+of+antibiotic+resistance&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B209" id="B209"></a>Tano, S., Ueno, T., Mayama, M., Yamada, T., Takeda, T., Uno, K., et al. (2021). Relationship between vaginal group B streptococcus colonization in the early stage of pregnancy and preterm birth: a retrospective cohort study. <em>BMC pregnancy childbirth</em> 21 (1), 141. doi:10.1186/s12884-021-03624-9</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33593322/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12884-021-03624-9">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Relationship+between+vaginal+group+B+streptococcus+colonization+in+the+early+stage+of+pregnancy+and+preterm+birth:+a+retrospective+cohort+study&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B210" id="B210"></a>Tiruvayipati, S., Tang, W. Y., Barkham, T. M. S., and Chen, S. L. (2021). GBS-SBG - GBS serotyping by genome sequencing. <em>Microb. genomics</em> 7 (12), 000688. doi:10.1099/mgen.0.000688</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1099/mgen.0.000688">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GBS-SBG+-+GBS+serotyping+by+genome+sequencing&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B211" id="B211"></a>Totadhri, M., Lakshmanan, A., Saraswathy, M. P., and Mane, M. S. (2022). Asymptomatic bacteriuria of pregnant women in a tertiary care centre. <em>J. Educ. health Promot.</em> 11, 249. doi:10.4103/jehp.jehp_1752_21</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36325203/">PubMed Abstract</a> | <a href="https://doi.org/10.4103/jehp.jehp_1752_21">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Asymptomatic+bacteriuria+of+pregnant+women+in+a+tertiary+care+centre&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B212" id="B212"></a>Tsega, K. G., Tamrat Abebe, Z., Adane, M., and Mulugeta Desta, T. (2015). Prevalence and antibiotic susceptibility pattern of Streptococcus agalactiae among pregnant women at adigrat zonal hospital and adigrat health center, tigray, Ethiopia. <em>J. Gynecol. Obstetrics</em> 3 (2), 29–35. doi:10.11648/j.jgo.20150302.13</p><p class="ReferencesCopy2"><a href="https://doi.org/10.11648/j.jgo.20150302.13">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevalence+and+antibiotic+susceptibility+pattern+of+Streptococcus+agalactiae+among+pregnant+women+at+adigrat+zonal+hospital+and+adigrat+health+center,+tigray,+Ethiopia&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B213" id="B213"></a>Tulyaprawat, O., Pharkjaksu, S., Shrestha, R. K., and Ngamskulrungroj, P. (2021). Emergence of multi-drug resistance and its association with uncommon serotypes of Streptococcus agalactiae isolated from non-neonatal patients in Thailand. <em>Front. Microbiol.</em> 12, 719353. doi:10.3389/fmicb.2021.719353</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34566923/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fmicb.2021.719353">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emergence+of+multi-drug+resistance+and+its+association+with+uncommon+serotypes+of+Streptococcus+agalactiae+isolated+from+non-neonatal+patients+in+Thailand&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B214" id="B214"></a>Upadhyay, K., Talati, A., and Group, B. (2022). Group B streptococcal infections in neonates. <em>Newborn</em> 1 (1), 109–119. doi:10.5005/jp-journals-11002-0022</p><p class="ReferencesCopy2"><a href="https://doi.org/10.5005/jp-journals-11002-0022">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+infections+in+neonates&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B215" id="B215"></a>Uruén, C., García, C., Fraile, L., Tommassen, J., and Arenas, J. (2022). How Streptococcus suis escapes antibiotic treatments. <em>Veterinary Res.</em> 53 (1), 91. doi:10.1186/s13567-022-01111-3</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1186/s13567-022-01111-3">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+Streptococcus+suis+escapes+antibiotic+treatments&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B216" id="B216"></a>van der Linden, M., Mamede, R., Levina, N., Helwig, P., Vila-Cerqueira, P., Carriço, J. A., et al. (2019). Heterogeneity of penicillin-non-susceptible group B streptococci isolated from a single patient in Germany. <em>J. Antimicrob. Chemother.</em> 75 (2), 296–299. doi:10.1093/jac/dkz465</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1093/jac/dkz465">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heterogeneity+of+penicillin-non-susceptible+group+B+streptococci+isolated+from+a+single+patient+in+Germany&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B217" id="B217"></a>Van Du, V., Dung, P. T., Toan, N. L., Van Mao, C., Bac, N. T., Van Tong, H., et al. (2021). Antimicrobial resistance in colonizing group B Streptococcus among pregnant women from a hospital in Vietnam. <em>Sci. Rep.</em> 11 (1), 20845. doi:10.1038/s41598-021-00468-3</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34675337/">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41598-021-00468-3">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+resistance+in+colonizing+group+B+Streptococcus+among+pregnant+women+from+a+hospital+in+Vietnam&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B218" id="B218"></a>Verani, J. R., McGee, L., and Schrag, S. J. (2010). Prevention of perinatal group B streptococcal disease--revised guidelines from CDC. <em>MMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep.</em> 59 (10), 1–36.</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21088663/">PubMed Abstract</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prevention+of+perinatal+group+B+streptococcal+disease--revised+guidelines+from+CDC&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B219" id="B219"></a>Verma, S., Kumari, M., Pathak, A., Yadav, V., Johri, A. K., and Yadav, P. (2023). Antibiotic resistance, biofilm formation, and virulence genes of Streptococcus agalactiae serotypes of Indian origin. <em>BMC Microbiol.</em> 23 (1), 176. doi:10.1186/s12866-023-02877-y</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/37407919/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12866-023-02877-y">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antibiotic+resistance,+biofilm+formation,+and+virulence+genes+of+Streptococcus+agalactiae+serotypes+of+Indian+origin&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B220" id="B220"></a>Vieira, L. L., Perez, A. V., Machado, M. M., Kayser, M. L., Vettori, D. V., Alegretti, A. P., et al. (2019). Group B Streptococcus detection in pregnant women: comparison of qPCR assay, culture, and the Xpert GBS rapid test. <em>BMC pregnancy childbirth</em> 19 (1), 532. doi:10.1186/s12884-019-2681-0</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31888631/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12884-019-2681-0">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+detection+in+pregnant+women:+comparison+of+qPCR+assay,+culture,+and+the+Xpert+GBS+rapid+test&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B221" id="B221"></a>Wang, H., Zhao, C., He, W., Zhang, F., Zhang, L., Cao, B., et al. (2013). High prevalence of fluoroquinolone-resistant group B streptococci among clinical isolates in China and predominance of sequence type 19 with serotype III. <em>Antimicrob. agents Chemother.</em> 57 (3), 1538–1541. doi:10.1128/AAC.02317-12</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23295933/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.02317-12">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+prevalence+of+fluoroquinolone-resistant+group+B+streptococci+among+clinical+isolates+in+China+and+predominance+of+sequence+type+19+with+serotype+III&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B222" id="B222"></a>Wang, J., Zhang, Y., Lin, M., Bao, J., Wang, G., Dong, R., et al. (2023). Maternal colonization with group B Streptococcus and antibiotic resistance in China: systematic review and meta-analyses. <em>Ann. Clin. Microbiol. Antimicrob.</em> 22 (1), 5. doi:10.1186/s12941-023-00553-7</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/36639677/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12941-023-00553-7">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maternal+colonization+with+group+B+Streptococcus+and+antibiotic+resistance+in+China:+systematic+review+and+meta-analyses&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B223" id="B223"></a>Wang, P., Tong, J. J., Ma, X. H., Song, F. L., Fan, L., Guo, C. M., et al. (2015). Serotypes, antibiotic susceptibilities, and multi-locus sequence type profiles of Streptococcus agalactiae isolates circulating in Beijing, China. <em>PloS one</em> 10 (3), e0120035. doi:10.1371/journal.pone.0120035</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/25781346/">PubMed Abstract</a> | <a href="https://doi.org/10.1371/journal.pone.0120035">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serotypes,+antibiotic+susceptibilities,+and+multi-locus+sequence+type+profiles+of+Streptococcus+agalactiae+isolates+circulating+in+Beijing,+China&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B224" id="B224"></a>Wang, Y., Zhao, Y., Zou, L., Qiao, J., and Benitz, W. E. (2021). Regional variation of early-onset neonatal group B streptococcal disease prevention strategies in mainland China. <em>Pediatr. Infect. Dis. J.</em> 40 (7), 663–668. doi:10.1097/INF.0000000000003089</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34097659/">PubMed Abstract</a> | <a href="https://doi.org/10.1097/INF.0000000000003089">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Regional+variation+of+early-onset+neonatal+group+B+streptococcal+disease+prevention+strategies+in+mainland+China&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B225" id="B225"></a>Wang, Z., Enotarpi, J., Buffi, G., Pezzicoli, A., Gstöttner, C. J., Nicolardi, S., et al. (2022a). Chemical synthesis and immunological evaluation of fragments of the multiantennary group-specific polysaccharide of group B Streptococcus. <em>JACS Au</em> 2 (7), 1724–1735. doi:10.1021/jacsau.2c00302</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35911445/">PubMed Abstract</a> | <a href="https://doi.org/10.1021/jacsau.2c00302">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chemical+synthesis+and+immunological+evaluation+of+fragments+of+the+multiantennary+group-specific+polysaccharide+of+group+B+Streptococcus&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B226" id="B226"></a>Wang, Z., Pu, W., Liu, Q., Zhu, M., Chen, Q., Xu, Y., et al. (2022b). Association of gut microbiota composition in pregnant women colonized with group B Streptococcus with maternal blood routine and neonatal blood-gas analysis. <em>Pathog. Basel, Switz.</em> 11 (11), 1297. doi:10.3390/pathogens11111297</p><p class="ReferencesCopy2"><a href="https://doi.org/10.3390/pathogens11111297">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Association+of+gut+microbiota+composition+in+pregnant+women+colonized+with+group+B+Streptococcus+with+maternal+blood+routine+and+neonatal+blood-gas+analysis&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B227" id="B227"></a>Wehbeh, W., Rojas-Diaz, R., Li, X., Mariano, N., Grenner, L., Segal-Maurer, S., et al. (2005). Fluoroquinolone-resistant Streptococcus agalactiae: epidemiology and mechanism of resistance. <em>Antimicrob. agents Chemother.</em> 49 (6), 2495–2497. doi:10.1128/AAC.49.6.2495-2497.2005</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/15917553/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/AAC.49.6.2495-2497.2005">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fluoroquinolone-resistant+Streptococcus+agalactiae:+epidemiology+and+mechanism+of+resistance&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B228" id="B228"></a>Wei, K., and Chen, T. (2021). Vaginal microbiota transplantation for treatment of bacterial vaginosis: a review. <em>Sheng wu gong cheng xue bao = Chin. J. Biotechnol.</em> 37 (11), 3820–3827. doi:10.13345/j.cjb.210163</p><p class="ReferencesCopy2"><a href="https://doi.org/10.13345/j.cjb.210163">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vaginal+microbiota+transplantation+for+treatment+of+bacterial+vaginosis:+a+review&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B229" id="B229"></a>Wu, B., Su, J., Li, L., Wu, W., Wu, J., Lu, Y., et al. (2019). Phenotypic and genetic differences among group B Streptococcus recovered from neonates and pregnant women in Shenzhen, China: 8-year study. <em>BMC Microbiol.</em> 19 (1), 185. doi:10.1186/s12866-019-1551-2</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31395013/">PubMed Abstract</a> | <a href="https://doi.org/10.1186/s12866-019-1551-2">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Phenotypic+and+genetic+differences+among+group+B+Streptococcus+recovered+from+neonates+and+pregnant+women+in+Shenzhen,+China:+8-year+study&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B230" id="B230"></a>Xiangru, X. U., Yi, Z., Gang, C., Ming, L., Wen, Z., Xinxin, W. U., et al. (2023). Clinical efficacy of Buzhong Yiqi decoction in the treatment of hospital-acquired pneumonia with multi-drug resistant bacteria: a prospective, randomized, multicenter controlled trial. <em>J. traditional Chin. Med. = Chung i tsa chih ying wen pan</em> 43 (5), 1010–1018. doi:10.19852/j.cnki.jtcm.20230713.002</p><p class="ReferencesCopy2"><a href="https://doi.org/10.19852/j.cnki.jtcm.20230713.002">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clinical+efficacy+of+Buzhong+Yiqi+decoction+in+the+treatment+of+hospital-acquired+pneumonia+with+multi-drug+resistant+bacteria:+a+prospective,+randomized,+multicenter+controlled+trial&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B231" id="B231"></a>Xiao, X., Zheng, Z., and Sun, H. (2023). Study on the correlation between genital tract microenvironment and GBS carrier rate of late-stage pregnant women in dongguan. <em>Clin. Lab.</em> 69 (4). doi:10.7754/Clin.Lab.2022.220742</p><p class="ReferencesCopy2"><a href="https://doi.org/10.7754/Clin.Lab.2022.220742">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Study+on+the+correlation+between+genital+tract+microenvironment+and+GBS+carrier+rate+of+late-stage+pregnant+women+in+dongguan&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B232" id="B232"></a>Xu, X., Lewis Marffy, A. L., Keightley, A., McCarthy, A. J., and Geisbrecht, B. V. (2022). Group B Streptococcus surface protein β: structural characterization of a complement factor H-binding motif and its contribution to immune evasion. <em>J. Immunol.</em> 208 (5), 1232–1247. doi:10.4049/jimmunol.2101078</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35110419/">PubMed Abstract</a> | <a href="https://doi.org/10.4049/jimmunol.2101078">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+surface+protein+脦虏:+structural+characterization+of+a+complement+factor+H-binding+motif+and+its+contribution+to+immune+evasion&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B233" id="B233"></a>Yao, Z., Jiayin, W., Xinyi, Z., Ling, C., Mingyuan, H., Simin, M., et al. (2020). Identification of group B Streptococcus serotypes and genotypes in late pregnant women and neonates that are associated with neonatal early-onset infection in a south China population. <em>Front. Pediatr.</em> 8, 265. doi:10.3389/fped.2020.00265</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32537444/">PubMed Abstract</a> | <a href="https://doi.org/10.3389/fped.2020.00265">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identification+of+group+B+Streptococcus+serotypes+and+genotypes+in+late+pregnant+women+and+neonates+that+are+associated+with+neonatal+early-onset+infection+in+a+south+China+population&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B234" id="B234"></a>Yi, A., Kim, C. K., Kimura, K., Arakawa, Y., Hur, M., Yun, Y. M., et al. (2019). First case in Korea of group B Streptococcus with reduced penicillin susceptibility harboring amino acid substitutions in penicillin-binding protein 2X. <em>Ann. laboratory Med.</em> 39 (4), 414–416. doi:10.3343/alm.2019.39.4.414</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30809991/">PubMed Abstract</a> | <a href="https://doi.org/10.3343/alm.2019.39.4.414">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=First+case+in+Korea+of+group+B+Streptococcus+with+reduced+penicillin+susceptibility+harboring+amino+acid+substitutions+in+penicillin-binding+protein+2X&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B235" id="B235"></a>Yoshida, H., Goto, M., Takahiro, M., Fukushima, Y., Fujita, T., Tsuyuki, Y., et al. (2021). Intracellular invasion ability of Streptococcus agalactiae among non-invasive isolates from human adults and companion animals in Japan. <em>J. Infect. Chemother. official J. Jpn. Soc. Chemother.</em> 27 (7), 999–1004. doi:10.1016/j.jiac.2021.02.017</p><p class="ReferencesCopy2"><a href="https://doi.org/10.1016/j.jiac.2021.02.017">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intracellular+invasion+ability+of+Streptococcus+agalactiae+among+non-invasive+isolates+from+human+adults+and+companion+animals+in+Japan&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B236" id="B236"></a>Yu, H. W., Lin, H. C., Yang, P. H., Hsu, C. H., Hsieh, W. S., Tsao, L. Y., et al. (2011). Group B streptococcal infection in Taiwan: maternal colonization and neonatal infection. <em>Pediatr. Neonatol.</em> 52 (4), 190–195. doi:10.1016/j.pedneo.2011.05.008</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21835363/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.pedneo.2011.05.008">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+infection+in+Taiwan:+maternal+colonization+and+neonatal+infection&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B237" id="B237"></a>Zadoks, R. N., Middleton, J. R., McDougall, S., Katholm, J., and Schukken, Y. H. (2011). Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. <em>J. mammary Gl. Biol. neoplasia</em> 16 (4), 357–372. doi:10.1007/s10911-011-9236-y</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21968538/">PubMed Abstract</a> | <a href="https://doi.org/10.1007/s10911-011-9236-y">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Molecular+epidemiology+of+mastitis+pathogens+of+dairy+cattle+and+comparative+relevance+to+humans&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B238" id="B238"></a>Zastempowska, E., Twarużek, M., Grajewski, J., and Lassa, H. (2022). Virulence factor genes and cytotoxicity of Streptococcus agalactiae isolated from bovine mastitis in Poland. <em>Microbiol. Spectr.</em> 10 (3), e0222421. doi:10.1128/spectrum.02224-21</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/35608349/">PubMed Abstract</a> | <a href="https://doi.org/10.1128/spectrum.02224-21">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Virulence+factor+genes+and+cytotoxicity+of+Streptococcus+agalactiae+isolated+from+bovine+mastitis+in+Poland&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B239" id="B239"></a>Zhang, L., Ma, L., Zhu, L., Zhou, X.-H., Xu, L.-J., Guo, C., et al. (2021). Molecular characterization of pathogenic group B streptococcus from a tertiary hospital in Shanxi, China: high incidence of sequence type 10 strains in infants/pregnant women. <em>J. Microbiol. Immunol. Infect.</em> 54 (6), 1094–1100. doi:10.1016/j.jmii.2020.07.018</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32826191/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.jmii.2020.07.018">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Molecular+characterization+of+pathogenic+group+B+streptococcus+from+a+tertiary+hospital+in+Shanxi,+China:+high+incidence+of+sequence+type+10+strains+in+infants/pregnant+women&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B240" id="B240"></a>Zhao, L.-Y., Mei, J.-X., Yu, G., Lei, L., Zhang, W.-H., Liu, K., et al. (2023). Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. <em>Signal Transduct. Target. Ther.</em> 8 (1), 201. doi:10.1038/s41392-023-01406-7</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/37179402/">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41392-023-01406-7">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Role+of+the+gut+microbiota+in+anticancer+therapy:+from+molecular+mechanisms+to+clinical+applications&btnG=">Google Scholar</a></p></div><div class="References"><p class="ReferencesCopy1"><a name="B241" id="B241"></a>Zhu, Y., and Lin, X. Z. (2021). Updates in prevention policies of early-onset group B streptococcal infection in newborns. <em>Pediatr. Neonatol.</em> 62 (5), 465–475. doi:10.1016/j.pedneo.2021.05.007</p><p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/34099416/">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.pedneo.2021.05.007">CrossRef Full Text</a> | <a href="https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Updates+in+prevention+policies+of+early-onset+group+B+streptococcal+infection+in+newborns&btnG=">Google Scholar</a></p></div></div><div class="thinLineM20"></div><div class="AbstractSummary"><p><span>Keywords:</span> group B streptococcal, obstetrics and gynecology, antibiotic prophylaxis, group B streptococcal vaccine, microbial therapy</p><p><span>Citation:</span> Liu Y and Ai H (2024) Current research update on group B streptococcal infection related to obstetrics and gynecology. <em>Front. Pharmacol.</em> 15:1395673. doi: 10.3389/fphar.2024.1395673</p><p id="timestamps"><span>Received:</span> 04 March 2024; <span>Accepted:</span> 31 May 2024;<br><span>Published:</span> 17 June 2024.</p><div><p>Edited by:</p> <a href="https://loop.frontiersin.org/people/2306927/overview">Adrian Oo</a>, National University of Singapore, Singapore</div><div><p>Reviewed by:</p> <a href="https://loop.frontiersin.org/people/2683183/overview">Zhi Xian Kong</a>, University of Malaya, Malaysia<br><a href="https://loop.frontiersin.org/people/212007/overview">Adzzie Shazleen Azman</a>, Monash University Malaysia, Malaysia</div><p><span>Copyright</span> © 2024 Liu and Ai. This is an open-access article distributed under the terms of the <a rel="license" href="http://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution License (CC BY).</a> The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</p><p><span>*Correspondence:</span> Hao Ai, <a href="mailto:miraclepeking2010@163.com">miraclepeking2010@163.com</a></p><div class="clear"></div></div></div></div> <p class="AbstractSummary__disclaimer"><span>Disclaimer: </span> All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. </p></div></section></main></div> <div><!----></div></div></div> <!----> <footer class="Footer"><h1 class="acc-hidden">Footer</h1> <div class="Footer__wrapper"><div class="Footer__sections"><ul class="Accordion"><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Guidelines</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://www.frontiersin.org/guidelines/author-guidelines" target="_self" data-event="footer-block_0-a_authorGuidelines">Author guidelines</a></li><li><a href="https://www.frontiersin.org/guidelines/editor-guidelines" target="_self" data-event="footer-block_0-a_editorGuidelines">Editor guidelines</a></li><li><a href="https://www.frontiersin.org/guidelines/policies-and-publication-ethics" target="_self" data-event="footer-block_0-a_policiesAndPublicationE">Policies and publication ethics</a></li><li><a href="https://www.frontiersin.org/about/fee-policy" target="_self" data-event="footer-block_0-a_feePolicy">Fee policy</a></li></ul></div></li><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Explore</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://www.frontiersin.org/articles" target="_self" data-event="footer-block_1-a_articles">Articles</a></li><li><a href="https://www.frontiersin.org/research-topics" target="_self" data-event="footer-block_1-a_researchTopics">Research Topics </a></li><li><a href="https://www.frontiersin.org/journals" target="_self" data-event="footer-block_1-a_journals">Journals</a></li><li><a href="https://www.frontiersin.org/about/how-we-publish" target="_self" data-event="footer-block_1-a_howWePublish">How we publish</a></li></ul></div></li><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Outreach</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://forum.frontiersin.org/" target="_blank" data-event="footer-block_2-a_frontiersForum">Frontiers Forum </a></li><li><a href="https://policylabs.frontiersin.org/" target="_blank" data-event="footer-block_2-a_frontiersPolicyLabs">Frontiers Policy Labs </a></li><li><a href="https://kids.frontiersin.org/" target="_blank" data-event="footer-block_2-a_frontiersForYoungMinds">Frontiers for Young Minds</a></li><li><a href="https://www.frontiersplanetprize.org/" target="_blank" data-event="footer-block_2-a_frontiersPlanetPrize">Frontiers Planet Prize</a></li></ul></div></li><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Connect</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://helpcenter.frontiersin.org" target="_blank" data-event="footer-block_3-a_helpCenter">Help center</a></li><li><a href="https://loop.frontiersin.org/settings/email-preferences?a=publishers" target="_blank" data-event="footer-block_3-a_emailsAndAlerts">Emails and alerts </a></li><li><a href="https://www.frontiersin.org/about/contact" target="_self" data-event="footer-block_3-a_contactUs">Contact us </a></li><li><a href="https://www.frontiersin.org/submission/submit" target="_self" data-event="footer-block_3-a_submit">Submit</a></li><li><a href="https://careers.frontiersin.org/" target="_blank" data-event="footer-block_3-a_careerOpportunities">Career opportunities</a></li></ul></div></li></ul> <div class="Footer__socialLinks"><div class="Footer__socialLinks__title">Follow us</div> <span class="Link__wrapper"><a aria-label="Frontiers Facebook" href="https://www.facebook.com/Frontiersin" target="_blank" data-event="footer-facebook-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--facebook Link--right"><span></span></a></span><span class="Link__wrapper"><a aria-label="Frontiers Twitter" href="https://twitter.com/frontiersin" target="_blank" data-event="footer-twitter-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--twitter Link--right"><span></span></a></span><span class="Link__wrapper"><a aria-label="Frontiers LinkedIn" href="https://www.linkedin.com/company/frontiers" target="_blank" data-event="footer-linkedIn-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--linkedin Link--right"><span></span></a></span><span class="Link__wrapper"><a aria-label="Frontiers Instagram" href="https://www.instagram.com/frontiersin_" target="_blank" data-event="footer-instagram-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--instagram Link--right"><span></span></a></span></div></div> <div class="Footer__copyright"><div><span>漏 2024 Frontiers Media S.A. All rights reserved</span></div> <div><a href="https://www.frontiersin.org/legal/privacy-policy" target="_blank">Privacy policy</a> <span>|</span> <a href="https://www.frontiersin.org/legal/terms-and-conditions" target="_blank">Terms and conditions</a></div></div></div></footer> <div class="SnackbarWrapper"><ul class="SnackbarContainer"></ul></div></div></div></div><script>window.__NUXT__=(function(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,_,$,aa,ab,ac,ad,ae,af,ag,ah,ai,aj,ak,al,am,an,ao,ap,aq,ar,as,at,au,av,aw,ax,ay,az,aA,aB,aC,aD,aE,aF,aG,aH,aI,aJ,aK,aL,aM,aN,aO,aP,aQ,aR,aS,aT,aU,aV,aW,aX,aY,aZ,a_,a$,ba,bb,bc,bd,be,bf,bg,bh,bi,bj,bk,bl,bm,bn,bo,bp,bq,br,bs,bt,bu,bv,bw,bx,by,bz,bA,bB,bC,bD,bE,bF,bG,bH,bI,bJ,bK,bL,bM,bN,bO,bP,bQ,bR,bS,bT,bU,bV,bW,bX,bY,bZ,b_,b$,ca,cb,cc,cd,ce,cf,cg,ch,ci,cj,ck,cl,cm,cn,co,cp,cq,cr,cs,ct,cu,cv,cw,cx,cy,cz){ah.id=ai;ah.name=aj;ah.slug=ak;ah.specialtyId=2596;ah.__typename="journal_section";return {layout:"ArticleLayout",data:[{}],fetch:{},error:e,state:{currentJournal:{identifier:q,name:m,slug:r,banner:[{id:"754E12A9-443F-4EA8-AB01E0811E45131D",src:N,name:"FPHAR_Main Visual_Purple_Website",tags:["pain","medical","pharmaceutical","antibiotic","concept","capsule","treatment"],type:O,width:5844,height:3896,idHash:"79b643019a2651e0",archive:n,brandId:"22C10171-81B3-4DA6-99342F272A32E8BB",limited:n,fileSize:8675243,isPublic:c,original:"https:\u002F\u002Fbrand.frontiersin.org\u002Fm\u002F79b643019a2651e0\u002Foriginal\u002FFPHAR_Main-Visual_Purple_Website.jpeg",copyright:"Copyright (c) 2017 Marian Weyo\u002FShutterstock. No use without permission.",extension:["jpeg"],thumbnails:{mini:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F754E12A9-443F-4EA8-AB01E0811E45131D\u002Fmini-97EEF455-249B-43BD-9D8F02FEE86046D3.jpg",thul:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F754E12A9-443F-4EA8-AB01E0811E45131D\u002Fthul-B2DBD910-1DDF-4ED3-B1500DF973953144.jpg",webimage:N,Guidelines:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F754E12A9-443F-4EA8-AB01E0811E45131D\u002FF3882BDE-513E-4D16-8DB695504865E7B8\u002FGuidelines-FPHAR_Main Visual_Purple_Website.png",WebsiteJpg_XL:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F754E12A9-443F-4EA8-AB01E0811E45131D\u002FF3882BDE-513E-4D16-8DB695504865E7B8\u002FWebsiteJpg_XL-FPHAR_Main Visual_Purple_Website.jpg",WebsiteWebP_L:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F754E12A9-443F-4EA8-AB01E0811E45131D\u002FF3882BDE-513E-4D16-8DB695504865E7B8\u002FWebsiteWebP_L-FPHAR_Main Visual_Purple_Website.webp",WebsiteWebP_M:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F754E12A9-443F-4EA8-AB01E0811E45131D\u002FF3882BDE-513E-4D16-8DB695504865E7B8\u002FWebsiteWebP_M-FPHAR_Main Visual_Purple_Website.webp",WebsiteWebP_XL:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F754E12A9-443F-4EA8-AB01E0811E45131D\u002FF3882BDE-513E-4D16-8DB695504865E7B8\u002FWebsiteWebP_XL-FPHAR_Main Visual_Purple_Website.webp"},dateCreated:P,description:"Pills Tablets Capsule or Medicament freely laid on glass background.",orientation:"landscape",userCreated:"Caroline Sutter",watermarked:n,dateModified:P,datePublished:"2022-06-27T09:27:09Z",ecsArchiveFiles:[],propertyOptions:["414FB2D4-2283-43FD-BE14E534ECA67928","6C18119B-14BD-4951-B437696F4357BD33","7C692885-DB25-4858-B1FB4FF47B241E9B","D88C0047-EC30-4506-A7DF28A4D765E1CF"],property_Channel:["frontiersin_org"],"property_Sub-Type":["Main_Visual"],property_Asset_Type:["Photography"],activeOriginalFocusPoint:{x:2922,y:1948},property_Office_Department:["Publishing"]}],description:"The most cited pharmacology and pharmacy journal advances access to pharmacological discoveries to prevent and treat human disease.",mission:"\u003Cp\u003EFrontiers in Pharmacology is an interdisciplinary journal that publishes research on the interactions between drugs and living beings to prevent and cure human disease.\u003C\u002Fp\u003E\n\n\u003Cp\u003ELed by Field Chief Editor Heike Wulff (University of California, Davis, US), Frontiers in Pharmacology explores basic and clinical pharmacology, medicinal chemistry, pharmacy, and toxicology to clarify the fundamental processes of disease treatment and drug effects. Indexed in PubMed Central (PMC), Scopus, Web of Science (SCIE), and the DOAJ, the journal welcomes academic, industrial, and clinical work focused on pharmacology.\u003C\u002Fp\u003E\n\n\u003Cp\u003ETopics include, but are not limited to:\u003C\u002Fp\u003E\n\u003Cul\u003E\n \u003Cli\u003Ecardiovascular and smooth muscle pharmacology\u003C\u002Fli\u003E\n \u003Cli\u003Edrug metabolism and transport\u003C\u002Fli\u003E\n \u003Cli\u003Edrugs outcomes research and policies\u003C\u002Fli\u003E\n \u003Cli\u003EELSI in science and genetics\u003C\u002Fli\u003E\n \u003Cli\u003Eethnopharmacology\u003C\u002Fli\u003E\n \u003Cli\u003Eexperimental pharmacology and drug discovery\u003C\u002Fli\u003E\n \u003Cli\u003Egastrointestinal and hepatic pharmacology\u003C\u002Fli\u003E\n \u003Cli\u003Einflammation pharmacology\u003C\u002Fli\u003E\n \u003Cli\u003Eintegrative and regenerative pharmacology\u003C\u002Fli\u003E\n \u003Cli\u003Eneuropharmacology\u003C\u002Fli\u003E\n \u003Cli\u003Eobstetric and pediatric pharmacology\u003C\u002Fli\u003E\n \u003Cli\u003Epharmacoepidemiology\u003C\u002Fli\u003E\n \u003Cli\u003Epharmacogenetics and pharmacogenomics\u003C\u002Fli\u003E\n \u003Cli\u003Epharmacology of anti-cancer drugs\u003C\u002Fli\u003E\n \u003Cli\u003Epharmacology of infectious diseases\u003C\u002Fli\u003E\n \u003Cli\u003Epharmacology of ion channels and channelopathies\u003C\u002Fli\u003E\n \u003Cli\u003Epredictive toxicology\u003C\u002Fli\u003E\n \u003Cli\u003Erenal pharmacology\u003C\u002Fli\u003E\n \u003Cli\u003Erespiratory pharmacology\u003C\u002Fli\u003E\n \u003Cli\u003Etranslational pharmacology.\u003C\u002Fli\u003E\n\u003C\u002Ful\u003E\n\n\u003Cp\u003EAll submissions to the journal involving natural products, including plant extracts or preparations, must adhere to 'The Four Pillars of Ethnopharmacology' to be considered for peer review, regardless of the specialty section, as a baseline standard for sample characterization. To be considered for publication in Frontiers in Pharmacology, studies incorporating complementary or alternative medicine must be based on a set of data linked to local or traditional uses that can be evaluated pharmacologically. A clear and plausible set of pharmacological data must be generated in these studies. Similarly, the journal endorses protocols including a minimum of two cell-lines in vitro as an evidential basis to demonstrate proposed anti-cancer effects in all relevant studies submitted to all specialty sections in the journal.\u003C\u002Fp\u003E\n\n\u003Cp\u003EFurther unique criteria for the conception and review of submissions may apply, where appropriate, for individual specialty sections.\u003C\u002Fp\u003E\n\n\u003Cp\u003EThe journal welcomes submissions which support and advance the UN鈥檚 Sustainable Development Goals (SDGs), notably SDG 3: good health and well-being.\u003C\u002Fp\u003E\n\n\u003Cp\u003EManuscripts that focus solely on clinical trials, patient management, or conventional therapies without a focus on pharmacological research are not suitable for publication in this journal. Additionally, studies that are purely statistical or predictive in nature, without providing novel insights into pharmacological mechanisms or drug development, are not within the scope of this journal.\u003C\u002Fp\u003E\n\n\u003Cp\u003EFrontiers in Pharmacology is committed to advancing developments in the field of pharmacological discoveries by allowing unrestricted access to articles and communicating scientific knowledge to researchers and the public alike, to enable the scientific breakthroughs of the future.\u003C\u002Fp\u003E\n\n\u003Cstrong\u003E\u003Cp\u003EEthics Information\u003C\u002Fp\u003E\u003C\u002Fstrong\u003E\n\u003Cp\u003EResearch involving human subjects should comply with the ethical guidelines outlined in the World Medical Association鈥檚 Declaration of Helsinki.\u003C\u002Fp\u003E\n\u003Cp\u003ESimilarly, authors are required to specify the institutional and national standards adhered to for the care and use of laboratory animals. Transparent and accurate reporting of animal studies is required, with references to guidelines such as ARRIVE and IMPROVE.\u003C\u002Fp\u003E\n\u003Cp\u003EExtended information on research ethics can be found under Frontiers' policies and publication ethics page.\u003C\u002Fp\u003E",palette:"purple",impactFactor:"5.6",citeScore:"6.3",citations:"356000",showTagline:e,twitter:"@FrontPharmacol",__typename:"Journal"},currentFrontiersJournal:{id:q,name:m,slug:r,printISSN:e,shortName:C,electronicISSN:D,abbreviation:Q,specialtyId:e,publicationDate:e,isOnline:g,isOpenForSubmissions:g,spaceId:c,field:{id:R,domainId:c,__typename:S},__typename:a},articleHubSlug:h,articleHubPage:E,currentArticle:{id:1395673,doi:T,title:U,acceptanceDate:new Date(1717165105000),receptionDate:new Date(1709548731000),publicationDate:new Date(1718582400000),isPublished:g,abstract:V,researchTopic:{id:57447,title:"Raising the bar: Advancing therapeutic strategies for fighting communicable and noncommunicable diseases",articlesCount:F,isMagazinePage:l,slug:"raising-the-bar-advancing-therapeutic-strategies-for-fighting-communicable-and-noncommunicable-diseases",isOpenForSubmission:l},articleType:{id:27,name:"Review"},stage:{id:G,name:h},keywords:["Group B streptococcal","Obstetrics and Gynecology","Antibiotic Prophylaxis","Group B streptococcal vaccine","Microbial therapy"],authors:[{id:W,firstName:X,lastName:"Liu",givenNames:X,isCorresponding:l,isProfilePublic:g,userId:W,affiliations:[{organizationName:Y,countryName:Z,cityName:h,stateName:h,zipCode:h}]},{id:_,firstName:$,lastName:"Ai",givenNames:$,isCorresponding:l,isProfilePublic:g,userId:_,affiliations:[{organizationName:Y,countryName:Z,cityName:h,stateName:h,zipCode:h}]}],editors:[{id:aa,firstName:ab,lastName:"Oo",givenNames:ab,isCorresponding:l,isProfilePublic:g,userId:aa,affiliations:[{organizationName:"National University of Singapore",countryName:"Singapore",cityName:h,stateName:h,zipCode:h}]}],reviewers:[{id:ac,firstName:ad,lastName:"Azman",givenNames:ad,isCorresponding:l,isProfilePublic:g,userId:ac,affiliations:[{organizationName:"Monash University Malaysia",countryName:ae,cityName:h,stateName:h,zipCode:h}]},{id:af,firstName:ag,lastName:"Kong",givenNames:ag,isCorresponding:l,isProfilePublic:g,userId:af,affiliations:[{organizationName:"University of Malaya",countryName:ae,cityName:h,stateName:h,zipCode:h}]}],journal:{id:q,slug:r,name:m,shortName:C,electronicISSN:D,field:{id:R,domainId:c,__typename:S},specialtyId:e,journalSectionPaths:[{section:ah,__typename:"journal_journalSectionPath"}],__typename:a},section:ah,impactMetrics:{views:1275,downloads:431,citations:n},volume:al,articleVolume:"Volume 15 - 2024",relatedArticles:[],isPublishedV2:l,contents:{fullTextHtml:"\u003Cdiv class=\"JournalAbstract\"\u003E\u003Ca id=\"h1\" name=\"h1\"\u003E\u003C\u002Fa\u003E\u003Ch1\u003ECurrent research update on group B streptococcal infection related to obstetrics and gynecology\u003C\u002Fh1\u003E\u003Cdiv class=\"authors\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Fpeople\u002Fu\u002F2243969\" class=\"user-id-2243969\"\u003E\u003Cimg class=\"pr5\" src=\"https:\u002F\u002Floop.frontiersin.org\u002Fimages\u002Fprofile\u002F2243969\u002F24\" onerror=\"this.src='http:\u002F\u002F3b76aaf63d1816bb57bf-a34624e694c43cdf8b40aa048a644ca4.r96.cf2.rackcdn.com\u002FDesign\u002FImages\u002Fnewprofile_default_profileimage_new.jpg'\" alt=\"www.frontiersin.org\"\u002F\u003EYing Liu\u003C\u002Fa\u003E and \u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Fpeople\u002Fu\u002F2673124\" class=\"user-id-2673124\"\u003E\u003Cimg class=\"pr5\" src=\"https:\u002F\u002Floop.frontiersin.org\u002Fimages\u002Fprofile\u002F2673124\u002F24\" onerror=\"this.src='http:\u002F\u002F3b76aaf63d1816bb57bf-a34624e694c43cdf8b40aa048a644ca4.r96.cf2.rackcdn.com\u002FDesign\u002FImages\u002Fnewprofile_default_profileimage_new.jpg'\" alt=\"www.frontiersin.org\"\u002F\u003EHao Ai\u003C\u002Fa\u003E*\u003C\u002Fdiv\u003E\u003Cul class=\"notes\"\u003E\u003Cli\u003ELiaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning, China\u003C\u002Fli\u003E\u003C\u002Ful\u003E\u003Cp class=\"mb15\"\u003EGroup B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.\u003C\u002Fp\u003E\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"JournalFullText\"\u003E\u003Ca id=\"h2\" name=\"h2\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003E1 Introduction of GBS\u003C\u002Fh2\u003E\u003Ca id=\"h2-1\" name=\"h2-1\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E1.1 Microbiology\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EGroup B streptococcal (GBS) is a Gram-positive, beta-hemolytic bacterium that appears as round or elliptical chains of cocci, usually in pairs or short chains, with a cell diameter of approximately 0.5–1.5 μm (\u003Ca href=\"#B32\"\u003EBurcham et al., 2019\u003C\u002Fa\u003E). GBS is mainly classified based on its polysaccharide antigens, with at least ten different types of polysaccharide antigens identified (\u003Ca href=\"#B210\"\u003ETiruvayipati et al., 2021\u003C\u002Fa\u003E). The most common classification method is based on the capsular polysaccharide (CPS), which divides GBS into types Ia, Ib, II, III, IV, and others (\u003Ca href=\"#B29\"\u003EBianchi-Jassir et al., 2020\u003C\u002Fa\u003E). GBS is commonly found in the human digestive and reproductive tracts and typically ferments carbohydrates to produce lactic acid and carbon dioxide gas during the fermentation process (\u003Ca href=\"#B76\"\u003EGoel et al., 2020\u003C\u002Fa\u003E). GBS requires a culture medium rich in blood components for growth and thrives in an acidic environment with a pH range of 5–6.5 (\u003Ca href=\"#B30\"\u003EBnfaga et al., 2023\u003C\u002Fa\u003E). GBS is sensitive to multiple antibiotics but may also exhibit some resistance (\u003Ca href=\"#B102\"\u003EKoide et al., 2019\u003C\u002Fa\u003E). The genome size of GBS is approximately 2-3 Mbp. Its genome is a circular chromosome containing numerous coding and non-coding sequences. The structure and arrangement of the genome may vary among different strains. GBS exhibits genetic diversity, meaning that different strains may have distinct genome compositions and variations (\u003Ca href=\"#B119\"\u003ELiu et al., 2023\u003C\u002Fa\u003E). The gene expression of GBS is influenced by complex regulatory networks, including transcription factors and other regulatory proteins, which help the bacterium adapt to and survive in different environments (\u003Ca href=\"#B66\"\u003EErickson Keesha et al., 2017\u003C\u002Fa\u003E). The GBS genome encodes many factors (\u003Ca href=\"#B198\"\u003ESpencer et al., 2019\u003C\u002Fa\u003E) associated with pathogenicity, such as capsule polysaccharides, surface proteins, hemolysins, and enterotoxins. These factors play important roles in pathogenicity and the interaction with the host (\u003Ca href=\"#B173\"\u003ERajagopal, 2009\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EGenomic analysis plays an important role in studying the genetic characteristics and pathogenic mechanisms of GBS (\u003Ca href=\"#B184\"\u003ESchindler et al., 2023\u003C\u002Fa\u003E). Through sequencing technology (\u003Ca href=\"#B166\"\u003EPreenanka and Safeena, 2023\u003C\u002Fa\u003E), the complete genome sequence of GBS can be obtained, which can then be used to study aspects such as genome structure, gene coding, and function. By comparing and analyzing the genome sequences of different strains, differences between different strains can be revealed, such as genome rearrangements and single nucleotide polymorphism (SNP) variations, and further research can be conducted on their relationship with pathogenicity. Transcriptome analysis techniques can be used to study changes in gene expression of GBS under different environmental conditions (\u003Ca href=\"#B194\"\u003ESitkiewicz et al., 2009\u003C\u002Fa\u003E), revealing its adaptability and biological characteristics. The pathogenic mechanisms of GBS include several aspects (\u003Ca href=\"#B237\"\u003EZadoks et al., 2011\u003C\u002Fa\u003E): the polysaccharide capsule of GBS is one of its main pathogenic factors. The capsule polysaccharide helps bacteria evade attacks from the host immune system and enhances their resistance to phagocytic cells, thereby increasing the chances of infection (\u003Ca href=\"#B225\"\u003EWang et al., 2022a\u003C\u002Fa\u003E). Surface proteins of GBS are also an important part of its pathogenic mechanisms (\u003Ca href=\"#B232\"\u003EXu et al., 2022\u003C\u002Fa\u003E). Surface proteins can bind to receptors on host cell surfaces, promoting bacterial adhesion and invasion. Some surface proteins also exhibit variability, making it more difficult for bacteria to be recognized and eliminated by the immune system. GBS produces hemolysins (\u003Ca href=\"#B176\"\u003ERosa-Fraile et al., 2014\u003C\u002Fa\u003E), which can destroy the membranes of host cells, leading to cell lysis and further promoting bacterial invasion and spread. GBS also causes inflammation through cell infiltration (\u003Ca href=\"#B107\"\u003EKuperwaser et al., 2023\u003C\u002Fa\u003E). It can stimulate host immune cells to release inflammatory mediators such as cytokines and chemokines, leading to tissue inflammation and damage. When infected with GBS, the host immune system produces specific antibodies and cellular immune responses. However, bacteria can interfere with host immune responses through various mechanisms, such as inhibiting cytokine production, evading phagocytosis by immune cells, and developing resistance, thereby enhancing their survival and reproduction. GBS is one of the main pathogens causing preterm birth and neonatal death (\u003Ca href=\"#B112\"\u003ELe Gallou et al., 2023\u003C\u002Fa\u003E). GBS infections have certain epidemiological characteristics worldwide (\u003Ca href=\"#B189\"\u003EShabayek et al., 2018\u003C\u002Fa\u003E), influenced by factors such as geographic location, population demographics, and healthcare practices (\u003Ca href=\"#B192\"\u003ESidky and Thomas, 2002\u003C\u002Fa\u003E). The distribution and prevalence of GBS infections can differ significantly across various parts of the world, often due to environmental factors, climate, and the presence of specific GBS strains, which can affect local population susceptibility and the effectiveness of regional health strategies. Age distribution, genetic predispositions among certain populations, and socio-economic factors can influence the rate of GBS colonization and infection, leading to variations in disease incidence and outcomes among different demographic groups (\u003Ca href=\"#B11\"\u003EAlizzi et al., 2022\u003C\u002Fa\u003E). The availability and implementation of screening and prevention measures, such as intrapartum antibiotic prophylaxis for GBS-positive pregnant women, greatly influence the incidence of neonatal GBS infections, with variations in healthcare quality and policies impacting overall disease management and outcomes (\u003Ca href=\"#B186\"\u003ESchuchat, 1995\u003C\u002Fa\u003E). GBS is one of the main causes of preterm birth and neonatal death (\u003Ca href=\"#B241\"\u003EZhu and Lin, 2021\u003C\u002Fa\u003E). The main mode of transmission of GBS is vertical transmission (\u003Ca href=\"#B135\"\u003EMei et al., 2023\u003C\u002Fa\u003E), that is, transmission from an infected individual to a newborn or uninfected pregnant woman. Other modes of transmission include close contact transmission and healthcare-associated infections, but they are relatively rare. Under normal circumstances, the human immune system has a certain degree of protection against GBS (\u003Ca href=\"#B105\"\u003EKorir et al., 2017\u003C\u002Fa\u003E). However, newborns and immunocompromised individuals are susceptible to infection. To prevent GBS infection, many countries and regions have implemented a series of preventive strategies, such as prenatal screening and prophylactic administration of antibiotics (\u003Ca href=\"#B220\"\u003EVieira et al., 2019\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe diagnostic methods of GBS are commonly used techniques in research and clinical practice. For the diagnosis of maternal infection, amniotic fluid samples can be cultured to detect the growth of GBS (\u003Ca href=\"#B183\"\u003ESayres et al., 2023\u003C\u002Fa\u003E). For screening of maternal infection, commonly used methods involve collecting vaginal and\u002For rectal samples for culture (\u003Ca href=\"#B161\"\u003EPierański et al., 2023\u003C\u002Fa\u003E). Screening before delivery is an important preventive strategy, especially for the diagnosis of neonatal infection, which can be detected through blood culture to determine the presence of GBS infection. Molecular biology techniques such as polymerase chain reaction (PCR) can detect the nucleic acid of GBS with high sensitivity and specificity (\u003Ca href=\"#B59\"\u003Ed'Otreppe et al., 2023\u003C\u002Fa\u003E). Understanding the susceptibility of GBS to antibiotics can guide the selection of clinical treatment (\u003Ca href=\"#B87\"\u003EHusen et al., 2023\u003C\u002Fa\u003E). Commonly used antibiotic susceptibility testing methods include: disc diffusion method (\u003Ca href=\"#B211\"\u003ETotadhri et al., 2022\u003C\u002Fa\u003E), where paper discs containing different antibiotics are placed on a culture medium to observe the relationship between bacterial growth and inhibition zones; broth dilution method (\u003Ca href=\"#B201\"\u003EStepanović et al., 2003\u003C\u002Fa\u003E), which gradually dilutes different concentrations of antibiotics in a culture medium to observe the minimum inhibitory concentration; E-test (\u003Ca href=\"#B157\"\u003EPersson et al., 2008\u003C\u002Fa\u003E), which uses a gradient concentration of antibiotics on a strip to observe the relative position between bacterial growth and inhibition zones. These methods can be used to determine the susceptibility of GBS to a specific antibiotic, helping doctors choose appropriate drugs for treatment.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EPreventing and controlling GBS infections is crucial for high-risk populations such as newborns and pregnant women. It is recommended to screen pregnant women for GBS colonization in the vagina and rectum, typically during late pregnancy (around 35–37 weeks). This can help detect the presence of GBS carriage and take appropriate preventive measures. For pregnant women who test positive for GBS carriage, it is advised to receive intravenous antibiotic prophylaxis during labor to reduce the risk of neonatal infection (\u003Ca href=\"#B79\"\u003EGurudas et al., 2022\u003C\u002Fa\u003E). Commonly used antibiotics include penicillin and ceftriaxone (\u003Ca href=\"#B9\"\u003EAli et al., 2022a\u003C\u002Fa\u003E), with specific antibiotic choices based on local treatment guidelines. If the mother is at risk of GBS infection, the newborn usually undergoes special observation and monitoring after birth. For high-risk newborns, antibiotic treatment may be needed to prevent infection. Necessary isolation and protective measures should be implemented in neonatal intensive care units or other settings prone to infection outbreaks to minimize the risk of pathogen transmission. Education and awareness campaigns about GBS infection should be conducted for healthcare workers, pregnant women, and families to enhance understanding and consciousness of prevention and control measures. Strengthening surveillance and reporting mechanisms, tracking the epidemiological characteristics of infection cases, and promptly implementing public health interventions are essential to reduce the spread and occurrence of GBS infections.\u003C\u002Fp\u003E\u003Ca id=\"h3\" name=\"h3\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003E2 Virulence Factors\u003C\u002Fh2\u003E\u003Cp class=\"mb15\"\u003EGBS commonly colonizes the human genital tract and is one of the major pathogens during the perinatal period (\u003Ca href=\"#B14\"\u003EArmistead et al., 2019\u003C\u002Fa\u003E). It can cause infections in pregnant women and, in severe cases, even jeopardize the lives of newborns. GBS possesses multiple virulence factors that are associated with bacterial adhesion, immune evasion, and invasive damage. These virulence factors enable the bacteria to persist within the human body, increasing the likelihood of transmission and worsening the infection, thereby affecting patient prognosis. GBS virulence factors elucidated in this review are shown in \u003Ca href=\"#F1\"\u003EFigure 1\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003EFigure 1\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F1395673\u002Ffphar-15-1395673-HTML-r1\u002Fimage_m\u002Ffphar-15-1395673-g001.jpg\" name=\"Figure1\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F1395673\u002Ffphar-15-1395673-HTML-r1\u002Fimage_t\u002Ffphar-15-1395673-g001.gif\" id=\"F1\" alt=\"www.frontiersin.org\"\u002F\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cb\u003EFigure 1\u003C\u002Fb\u003E. Summary of GBS virulence factors elucidated in this review, with their mechanisms.\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Ca id=\"h3-1\" name=\"h3-1\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E2.1 Adherence-associated virulence factors\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EFibrinogen-binding proteins (Fbs) are crucial proteins found on GBS (\u003Ca href=\"#B33\"\u003EBuscetta et al., 2014\u003C\u002Fa\u003E). Three types of Fbs proteins have been identified: FbsA, FbsB, and FbsC. These proteins adhere to human skin cells to facilitate the colonization of GBS in the vaginal area. FbsA promotes bacterial adhesion to mucosal surfaces and increases their sensitivity to phagocytosis. FbsB is involved in the formation of bacterial biofilms and facilitates the invasion of lung epithelial cells by interacting with fibrinogen. Conversely, the loss of FbsC significantly impairs the adhesion, invasion, and biofilm formation abilities of the bacteria. FbsC, a pivotal factor in the brain colonization process by GBS, is notably absent in the notably aggressive ST17 strains, which are a sequence type known for their heightened virulence and strong association with serious neonatal infections, such as meningitis (\u003Ca href=\"#B96\"\u003EKardos et al., 2019\u003C\u002Fa\u003E; \u003Ca href=\"#B233\"\u003EYao et al., 2020\u003C\u002Fa\u003E). These findings are of significant importance in understanding the adhesion, invasion, and colonization mechanisms of GBS (\u003Ca href=\"#B122\"\u003ELiu et al., 2022\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003ESerine-rich repeat proteins (Srr), which are rich in serine and characterized by amino acid sequence variations, can be divided into two subtypes, Srr1 and Srr2, in GBS (\u003Ca href=\"#B37\"\u003EChan et al., 2020\u003C\u002Fa\u003E). These proteins not only mediate invasion of endothelial cells by the bacteria but also assist in bacterial adherence by locking onto docking mechanisms. The process referred to as “locking onto docking mechanisms” implies the precise attachment or binding of these proteins to specific structures or receptors on the surface of host cells. This binding can be likened to inserting a key into a lock, where the Srr proteins (the “key”) have a specific molecular structure that allows them to securely attach to certain cell surface receptors or structures (the “dock”). This interaction facilitates bacterial adherence and invasion into host cells, thereby aiding the infection process. Through this precise docking mechanism, Srr proteins help to solidify the initial contact between GBS and the cells, further facilitating bacterial invasion and colonization. This mechanism is crucial not only for the pathogen’s adherence phase but also plays a role in its subsequent penetration through cellular barriers and dissemination within the host. Understanding this mechanism is therefore of significant importance for developing new strategies to combat pathogens that employ such mechanisms for infection. Most strains of GBS express Srr1, which promotes better adherence to the vaginal epithelium through its binding to human fibrinogen. Additionally, Srr1 enhances stability by inhibiting proteolytic activities through glycosylation, thereby prolonging bacterial adhesion and persistence. The stability enhanced by Srr1 refers to the structural and functional stability of the Srr1 protein itself on the surface of GBS bacteria. This stability is crucial for the prolonged adhesion and persistence of the bacteria on host tissues, such as the vaginal epithelium. Glycosylation of Srr1, a biochemical process in which a carbohydrate is covalently attached to the protein, plays a key role in this context. This glycosylation process can protect Srr1 from being degraded by proteolytic enzymes present in the host environment. Proteolytic enzymes are capable of breaking down proteins into peptides or amino acids, which could potentially disrupt the adherence mechanism of the bacteria to host cells. Therefore, by inhibiting proteolytic activities through glycosylation, Srr1 maintains its integrity and functionality longer, promoting a more stable bacterial adherence to host tissues. On the other hand, Srr2, a homologue of Srr1, is associated with the highly virulent clonal complex CC17. It exhibits stronger binding to human fibrinogen than Srr1 and strains expressing Srr2 are more pathogenic compared to those lacking Srr2. While Srr1 is expressed more abundantly in GBS, it cannot bind to plasminogen and plasmin, whereas Srr2 effectively interacts with them to enhance adherence strength. The interaction between bacterial surface proteins and host proteins plays a crucial role in the virulence of pathogens. In the case of GBS, the glycoproteins Srr1 and Srr2 have been identified as key players in adherence strength. While Srr1 is the most dominant glycoprotein, it is unable to bind to plasminogen and plasmin (\u003Ca href=\"#B122\"\u003ELiu et al., 2022\u003C\u002Fa\u003E). On the other hand, Srr2 effectively interacts with plasminogen and plasmin, enhancing adherence strength (\u003Ca href=\"#B122\"\u003ELiu et al., 2022\u003C\u002Fa\u003E). This difference in binding capabilities between Srr1 and Srr2 highlights the importance of specific protein interactions in bacterial pathogenicity. In a similar context, \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E has been shown to utilize adhesive virulence factors to resist host defenses. The staphylokinase (SAK) protein interacts with the serine protease domain of plasmin, enhancing resistance to digestion (\u003Ca href=\"#B175\"\u003ERisser et al., 2022\u003C\u002Fa\u003E). This interaction with plasmin is crucial for the pathogen’s ability to evade host immune responses. Additionally, the molecular interactions of human plasminogen with fibronectin-binding proteins further emphasize the significance of protein-protein interactions in bacterial adherence and virulence (\u003Ca href=\"#B175\"\u003ERisser et al., 2022\u003C\u002Fa\u003E). Overall, the ability of bacterial surface proteins to interact with host proteins such as plasminogen and plasmin is a key determinant of pathogenicity. While some proteins like Srr1 lack the ability to bind to these host proteins, others like Srr2 can effectively interact with them to enhance adherence strength. The structures of Srr1 and Srr2 are highly conserved in GBS, and vaccination with the corresponding “latch peptide” has been shown to provide serotype-independent protection against relevant infections in mice (\u003Ca href=\"#B116\"\u003ELin et al., 2017\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe laminin-binding protein (Lmb) (\u003Ca href=\"#B197\"\u003ESpellerberg et al., 1999\u003C\u002Fa\u003E) in GBS, encoded by the \u003Cem\u003Elmb\u003C\u002Fem\u003E gene, facilitates adherence of the bacteria to extracellular matrix molecules in the human body and binds to the major component of the basement membrane, laminin. Lmb participates in the regulation of intracellular metal homeostasis by coordinating zinc ions with histidine residues to form a tetrahedral structure. This enables the control of zinc influx and efflux in bacterial cells, thereby prolonging survival in the human body and promoting pathogenicity. Bacteria lacking Lmb not only exhibit reduced invasiveness towards human brain microvascular endothelial cells and impaired neurotropism but also display decreased resistance to zinc ions. Lmb mediates the attachment of GBS to human laminin, facilitating bacterial colonization and invasion (\u003Ca href=\"#B122\"\u003ELiu et al., 2022\u003C\u002Fa\u003E). The \u003Cem\u003Elmb\u003C\u002Fem\u003E gene encodes Lmb, which plays a crucial role in binding to laminin, a component of host cells, thereby increasing GBS’s pathogenic potential (\u003Ca href=\"#B14\"\u003EArmistead et al., 2019\u003C\u002Fa\u003E). Additionally, Lmb promotes GBS adherence to host tissues, reflecting changes in GBS pathogenicity (\u003Ca href=\"#B214\"\u003EUpadhyay et al., 2022\u003C\u002Fa\u003E). Studies have shown that Lmb, along with other virulence factors such as hypervirulent GBS adhesin (HvgA), contributes to the high pathogenicity of certain GBS strains (\u003Ca href=\"#B191\"\u003EShimizu et al., 2020\u003C\u002Fa\u003E; \u003Ca href=\"#B94\"\u003EKamińska et al., 2024\u003C\u002Fa\u003E). Furthermore, Lmb is identified as an immunogenic protein of GBS, interacting with host immune cells and potentially modulating host immune responses (\u003Ca href=\"#B56\"\u003EDobrut and Brzychczy-Włoch, 2022\u003C\u002Fa\u003E). The crystal structure of Lmb has been elucidated, providing insights into its function and potential as a target for therapeutic interventions (\u003Ca href=\"#B172\"\u003ERagunathan et al., 2013\u003C\u002Fa\u003E). Overall, the laminin-binding protein Lmb is a critical virulence factor in GBS pathogenicity, highlighting its importance in the colonization and invasion processes of this pathogen (\u003Ca href=\"#B121\"\u003ELiu et al., 2019\u003C\u002Fa\u003E; \u003Ca href=\"#B109\"\u003ELacasse et al., 2022\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe immunogenic bacterial adhesin (BibA) (\u003Ca href=\"#B179\"\u003ESanti et al., 2007\u003C\u002Fa\u003E) is a cell wall-anchored protein produced by GBS that promotes bacterial adherence to the surface of human cervical and lung epithelial cells. This protein can also interfere with the host’s antimicrobial defense mechanisms, such as phagocytosis by white blood cells, by regulating the interaction between the bacteria and complement C4-binding protein, thereby aiding the survival of GBS in the bloodstream. A report suggest that BibA is a strong and specific vaccine target. It demonstrated in a mouse model that a vaccine formulation containing BibA induced the production of protective antibodies against GBS, which could help prevent vaginal colonization and invasive infections caused by this bacterium (\u003Ca href=\"#B58\"\u003EDos Santos et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe hypervirulent GBS adhesin (HvgA) is a cell wall-anchored protein specific to the highly pathogenic clone CC17 of GBS (\u003Ca href=\"#B113\"\u003ELi et al., 2019\u003C\u002Fa\u003E). It is closely associated with the development of late-onset diseases (LOD), such as neonatal meningitis (\u003Ca href=\"#B162\"\u003EPietrocola et al., 2018\u003C\u002Fa\u003E). Enhanced expression of HvgA facilitates bacterial adherence to intestinal epithelial cells, choroid plexus epithelial cells, and microvascular endothelial cells that constitute the blood-brain barrier (BBB). In a mouse experiment, HvgA-expressing GBS showed greater ability to colonize and penetrate the blood-brain barrier compared to strains lacking HvgA, leading to severe consequences. This suggests that GBS, under the mediation of HvgA, can breach the blood-brain barrier and cause central nervous system infections (\u003Ca href=\"#B97\"\u003EKekic et al., 2021\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe pili (PI) of GBS are considered essential structures for promoting bacterial colonization, biofilm formation, and central nervous system invasion (\u003Ca href=\"#B48\"\u003EDanne and Dramsi, 2012\u003C\u002Fa\u003E). The genes encoding these pili are categorized into two types: \u003Cem\u003EPili-1\u003C\u002Fem\u003E (\u003Cem\u003EPI-1\u003C\u002Fem\u003E) and \u003Cem\u003EPili-2\u003C\u002Fem\u003E (\u003Cem\u003EPI-2\u003C\u002Fem\u003E). Among them, \u003Cem\u003EPI-2\u003C\u002Fem\u003E is further divided into two subtypes, \u003Cem\u003EPI-2a\u003C\u002Fem\u003E and \u003Cem\u003EPI-2b\u003C\u002Fem\u003E. While the genes for pili may be present in varying degrees in the bacterial genome, a single strain of GBS may express only one type of pili. The GBS pili consist of three structural protein subunits: pili associated adhesin (PilA) at the tip, pili shaft backbone protein (PilB), and pili anchor (PilC) at the base. Research has shown that PilA enhances bacterial adherence to vaginal and cervical epithelial cells (\u003Ca href=\"#B158\"\u003EPezzicoli et al., 2008\u003C\u002Fa\u003E), while the biofilm synthesized by PilB is involved in bacterial invasion and resistance to phagocytosis (\u003Ca href=\"#B131\"\u003EMaeda et al., 2021\u003C\u002Fa\u003E). One study has found that since almost all GBS strains possess pili, a vaccine containing conserved components of the pili island would provide high-level protection against the majority of GBS strains (\u003Ca href=\"#B133\"\u003EMargarit et al., 2009\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h3-2\" name=\"h3-2\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E2.2 Bacterial immune evasion related virulence factors\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EThe capsular polysaccharide (CPS) of GBS aids in bacterial colonization and survival in the human body. CPS is an important virulence factor that mediates immune evasion. Its specificity is determined by the specific arrangement of sugars within each polysaccharide repeat unit. GBS can be classified into 10 CPS serotypes (Ia, Ib, II-IX). All 10 serotypes can cause disease, although the types and rates of disease vary among different serotypes (\u003Ca href=\"#B114\"\u003ELin E. et al., 2021\u003C\u002Fa\u003E). The distribution of CPS serotypes is influenced by factors such as geographic region and ethnicity (\u003Ca href=\"#B229\"\u003EWu et al., 2019\u003C\u002Fa\u003E). CPS not only resists phagocytosis by immune cells but also inhibits the activation of neutrophils and macrophages, thereby helping the bacteria evade the immune defenses of the host. It also promotes biofilm formation and interferes with complement defense, playing an important role in the infection process. GBS CPS contains α2,3-linked sialic acid residues (Sia), which effectively inhibit platelet-mediated killing of GBS, counteract antibacterial components produced by platelets, and can bind to the Siglec-9 receptor on the surface of platelets, thus inhibiting platelet activation (\u003Ca href=\"#B14\"\u003EArmistead et al., 2019\u003C\u002Fa\u003E). CPS is an important target for vaccine development. Monovalent vaccines designed based on common CPS serotypes (Ia, Ib, II, III, and V) have entered phase I clinical trials (\u003Ca href=\"#B21\"\u003EBaker et al., 1999\u003C\u002Fa\u003E; \u003Ca href=\"#B19\"\u003EBaker et al., 2000\u003C\u002Fa\u003E; \u003Ca href=\"#B22\"\u003EBaker et al., 2003\u003C\u002Fa\u003E; \u003Ca href=\"#B20\"\u003EBaker et al., 2004\u003C\u002Fa\u003E). Trivalent vaccines targeting serotypes Ia, Ib, and III have shown high levels of specificity, safety, and tolerance in infants (\u003Ca href=\"#B130\"\u003EMadhi et al., 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B205\"\u003ESwamy et al., 2020\u003C\u002Fa\u003E). A hexavalent vaccine containing serotypes Ia, Ib, II, III, IV, and V has been developed by BUURMAN et al. and it is the most comprehensive vaccine to date, including the largest number of serotypes (\u003Ca href=\"#B34\"\u003EBuurman et al., 2019\u003C\u002Fa\u003E). Animal experimental results have shown that this hexavalent vaccine has a good immunogenicity and is expected to apply for clinical trials.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EALP family proteins are commonly expressed virulence factors in GBS that are also associated with immune evasion (\u003Ca href=\"#B153\"\u003EPaoletti and Kasper, 2019\u003C\u002Fa\u003E; \u003Ca href=\"#B115\"\u003ELin L. et al., 2021\u003C\u002Fa\u003E). This family of proteins includes ALP-C, ALP-1, ALP-2, ALP-3, ALP-4, and Rib, encoded by the genes \u003Cem\u003Ebca\u003C\u002Fem\u003E, \u003Cem\u003Ealp1\u003C\u002Fem\u003E, \u003Cem\u003Ealp2\u003C\u002Fem\u003E, \u003Cem\u003Ealp3\u003C\u002Fem\u003E, \u003Cem\u003Ealp4\u003C\u002Fem\u003E, and \u003Cem\u003Erib\u003C\u002Fem\u003E, respectively, and their amino acid sequences exhibit homology (\u003Ca href=\"#B72\"\u003EFurfaro et al., 2018\u003C\u002Fa\u003E). A study has found that antibodies designed against ALP family proteins in mouse models attenuate infections caused by homologous GBS strains, indicating that loss of the repetitive gene sequences in this protein family is a mechanism by which bacteria interact with and evade the human immune system (\u003Ca href=\"#B153\"\u003EPaoletti and Kasper, 2019\u003C\u002Fa\u003E). Beta-C protein, which is similar to ALP-C and encoded by the \u003Cem\u003Ebac\u003C\u002Fem\u003E gene, can bind to IgA antibodies and inhibit complement-mediated phagocytosis. Immunizing pregnant mice with this protein immunogen protects newborn mice from invasive GBS infection, possibly by accelerating the phagocytosis of bacteria by white blood cells (\u003Ca href=\"#B238\"\u003EZastempowska et al., 2022\u003C\u002Fa\u003E). On the other hand, since over 90% of GBS strains express one or more proteins from this family, the ALP protein family is a highly specific vaccine target (\u003Ca href=\"#B73\"\u003EGabrielsen et al., 2017\u003C\u002Fa\u003E). Vaccines based on the highly immunogenic N-terminal domain of ALP-C and Rib (GBS-NN) have completed phase I clinical trials, resulting in over 30 times increase in GBS-specific antibodies in the sera of 240 female participants (\u003Ca href=\"#B117\"\u003ELin et al., 2018\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EStreptococcal C5a peptidase from GBS is encoded by the \u003Cem\u003EscpB\u003C\u002Fem\u003E gene and is a serine protease. It can cleave the neutrophil chemoattractant C5a, thereby interrupting complement activation. It also functions as an allergenic toxin involved in the invasion of epithelial cells (\u003Ca href=\"#B189\"\u003EShabayek et al., 2018\u003C\u002Fa\u003E), inhibits neutrophil recruitment (\u003Ca href=\"#B213\"\u003ETulyaprawat et al., 2021\u003C\u002Fa\u003E), and aids in GBS binding to fibronectin, facilitating the invasion of human epithelial cells (\u003Ca href=\"#B122\"\u003ELiu et al., 2022\u003C\u002Fa\u003E). Bone marrow-derived mast cells (BMMC) contain abundant factor XIIIA (FXIIIA), which has been recently demonstrated to crosslink fibrinogen through the contribution of \u003Cem\u003EscpB\u003C\u002Fem\u003E gene, increasing the capture probability of GBS within fibrin thrombi and assisting in host defense against GBS infection (\u003Ca href=\"#B163\"\u003EPiliponsky et al., 2022\u003C\u002Fa\u003E). C5a peptidase is highly conserved and widely expressed in GBS. Researchers further evaluated the potential as a vaccine antigen by using a mouse model. They encapsulated C5a peptidase in microspheres and inoculated mice, finding that mice immunized with C5a peptidase encapsulated microspheres exhibited a high immune response against GBS, and the mortality rate was significantly reduced compared to mice not receiving C5a peptidase encapsulated microspheres (\u003Ca href=\"#B180\"\u003ESantillan et al., 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B181\"\u003ESantillan et al., 2011\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h3-3\" name=\"h3-3\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E2.3 Bacterial invasion associated virulence factors\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EGBS belonging to beta-hemolytic streptococci produces β-hemolysin encoded by the \u003Cem\u003Ecyl E\u003C\u002Fem\u003E gene and the CAMP factor encoded by the \u003Cem\u003Ecfb\u003C\u002Fem\u003E gene, which cause various tissue damage by lysing human cells (\u003Ca href=\"#B122\"\u003ELiu et al., 2022\u003C\u002Fa\u003E). β-hemolysin itself possesses lytic properties, disrupting cell membrane structure and function, leading to cytolysis and cell death. Transcription of the \u003Cem\u003Ecyl E\u003C\u002Fem\u003E gene and production of hemolysin are negatively regulated by the CovR\u002FS two-component system, promoting the release of inflammatory factors by host cells to enhance bacterial damage to the host (\u003Ca href=\"#B104\"\u003EKoo et al., 2019\u003C\u002Fa\u003E). The CAMP factor aggregates on the cell membrane surface, forming dispersed pores that induce cell lysis. A crucial phenotypic test used in clinical laboratories to identify GBS is the CAMP test, which is based on the synergy between the CAMP factor and β-hemolysin from \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E, resulting in the lysis of blood cells and the formation of a characteristic arrowhead-shaped hemolytic zone (\u003Ca href=\"#B122\"\u003ELiu et al., 2022\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EStreptococcal fibronectin-binding protein A (SfbA) is highly conserved in GBS and facilitates the invasion of GBS into human vaginal and cervical cells, brain microvascular endothelial cells, and astrocytes, but it does not enhance GBS adhesion to host cells (\u003Ca href=\"#B189\"\u003EShabayek et al., 2018\u003C\u002Fa\u003E). Additionally, SfbA plays a crucial role in the interaction between GBS and the blood-brain barrier and in the pathogenesis of GBS meningitis. Immunization targeting SfbA can help prevent neonatal GBS meningitis infection (\u003Ca href=\"#B143\"\u003EMu et al., 2014\u003C\u002Fa\u003E). The fibronectin-binding protein encoded by the \u003Cem\u003EpavA\u003C\u002Fem\u003E gene is an extracellular surface protein of GBS that is involved in GBS colonization. This protein, along with SfbA, contributes to GBS colonization and establishment of the ecological niche in the vagina (\u003Ca href=\"#B75\"\u003EGendrin et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B235\"\u003EYoshida et al., 2021\u003C\u002Fa\u003E). The pathogenesis of streptococcal infections is a complex process involving various virulence factors and regulatory mechanisms. One such factor is the fibronectin-binding protein A gene, which plays a crucial role in the adherence of streptococci to host cells. A study has shown that disruption of genes encoding fibronectin-binding proteins can reduce bacterial adherence to human endothelial cells (\u003Ca href=\"#B52\"\u003EDeng et al., 2019\u003C\u002Fa\u003E). Additionally, fibronectin-binding proteins have been implicated in promoting inflammation during the pathogenesis of meningitis caused by \u003Cem\u003Estreptococci\u003C\u002Fem\u003E (\u003Ca href=\"#B52\"\u003EDeng et al., 2019\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EHyaluronidase, an extracellular enzyme released by GBS, is encoded by the \u003Cem\u003EhylB\u003C\u002Fem\u003E gene. This enzyme degrades hyaluronic acid polymers, which are present in the extracellular matrix of human cells, into disaccharide units, disrupting cellular signaling and promoting the expression of inflammatory mediators. It has the capability to break down hyaluronic acid in the connective tissue matrix, disintegrate proteoglycans in connective tissues, and regulate the immune response during colonization and invasion by the bacteria, suppressing the production of reactive oxygen species (ROS) and resisting the action of neutrophils (\u003Ca href=\"#B45\"\u003EColeman et al., 2021\u003C\u002Fa\u003E; \u003Ca href=\"#B108\"\u003EKurian and Modi, 2022\u003C\u002Fa\u003E). Most importantly, hyaluronidase can breach the barrier between mother and fetus, allowing GBS to ascend from the vagina to the fetus, leading to fatal infections in the fetus (\u003Ca href=\"#B122\"\u003ELiu et al., 2022\u003C\u002Fa\u003E). GBS virulence factors with their specific targets and mechanisms are shown in \u003Ca href=\"#T1\"\u003ETable 1\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003ETable 1\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F1395673\u002Ffphar-15-1395673-HTML-r1\u002Fimage_m\u002Ffphar-15-1395673-t001.jpg\" name=\"Table1\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F1395673\u002Ffphar-15-1395673-HTML-r1\u002Fimage_t\u002Ffphar-15-1395673-t001.gif\" id=\"T1\" alt=\"www.frontiersin.org\"\u002F\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cb\u003ETable 1\u003C\u002Fb\u003E. Summary of GBS virulence factors with their specific targets, mechanisms and references.\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Ca id=\"h4\" name=\"h4\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003E3 Antibiotic resistance in GBS\u003C\u002Fh2\u003E\u003Cp class=\"mb15\"\u003EGBS poses considerable risks for both expectant mothers and their babies. In pregnant women, it can lead to serious infections such as sepsis, inflammation of the fetal membranes known as chorioamnionitis, and postpartum endometritis. Additionally, GBS can cause adverse pregnancy outcomes, including premature rupture of membranes, miscarriage, preterm delivery, and intrauterine growth restriction. Late-pregnancy colonization by GBS stands as a major threat for neonatal infection (\u003Ca href=\"#B38\"\u003EChattopadhyay et al., 2011\u003C\u002Fa\u003E), with approximately 1%–2% of newborns from GBS colonization-positive mothers contracting invasive infections (\u003Ca href=\"#B236\"\u003EYu et al., 2011\u003C\u002Fa\u003E). These newborns primarily suffer from sepsis and meningitis that are both aggressive and life-threatening. Consequently, such infections have high mortality and disability rates, jeopardizing the health and wellbeing of the affected neonates.\u003C\u002Fp\u003E\u003Cp class=\"mb15\"\u003EThe implementation of intrapartum antibiotic prophylaxis (IAP) strategies has significantly reduced the incidence and adverse impacts of perinatal GBS infections in European and American countries (\u003Ca href=\"#B141\"\u003EMMWR, 1997\u003C\u002Fa\u003E). However, the overuse of antibiotics in recent years has led to growing concerns about the emergence of antibiotic-resistant GBS strains on a global scale. Understanding the resistance patterns of GBS is of critical importance for guiding the rational use of antibiotics in clinical settings.\u003C\u002Fp\u003E\u003Ca id=\"h4-1\" name=\"h4-1\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E3.1 Penicillin resistance in GBS and its underlying mechanisms\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003ECompared to the high resistance rates observed with erythromycin and clindamycin, numerous studies have confirmed that GBS retains high sensitivity towards penicillin, which remains the preferred drug for the prophylactic treatment of GBS infections (\u003Ca href=\"#B218\"\u003EVerani et al., 2010\u003C\u002Fa\u003E). However, with the rising use of antibiotics, a change in sensitivity has been detected. Since 1994, reports of GBS strains with reduced penicillin susceptibility (PRGBS) have emerged sporadically. Since 2008, there has been evidence suggesting an increasing trend in the minimum inhibitory concentration (MIC) values of penicillin against GBS, indicating a tendency towards resistance (\u003Ca href=\"#B99\"\u003EKimura et al., 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B147\"\u003ENagano et al., 2012\u003C\u002Fa\u003E). PRGBS resistant to beta-lactam antibiotics is an important emerging problem. Cases of PRGBS have been reported in regions such as Hong Kong (\u003Ca href=\"#B43\"\u003EChu et al., 2007\u003C\u002Fa\u003E), the United States (\u003Ca href=\"#B47\"\u003EDahesh et al., 2008\u003C\u002Fa\u003E), Canada (\u003Ca href=\"#B124\"\u003ELongtin et al., 2011\u003C\u002Fa\u003E), and Japan (\u003Ca href=\"#B99\"\u003EKimura et al., 2008\u003C\u002Fa\u003E), with MIC values reaching from 0.25 to 1.00 mg\u002FL. In Japan, studies have shown a high isolation rate of multidrug-resistant (MDR) group B streptococci with reduced penicillin susceptibility in Japan, indicating a growing issue with antibiotic resistance in this region (\u003Ca href=\"#B8\"\u003EAli et al., 2022b\u003C\u002Fa\u003E; \u003Ca href=\"#B103\"\u003EKoide et al., 2022\u003C\u002Fa\u003E; \u003Ca href=\"#B98\"\u003EKhan et al., 2023\u003C\u002Fa\u003E; \u003Ca href=\"#B219\"\u003EVerma et al., 2023\u003C\u002Fa\u003E). Currently, the mechanisms underlying the reduced sensitivity of GBS to penicillin are not fully understood. Japanese researchers have attributed the decrease in penicillin susceptibility to mutations in the genes encoding penicillin-binding proteins (PBPs), specifically \u003Cem\u003EPBP1A\u003C\u002Fem\u003E, \u003Cem\u003EPBP2B\u003C\u002Fem\u003E, and \u003Cem\u003EPBP2X\u003C\u002Fem\u003E genes [101–103]. Notably, amino acid substitutions V405A and Q557E in \u003Cem\u003EPBP2X\u003C\u002Fem\u003E gene have been found to form unstable proteins, leading to a reduction and weakened affinity of the associated penicillin-binding proteins, which is a major mechanism of decreased penicillin sensitivity in GBS (\u003Ca href=\"#B215\"\u003EUruén et al., 2022\u003C\u002Fa\u003E). Moreover, multiple amino acid substitutions in PBPs 2X, 2B, and 1A have been discovered (\u003Ca href=\"#B99\"\u003EKimura et al., 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B147\"\u003ENagano et al., 2012\u003C\u002Fa\u003E). Research in Canada on PRGBS identified amino acid substitutions in multiple PBPs but did not find the V405A and Q557E substitutions in \u003Cem\u003EPBP2X\u003C\u002Fem\u003E gene (V405A refers to a substitution where valine (V) at position 405 in the protein sequence is replaced by alanine (A), and Q557E refers to a substitution where glutamine (Q) at position 557 is replaced by glutamic acid (E)) (\u003Ca href=\"#B124\"\u003ELongtin et al., 2011\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h4-2\" name=\"h4-2\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E3.2 Resistance to erythromycin and clindamycin in GBS and its underlying mechanisms\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EPenicillin is the front-line treatment for both prevention and management of GBS infections. For those allergic to penicillin, clindamycin and erythromycin serve as the primary alternatives and are used by approximately 20% of GBS carriers. With the increasing use of these drugs, there has been a global rise in resistance to erythromycin and clindamycin (\u003Ca href=\"#B182\"\u003ESavoia et al., 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B177\"\u003ESadowy et al., 2010\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe resistance rate of GBS among pregnant women has been a growing concern in recent years. Studies from various regions have reported high rates of antimicrobial resistance in GBS isolates. Du et al. (\u003Ca href=\"#B60\"\u003EDu et al., 2021\u003C\u002Fa\u003E) found that in Vietnamese pregnant women, the multidrug-resistance rate was 59.19%, with 8.46% of isolates resistant to six to seven antibiotics. Similarly, Bae et al. (\u003Ca href=\"#B18\"\u003EBae et al., 2022\u003C\u002Fa\u003E) reported a nationwide GBS colonization rate of 10.6% in pregnant Korean women. Furthermore, Du et al. (\u003Ca href=\"#B217\"\u003EVan Du et al., 2021\u003C\u002Fa\u003E) highlighted the importance of considering the high rates of erythromycin, clindamycin, and multidrug resistance in GBS as a risk factor for neonates. This is supported by Hsu et al. (\u003Ca href=\"#B83\"\u003EHsu et al., 2023\u003C\u002Fa\u003E), who found that serotype Ib GBS strains had significantly higher rates of resistance to erythromycin and clindamycin compared to other serotypes. Moreover, Wang et al. (\u003Ca href=\"#B222\"\u003EWang et al., 2023\u003C\u002Fa\u003E) conducted a systematic review and meta-analysis in China, indicating a concerning emergence of penicillin resistance among GBS strains. This aligns with the findings of Verma et al. (\u003Ca href=\"#B219\"\u003EVerma et al., 2023\u003C\u002Fa\u003E), who reported the highest resistance rate for penicillin among all tested antibiotics in GBS isolates of Indian origin.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EGBS exhibits resistance to macrolide(M), clindamycin(L), and Streptogramin B(SB), together classified as the MLS group, encompassing three distinct yet functionally related types of antibiotics. There are three predominant mechanisms of GBS resistance to macrolide antibiotics:\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EM Phenotype Resistance: The resistance mechanism involves active efflux, where efflux pumps extrude the antibiotic out of the cell, leading to resistance. The efflux pump-related proteins are encoded by \u003Cem\u003Emef\u003C\u002Fem\u003E genes, which confer resistance to 14- and 15-membered ring macrolides but sensitivity to 16-membered macrolides, clindamycin, and Streptogramin B. This typically results in moderate-level resistance, with erythromycin MIC ranging from 1 to 32 mg\u002FL. The \u003Cem\u003EmefA\u003C\u002Fem\u003E gene, one of two subtypes of the \u003Cem\u003Emef\u003C\u002Fem\u003E gene, is located on the Tn1207.1 transposon in pyogenic streptococci (\u003Ca href=\"#B16\"\u003EBacciaglia et al., 2007\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EMLSB Phenotype Resistance: The mechanism involves an alteration in ribosomal target sites, primarily mediated by \u003Cem\u003Eerm\u003C\u002Fem\u003E genes encoding ribosomal methylases that methylate a single adenine residue in 23SrRNA. This methylation reduces the affinity of the macrolide antibiotics to the ribosomal binding sites (\u003Ca href=\"#B125\"\u003ELopardo et al., 2005\u003C\u002Fa\u003E). \u003Cem\u003Eerm\u003C\u002Fem\u003E gene-mediated macrolide resistance is generally of a high level, with erythromycin MIC values exceeding 256 mg\u002FL, and cross-resistance occurs with clindamycin and Streptogramin B. The MLSB phenotype is divided into constitutive (cMLSB) and inducible (iMLSB) types. cMLSB occurs when \u003Cem\u003Eerm\u003C\u002Fem\u003E genes are stably expressed, which results in resistance to erythromycin, clindamycin, and other MLS group members. iMLSB relates to scenarios where the \u003Cem\u003Eerm\u003C\u002Fem\u003E genes require inducers to express resistance to clindamycin; erythromycin can act as such an inducer. Otherwise, clindamycin sensitivity might appear \u003Cem\u003Ein vitro\u003C\u002Fem\u003E tests (\u003Ca href=\"#B190\"\u003EShen et al., 2005\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EBoth the M phenotype resistance and iMLSB resistance appear with erythromycin resistance but clindamycin sensitivity (\u003Ca href=\"#B7\"\u003EAkdoğan Kittana et al., 2019\u003C\u002Fa\u003E). The presence of erythromycin ribosome methylase (\u003Cem\u003Eerm\u003C\u002Fem\u003E) genes has been linked to the expression of inducible clindamycin resistance in \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E (\u003Ca href=\"#B82\"\u003EHeyar et al., 2020\u003C\u002Fa\u003E). However, the prevalence of iMLSB phenotype may vary depending on the study population, with lower rates observed in rural areas where antimicrobial exposure is limited (\u003Ca href=\"#B82\"\u003EHeyar et al., 2020\u003C\u002Fa\u003E). In clinical settings, it is crucial to accurately identify clindamycin resistance, as studies have shown that a significant proportion of \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E isolates can exhibit inducible clindamycin resistance, which may be misidentified as clindamycin susceptible using standard methods (\u003Ca href=\"#B152\"\u003EPadekar et al., 2020\u003C\u002Fa\u003E). The cMLSB phenotype has been reported as the predominant form of resistance, followed by the iMLSB phenotype in some studies (\u003Ca href=\"#B106\"\u003EKumar Chaudhary and Piya, 2021\u003C\u002Fa\u003E). To differentiate these two phenotypes, the National Committee for Clinical Laboratory Standards (NCCLS) in the United States recommended the D-test in 2004. This involves placing a clindamycin disk (2 μg\u002Fdisk) 20 mm away from an erythromycin disk (15 μg\u002Fdisk), incubating at 35°C for 16–18 h. A “D” shape flattening or blunting of the inhibition zone adjacent to the erythromycin disc indicates a positive D-test, suggesting inducible clindamycin resistance (iMLSB type); otherwise, the test is negative (M type resistance) (\u003Ca href=\"#B17\"\u003EBack et al., 2012\u003C\u002Fa\u003E). The D-test distinguishes iMLSB resistance and corrects clindamycin sensitivity results, aiding in rational pharmacotherapy.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EL Phenotype Resistance: This resistance is due to adenylation. Enzymes encoded by the \u003Cem\u003ElinB\u003C\u002Fem\u003E and \u003Cem\u003Elnu\u003C\u002Fem\u003E genes mediate the inactivation of lincosamide antibiotics (\u003Ca href=\"#B49\"\u003Ede Azavedo et al., 2001\u003C\u002Fa\u003E; \u003Ca href=\"#B67\"\u003EFaccone et al., 2010\u003C\u002Fa\u003E; \u003Ca href=\"#B187\"\u003ESeo et al., 2010\u003C\u002Fa\u003E). It is characterized by sensitivity to erythromycin and resistance to clindamycin. Studies such as by Lu et al. indicated that 4.5% of GBS strains are L phenotype resistant (\u003Ca href=\"#B126\"\u003ELu et al., 2014\u003C\u002Fa\u003E), with the prevalence of the \u003Cem\u003ElinB\u003C\u002Fem\u003E gene being significantly lower than reported in Korea, suggesting geographical variation in L phenotype resistance and \u003Cem\u003ElinB\u003C\u002Fem\u003E gene carriage. The \u003Cem\u003ElinB\u003C\u002Fem\u003E gene, which is linked to clindamycin resistance, can lead to an L phenotype, conferring resistance to lincosamides only (\u003Ca href=\"#B178\"\u003ESantana et al., 2020\u003C\u002Fa\u003E). The presence of antibiotic resistance genes, such as \u003Cem\u003ElinB\u003C\u002Fem\u003E, in GBS strains highlights the importance of monitoring and understanding geographical variation in resistance patterns to inform treatment strategies and vaccine design (\u003Ca href=\"#B178\"\u003ESantana et al., 2020\u003C\u002Fa\u003E; \u003Ca href=\"#B25\"\u003EBarros, 2021\u003C\u002Fa\u003E; \u003Ca href=\"#B144\"\u003EMudzana et al., 2021\u003C\u002Fa\u003E). The inactivation of lincosamide antibiotics mediated by the \u003Cem\u003Elnu\u003C\u002Fem\u003E gene was first reported in \u003Cem\u003EEnterococcus faecium HM1025\u003C\u002Fem\u003E (\u003Ca href=\"#B31\"\u003EBozdogan et al., 1999\u003C\u002Fa\u003E). L phenotype resistance regulated by the \u003Cem\u003ElnuB\u003C\u002Fem\u003E gene has been documented in various regions, including Latin America, Canada, Korea, and Spain (\u003Ca href=\"#B13\"\u003EArana et al., 2014\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h4-3\" name=\"h4-3\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E3.3 Mechanisms of GBS resistance to telithromycin\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EA study from the United States between 2001 and 2004 indicated a 53.5% resistance rate to erythromycin in GBS, while the non-susceptibility rate for tetracycline was only 1.5% (\u003Ca href=\"#B55\"\u003EDiPersio and DiPersio, 2006\u003C\u002Fa\u003E). Research in China has shown that among pregnant women colonized with GBS, non-susceptibility rates for erythromycin, clarithromycin, and azithromycin all exceeded 85.0%, while for tetracycline it was only 31.0%. This suggests a sensitivity to tetracycline despite resistance to other macrolides (\u003Ca href=\"#B223\"\u003EWang et al., 2015\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003ETelithromycin, the first ketolide and a 14-membered ring macrolide, demonstrates a strong affinity towards bacterial ribosomes, enabling it to counteract common macrolide antibiotic resistance mechanisms. These mechanisms include methyltransferase enzymatic activity encoded by the \u003Cem\u003EermB\u003C\u002Fem\u003E gene, which results in the dimethylation of an adenine residue at the N-6 position on the 23SrRNA, and ribosomal protein variations that interfere with the binding of macrolides to bacteria. Telithromycin has been proven to exhibit greater antimicrobial activity against erythromycin-resistant strains, as confirmed in \u003Cem\u003EStreptococcus pneumoniae\u003C\u002Fem\u003E (\u003Ca href=\"#B68\"\u003EFarrell and Felmingham, 2004\u003C\u002Fa\u003E; \u003Ca href=\"#B207\"\u003ETakaya et al., 2010\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h4-4\" name=\"h4-4\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E3.4 Resistance to fluoroquinolone antibiotics in GBS and the mechanisms involved\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EIn 2003, Japan first reported the isolation of fluoroquinolone-resistant GBS strains, although the initial rate was low. Then several countries and regions have reported the emergence of GBS isolates resistant to fluoroquinolones (\u003Ca href=\"#B10\"\u003EAli et al., 2020\u003C\u002Fa\u003E; \u003Ca href=\"#B81\"\u003EHayes et al., 2020\u003C\u002Fa\u003E). In Taiwan the resistance rate to quinolones ranges between 0.3% and 5.0%, and all GBS strains resistant to levofloxacin also exhibited higher MIC values for ciprofloxacin, gatifloxacin, moxifloxacin, and gemifloxacin (\u003Ca href=\"#B17\"\u003EBack et al., 2012\u003C\u002Fa\u003E). In 2014, Italy first reported the presence of levofloxacin-resistant GBS strains with a resistance rate of 1.4% (\u003Ca href=\"#B160\"\u003EPiccinelli et al., 2015a\u003C\u002Fa\u003E), and another study in the same year reported a resistance rate of 3.4% (\u003Ca href=\"#B159\"\u003EPiccinelli et al., 2015b\u003C\u002Fa\u003E). Mutations in the quinolone resistance-determining regions (QRDRs) of genes encoding the topoisomerase IV subunit C (ParC) and the DNA gyrase subunit A (GyrA) have been closely associated with GBS resistance to fluoroquinolone antibiotics (\u003Ca href=\"#B227\"\u003EWehbeh et al., 2005\u003C\u002Fa\u003E; \u003Ca href=\"#B145\"\u003EMurayama et al., 2009\u003C\u002Fa\u003E). Double mutations in GyrA Ser-81 to Leu and in ParC Ser-79 to Phe or Tyr are associated with high-level resistance to levofloxacin. Additional mutations have been discovered in ParC, such as Asp-83 to Tyr and Asp-83 to Asn. Similar mutations have also been found in GyrB, but their significance is yet to be clarified (\u003Ca href=\"#B159\"\u003EPiccinelli et al., 2015b\u003C\u002Fa\u003E). Clinical isolates of GBS resistant to levofloxacin have been reported to belong predominantly to clonal complex III\u002FST19. Wang et al. found that the resistance rate of III\u002FST19 GBS strains to levofloxacin reached 92.9%, with 75% of the levofloxacin-resistant strains belonging to CC19, whereas all III\u002FST17 type GBS strains were sensitive to levofloxacin (\u003Ca href=\"#B221\"\u003EWang et al., 2013\u003C\u002Fa\u003E). Research in Italy indicated that the majority of levofloxacin-resistant GBS strains were of the Ib\u002FST19 type, also within the CC19 (\u003Ca href=\"#B159\"\u003EPiccinelli et al., 2015b\u003C\u002Fa\u003E). It is speculated that the sensitivity of levofloxacin in bacteria may be related to their molecular biological characteristics and serotype, suggesting possible clonal spread.\u003C\u002Fp\u003E\u003Ca id=\"h4-5\" name=\"h4-5\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E3.5 Resistance to tetracycline in GBS and the underlying mechanisms\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EResearch both nationally and internationally has consistently shown high rates of resistance to tetracycline in GBS. Resistance rates reported include 62% in Canada, 80% in Italy, 97% in Brazil, and 98% in Egypt (\u003Ca href=\"#B188\"\u003EShabayek and Abdalla, 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B159\"\u003EPiccinelli et al., 2015b\u003C\u002Fa\u003E). The tetracycline resistance gene primarily involves \u003Cem\u003EtetM\u003C\u002Fem\u003E (\u003Ca href=\"#B78\"\u003EGranlund et al., 2010\u003C\u002Fa\u003E), which encodes ribosomal protection proteins. In China, \u003Cem\u003EtetM\u003C\u002Fem\u003E and \u003Cem\u003EtetO\u003C\u002Fem\u003E genes are the main tetracycline resistance genes found in GBS, with the detection of \u003Cem\u003EtetK\u003C\u002Fem\u003E and \u003Cem\u003EtetL\u003C\u002Fem\u003E genes also reported (\u003Ca href=\"#B86\"\u003EHuiling et al., 2010\u003C\u002Fa\u003E; \u003Ca href=\"#B89\"\u003EJia-de, 2010\u003C\u002Fa\u003E). In Brazil, resistance is predominantly due to the \u003Cem\u003EtetM\u003C\u002Fem\u003E gene (99.3%), with a 1.8% carriage rate for \u003Cem\u003EtetO\u003C\u002Fem\u003E (\u003Ca href=\"#B63\"\u003EDutra et al., 2014\u003C\u002Fa\u003E). In Egypt, \u003Cem\u003EtetM\u003C\u002Fem\u003E is also the main resistance gene, with an individual carriage rate of 83.7%, and the presence of \u003Cem\u003EtetL\u003C\u002Fem\u003E, \u003Cem\u003EtetK\u003C\u002Fem\u003E, and \u003Cem\u003EtetO\u003C\u002Fem\u003E genes has been detected (\u003Ca href=\"#B188\"\u003EShabayek and Abdalla, 2014\u003C\u002Fa\u003E). Tetracyclines are known to affect the development of teeth and bones in children, and due to concerns about severe hepatorenal toxicity reactions, its use has been largely discontinued in pediatric clinical practice for many years. However, the problem of tetracycline resistance remains very serious in China (\u003Ca href=\"#B123\"\u003ELiu et al., 2021\u003C\u002Fa\u003E). This issue may be related to the overuse of these antibiotics in agriculture and food animals, as well as the stable resistance of bacteria to this class of antibiotics. Further investigation is warranted into this matter.\u003C\u002Fp\u003E\u003Ca id=\"h4-6\" name=\"h4-6\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E3.6 Vancomycin resistance in GBS\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EDue to rising resistance rates to erythromycin and clindamycin, vancomycin is sometimes necessary for the prevention and treatment of GBS infections in patients allergic to penicillin. Park et al. explored two laboratory-confirmed cases of invasive GBS strains resistant to vancomycin (\u003Ca href=\"#B154\"\u003EPark et al., 2014\u003C\u002Fa\u003E). This study employed PCR amplification with primers, EG1 and, EG2 to produce a sequence similar to the vanG (941bp) of \u003Cem\u003EEnterococci\u003C\u002Fem\u003E and confirmed that the strains contained sequences corresponding to vanW, vanG and vanXY, with sequence similarities of 89.8%, 91.0%, and 95.7%, respectively. One of the isolates had a 2658bp tandem repeat sequence completely identical to the vanG of \u003Cem\u003EEnterococcus faecalis\u003C\u002Fem\u003E. Since there was no epidemiological link between the strains, it is conjectured that independent mechanisms of resistance acquisition exist. Further research is needed, in conjunction with clinical outcomes, to investigate their origins and patterns of spread.\u003C\u002Fp\u003E\u003Ca id=\"h4-7\" name=\"h4-7\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E3.7 Multidrug resistance in GBS\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EIn recent years, the problem of drug resistance in GBS has become increasingly serious globally, with reports emerging of multidrug-resistant GBS strains (\u003Ca href=\"#B208\"\u003ETalebi Bezmin Abadi et al., 2019\u003C\u002Fa\u003E). Additionally, a study revealed an increasing trend in macrolide-resistant GBS isolates (\u003Ca href=\"#B98\"\u003EKhan et al., 2023\u003C\u002Fa\u003E). PRGBS is capable of surviving and spreading in hospital settings, leading to nosocomial infections. There is a potential risk of global transmission and epidemic spread in the future.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EGBS colonization is a significant risk factor for various adverse outcomes in pregnant women and neonates. Studies have shown that GBS colonization in the vaginal tract is associated with preterm birth (\u003Ca href=\"#B209\"\u003ETano et al., 2021\u003C\u002Fa\u003E) and neonatal GBS early-onset disease (\u003Ca href=\"#B241\"\u003EZhu and Lin, 2021\u003C\u002Fa\u003E). The prevalence of GBS colonization varies depending on the detection method used, with enrichment media improving the detection rate (\u003Ca href=\"#B196\"\u003ESong et al., 2022\u003C\u002Fa\u003E). In the context of GBS colonization and infection, alternative antimicrobials such as cefazolin have been explored as prophylactic regimens, especially in situations where penicillins are contraindicated or unavailable (\u003Ca href=\"#B12\"\u003EAntonello et al., 2020\u003C\u002Fa\u003E). Additionally, the relationship between the gut microbiota composition in pregnant women colonized with GBS and maternal blood routine as well as neonatal blood-gas analysis has been investigated to understand the interplay between GBS colonization and adverse birth outcomes (\u003Ca href=\"#B226\"\u003EWang et al., 2022b\u003C\u002Fa\u003E). Furthermore, the prevalence and clinical relevance of colonization with methicillin-resistant \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E (MRSA) in the obstetric population have been studied to assess the potential impact on both mother and child (\u003Ca href=\"#B26\"\u003EBauters et al., 2022\u003C\u002Fa\u003E). Maternal GBS colonization has been identified as a major risk factor for neonatal GBS infection, emphasizing the importance of understanding and addressing GBS colonization in pregnant women (\u003Ca href=\"#B90\"\u003EJung et al., 2021\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe epidemiology of multidrug-resistant GBS remains a significant concern globally, with studies focusing on different aspects of this pathogen. Huang et al. (\u003Ca href=\"#B85\"\u003EHuang et al., 2019\u003C\u002Fa\u003E) reviewed data from China to determine the maternal GBS colonization rate, incidence of invasive GBS disease in infants, and associated clinical outcomes. The systematic literature review reveals that in mainland China, the maternal GBS colonization rate varies from 3.7% to 14.52%, and the incidence of invasive GBS disease in infants is 0.55–1.79 per 1000 live births, indicating a significant health concern with Serotype III being the most prevalent. The available data in China suggest that specific GBS serotypes are predominant in causing disease. This comprehensive analysis highlights the varied prevalence of GBS colonization among pregnant women in China and the consequent risks of invasive GBS diseases in infants, with relatively high fatality rates. Furthermore, the study underscores the potential of immunization strategies targeting pregnant women, focusing on vaccines covering the major serotypes (Ia, Ib, II, III, and V) identified, to significantly mitigate the burden of GBS infections. Kao et al. (\u003Ca href=\"#B95\"\u003EKao et al., 2019\u003C\u002Fa\u003E) focused on the clinical characteristics and impacts of emerging serotype III sequence type 17 GBS invasive infections in infants in Taiwan. The study aimed to determine serotype distribution, antimicrobial resistance, clinical features, and molecular characteristics of invasive GBS isolates. The study identifies significant variations in serotype distribution, antimicrobial resistance profiles, clinical manifestations, and molecular characteristics of invasive GBS isolates from Taiwanese infants. This research highlights the diversity of GBS serotypes affecting Taiwanese infants, each with distinct antimicrobial resistance and clinical characteristics, emphasizing the need for tailored healthcare strategies. It also suggests the importance of continued surveillance and molecular epidemiological studies to better understand and combat GBS infection in this vulnerable population. Slotved et al. (\u003Ca href=\"#B195\"\u003ESlotved and Hoffmann, 2020\u003C\u002Fa\u003E) analyzed the epidemiology of invasive GBS infections in Denmark from 2005 to 2018, presenting data on serotype distribution and antibiotic susceptibility in all age groups. The study reveals a significant increase in the incidence of invasive GBS infections among the elderly in Denmark from 2005 to 2018, alongside a rise in resistance to erythromycin and clindamycin. While the incidence of early-onset and late-onset GBS disease in newborns remained stable and low, there was a notable rise in GBS infections in older adults, particularly in those aged 65 and above. Additionally, the study observed an increasing trend in antibiotic resistance among GBS isolates, underscoring the need for ongoing surveillance and tailored antibiotic stewardship programs. In contrast, Choi et al. (\u003Ca href=\"#B41\"\u003EChoi et al., 2021\u003C\u002Fa\u003E) discussed recent epidemiological changes in GBS among pregnant Korean women, highlighting the evolving nature of GBS epidemiology. The study indicates an increase in GBS colonization rates among pregnant Korean women to levels comparable with those in Western countries, along with notable antimicrobial resistance. The colonization rate of GBS in pregnant Korean women is 19.8%, showing an upward trend and aligning with rates in Western countries. Additionally, there is a significant presence of antimicrobial resistance, particularly to clindamycin, erythromycin, and tetracycline, underscoring the importance of periodic and comprehensive epidemiological studies to guide prevention and treatment strategies. Additionally, Zhang et al. (\u003Ca href=\"#B239\"\u003EZhang et al., 2021\u003C\u002Fa\u003E) conducted a retrospective study in Shanxi, China, focusing on the molecular characterization of pathogenic GBS strains, with a high incidence of sequence type 10 strains in infants and pregnant women. A high prevalence of ST10 was found in both pregnant women (44.4%) and infants (72.2%) with GBS, highlighting its significant role in regional infections. The majority of GBS isolates harbored the pilus island combinations PI-1+PI-2a, indicating its potential importance in the pathogenesis and transmission of GBS, thus suggesting targets for future interventions and vaccine development.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThe treatment of infections caused by MDR pathogens poses a significant challenge in clinical practice. Various studies have explored different therapeutic interventions and their outcomes in combating MDR infections. Nørgaard et al. (\u003Ca href=\"#B150\"\u003ENørgaard et al., 2019\u003C\u002Fa\u003E) conducted a systematic review to identify current antimicrobial treatment options for infections with MDR Gram-negative bacteria. The study found that monotherapy and colistin combination therapy showed clinical and microbiological success rates ranging from 70% to 100%, depending on the infection site and severity. In the context of specific bacterial infections, Liu et al. (\u003Ca href=\"#B118\"\u003ELiu et al., 2020\u003C\u002Fa\u003E) investigated the influence of Autoinducer-2 (AI-2) on tetracycline resistance in \u003Cem\u003EStreptococcus suis\u003C\u002Fem\u003E. The study demonstrated that the addition of exogenous AI-2 led to an increase in MIC compared to the wild type strain, highlighting the importance of exploring new approaches to combating antimicrobial resistance. Furthermore, Xiangru et al. (\u003Ca href=\"#B230\"\u003EXiangru et al., 2023\u003C\u002Fa\u003E) evaluated the clinical efficacy of Buzhong Yiqi decoction (BZYQ) in the treatment of hospital-acquired pneumonia (HAP) with multi-drug-resistant bacteria (MDRB). The study reported a higher clinical success rate and pathogen eradication rate in the intervention group compared to the control group, indicating the potential of BZYQ as a treatment option for MDRB infections.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003ETherefore, epidemiological surveillance of GBS, assessment of PRGBS, and evaluation of multidrug-resistant genotypes are of crucial importance (\u003Ca href=\"#B147\"\u003ENagano et al., 2012\u003C\u002Fa\u003E). Antibiotic resistance in GBS with their specific targets and mechanisms are shown in \u003Ca href=\"#T2\"\u003ETable 2\u003C\u002Fa\u003E.\u003C\u002Fp\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"Imageheaders\"\u003ETable 2\u003C\u002Fdiv\u003E\u003Cdiv class=\"FigureDesc\"\u003E\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F1395673\u002Ffphar-15-1395673-HTML-r1\u002Fimage_m\u002Ffphar-15-1395673-t002.jpg\" name=\"Table2\" target=\"_blank\"\u003E\u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F1395673\u002Ffphar-15-1395673-HTML-r1\u002Fimage_t\u002Ffphar-15-1395673-t002.gif\" id=\"T2\" alt=\"www.frontiersin.org\"\u002F\u003E\u003C\u002Fa\u003E\u003Cp\u003E\u003Cb\u003ETable 2\u003C\u002Fb\u003E. Summary of Antibiotic resistance in Group B \u003Cem\u003EStreptococcus\u003C\u002Fem\u003E with their specific targets, mechanisms and references.\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\u003Ca id=\"h5\" name=\"h5\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003E4 GBS related clinical diseases in obstetrics and gynecology\u003C\u002Fh2\u003E\u003Ca id=\"h5-1\" name=\"h5-1\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E4.1 GBS infection in non-pregnant women\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EThe incidence of GBS disease is increasing in non-pregnant adults or adults with impaired immune function, especially among those with underlying conditions. Approximately 20%–70% of infections are nosocomial (\u003Ca href=\"#B140\"\u003EMiselli et al., 2022\u003C\u002Fa\u003E). Several clinical diseases have been confirmed to be caused by GBS infection. The most common diseases are skin and soft tissue infections (\u003Ca href=\"#B6\"\u003EAkbari et al., 2023\u003C\u002Fa\u003E), and GBS can also cause vaginal infections in non-pregnant women. This infection can cause symptoms such as vaginal inflammation (\u003Ca href=\"#B209\"\u003ETano et al., 2021\u003C\u002Fa\u003E), abnormal vaginal discharge (\u003Ca href=\"#B54\"\u003EDilrukshi et al., 2021\u003C\u002Fa\u003E), and itching (\u003Ca href=\"#B209\"\u003ETano et al., 2021\u003C\u002Fa\u003E). GBS is also one of the common pathogens that cause urinary tract infections in non-pregnant women (\u003Ca href=\"#B23\"\u003EBalasubramanian et al., 2023\u003C\u002Fa\u003E). Urinary tract infections can cause symptoms such as frequent urination, urgency, and pain during urination. Although GBS infection is not usually considered a sexually transmitted disease, it can be transmitted to non-pregnant women through sexual contact (\u003Ca href=\"#B64\"\u003EEl Beitune et al., 2006\u003C\u002Fa\u003E). In this case, the infection may affect areas such as the vagina, cervix, and urethra. Non-pregnant individuals with compromised immune function (\u003Ca href=\"#B27\"\u003EBebien et al., 2012\u003C\u002Fa\u003E), such as those receiving immunosuppressive therapy, with chronic diseases, or undergoing chemotherapy, may be more susceptible to GBS infection. For GBS infection in non-pregnant women, the general approach includes diagnosis and laboratory testing by a healthcare professional to determine the presence of GBS infection. If the infection is confirmed, appropriate antibiotic treatment such as penicillin or other antibiotics may be prescribed to eliminate bacterial infection. Symptomatic measures such as pain relief and anti-itch treatment can also be taken.\u003C\u002Fp\u003E\u003Ca id=\"h5-2\" name=\"h5-2\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E4.2 GBS infection in pregnant women\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EGBS infection in pregnant women can manifest as asymptomatic clinical infection or progress to sepsis. GBS infection can cause maternal bacterial urinary tract infections, pyelonephritis, postpartum mastitis, and endometritis (\u003Ca href=\"#B204\"\u003ESundin et al., 2021\u003C\u002Fa\u003E). Among systemic GBS infections in mothers, serotypes Ia, III, and VI account for the majority (\u003Ca href=\"#B24\"\u003EBarro et al., 2023\u003C\u002Fa\u003E). GBS infection is also associated with premature birth, premature rupture of membranes, chorioamnionitis, fetal infection, and stillbirth. Approximately 1%–3% of infected newborns will develop early-onset disease within 7 days after birth (\u003Ca href=\"#B167\"\u003EPreventing neonatal group B streptococcal infection, 2011\u003C\u002Fa\u003E). The main causes of early-onset neonatal infection are vertical transmission from the mother and GBS infection of the amniotic membranes. Over 95% of early-onset infections are related to GBS serotypes Ia, Ib, II, III, IV, and V. Among newborns with early-onset infection, 80%–85% will develop sepsis (\u003Ca href=\"#B193\"\u003ESimonsen et al., 2014\u003C\u002Fa\u003E), 10% will develop pneumonia (\u003Ca href=\"#B69\"\u003EFinsterer, 2022\u003C\u002Fa\u003E), and 5%–10% will develop meningitis (\u003Ca href=\"#B132\"\u003EManzanares et al., 2023\u003C\u002Fa\u003E). Meningitis is a late-onset disease that occurs between 6 days and more than 90 days after birth. Currently, there is limited understanding of the pathogenesis of late-onset GBS infection (\u003Ca href=\"#B50\"\u003EDelara et al., 2023\u003C\u002Fa\u003E), which may be related to vertical transmission, nosocomial infection, or community-acquired infection. Serotype III GBS is highly associated with meningitis (\u003Ca href=\"#B84\"\u003EHsu et al., 2021\u003C\u002Fa\u003E). Recent studies have shown that preterm birth is a major risk factor for late-onset GBS infection (\u003Ca href=\"#B77\"\u003EGonçalves et al., 2022\u003C\u002Fa\u003E; \u003Ca href=\"#B40\"\u003EChoi et al., 2023\u003C\u002Fa\u003E; \u003Ca href=\"#B155\"\u003EPaul et al., 2023\u003C\u002Fa\u003E). In addition to meningitis, clinical manifestations of late-onset infection also include bacteremia and osteoarticular infections (\u003Ca href=\"#B171\"\u003ERaabe et al., 2019\u003C\u002Fa\u003E). Currently, there are no effective preventive measures for GBS infection in pregnant women. Extremely late-onset GBS infection refers to GBS infection in infants older than 3 months. The risk factors for extremely late-onset GBS infection are similar to those for late-onset infection. However, most cases of extremely late-onset GBS infection occur in preterm or extremely low birth weight infants (\u003Ca href=\"#B120\"\u003ELiu and Tong, 2019\u003C\u002Fa\u003E; \u003Ca href=\"#B203\"\u003ESuffolk et al., 2019\u003C\u002Fa\u003E). Infants with extremely late-onset GBS infection are more susceptible to immunodeficiency disorders. The most common clinical manifestations of extremely late-onset GBS infection are bacteremia and meningitis.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EIn infants infected with GBS, the mortality rate of early-onset infection is about 2%–3%, while the mortality rate of late-onset infection is about 1%–3% (\u003Ca href=\"#B202\"\u003EStephens et al., 2023\u003C\u002Fa\u003E). In premature infants, the mortality rate of early-onset GBS infection is approximately 20%–30%, and the mortality rate of late-onset infection is about 5%–8%. Although infants infected with GBS can survive, their 10-year survival rate is very low (\u003Ca href=\"#B91\"\u003EKalliola et al., 1999\u003C\u002Fa\u003E), and they often require multiple hospitalizations within the first 5 years of life. Research has found that children with GBS infection are three times more likely to die or be hospitalized within 11 years after birth (\u003Ca href=\"#B164\"\u003EPlatt and Gilson, 1994\u003C\u002Fa\u003E). GBS infection can increase the risk of permanent neurological disabilities such as cerebral palsy and epilepsy. 51% of infants with GBS meningitis can grow up, while 25% of infants with GBS meningitis have mild to moderate neurological disabilities, and the remaining infants with GBS meningitis will develop severe neurological or functional impairments. Therefore, early detection and prevention of GBS infection in newborns and infants is crucial.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EAccording to the recommendation of CDC, GBS screening should be performed in pregnant women between 36 weeks 0\u002F7 days and 37 weeks 6\u002F7 days (approximately 5 weeks before delivery) (\u003Ca href=\"#B218\"\u003EVerani et al., 2010\u003C\u002Fa\u003E). If the screening result is positive for GBS, antibiotics should be given during delivery to prevent infection. If GBS is found in the vaginal flora of pregnant women at any time, regardless of the concentration, it indicates an overgrowth of GBS. If the concentration of bacteria in the urine is higher than 105 CFU\u002FmL at any time during pregnancy, antibiotic treatment should be given to the pregnant woman before delivery, and intrauterine injection should be performed during delivery. If the concentration of bacteria in the urine is lower than 105 CFU\u002FmL, antibiotic treatment before delivery is not necessary, but antibiotic prophylaxis during delivery is still necessary. For pregnant women who have already given birth or have premature rupture of membranes before 36 weeks of pregnancy, antibiotic prophylaxis will be continued until the baby is born. GBS screening in pregnant women significantly reduces the incidence of early-onset GBS infection in newborns, reducing it by nearly 85% compared to no screening (\u003Ca href=\"#B80\"\u003EHanson et al., 2022\u003C\u002Fa\u003E). However, late-onset infection is not prevented.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EPenicillin G is the preferred drug for prophylaxis against GBS infection due to its low cost, low toxicity, and narrow spectrum of antibacterial activity (\u003Ca href=\"#B88\"\u003EIkebe et al., 2023\u003C\u002Fa\u003E). According to the guidelines of the American Academy of Pediatrics, antibiotics should be administered at least 4 h before delivery to ensure that the concentration of Penicillin G in the amniotic fluid and placental circulation reaches a sufficient level, thereby reducing the transmission of GBS from mother to baby. If a pregnant woman is allergic to beta-lactam antibiotics, cefazolin should be used instead. Pregnant women who are sensitive to clindamycin should receive clindamycin treatment, while those who are resistant to clindamycin should receive vancomycin treatment (\u003Ca href=\"#B61\"\u003EDuffy et al., 2022\u003C\u002Fa\u003E). Unlike conventional antibiotic treatment, antibiotic prophylaxis is used only as “local antibiotic treatment”. “Comprehensive antibiotic treatment” is a method used to eradicate \u003Cem\u003EHelicobacter pylori\u003C\u002Fem\u003E (\u003Ca href=\"#B127\"\u003ELuo et al., 2023\u003C\u002Fa\u003E), which has been classified as a class I human carcinogen by the World Health Organization’s International Agency for Research on Cancer. This high-dose antibiotic therapy can eradicate \u003Cem\u003EHelicobacter pylori\u003C\u002Fem\u003E colonization and treat gastric cancer. However, in the field of obstetrics, this “comprehensive antibiotic treatment” cannot be implemented because it may cause serious harm to the health of both the mother and the fetus, including fatal diseases or chronic disabilities.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EHowever, there are also certain limitations to prophylactic antibiotic treatment. Due to the risk of allergic reactions, the necessity of conducting antimicrobial sensitivity tests on pregnant women is increasingly being emphasized. Some research reports indicate that the rate at which maternal antibodies are transferred to newborns is approximately 0.5–0.7, indicating a relatively poor effectiveness of prophylactic antibiotic treatment (\u003Ca href=\"#B46\"\u003EDad et al., 2021\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h5-3\" name=\"h5-3\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E4.3 GBS infection and the microbiota of pregnant women\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EGBS infection is closely related to the microecology of pregnant women. Microecology refers to the balance between beneficial bacteria (such as \u003Cem\u003ELactobacillus\u003C\u002Fem\u003E) and other microorganisms in the human body (\u003Ca href=\"#B137\"\u003EMejia et al., 2023\u003C\u002Fa\u003E). Under normal circumstances, the vagina and intestines of healthy pregnant women may carry a certain amount of GBS, but it maintains a balance with other beneficial bacteria. However, certain factors may lead to an imbalance in microecology, causing GBS to overgrow and cause infection.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EGBS primarily colonizes in the vagina, where there is a normal presence of \u003Cem\u003ELactobacillus\u003C\u002Fem\u003E and other beneficial bacteria that maintain an acidic environment by producing substances such as lactic acid (\u003Ca href=\"#B100\"\u003EKling et al., 2009\u003C\u002Fa\u003E), inhibiting the growth of pathogens. When the number or balance of \u003Cem\u003ELactobacillus\u003C\u002Fem\u003E in the vagina decreases or becomes imbalanced, the proliferation and risk of GBS infection increase. In addition, the gut microbiota is closely related to the microecology of other parts of the body. Imbalances in the gut microbiota can affect overall immune system function and the colonization and infection process of GBS.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EDuring pregnancy, the immune system undergoes a series of regulatory changes to tolerate the fetus (\u003Ca href=\"#B206\"\u003ESweeney et al., 2020\u003C\u002Fa\u003E). These changes may affect the immune response to GBS infection. When immune system regulation becomes imbalanced, the risk of GBS infection may increase. Imbalances in vaginal microecology usually involve a lack of \u003Cem\u003ELactobacillus\u003C\u002Fem\u003E and excessive growth of other pathogenic microorganisms (\u003Ca href=\"#B136\"\u003EMei and Li, 2022\u003C\u002Fa\u003E). Bacterial vaginosis is a mixed infection caused by an imbalance in normal vaginal flora, where \u003Cem\u003Elactobacillus\u003C\u002Fem\u003E is reduced and other bacteria multiply, mostly anaerobic bacteria (\u003Ca href=\"#B93\"\u003EKamga et al., 2019\u003C\u002Fa\u003E). Bacterial vaginosis and aerobic vaginitis are considered to be associated with various severe obstetric complications, such as preterm birth, miscarriage, premature rupture of membranes, fetal infection, and low birth weight infants (\u003Ca href=\"#B42\"\u003EChoi et al., 2022\u003C\u002Fa\u003E). Abnormal vaginal flora can lead to cervical shortening, resulting in preterm birth. Bacterial vaginosis often accompanies an increase in GBS infection (\u003Ca href=\"#B231\"\u003EXiao et al., 2023\u003C\u002Fa\u003E). \u003Cem\u003ELactobacillus\u003C\u002Fem\u003E count significantly decreases and \u003Cem\u003Estreptococcus\u003C\u002Fem\u003E count increases in pregnant women with bacterial vaginosis (\u003Ca href=\"#B142\"\u003EMohammed et al., 2020\u003C\u002Fa\u003E). Therefore, the balance of microecology in pregnant women is crucial for preventing GBS infection.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThere are some strategies that can help maintain or improve the balance of microecology in pregnant women, such as consuming foods rich in \u003Cem\u003Elactobacillus\u003C\u002Fem\u003E and probiotics, such as yogurt and fermented foods, which help maintain gut health (\u003Ca href=\"#B200\"\u003ESroka-Oleksiak et al., 2020\u003C\u002Fa\u003E). Excessive or inappropriate use of antibiotics can disrupt beneficial bacteria and lead to an imbalance in microecology (\u003Ca href=\"#B170\"\u003EPulingam et al., 2022\u003C\u002Fa\u003E). Antibiotics should be used under the guidance of a doctor. Long-term exposure to high-stress environments can also affect the balance of microecology. Pregnant women can reduce stress through appropriate rest, relaxation techniques, and stress management.\u003C\u002Fp\u003E\u003Ca id=\"h6\" name=\"h6\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003E5 Prevention, detection, and treatment of GBS\u003C\u002Fh2\u003E\u003Ca id=\"h6-1\" name=\"h6-1\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E5.1 Intrapartum antibiotic prophylaxis\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EIntrapartum antibiotic chemoprophylaxis (IAP) is an effective strategy for preventing early-onset neonatal GBS disease by inhibiting or reducing the colonization of GBS within the maternal genitourinary and gastrointestinal tracts, which in turn reduces the vertical transmission of GBS to the newborn (\u003Ca href=\"#B111\"\u003ELe Doare et al., 2017\u003C\u002Fa\u003E). In the 1990s, the incidence of GBS-EOD (early-onset disease) in live births in the United States was 1.80 per 1,000. However, following the widespread implementation of the IAP policy, the incidence dropped significantly to 0.23 per 1,000 in 2015, representing an 80% decrease (\u003Ca href=\"#B148\"\u003ENanduri et al., 2019\u003C\u002Fa\u003E). IAP has been proven to be an effective means for preventing early-onset GBS disease in newborns. The approach to IAP currently represents the most widely used strategy to prevent GBS infections in pregnant women in many developed countries (\u003Ca href=\"#B151\"\u003ENuccitelli et al., 2015\u003C\u002Fa\u003E). The criteria for administering IAP are primarily based on the colonization status of GBS in the pregnant woman and\u002For an assessment of perinatal clinical risk factors. The basis for these assessments may vary among different countries or regions (\u003Ca href=\"#B212\"\u003ETsega et al., 2015\u003C\u002Fa\u003E; \u003Ca href=\"#B224\"\u003EWang et al., 2021\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EIn 1996, the American College of Obstetricians and Gynecologists (ACOG) recommended in its guidelines on preventing neonatal GBS-EOD that IAP should be determined by a combination of microbiological screening and assessment of risk factors (\u003Ca href=\"#B5\"\u003EACOG committee opinion, 1996\u003C\u002Fa\u003E). However, the revised guidelines from the U.S. Centers for Disease Control and Prevention (CDC) in 2002 emphasized the greater efficacy of microbiological screening, and recommended IAP for women with positive GBS bacteriuria, those with a history of neonatal GBS infection, or those with unknown GBS status but presenting labor risk factors (\u003Ca href=\"#B185\"\u003ESchrag et al., 2002\u003C\u002Fa\u003E). Countries such as the United Kingdom and the Netherlands do not advocate for microbiological screening of pregnant women around the time of delivery, opting instead to rely on an assessment of clinical risk factors to determine whether to administer IAP (\u003Ca href=\"#B5\"\u003EACOG committee opinion, 1996\u003C\u002Fa\u003E). The decision to use risk factor assessments over microbiological screening is informed by the cost of screening tests and a desire to prevent the overuse of antibiotics (\u003Ca href=\"#B111\"\u003ELe Doare et al., 2017\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EA systematic review in 2017, which included IAP policies from 60 countries, identified the following major risk factors for prioritizing IAP: 1) Preterm birth (<37 weeks); 2) Premature rupture of membranes; 3) Prolonged duration of membrane rupture; 4) Positive GBS bacteriuria; 5) History of neonatal GBS infection; 6) Maternal fever (temperature >38°C); 7) Intra-amniotic infection. Of the 60 countries, 25 implemented an IAP policy based on clinical risk factors, and all (60\u002F60) countries recommended IAP for women with a history of neonatal GBS infection. Most countries (23\u002F25) recommended IAP for cases with prolonged duration after membrane rupture, premature rupture of membranes for >18 h (PROM), or maternal GBS bacteriuria (\u003Ca href=\"#B111\"\u003ELe Doare et al., 2017\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003Eβ-Lactam antibiotics exhibit high sensitivity against GBS and have always been the drugs of choice for the prevention or treatment of GBS infections. Nevertheless, drug sensitivity monitoring data indicate that in recent years, there has been a reduction in GBS sensitivity to β-lactam antibiotics, including penicillin (\u003Ca href=\"#B47\"\u003EDahesh et al., 2008\u003C\u002Fa\u003E; \u003Ca href=\"#B124\"\u003ELongtin et al., 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B138\"\u003EMetcalf et al., 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B234\"\u003EYi et al., 2019\u003C\u002Fa\u003E), and high levels of resistance to secondary antibiotics such as erythromycin and clindamycin (\u003Ca href=\"#B110\"\u003ELamagni et al., 2013\u003C\u002Fa\u003E). Additionally, resistance to other antibiotics, like fluoroquinolones and tetracyclines, is also on the rise (\u003Ca href=\"#B147\"\u003ENagano et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B223\"\u003EWang et al., 2015\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EIntrapartum intravenous administration of penicillin is the preferred IAP treatment protocol due to its efficacy (\u003Ca href=\"#B168\"\u003EPrevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, 2020\u003C\u002Fa\u003E). In case of penicillin allergy, clindamycin is used. Six countries recommend cephalosporins instead of penicillin, and four South American countries and two Asian countries, concerned about the risk of clindamycin-resistant strains in penicillin-allergic patients, suggest adding vancomycin as an alternative (\u003Ca href=\"#B111\"\u003ELe Doare et al., 2017\u003C\u002Fa\u003E). In the 2020 guidelines, ACOG also recommends intravenous penicillin or ampicillin as the first-line treatment. For pregnant women with a low-risk penicillin allergy or uncertain severity of allergy, cefazolin is recommended. For those with a high-risk allergic response, clindamycin treatment can be considered after confirming the GBS strain’s sensitivity to this antibiotic (\u003Ca href=\"#B168\"\u003EPrevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h6-2\" name=\"h6-2\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E5.2 Various detection methods for GBS\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EIn the detection of tumors caused by GBS, a combined screening and diagnostic method for GBS infection and gynecological malignancies is usually used (\u003Ca href=\"#B4\"\u003EAchten et al., 2020\u003C\u002Fa\u003E). The doctor will ask the patient if there are any symptoms of infection or any previous infection records. Physical examinations may include vaginal examinations, cervical smears, and endometrial biopsies to check for any abnormal signs. Cervical smears are a commonly used screening method that involves collecting cervical cells and observing them under a microscope to look for abnormal cells or lesions (\u003Ca href=\"#B92\"\u003EKamal, 2022\u003C\u002Fa\u003E). This method can help detect cervical cancer and other early abnormalities. Human papillomavirus (HPV) is closely associated with the development of cervical cancer (\u003Ca href=\"#B199\"\u003ESravani et al., 2023\u003C\u002Fa\u003E). HPV virus screening can detect HPV infections, including high-risk types of the virus (\u003Ca href=\"#B74\"\u003EGavinski and DiNardo, 2023\u003C\u002Fa\u003E). This screening method can help detect infections early and take appropriate further actions. In some cases, specific biomarkers or blood tests can be used to assess the risk or diagnose malignancies. For example, in the screening and diagnosis of endometrial cancer, the levels of CA-125 (\u003Ca href=\"#B165\"\u003EPourmadadi et al., 2023\u003C\u002Fa\u003E) and other related markers in the blood can be measured to assess the level of risk.\u003C\u002Fp\u003E\u003Ca id=\"h6-3\" name=\"h6-3\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E5.3 Microbial therapy\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EThe current administration methods of antibiotics have low cost and wide applicability, making them a better method for preventing GBS infections, especially in countries with low socioeconomic status or limited resources. However, the use of antibiotics still has limitations due to the increased risk of allergic reactions and serious risks to newborns. In this regard, microbiota therapy can serve as an alternative treatment method (\u003Ca href=\"#B146\"\u003ENader-Macías et al., 2021\u003C\u002Fa\u003E). Microbiota therapy has become a hot topic in obstetrics, gynecology, and translational research fields. Some studies have reported on the treatment of gut microbiota, such as fecal microbiota transplantation (FMT) (\u003Ca href=\"#B39\"\u003ECheng and Fischer, 2023\u003C\u002Fa\u003E), for cancer treatment. In addition, a research report has shown that the composition of gut microbiota can regulate immune response mechanisms (\u003Ca href=\"#B53\"\u003Ede Vos et al., 2022\u003C\u002Fa\u003E), such as anti-tumor activity, thereby producing interactions between microbiota and tumors. This microbiota regulation mechanism may be direct, but its specific downstream pathways still need to be elucidated. For general microbiota therapy, known biomarkers are used as diagnostic tools to screen and monitor patients. Microbiota-based treatment methods are used to treat various diseases and are applied in different ways (\u003Ca href=\"#B65\"\u003EElinav et al., 2019\u003C\u002Fa\u003E), including dietary interventions, probiotics, prebiotics, postbiotics, bacteriophage therapy, and fecal microbiota transplantation. Each method has its advantages and disadvantages. Probiotics are considered relatively safe (\u003Ca href=\"#B71\"\u003EFugaban et al., 2021\u003C\u002Fa\u003E). However, they do not target specific diseases and only provide a temporary therapeutic response. In addition, the effectiveness of probiotic therapy depends on specific microbial colonies and the gut microenvironment (\u003Ca href=\"#B240\"\u003EZhao et al., 2023\u003C\u002Fa\u003E). Bacteriophage therapy is a highly specific targeted treatment method (\u003Ca href=\"#B44\"\u003ECold et al., 2020\u003C\u002Fa\u003E). However, an important limitation of bacteriophage therapy is its narrow host range, where a bacteriophage can only kill certain strains of the same bacteria species and cannot kill multiple strains or different bacteria species (\u003Ca href=\"#B15\"\u003EAzam and Tanji, 2019\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EThese different microbiota-based treatment methods can also be applied as new approaches to treat patients with GBS infection in the vaginal microbiota. As mentioned earlier, poor vaginal microbiota is closely associated with gynecologic malignancies and adverse obstetric outcomes, and adjusting the vaginal microbiota may potentially alter the incidence of GBS infection in pregnant women. Microbiota-based treatment methods can be similar to those used for the gut microbiota. Probiotics can be used to rebalance the vaginal flora, mainly by increasing the number of \u003Cem\u003Elactobacilli\u003C\u002Fem\u003E. Synbiotics, which combine probiotics and prebiotics, aim to overcome the limitations of probiotics, specifically their dependence on \u003Cem\u003Elactobacilli\u003C\u002Fem\u003E (\u003Ca href=\"#B35\"\u003ECalder et al., 2022\u003C\u002Fa\u003E). However, symbiosis may require a specific environment. Bacteriophages bind to specific receptors on bacterial cell walls and deliver engineered therapeutic materials into host cells, resulting in promising effects. Biofilm disruptors are another treatment option (\u003Ca href=\"#B174\"\u003EReza et al., 2019\u003C\u002Fa\u003E). Polymicrobial infections produce biofilms on the vaginal epithelium and generate short-chain fatty acids, ultimately increasing the vaginal environment’s pH and leading to vaginal inflammation. A report has indicated that using antibiotics alone can reduce microbial diversity and restore populations of \u003Cem\u003Elactobacilli\u003C\u002Fem\u003E but cannot completely destroy biofilms (\u003Ca href=\"#B149\"\u003ENitzan et al., 2016\u003C\u002Fa\u003E). Therefore, antibiotic therapy combined with biofilm disruptor adjuvants would be a more comprehensive treatment approach.\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003EFinally, vaginal microbiota transplantation is another microbial therapy for treating vaginal diseases (\u003Ca href=\"#B228\"\u003EWei and Chen, 2021\u003C\u002Fa\u003E). In this treatment method, volunteers are recruited and undergo medical evaluations. Their vaginal microbiota is assessed through microscopic evaluations. After screening, the best vaginal microbiota is transplanted into the recipient’s vagina. Vaginal microbiota transplantation significantly alleviates patients’ symptoms and successfully restores the composition of vaginal microbiota, including increased \u003Cem\u003Elactobacillus\u003C\u002Fem\u003E count. However, this relatively new method still remains controversial. Therefore, full supervision should be implemented throughout the screening process to minimize the risk of potential disease transmission, especially those that may lead to antibiotic resistance in microbes.\u003C\u002Fp\u003E\u003Ca id=\"h7\" name=\"h7\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003E6 GBS Vaccine\u003C\u002Fh2\u003E\u003Cp class=\"mb15\"\u003EWhile GBS remains highly sensitive to first-line β-lactam antibiotics, the widespread implementation of IAP comes with an extensive use of antibiotics, which may enhance the resistance of GBS. It can also disrupt the body’s microecology, leading to an imbalance of microbial communities. Moreover, the transfer of resistance genes can result in a greater prevalence of antibiotic-resistant pathogens across humans, animals, and the environment (\u003Ca href=\"#B134\"\u003EMcGee et al., 2021\u003C\u002Fa\u003E). Therefore, the development of alternative interventions to replace intrapartum antibiotic treatment has become an area of keen interest. The research and application of GBS vaccines have emerged as a promising solution. Currently, there are three main types of vaccines under investigation: capsular polysaccharide vaccines, conjugate vaccine, and protein-based vaccines.\u003C\u002Fp\u003E\u003Ca id=\"h7-1\" name=\"h7-1\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E6.1 Preventive vaccination with GBS vaccine\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EIn order to reduce the global incidence and mortality rate of neonatal infections related to GBS, it is crucial to develop a vaccine against GBS (\u003Ca href=\"#B128\"\u003EMadhi et al., 2023\u003C\u002Fa\u003E). It is estimated that vaccinating 70% of pregnant women with a GBS vaccine could prevent nearly 50,000 deaths related to GBS infections and 170,000 cases of preterm birth each year. However, there is currently no licensed vaccine available for preventing GBS. In 2016, the World Health Organization held consultations specifically on the development of maternal immunization vaccines and declared an urgent need for a vaccine to prevent mother-to-child transmission of GBS in order to protect the health and lives of infants worldwide (\u003Ca href=\"#B101\"\u003EKobayashi et al., 2016\u003C\u002Fa\u003E). It also proposed a strategic goal of developing a safe, effective, and affordable GBS vaccine for pregnant women to prevent neonatal deaths, stillbirths, and GBS-related diseases. Currently, two GBS vaccines have entered Phase II or III clinical trials. The first is a multivalent conjugate vaccine aimed at targeting the majority of pathogenic serotypes, while the other is a protein subunit vaccine (\u003Ca href=\"#B62\"\u003EDuke et al., 2021\u003C\u002Fa\u003E). The multivalent conjugate vaccine has the potential to prevent 95% of GBS infections in pregnant women, 99% of stillbirths, and 99% of neonatal GBS infections by targeting the majority of pathogenic serotypes. The protein-based vaccine approach provides broader protection against all GBS serotypes (\u003Ca href=\"#B57\"\u003EDominguez and Randis, 2022\u003C\u002Fa\u003E). Pharmaceutical companies such as Pfizer and MinervaX have been working on developing GBS vaccines. Pfizer recently announced that the U.S. Food and Drug Administration has designated their investigational GBS vaccine (\u003Ca href=\"#B2\"\u003EAbsalon et al., 2022\u003C\u002Fa\u003E), Bacterial GBS 6 (PF-06760805), for prevention of the six most prominent GBS serotypes that account for 98% of GBS disease cases. MinervaX is developing a GBS candidate vaccine based on traditional multivalent conjugate technology and is preparing for Phase III clinical trials (\u003Ca href=\"#B156\"\u003EPawlowski et al., 2022\u003C\u002Fa\u003E). In low- and middle-income countries, the vaccine will greatly improve the occurrence of GBS infectious diseases and make it possible to prevent the majority of GBS-related diseases (\u003Ca href=\"#B169\"\u003EProcter et al., 2023\u003C\u002Fa\u003E). Despite the advantages of GBS vaccines, their limitations include high cost, lack of coverage for all GBS strains, and the possibility of resistance. Therefore, some researchers believe it is important to detect GBS before infection progresses or develops into a severe condition.\u003C\u002Fp\u003E\u003Ca id=\"h7-2\" name=\"h7-2\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E6.2 Capsular polysaccharide vaccines\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003ECapsular polysaccharide (CPS) is one of the virulence factors of GBS, which enables the bacteria to evade the host’s immune response. GBS uses its capsular polysaccharide to inhibit complement deposition and resist phagocytosis by immune cells. Additionally, CPS promotes the formation of biofilms and hampers the binding of antimicrobial peptides and Neutrophil Extracellular Traps (NETs), thereby enhancing the invasive capability of GBS. Based on the antigenic components of GBS capsular polysaccharides, GBS can be classified into ten serotypes: Ia, Ib, II, III, IV, V, VI, VII, VIII, and IX (\u003Ca href=\"#B36\"\u003ECarreras-Abad et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003ECPS vaccines refer to vaccines developed by targeting the highly expressed CPS on the surface of GBS as the antigen and conducting research on CPS-specific antibodies. Currently, the phase I and phase II clinical trials for CPS vaccines have preliminarily confirmed their safety and efficacy. However, the immunogenicity and reactogenicity of CPS vaccines are generally low. Additionally, the IgM produced does not cross the placenta, providing only short-term protection to the fetus and no significant protection to neonates. Moreover, due to considerable structural differences between the CPS of different serotypes and the absence of cross-protective effects, the immunological protection range of monovalent vaccines is limited. Consequently, CPS vaccines have not yet been adopted for clinical use (\u003Ca href=\"#B139\"\u003EMettu et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Ca id=\"h7-3\" name=\"h7-3\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E6.3 Conjugate vaccine\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003EConjugate CPS vaccines aim to enhance immunogenicity through the covalent bonding of GBS’s own capsular polysaccharide with carrier proteins, thereby inducing the production of IgG and the memory of T-cells and B-cells (\u003Ca href=\"#B3\"\u003EAceil et al., 2022\u003C\u002Fa\u003E). The early development of CPS conjugate vaccines involved the covalent attachment of tetanus toxoid (TT) to type III CPS to form a monovalent conjugate vaccine (III-TT). Currently, monovalent, bivalent, and trivalent vaccines targeting GBS serotypes Ia, Ib, II, III, and V have been researched in non-pregnant and pregnant women, demonstrating safety and efficacy in phase I and phase II clinical trials (\u003Ca href=\"#B22\"\u003EBaker et al., 2003\u003C\u002Fa\u003E; \u003Ca href=\"#B129\"\u003EMadhi et al., 2016\u003C\u002Fa\u003E). In 2021, Absalon et al. evaluated the safety and immunogenicity of a novel hexavalent vaccine (GBS6) for serotypes Ia, Ib, II, III, IV, and V, which proved to be safe and effective in healthy, non-pregnant adults through phase I and II clinical trials (\u003Ca href=\"#B1\"\u003EAbsalon et al., 2021\u003C\u002Fa\u003E). Future research will further investigate the vaccine’s effects in varying populations and its capacity to transfer antibodies to newborns.\u003C\u002Fp\u003E\u003Ca id=\"h7-4\" name=\"h7-4\"\u003E\u003C\u002Fa\u003E\u003Ch3 class=\"pt0\"\u003E6.4 Protein-based vaccine\u003C\u002Fh3\u003E\u003Cp class=\"mb0\"\u003ECPS vaccines offer protection limited to specific serotypes, presenting significant constraints. On the other hand, protein vaccines are created from proteins common to all serotypes of CPS, providing a broader protective range. Moreover, protein vaccines may prevent serotype replacement or switching problems that might arise with the use of CPS vaccines (\u003Ca href=\"#B57\"\u003EDominguez and Randis, 2022\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\u003Cp class=\"mb0\"\u003ECurrent research has been focusing extensively on protein vaccines made by fusing the N-terminus of GBS surface Alpha C (αC) protein and Rib protein to produce a vaccine (GBS-NN). In 2021, Fischer et al. published the results of a phase I clinical trial for the GBS-NN vaccine, confirming its safety and immunogenicity in healthy women (\u003Ca href=\"#B70\"\u003EFischer et al., 2021\u003C\u002Fa\u003E). Building upon this in 2022, Pawlowski et al. demonstrated that the vaccine consisting of αC-N and Rib-N induced strong and persistent IgG and IgA responses against the homotypic αC-N (\u003Ca href=\"#B156\"\u003EPawlowski et al., 2022\u003C\u002Fa\u003E). It also elicited variable immune responses to heterotypic Alpha-like proteins (Alp1∼3). The study further confirmed that the IgG elicited by the GBS-NN vaccine was predominantly IgG1, which is an effective antibody subtype transferred to the fetus during the later stages of pregnancy through the placenta. Researchers are now developing additional GBS protein vaccines based on the different structural domains of the N-terminus of Alpha-like proteins.\u003C\u002Fp\u003E\u003Ca id=\"h8\" name=\"h8\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003E7 Conclusion\u003C\u002Fh2\u003E\u003Cp class=\"mb15\"\u003EThe presence of GBS implies that infants and newborns may experience severe clinical outcomes. However, for elderly individuals with GBS infection, the lethality of the infection itself is relatively low. Considering the potential role of GBS in the development of gynecologic malignancies, although GBS may not be the sole major cause, it is a key factor leading to adverse outcomes. GBS may play a crucial role in the development of severe clinical symptoms, but its detection becomes challenging due to interference from many other factors. GBS can even act as a powerful dormant pathogen, manipulating and regulating other bacteria, thereby resulting in serious clinical consequences. Therefore, it is crucial to study the interaction and impact mechanisms between GBS and bacteria and the host environment. More research is needed in the future to examine the pathogenesis and mechanisms of action of GBS, such as high-throughput sequencing technologies like RNA-seq, metagenomics, and metabolomics. In addition, professional discussions and collaborative research should be encouraged to develop better management strategies for GBS, aiming to control and reduce the maternal and infant mortality and morbidity caused by GBS infections. This comprehensive approach not only allows for better understanding of GBS but also contributes to the health of pregnant women and newborns nationwide and even globally.\u003C\u002Fp\u003E\u003Ca id=\"h9\" name=\"h9\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EAuthor contributions\u003C\u002Fh2\u003E\u003Cp class=\"mb0\"\u003EYL: Writing–original draft. HA: Writing–review and editing.\u003C\u002Fp\u003E\u003Ca id=\"h10\" name=\"h10\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EFunding\u003C\u002Fh2\u003E\u003Cp class=\"mb0\"\u003EThe author(s) declare that financial support was received for the research, authorship, and\u002For publication of this article. This study was provided financial support from the following projects: Liaoning Province Science and Technology Program Joint Program Fund Project (grant no. 2023-MSLH-059), Postgraduate Education Teaching Research and Reform Project of Jinzhou Medical University (grant no. YJ2023-018), Jie Bang Gua Shuai Project of Science & Technology Department of Liaoning Province (grant no. 2022JH1\u002F10800070), Basic Scientific Research Project of Colleges and Universities of Education Department of Liaoning Province (Key project) (grant no. 1821240403), 2023 Jinzhou Medical University first-class discipline construction project.\u003C\u002Fp\u003E\u003Ca id=\"h11\" name=\"h11\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EConflict of interest\u003C\u002Fh2\u003E\u003Cp class=\"mb0\"\u003EThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.\u003C\u002Fp\u003E\u003Ca id=\"h12\" name=\"h12\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EPublisher’s note\u003C\u002Fh2\u003E\u003Cp class=\"mb15\"\u003EAll claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.\u003C\u002Fp\u003E\u003Ca id=\"h13\" name=\"h13\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EReferences\u003C\u002Fh2\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B1\" id=\"B1\"\u003E\u003C\u002Fa\u003EAbsalon, J., Segall, N., Block, S. L., Center, K. J., Scully, I. L., Giardina, P. C., et al. (2021). Safety and immunogenicity of a novel hexavalent group B streptococcus conjugate vaccine in healthy, non-pregnant adults: a phase 1\u002F2, randomised, placebo-controlled, observer-blinded, dose-escalation trial. \u003Cem\u003ELancet Infect. Dis.\u003C\u002Fem\u003E 21 (2), 263–274. doi:10.1016\u002FS1473-3099(20)30478-3\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32891191\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS1473-3099(20)30478-3\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+a+novel+hexavalent+group+B+streptococcus+conjugate+vaccine+in+healthy,+non-pregnant+adults:+a+phase+1\u002F2,+randomised,+placebo-controlled,+observer-blinded,+dose-escalation+trial&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B2\" id=\"B2\"\u003E\u003C\u002Fa\u003EAbsalon, J., Simon, R., Radley, D., Giardina, P. C., Koury, K., Jansen, K. U., et al. (2022). Advances towards licensure of a maternal vaccine for the prevention of invasive group B streptococcus disease in infants: a discussion of different approaches. \u003Cem\u003EHum. vaccines Immunother.\u003C\u002Fem\u003E 18 (1), 2037350. doi:10.1080\u002F21645515.2022.2037350\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F21645515.2022.2037350\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Advances+towards+licensure+of+a+maternal+vaccine+for+the+prevention+of+invasive+group+B+streptococcus+disease+in+infants:+a+discussion+of+different+approaches&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B3\" id=\"B3\"\u003E\u003C\u002Fa\u003EAceil, J., Paschall, A. V., Knoot, C. J., Robinson, L. S., Scott, N. E., Feldman, M. F., et al. (2022). Immunogenicity and protective efficacy of a prototype pneumococcal bioconjugate vaccine. \u003Cem\u003EVaccine\u003C\u002Fem\u003E 40 (42), 6107–6113. doi:10.1016\u002Fj.vaccine.2022.09.018\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36115800\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.vaccine.2022.09.018\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Immunogenicity+and+protective+efficacy+of+a+prototype+pneumococcal+bioconjugate+vaccine&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B4\" id=\"B4\"\u003E\u003C\u002Fa\u003EAchten, N. B., Dorigo-Zetsma, J. W., van Rossum, A. M. C., Oostenbrink, R., and Plötz, F. B. (2020). Risk-based maternal group B Streptococcus screening strategy is compatible with the implementation of neonatal early-onset sepsis calculator. \u003Cem\u003EClin. Exp. Pediatr.\u003C\u002Fem\u003E 63 (10), 406–410. doi:10.3345\u002Fcep.2020.00094\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32299178\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3345\u002Fcep.2020.00094\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Risk-based+maternal+group+B+Streptococcus+screening+strategy+is+compatible+with+the+implementation+of+neonatal+early-onset+sepsis+calculator&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B5\" id=\"B5\"\u003E\u003C\u002Fa\u003EACOG committee opinion (1996). ACOG committee opinion. Prevention of early-onset group B streptococcal disease in newborns. Number 173--June 1996. Committee on Obstetric Practice. American College of Obstetrics and Gynecologists. \u003Cem\u003EInt. J. Gynaecol. obstetrics official organ Int. Fed. Gynaecol. Obstetrics\u003C\u002Fem\u003E 54 (2), 197–205. doi:10.1016\u002FS0020-7292(96)90083-1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F9236325\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS0020-7292(96)90083-1\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=ACOG+committee+opinion.+Prevention+of+early-onset+group+B+streptococcal+disease+in+newborns.+Number+173--June+1996.+Committee+on+Obstetric+Practice.+American+College+of+Obstetrics+and+Gynecologists&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B6\" id=\"B6\"\u003E\u003C\u002Fa\u003EAkbari, M. S., Keogh, R. A., Radin, J. N., Sanchez-Rosario, Y., Johnson, M. D. L., Horswill, A. R., et al. (2023). The impact of nutritional immunity on Group B streptococcal pathogenesis during wound infection. \u003Cem\u003EmBio\u003C\u002Fem\u003E 14, e0030423. doi:10.1128\u002Fmbio.00304-23\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F37358277\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fmbio.00304-23\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=The+impact+of+nutritional+immunity+on+Group+B+streptococcal+pathogenesis+during+wound+infection&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B7\" id=\"B7\"\u003E\u003C\u002Fa\u003EAkdoğan Kittana, F. N., Mustak, I. B., Hascelik, G., Saricam, S., Gurler, N., and Diker, K. S. (2019). Erythromycin-resistant Streptococcus pneumoniae: phenotypes, genotypes, transposons and pneumococcal vaccine coverage rates. \u003Cem\u003EJ. Med. Microbiol.\u003C\u002Fem\u003E 68 (6), 874–881. doi:10.1099\u002Fjmm.0.000995\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31116101\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1099\u002Fjmm.0.000995\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Erythromycin-resistant+Streptococcus+pneumoniae:+phenotypes,+genotypes,+transposons+and+pneumococcal+vaccine+coverage+rates&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B8\" id=\"B8\"\u003E\u003C\u002Fa\u003EAli, M., Alamin, M. A., Ali G, A., Alzubaidi, K., Ali, B., Ismail, A., et al. (2022b). Microbiological and clinical characteristics of invasive Group B Streptococcal blood stream infections in children and adults from Qatar. \u003Cem\u003EBMC Infect. Dis.\u003C\u002Fem\u003E 22 (1), 881. doi:10.1186\u002Fs12879-022-07801-9\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36434535\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12879-022-07801-9\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Microbiological+and+clinical+characteristics+of+invasive+Group+B+Streptococcal+blood+stream+infections+in+children+and+adults+from+Qatar&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B9\" id=\"B9\"\u003E\u003C\u002Fa\u003EAli, M., Alamin, M. A., G, A. A., Alzubaidi, K., Ali, B., Ismail, A., et al. (2022a). Microbiological and clinical characteristics of invasive Group B Streptococcal blood stream infections in children and adults from Qatar. \u003Cem\u003EBMC Infect. Dis.\u003C\u002Fem\u003E 22 (1), 881. doi:10.1186\u002Fs12879-022-07801-9\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36434535\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12879-022-07801-9\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Microbiological+and+clinical+characteristics+of+invasive+Group+B+Streptococcal+blood+stream+infections+in+children+and+adults+from+Qatar&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B10\" id=\"B10\"\u003E\u003C\u002Fa\u003EAli, M. M., Woldeamanuel, Y., Asrat, D., Fenta, D. A., Beall, B., Schrag, S., et al. (2020). Features of Streptococcus agalactiae strains recovered from pregnant women and newborns attending different hospitals in Ethiopia. \u003Cem\u003EBMC Infect. Dis.\u003C\u002Fem\u003E 20 (1), 848. doi:10.1186\u002Fs12879-020-05581-8\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33198686\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12879-020-05581-8\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Features+of+Streptococcus+agalactiae+strains+recovered+from+pregnant+women+and+newborns+attending+different+hospitals+in+Ethiopia&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B11\" id=\"B11\"\u003E\u003C\u002Fa\u003EAlizzi, M., Rathnayake, R., Sivabalan, P., Emeto, T. I., and Norton, R. (2022). Group B streptococcal bacteraemia: changing trends in a tropical region of Australia. \u003Cem\u003EIntern. Med. J.\u003C\u002Fem\u003E 52 (5), 800–807. doi:10.1111\u002Fimj.15164\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33346947\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fimj.15164\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+bacteraemia:+changing+trends+in+a+tropical+region+of+Australia&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B12\" id=\"B12\"\u003E\u003C\u002Fa\u003EAntonello, V. S., Dallé, J., Dall'Oglio, E., Ramos, S., Bassols, F., and Jimenez, M. F. (2020). Alternative antimicrobials for prophylaxis of the Group B Streptococcus maternal-fetal disease. \u003Cem\u003EJ. Infect. Dev. Ctries.\u003C\u002Fem\u003E 14 (6), 664–668. doi:10.3855\u002Fjidc.12180\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32683359\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3855\u002Fjidc.12180\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Alternative+antimicrobials+for+prophylaxis+of+the+Group+B+Streptococcus+maternal-fetal+disease&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B13\" id=\"B13\"\u003E\u003C\u002Fa\u003EArana, D. M., Rojo-Bezares, B., Torres, C., and Alós, J. I. (2014). First clinical isolate in Europe of clindamycin-resistant group B Streptococcus mediated by the lnu(B) gene. \u003Cem\u003ERev. espanola Quimioter. publicacion Of. Soc. Espanola Quimioter.\u003C\u002Fem\u003E 27 (2), 106–109.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24940891\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=First+clinical+isolate+in+Europe+of+clindamycin-resistant+group+B+Streptococcus+mediated+by+the+lnu(B)+gene&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B14\" id=\"B14\"\u003E\u003C\u002Fa\u003EArmistead, B., Oler, E., Adams Waldorf, K., and Rajagopal, L. (2019). The double life of group B Streptococcus: asymptomatic colonizer and potent pathogen. \u003Cem\u003EJ. Mol. Biol.\u003C\u002Fem\u003E 431 (16), 2914–2931. doi:10.1016\u002Fj.jmb.2019.01.035\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30711542\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.jmb.2019.01.035\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=The+double+life+of+group+B+Streptococcus:+asymptomatic+colonizer+and+potent+pathogen&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B15\" id=\"B15\"\u003E\u003C\u002Fa\u003EAzam, A. H., and Tanji, Y. (2019). Peculiarities of \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E phages and their possible application in phage therapy. \u003Cem\u003EAppl. Microbiol. Biotechnol.\u003C\u002Fem\u003E 103 (11), 4279–4289. doi:10.1007\u002Fs00253-019-09810-2\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30997551\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002Fs00253-019-09810-2\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Peculiarities+of+Staphylococcus+aureus+phages+and+their+possible+application+in+phage+therapy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B16\" id=\"B16\"\u003E\u003C\u002Fa\u003EBacciaglia, A., Brenciani, A., Varaldo, P. E., and Giovanetti, E. (2007). SmaI typeability and tetracycline susceptibility and resistance in \u003Cem\u003EStreptococcus pyogenes\u003C\u002Fem\u003E isolates with efflux-mediated erythromycin resistance. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 51 (8), 3042–3043. doi:10.1128\u002FAAC.00249-07\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F17562795\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.00249-07\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=SmaI+typeability+and+tetracycline+susceptibility+and+resistance+in+Streptococcus+pyogenes+isolates+with+efflux-mediated+erythromycin+resistance&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B17\" id=\"B17\"\u003E\u003C\u002Fa\u003EBack, E. E., O'Grady, E. J., and Back, J. D. (2012). High rates of perinatal group B Streptococcus clindamycin and erythromycin resistance in an upstate New York hospital. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 56 (2), 739–742. doi:10.1128\u002FAAC.05794-11\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22143529\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.05794-11\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=High+rates+of+perinatal+group+B+Streptococcus+clindamycin+and+erythromycin+resistance+in+an+upstate+New+York+hospital&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B18\" id=\"B18\"\u003E\u003C\u002Fa\u003EBae, H. G., Hong, J., Kim, Y. J., Lee, K. R., Lee, K., Choi, S. J., et al. (2022). A retrospective national study on colonization rate and antimicrobial susceptibility of Streptococcus agalactiae in pregnant Korean women, 2018-2020. \u003Cem\u003EYonsei Med. J.\u003C\u002Fem\u003E 63 (8), 717–723. doi:10.3349\u002Fymj.2022.63.8.717\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35914753\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3349\u002Fymj.2022.63.8.717\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=A+retrospective+national+study+on+colonization+rate+and+antimicrobial+susceptibility+of+Streptococcus+agalactiae+in+pregnant+Korean+women,+2018-2020&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B19\" id=\"B19\"\u003E\u003C\u002Fa\u003EBaker, C. J., Paoletti, L. C., Rench, M. A., Guttormsen, H.-K., Carey, V. J., Hickman, M. E., et al. (2000). Use of capsular polysaccharide—tetanus toxoid conjugate vaccine for type II group B Streptococcus in healthy women. \u003Cem\u003EJ. Infect. Dis.\u003C\u002Fem\u003E 182 (4), 1129–1138. doi:10.1086\u002F315839\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F10979909\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1086\u002F315839\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Use+of+capsular+polysaccharide芒聙聰tetanus+toxoid+conjugate+vaccine+for+type+II+group+B+Streptococcus+in+healthy+women&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B20\" id=\"B20\"\u003E\u003C\u002Fa\u003EBaker, C. J., Paoletti, L. C., Rench, M. A., Guttormsen, H. K., Edwards, M. S., and Kasper, D. L. (2004). Immune response of healthy women to 2 different group B streptococcal type V capsular polysaccharide-protein conjugate vaccines. \u003Cem\u003EJ. Infect. Dis.\u003C\u002Fem\u003E 189 (6), 1103–1112. doi:10.1086\u002F382193\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F14999615\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1086\u002F382193\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Immune+response+of+healthy+women+to+2+different+group+B+streptococcal+type+V+capsular+polysaccharide-protein+conjugate+vaccines&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B21\" id=\"B21\"\u003E\u003C\u002Fa\u003EBaker, C. J., Paoletti, L. C., Wessels, M. R., Guttormsen, H.-K., Rench, M. A., Hickman, M. E., et al. (1999). Safety and immunogenicity of capsular polysaccharide—tetanus toxoid conjugate vaccines for group B streptococcal types Ia and Ib. \u003Cem\u003EJ. Infect. Dis.\u003C\u002Fem\u003E 179 (1), 142–150. doi:10.1086\u002F314574\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F9841833\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1086\u002F314574\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+capsular+polysaccharide芒聙聰tetanus+toxoid+conjugate+vaccines+for+group+B+streptococcal+types+Ia+and+Ib&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B22\" id=\"B22\"\u003E\u003C\u002Fa\u003EBaker, C. J., Rench, M. A., and McInnes, P. (2003). Immunization of pregnant women with group B streptococcal type III capsular polysaccharide-tetanus toxoid conjugate vaccine. \u003Cem\u003EVaccine\u003C\u002Fem\u003E 21 (24), 3468–3472. doi:10.1016\u002Fs0264-410x(03)00353-0\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F12850362\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fs0264-410x(03)00353-0\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Immunization+of+pregnant+women+with+group+B+streptococcal+type+III+capsular+polysaccharide-tetanus+toxoid+conjugate+vaccine&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B23\" id=\"B23\"\u003E\u003C\u002Fa\u003EBalasubramanian, N., Pounpandi, P., Varatharaju, G., Shanmugaiah, V., Balakrishnan, K., and Thirunarayan, M. A. (2023). Distribution of virulence genes and biofilm characterization of human isolates of Streptococcus agalactiae: a pilot study. \u003Cem\u003EColloids surfaces B, Biointerfaces\u003C\u002Fem\u003E 223, 113151. doi:10.1016\u002Fj.colsurfb.2023.113151\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36738701\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.colsurfb.2023.113151\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Distribution+of+virulence+genes+and+biofilm+characterization+of+human+isolates+of+Streptococcus+agalactiae:+a+pilot+study&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B24\" id=\"B24\"\u003E\u003C\u002Fa\u003EBarro, C., Salloum, M., Lim, S., Delputte, P., and Le Doare, K. (2023). Simultaneous carriage of multiple serotypes of Group B Streptococcus: systematic review and meta-analysis. \u003Cem\u003EVaccine\u003C\u002Fem\u003E 41 (1), 15–22. doi:10.1016\u002Fj.vaccine.2022.11.024\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36435703\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.vaccine.2022.11.024\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Simultaneous+carriage+of+multiple+serotypes+of+Group+B+Streptococcus:+systematic+review+and+meta-analysis&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B25\" id=\"B25\"\u003E\u003C\u002Fa\u003EBarros, R. R. (2021). Antimicrobial resistance among beta-hemolytic Streptococcus in Brazil: an overview. \u003Cem\u003EAntibiotics\u003C\u002Fem\u003E 10 (8), 973. doi:10.3390\u002Fantibiotics10080973\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34439023\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fantibiotics10080973\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+resistance+among+beta-hemolytic+Streptococcus+in+Brazil:+an+overview&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B26\" id=\"B26\"\u003E\u003C\u002Fa\u003EBauters, E., Jonckheere, S., Dehaene, I., Vandecandelaere, P., Argudín, M. A., and Page, G. (2022). Prevalence and clinical relevance of colonization with methicillin-resistant \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E in the obstetric population. \u003Cem\u003EJ. maternal-fetal neonatal Med. official J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet\u003C\u002Fem\u003E 35 (25), 8186–8191. doi:10.1080\u002F14767058.2021.1966411\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F14767058.2021.1966411\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence+and+clinical+relevance+of+colonization+with+methicillin-resistant+Staphylococcus+aureus+in+the+obstetric+population&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B27\" id=\"B27\"\u003E\u003C\u002Fa\u003EBebien, M., Hensler, M. E., Davanture, S., Hsu, L. C., Karin, M., Park, J. M., et al. (2012). The pore-forming toxin β hemolysin\u002Fcytolysin triggers p38 MAPK-dependent IL-10 production in macrophages and inhibits innate immunity. \u003Cem\u003EPLoS Pathog.\u003C\u002Fem\u003E 8 (7), e1002812. doi:10.1371\u002Fjournal.ppat.1002812\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22829768\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1371\u002Fjournal.ppat.1002812\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=The+pore-forming+toxin+脦虏+hemolysin\u002Fcytolysin+triggers+p38+MAPK-dependent+IL-10+production+in+macrophages+and+inhibits+innate+immunity&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B28\" id=\"B28\"\u003E\u003C\u002Fa\u003EBeres, S. B., Zhu, L., Pruitt, L., Olsen, R. J., Faili, A., Kayal, S., et al. (2022). Integrative reverse genetic analysis identifies polymorphisms contributing to decreased antimicrobial agent susceptibility in Streptococcus pyogenes. \u003Cem\u003EmBio\u003C\u002Fem\u003E 13 (1), e0361821. doi:10.1128\u002Fmbio.03618-21\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35038921\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fmbio.03618-21\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Integrative+reverse+genetic+analysis+identifies+polymorphisms+contributing+to+decreased+antimicrobial+agent+susceptibility+in+Streptococcus+pyogenes&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B29\" id=\"B29\"\u003E\u003C\u002Fa\u003EBianchi-Jassir, F., Paul, P., To, K. N., Carreras-Abad, C., Seale, A. C., Jauneikaite, E., et al. (2020). Systematic review of Group B Streptococcal capsular types, sequence types and surface proteins as potential vaccine candidates. \u003Cem\u003EVaccine\u003C\u002Fem\u003E 38 (43), 6682–6694. doi:10.1016\u002Fj.vaccine.2020.08.052\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32888741\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.vaccine.2020.08.052\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Systematic+review+of+Group+B+Streptococcal+capsular+types,+sequence+types+and+surface+proteins+as+potential+vaccine+candidates&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B30\" id=\"B30\"\u003E\u003C\u002Fa\u003EBnfaga, A. A., Lee, K. W., Than, L. T. L., and Amin-Nordin, S. (2023). Antimicrobial and immunoregulatory effects of Lactobacillus delbrueckii 45E against genitourinary pathogens. \u003Cem\u003EJ. Biomed. Sci.\u003C\u002Fem\u003E 30 (1), 19. doi:10.1186\u002Fs12929-023-00913-7\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36959635\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12929-023-00913-7\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+and+immunoregulatory+effects+of+Lactobacillus+delbrueckii+45E+against+genitourinary+pathogens&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B31\" id=\"B31\"\u003E\u003C\u002Fa\u003EBozdogan, B., Berrezouga, L., Kuo, M. S., Yurek, D. A., Farley, K. A., Stockman, B. J., et al. (1999). A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 43 (4), 925–929. doi:10.1128\u002FAAC.43.4.925\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F10103201\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.43.4.925\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=A+new+resistance+gene,+linB,+conferring+resistance+to+lincosamides+by+nucleotidylation+in+Enterococcus+faecium+HM1025&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B32\" id=\"B32\"\u003E\u003C\u002Fa\u003EBurcham, L. R., Spencer, B. L., Keeler, L. R., Runft, D. L., Patras, K. A., Neely, M. N., et al. (2019). Determinants of Group B streptococcal virulence potential amongst vaginal clinical isolates from pregnant women. \u003Cem\u003EPloS one\u003C\u002Fem\u003E 14 (12), e0226699. doi:10.1371\u002Fjournal.pone.0226699\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31851721\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1371\u002Fjournal.pone.0226699\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Determinants+of+Group+B+streptococcal+virulence+potential+amongst+vaginal+clinical+isolates+from+pregnant+women&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B33\" id=\"B33\"\u003E\u003C\u002Fa\u003EBuscetta, M., Papasergi, S., Firon, A., Pietrocola, G., Biondo, C., Mancuso, G., et al. (2014). FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions. \u003Cem\u003EJ. Biol. Chem.\u003C\u002Fem\u003E 289 (30), 21003–21015. doi:10.1074\u002Fjbc.M114.553073\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24904056\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1074\u002Fjbc.M114.553073\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=FbsC,+a+novel+fibrinogen-binding+protein,+promotes+Streptococcus+agalactiae-host+cell+interactions&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B34\" id=\"B34\"\u003E\u003C\u002Fa\u003EBuurman, E. T., Timofeyeva, Y., Gu, J., Kim, J. H., Kodali, S., Liu, Y., et al. (2019). A novel hexavalent capsular polysaccharide conjugate vaccine (GBS6) for the prevention of neonatal group B streptococcal infections by maternal immunization. \u003Cem\u003EJ. Infect. Dis.\u003C\u002Fem\u003E 220 (1), 105–115. doi:10.1093\u002Finfdis\u002Fjiz062\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30778554\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Finfdis\u002Fjiz062\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=A+novel+hexavalent+capsular+polysaccharide+conjugate+vaccine+(GBS6)+for+the+prevention+of+neonatal+group+B+streptococcal+infections+by+maternal+immunization&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B35\" id=\"B35\"\u003E\u003C\u002Fa\u003ECalder, P. C., Ortega, E. F., Meydani, S. N., Adkins, Y., Stephensen, C. B., Thompson, B., et al. (2022). Nutrition, immunosenescence, and infectious disease: an overview of the scientific evidence on micronutrients and on modulation of the gut microbiota. \u003Cem\u003EAdv. Nutr. (Bethesda, Md)\u003C\u002Fem\u003E 13 (5), S1–s26. doi:10.1093\u002Fadvances\u002Fnmac052\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Fadvances\u002Fnmac052\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Nutrition,+immunosenescence,+and+infectious+disease:+an+overview+of+the+scientific+evidence+on+micronutrients+and+on+modulation+of+the+gut+microbiota&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B36\" id=\"B36\"\u003E\u003C\u002Fa\u003ECarreras-Abad, C., Ramkhelawon, L., Heath, P. T., and Le Doare, K. (2020). A vaccine against group B Streptococcus: recent advances. \u003Cem\u003EInfect. drug Resist.\u003C\u002Fem\u003E 13, 1263–1272. doi:10.2147\u002FIDR.S203454\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32425562\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.2147\u002FIDR.S203454\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=A+vaccine+against+group+B+Streptococcus:+recent+advances&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B37\" id=\"B37\"\u003E\u003C\u002Fa\u003EChan, J. M., Gori, A., Nobbs, A. H., and Heyderman, R. S. (2020). Streptococcal serine-rich repeat proteins in colonization and disease. \u003Cem\u003EFront. Microbiol.\u003C\u002Fem\u003E 11, 593356. doi:10.3389\u002Ffmicb.2020.593356\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33193266\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffmicb.2020.593356\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Streptococcal+serine-rich+repeat+proteins+in+colonization+and+disease&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B38\" id=\"B38\"\u003E\u003C\u002Fa\u003EChattopadhyay, D., Carey, A. J., Caliot, E., Webb, R. I., Layton, J. R., Wang, Y., et al. (2011). Phylogenetic lineage and pilus protein Spb1\u002FSAN1518 affect opsonin-independent phagocytosis and intracellular survival of Group B Streptococcus. \u003Cem\u003EMicrobes Infect.\u003C\u002Fem\u003E 13 (4), 369–382. doi:10.1016\u002Fj.micinf.2010.12.009\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21238599\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.micinf.2010.12.009\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Phylogenetic+lineage+and+pilus+protein+Spb1\u002FSAN1518+affect+opsonin-independent+phagocytosis+and+intracellular+survival+of+Group+B+Streptococcus&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B39\" id=\"B39\"\u003E\u003C\u002Fa\u003ECheng, Y. W., and Fischer, M. (2023). Fecal microbiota transplantation. \u003Cem\u003EClin. colon rectal Surg.\u003C\u002Fem\u003E 36 (2), 151–156. doi:10.1055\u002Fs-0043-1760865\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36844708\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1055\u002Fs-0043-1760865\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Fecal+microbiota+transplantation&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B40\" id=\"B40\"\u003E\u003C\u002Fa\u003EChoi, E. K., Kim, H. J., Je, B. K., Choi, B. M., and Kim, S. D. (2023). Morbidity and mortality trends in preterm infants of <32 Weeks gestational age with severe intraventricular hemorrhage: a 14-year single-center retrospective study. \u003Cem\u003EJ. Korean Neurosurg. Soc.\u003C\u002Fem\u003E 66 (3), 316–323. doi:10.3340\u002Fjkns.2022.0264\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36891659\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3340\u002Fjkns.2022.0264\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Morbidity+and+mortality+trends+in+preterm+infants+of+%3C32+Weeks+gestational+age+with+severe+intraventricular+hemorrhage:+a+14-year+single-center+retrospective+study&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B41\" id=\"B41\"\u003E\u003C\u002Fa\u003EChoi, S. J., Kang, J., and Uh, Y. (2021). Recent epidemiological changes in group B Streptococcus among pregnant Korean women. \u003Cem\u003EAnn. laboratory Med.\u003C\u002Fem\u003E 41 (4), 380–385. doi:10.3343\u002Falm.2021.41.4.380\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3343\u002Falm.2021.41.4.380\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Recent+epidemiological+changes+in+group+B+Streptococcus+among+pregnant+Korean+women&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B42\" id=\"B42\"\u003E\u003C\u002Fa\u003EChoi, Y., Han, H. S., Chong, G. O., Le, T. M., Nguyen, H. D. T., Lee, O. E., et al. (2022). Updates on group B Streptococcus infection in the field of obstetrics and gynecology. \u003Cem\u003EMicroorganisms\u003C\u002Fem\u003E 10 (12), 2398. doi:10.3390\u002Fmicroorganisms10122398\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36557651\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fmicroorganisms10122398\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Updates+on+group+B+Streptococcus+infection+in+the+field+of+obstetrics+and+gynecology&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B43\" id=\"B43\"\u003E\u003C\u002Fa\u003EChu, Y. W., Tse, C., Tsang, G. K., So, D. K., Fung, J. T., and Lo, J. Y. (2007). Invasive group B Streptococcus isolates showing reduced susceptibility to penicillin in Hong Kong. \u003Cem\u003EJ. Antimicrob. Chemother.\u003C\u002Fem\u003E 60 (6), 1407–1409. doi:10.1093\u002Fjac\u002Fdkm390\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F17959733\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Fjac\u002Fdkm390\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Invasive+group+B+Streptococcus+isolates+showing+reduced+susceptibility+to+penicillin+in+Hong+Kong&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B44\" id=\"B44\"\u003E\u003C\u002Fa\u003ECold, F., Olsen, N. S., Djurhuus, A., and Hansen, L. H. (2020). Bacteriophage therapy. \u003Cem\u003EUgeskrift laeger\u003C\u002Fem\u003E 182 (27), V01200041. [Bacteriophage therapy].\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32594993\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Bacteriophage+therapy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B45\" id=\"B45\"\u003E\u003C\u002Fa\u003EColeman, M., Armistead, B., Orvis, A., Quach, P., Brokaw, A., Gendrin, C., et al. (2021). Hyaluronidase impairs neutrophil function and promotes group B Streptococcus invasion and preterm labor in nonhuman primates. \u003Cem\u003EmBio\u003C\u002Fem\u003E 12 (1), e03115. doi:10.1128\u002FmBio.03115-20\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33402537\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FmBio.03115-20\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Hyaluronidase+impairs+neutrophil+function+and+promotes+group+B+Streptococcus+invasion+and+preterm+labor+in+nonhuman+primates&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B46\" id=\"B46\"\u003E\u003C\u002Fa\u003EDad, N., Buhmaid, S., and Mulik, V. (2021). Vaccination in pregnancy - the when, what and how? \u003Cem\u003EEur. J. obstetrics, Gynecol. reproductive Biol.\u003C\u002Fem\u003E 265, 1–6. doi:10.1016\u002Fj.ejogrb.2021.08.009\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ejogrb.2021.08.009\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Vaccination+in+pregnancy+-+the+when,+what+and+how?&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B47\" id=\"B47\"\u003E\u003C\u002Fa\u003EDahesh, S., Hensler, M. E., Van Sorge, N. M., Gertz, R. E., Schrag, S., Nizet, V., et al. (2008). Point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to beta-lactam antibiotics. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 52 (8), 2915–2918. doi:10.1128\u002FAAC.00461-08\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F18541727\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.00461-08\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Point+mutation+in+the+group+B+streptococcal+pbp2x+gene+conferring+decreased+susceptibility+to+beta-lactam+antibiotics&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B48\" id=\"B48\"\u003E\u003C\u002Fa\u003EDanne, C., and Dramsi, S. (2012). Pili of Gram-positive bacteria: roles in host colonization. \u003Cem\u003ERes. Microbiol.\u003C\u002Fem\u003E 163 (9), 645–658. doi:10.1016\u002Fj.resmic.2012.10.012\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23116627\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.resmic.2012.10.012\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Pili+of+Gram-positive+bacteria:+roles+in+host+colonization&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B49\" id=\"B49\"\u003E\u003C\u002Fa\u003Ede Azavedo, J. C., McGavin, M., Duncan, C., Low, D. E., and McGeer, A. (2001). Prevalence and mechanisms of macrolide resistance in invasive and noninvasive group B streptococcus isolates from Ontario, Canada. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 45 (12), 3504–3508. doi:10.1128\u002FAAC.45.12.3504-3508.2001\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F11709331\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.45.12.3504-3508.2001\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence+and+mechanisms+of+macrolide+resistance+in+invasive+and+noninvasive+group+B+streptococcus+isolates+from+Ontario,+Canada&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B50\" id=\"B50\"\u003E\u003C\u002Fa\u003EDelara, M., Vadlamudi, N. K., and Sadarangani, M. (2023). Strategies to prevent early and late-onset group B streptococcal infection via interventions in pregnancy. \u003Cem\u003EPathog. Basel, Switz.\u003C\u002Fem\u003E 12 (2), 229. doi:10.3390\u002Fpathogens12020229\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fpathogens12020229\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Strategies+to+prevent+early+and+late-onset+group+B+streptococcal+infection+via+interventions+in+pregnancy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B51\" id=\"B51\"\u003E\u003C\u002Fa\u003EDemczuk, W., Martin, I., Griffith, A., Lefebvre, B., McGeer, A., Tyrrell, G. J., et al. (2022). Linear regression equations to predict β-lactam, macrolide, lincosamide, and fluoroquinolone MICs from molecular antimicrobial resistance determinants in \u003Cem\u003EStreptococcus pneumoniae\u003C\u002Fem\u003E. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 66 (1), 01370211–e201321. doi:10.1128\u002FAAC.01370-21\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.01370-21\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Linear+regression+equations+to+predict+脦虏-lactam,+macrolide,+lincosamide,+and+fluoroquinolone+MICs+from+molecular+antimicrobial+resistance+determinants+in+Streptococcus+pneumoniae&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B52\" id=\"B52\"\u003E\u003C\u002Fa\u003EDeng, L., Spencer, B. L., Holmes, J. A., Mu, R., Rego, S., Weston, T. A., et al. (2019). The Group B Streptococcal surface antigen I\u002FII protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis. \u003Cem\u003EPLoS Pathog.\u003C\u002Fem\u003E 15 (6), e1007848. doi:10.1371\u002Fjournal.ppat.1007848\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31181121\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1371\u002Fjournal.ppat.1007848\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=The+Group+B+Streptococcal+surface+antigen+I\u002FII+protein,+BspC,+interacts+with+host+vimentin+to+promote+adherence+to+brain+endothelium+and+inflammation+during+the+pathogenesis+of+meningitis&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B53\" id=\"B53\"\u003E\u003C\u002Fa\u003Ede Vos, W. M., Tilg, H., Van Hul, M., and Cani, P. D. (2022). Gut microbiome and health: mechanistic insights. \u003Cem\u003EGut\u003C\u002Fem\u003E 71 (5), 1020–1032. doi:10.1136\u002Fgutjnl-2021-326789\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35105664\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1136\u002Fgutjnl-2021-326789\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Gut+microbiome+and+health:+mechanistic+insights&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B54\" id=\"B54\"\u003E\u003C\u002Fa\u003EDilrukshi, G. N., Kottahachchi, J., Dissanayake, D., Pathiraja, R. P., Karunasingha, J., Sampath, M. K. A., et al. (2021). Group B Streptococcus colonisation and their antimicrobial susceptibility among pregnant women attending antenatal clinics in tertiary care hospitals in the Western Province of Sri Lanka. \u003Cem\u003EJ. obstetrics Gynaecol. J. Inst. Obstetrics Gynaecol.\u003C\u002Fem\u003E 41 (1), 1–6. doi:10.1080\u002F01443615.2020.1716313\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32172646\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F01443615.2020.1716313\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+colonisation+and+their+antimicrobial+susceptibility+among+pregnant+women+attending+antenatal+clinics+in+tertiary+care+hospitals+in+the+Western+Province+of+Sri+Lanka&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B55\" id=\"B55\"\u003E\u003C\u002Fa\u003EDiPersio, L. P., and DiPersio, J. R. (2006). High rates of erythromycin and clindamycin resistance among OBGYN isolates of group B Streptococcus. \u003Cem\u003EDiagnostic Microbiol. Infect. Dis.\u003C\u002Fem\u003E 54 (1), 79–82. doi:10.1016\u002Fj.diagmicrobio.2005.07.003\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F16368478\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.diagmicrobio.2005.07.003\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=High+rates+of+erythromycin+and+clindamycin+resistance+among+OBGYN+isolates+of+group+B+Streptococcus&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B56\" id=\"B56\"\u003E\u003C\u002Fa\u003EDobrut, A., and Brzychczy-Włoch, M. (2022). Immunogenic proteins of group B Streptococcus—potential antigens in immunodiagnostic assay for GBS detection. \u003Cem\u003EPathog. Basel, Switz.\u003C\u002Fem\u003E 11 (1), 43. doi:10.3390\u002Fpathogens11010043\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fpathogens11010043\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Immunogenic+proteins+of+group+B+Streptococcus芒聙聰potential+antigens+in+immunodiagnostic+assay+for+GBS+detection&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B57\" id=\"B57\"\u003E\u003C\u002Fa\u003EDominguez, K., and Randis, T. M. (2022). Toward the development of a protein-based group B Streptococcus vaccine. \u003Cem\u003ECell. Rep. Med.\u003C\u002Fem\u003E 3 (2), 100536. doi:10.1016\u002Fj.xcrm.2022.100536\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35243427\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.xcrm.2022.100536\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Toward+the+development+of+a+protein-based+group+B+Streptococcus+vaccine&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B58\" id=\"B58\"\u003E\u003C\u002Fa\u003EDos Santos, N. F. B., da Silva, L. R., Costa, F., de Mattos, D. M., de Carvalho, E., Ferreira, L. C. S., et al. (2020). Immunization with a recombinant BibA surface protein confers immunity and protects mice against group B Streptococcus (GBS) vaginal colonization. \u003Cem\u003EVaccine\u003C\u002Fem\u003E 38 (33), 5286–5296. doi:10.1016\u002Fj.vaccine.2020.05.076\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32571719\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.vaccine.2020.05.076\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Immunization+with+a+recombinant+BibA+surface+protein+confers+immunity+and+protects+mice+against+group+B+Streptococcus+(GBS)+vaginal+colonization&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B59\" id=\"B59\"\u003E\u003C\u002Fa\u003EdOtreppe, S., Lefèvre, P., Meex, C., Devey, A., Sacheli, R., Gerard, M., et al. (2023). Multicenter performance evaluation of the Revogene(®) GBS DS real-time PCR assay for group B Streptococcus detection during labor. \u003Cem\u003EMol. diagnosis Ther.\u003C\u002Fem\u003E 27 (5), 611–620. doi:10.1007\u002Fs40291-023-00660-3\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002Fs40291-023-00660-3\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Multicenter+performance+evaluation+of+the+Revogene(脗庐)+GBS+DS+real-time+PCR+assay+for+group+B+Streptococcus+detection+during+labor&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B60\" id=\"B60\"\u003E\u003C\u002Fa\u003EDu, Vu, Thai Dung, P., and Toan, N. L. (2021). al. e: High Rates of Streptococcus Agalactiae Clindamycin and Erythromycin Resistance in Vietnamese Pregnant Women. \u003Cem\u003ERes. Square\u003C\u002Fem\u003E. doi:10.21203\u002Frs.21203.rs-196314\u002Fv196311\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.21203\u002Frs.21203.rs-196314\u002Fv196311\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=al.+e:+High+Rates+of+Streptococcus+Agalactiae+Clindamycin+and+Erythromycin+Resistance+in+Vietnamese+Pregnant+Women&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B61\" id=\"B61\"\u003E\u003C\u002Fa\u003EDuffy, C. R., Huang, Y., Andrikopoulou, M., Stern-Ascher, C. N., Wright, J. D., D'Alton, M. E., et al. (2022). Vancomycin during delivery hospitalizations for women with group B streptococcus. \u003Cem\u003EJ. maternal-fetal neonatal Med. official J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet\u003C\u002Fem\u003E 35 (5), 898–906. doi:10.1080\u002F14767058.2020.1733520\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F14767058.2020.1733520\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Vancomycin+during+delivery+hospitalizations+for+women+with+group+B+streptococcus&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B62\" id=\"B62\"\u003E\u003C\u002Fa\u003EDuke, J. A., Paschall, A. V., Robinson, L. S., Knoot, C. J., Vinogradov, E., Scott, N. E., et al. (2021). Development and immunogenicity of a prototype multivalent group B Streptococcus bioconjugate vaccine. \u003Cem\u003EACS Infect. Dis.\u003C\u002Fem\u003E 7 (11), 3111–3123. doi:10.1021\u002Facsinfecdis.1c00415\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34633812\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1021\u002Facsinfecdis.1c00415\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Development+and+immunogenicity+of+a+prototype+multivalent+group+B+Streptococcus+bioconjugate+vaccine&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B63\" id=\"B63\"\u003E\u003C\u002Fa\u003EDutra, V. G., Alves, V. M., Olendzki, A. N., Dias, C. A., de Bastos, A. F., Santos, G. O., et al. (2014). Streptococcus agalactiae in Brazil: serotype distribution, virulence determinants and antimicrobial susceptibility. \u003Cem\u003EBMC Infect. Dis.\u003C\u002Fem\u003E 14, 323. doi:10.1186\u002F1471-2334-14-323\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24919844\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002F1471-2334-14-323\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Streptococcus+agalactiae+in+Brazil:+serotype+distribution,+virulence+determinants+and+antimicrobial+susceptibility&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B64\" id=\"B64\"\u003E\u003C\u002Fa\u003EEl Beitune, P., Duarte, G., Maffei, C. M., Quintana, S. M., De Sá Rosa, ESAC, and Nogueira, A. A. (2006). Group B Streptococcus carriers among HIV-1 infected pregnant women: prevalence and risk factors. \u003Cem\u003EEur. J. obstetrics, Gynecol. reproductive Biol.\u003C\u002Fem\u003E 128 (1-2), 54–58. doi:10.1016\u002Fj.ejogrb.2006.02.017\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ejogrb.2006.02.017\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+carriers+among+HIV-1+infected+pregnant+women:+prevalence+and+risk+factors&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B65\" id=\"B65\"\u003E\u003C\u002Fa\u003EElinav, E., Garrett, W. S., Trinchieri, G., and Wargo, J. (2019). The cancer microbiome. \u003Cem\u003ENat. Rev. Cancer\u003C\u002Fem\u003E 19 (7), 371–376. doi:10.1038\u002Fs41568-019-0155-3\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31186547\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41568-019-0155-3\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=The+cancer+microbiome&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B66\" id=\"B66\"\u003E\u003C\u002Fa\u003EErickson Keesha, E., Otoupal Peter, B., and Chatterjee, A. (2017). Transcriptome-level signatures in gene expression and gene expression variability during bacterial adaptive evolution. \u003Cem\u003EmSphere\u003C\u002Fem\u003E 2 (1), e00009. doi:10.1128\u002FmSphere.00009-17\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28217741\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FmSphere.00009-17\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Transcriptome-level+signatures+in+gene+expression+and+gene+expression+variability+during+bacterial+adaptive+evolution&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B67\" id=\"B67\"\u003E\u003C\u002Fa\u003EFaccone, D., Lalonardi, F., Abel, S., Machain, M., Errecalde, L., Littvik, A., et al. (2010). Multiple-Clones of Streptococcus agalactiae harbouring lnuB gene. \u003Cem\u003EJ. Infect. Dev. Ctries.\u003C\u002Fem\u003E 4 (9), 580–582. doi:10.3855\u002Fjidc.941\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21045372\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3855\u002Fjidc.941\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Multiple-Clones+of+Streptococcus+agalactiae+harbouring+lnuB+gene&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B68\" id=\"B68\"\u003E\u003C\u002Fa\u003EFarrell, D. J., and Felmingham, D. (2004). Activities of telithromycin against 13,874 Streptococcus pneumoniae isolates collected between 1999 and 2003. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 48 (5), 1882–1884. doi:10.1128\u002Faac.48.5.1882-1884.2004\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F15105150\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Faac.48.5.1882-1884.2004\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Activities+of+telithromycin+against+13,874+Streptococcus+pneumoniae+isolates+collected+between+1999+and+2003&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B69\" id=\"B69\"\u003E\u003C\u002Fa\u003EFinsterer, J. (2022). Triggers of guillain-barré syndrome: Campylobacter jejuni predominates. \u003Cem\u003EInt. J. Mol. Sci.\u003C\u002Fem\u003E 23 (22), 14222. doi:10.3390\u002Fijms232214222\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36430700\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fijms232214222\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Triggers+of+guillain-barr脙漏+syndrome:+Campylobacter+jejuni+predominates&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B70\" id=\"B70\"\u003E\u003C\u002Fa\u003EFischer, P., Pawlowski, A., Cao, D., Bell, D., Kitson, G., Darsley, M., et al. (2021). Safety and immunogenicity of a prototype recombinant alpha-like protein subunit vaccine (GBS-NN) against Group B Streptococcus in a randomised placebo-controlled double-blind phase 1 trial in healthy adult women. \u003Cem\u003EVaccine\u003C\u002Fem\u003E 39 (32), 4489–4499. doi:10.1016\u002Fj.vaccine.2021.06.046\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34215454\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.vaccine.2021.06.046\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+a+prototype+recombinant+alpha-like+protein+subunit+vaccine+(GBS-NN)+against+Group+B+Streptococcus+in+a+randomised+placebo-controlled+double-blind+phase+1+trial+in+healthy+adult+women&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B71\" id=\"B71\"\u003E\u003C\u002Fa\u003EFugaban, J. I. I., Holzapfel, W. H., and Todorov, S. D. (2021). Probiotic potential and safety assessment of bacteriocinogenic Enterococcus faecium strains with antibacterial activity against Listeria and vancomycin-resistant enterococci. \u003Cem\u003ECurr. Res. Microb. Sci.\u003C\u002Fem\u003E 2, 100070. doi:10.1016\u002Fj.crmicr.2021.100070\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34841360\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.crmicr.2021.100070\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Probiotic+potential+and+safety+assessment+of+bacteriocinogenic+Enterococcus+faecium+strains+with+antibacterial+activity+against+Listeria+and+vancomycin-resistant+enterococci&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B72\" id=\"B72\"\u003E\u003C\u002Fa\u003EFurfaro, L. L., Chang, B. J., and Payne, M. S. (2018). Perinatal Streptococcus agalactiae epidemiology and surveillance targets. \u003Cem\u003EClin. Microbiol. Rev.\u003C\u002Fem\u003E 31 (4), e00049. doi:10.1128\u002FCMR.00049-18\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30111577\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FCMR.00049-18\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Perinatal+Streptococcus+agalactiae+epidemiology+and+surveillance+targets&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B73\" id=\"B73\"\u003E\u003C\u002Fa\u003EGabrielsen, C., Mæland, J. A., Lyng, R. V., Radtke, A., and Afset, J. E. (2017). Molecular characteristics of Streptococcus agalactiae strains deficient in alpha-like protein encoding genes. \u003Cem\u003EJ. Med. Microbiol.\u003C\u002Fem\u003E 66 (1), 26–33. doi:10.1099\u002Fjmm.0.000412\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28032541\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1099\u002Fjmm.0.000412\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Molecular+characteristics+of+Streptococcus+agalactiae+strains+deficient+in+alpha-like+protein+encoding+genes&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B74\" id=\"B74\"\u003E\u003C\u002Fa\u003EGavinski, K., and DiNardo, D. (2023). Cervical cancer screening. \u003Cem\u003EMed. Clin. N. Am.\u003C\u002Fem\u003E 107 (2), 259–269. doi:10.1016\u002Fj.mcna.2022.10.006\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36759096\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.mcna.2022.10.006\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Cervical+cancer+screening&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B75\" id=\"B75\"\u003E\u003C\u002Fa\u003EGendrin, C., Shubin, N. J., Boldenow, E., Merillat, S., Clauson, M., Power, D., et al. (2018). Mast cell chymase decreases the severity of group B Streptococcus infections. \u003Cem\u003EJ. allergy Clin. Immunol.\u003C\u002Fem\u003E 142 (1), 120–129. doi:10.1016\u002Fj.jaci.2017.07.042\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28916188\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.jaci.2017.07.042\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Mast+cell+chymase+decreases+the+severity+of+group+B+Streptococcus+infections&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B76\" id=\"B76\"\u003E\u003C\u002Fa\u003EGoel, N., Wattal, C., Gujral, K., Dhaduk, N., Mansukhani, C., Garg, P., et al. (2020). Group B Streptococcus in Indian pregnant women: its prevalence and risk factors. \u003Cem\u003EIndian J. Med. Microbiol.\u003C\u002Fem\u003E 38 (3 and 4), 357–361. doi:10.4103\u002Fijmm.IJMM_20_333\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33154247\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.4103\u002Fijmm.IJMM_20_333\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+in+Indian+pregnant+women:+its+prevalence+and+risk+factors&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B77\" id=\"B77\"\u003E\u003C\u002Fa\u003EGonçalves, B. P., Procter, S. R., Paul, P., Chandna, J., Lewin, A., Seedat, F., et al. (2022). Group B streptococcus infection during pregnancy and infancy: estimates of regional and global burden. \u003Cem\u003ELancet Glob. health\u003C\u002Fem\u003E 10 (6), e807–e819. doi:10.1016\u002FS2214-109X(22)00093-6\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35490693\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS2214-109X(22)00093-6\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcus+infection+during+pregnancy+and+infancy:+estimates+of+regional+and+global+burden&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B78\" id=\"B78\"\u003E\u003C\u002Fa\u003EGranlund, M., Axemo, P., Bremme, K., Bryngelsson, A. L., Carlsson Wallin, M., Ekström, C. M., et al. (2010). Antimicrobial resistance in colonizing group B Streptococci before the implementation of a Swedish intrapartum antibiotic prophylaxis program. \u003Cem\u003EEur. J. Clin. Microbiol. Infect. Dis.\u003C\u002Fem\u003E 29 (10), 1195–1201. doi:10.1007\u002Fs10096-010-0877-3\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F20706855\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002Fs10096-010-0877-3\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+resistance+in+colonizing+group+B+Streptococci+before+the+implementation+of+a+Swedish+intrapartum+antibiotic+prophylaxis+program&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B79\" id=\"B79\"\u003E\u003C\u002Fa\u003EGurudas, G., Arjun, R., Jain, N., Ranganayaki, V., Sasikumar, C., Mohan, V., et al. (2022). Prevalence of Group B Streptococcus in pregnant women in Kerala and relation to neonatal outcomes: a prospective cross-sectional study. \u003Cem\u003EJ. Trop. Pediatr.\u003C\u002Fem\u003E 68 (6), fmac092. doi:10.1093\u002Ftropej\u002Ffmac092\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36306123\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Ftropej\u002Ffmac092\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+Group+B+Streptococcus+in+pregnant+women+in+Kerala+and+relation+to+neonatal+outcomes:+a+prospective+cross-sectional+study&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B80\" id=\"B80\"\u003E\u003C\u002Fa\u003EHanson, S., Nelson, G., Preszler, M., Laible, B., Nazir, J., and Siewert, A. (2022). Antibiotic prescribing practices in group B Streptococcus positive obstetric patients with penicillin allergy. \u003Cem\u003ES. D. Med. J. S. D. State Med. Assoc.\u003C\u002Fem\u003E 75 (10), 462–468. \u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antibiotic+prescribing+practices+in+group+B+Streptococcus+positive+obstetric+patients+with+penicillin+allergy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B81\" id=\"B81\"\u003E\u003C\u002Fa\u003EHayes, K., O'Halloran, F., and Cotter, L. (2020). A review of antibiotic resistance in Group B Streptococcus: the story so far. \u003Cem\u003ECrit. Rev. Microbiol.\u003C\u002Fem\u003E 46 (3), 253–269. doi:10.1080\u002F1040841X.2020.1758626\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32363979\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F1040841X.2020.1758626\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=A+review+of+antibiotic+resistance+in+Group+B+Streptococcus:+the+story+so+far&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B82\" id=\"B82\"\u003E\u003C\u002Fa\u003EHeyar, A. K., Kaur, K., Gill, A. K., and Gill, P. K. (2020). Induction of clindamycin resistance in clinical isolates of staphylococcus aureus from a tertiary care hospital. \u003Cem\u003EInt. J. Med. Biomed. Stud.\u003C\u002Fem\u003E 4 (12). doi:10.32553\u002Fijmbs.v4i12.1566\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.32553\u002Fijmbs.v4i12.1566\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Induction+of+clindamycin+resistance+in+clinical+isolates+of+staphylococcus+aureus+from+a+tertiary+care+hospital&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B83\" id=\"B83\"\u003E\u003C\u002Fa\u003EHsu, J. F., Chen, Y. N., Chu, S. M., Lee, W. J., Huang, H. R., Chiang, M. C., et al. (2023). Clonal complex 12 serotype Ib Streptococcus agalactiae strain causing complicated sepsis in neonates: clinical features and genetic characteristics. \u003Cem\u003EMicrobiol. Spectr.\u003C\u002Fem\u003E 11 (1), e0377822. doi:10.1128\u002Fspectrum.03778-22\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36475780\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fspectrum.03778-22\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Clonal+complex+12+serotype+Ib+Streptococcus+agalactiae+strain+causing+complicated+sepsis+in+neonates:+clinical+features+and+genetic+characteristics&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B84\" id=\"B84\"\u003E\u003C\u002Fa\u003EHsu, J. F., Lu, J. J., Lin, C., Chu, S. M., Lin, L. C., Lai, M. Y., et al. (2021). Clustered regularly interspaced short palindromic repeat analysis of clonal complex 17 serotype III group B Streptococcus strains causing neonatal invasive diseases. \u003Cem\u003EInt. J. Mol. Sci.\u003C\u002Fem\u003E 22 (21), 11626. doi:10.3390\u002Fijms222111626\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34769055\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fijms222111626\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Clustered+regularly+interspaced+short+palindromic+repeat+analysis+of+clonal+complex+17+serotype+III+group+B+Streptococcus+strains+causing+neonatal+invasive+diseases&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B85\" id=\"B85\"\u003E\u003C\u002Fa\u003EHuang, J., Lin, X.-Z., Zhu, Y., and Chen, C. (2019). Epidemiology of group B streptococcal infection in pregnant women and diseased infants in mainland China. \u003Cem\u003EPediatr. Neonatol.\u003C\u002Fem\u003E 60 (5), 487–495. doi:10.1016\u002Fj.pedneo.2019.07.001\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31445795\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.pedneo.2019.07.001\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Epidemiology+of+group+B+streptococcal+infection+in+pregnant+women+and+diseased+infants+in+mainland+China&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B86\" id=\"B86\"\u003E\u003C\u002Fa\u003EHuiling, C., Jia-de, D., Hui-fen, Y., YouMin, L., Yingzi, C., and Xiao-mian, Z. (2010). Detection of erythromycin and tetracycline resistance-related genes in invasive infections due to group B streptococci. \u003Cem\u003EChin. J. Nosocomiology\u003C\u002Fem\u003E 20, 1354–1357. \u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Detection+of+erythromycin+and+tetracycline+resistance-related+genes+in+invasive+infections+due+to+group+B+streptococci&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B87\" id=\"B87\"\u003E\u003C\u002Fa\u003EHusen, O., Kannaiyan Abbai, M., Aliyo, A., Daka, D., Gemechu, T., Tilahun, D., et al. (2023). Prevalence, antimicrobial susceptibility pattern and associated factors of group B Streptococcus among pregnant women attending antenatal care at bule hora university teaching hospital, southern Ethiopia. \u003Cem\u003EInfect. drug Resist.\u003C\u002Fem\u003E 16, 4421–4433. doi:10.2147\u002FIDR.S415414\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F37435237\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.2147\u002FIDR.S415414\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence,+antimicrobial+susceptibility+pattern+and+associated+factors+of+group+B+Streptococcus+among+pregnant+women+attending+antenatal+care+at+bule+hora+university+teaching+hospital,+southern+Ethiopia&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B88\" id=\"B88\"\u003E\u003C\u002Fa\u003EIkebe, T., Okuno, R., Uchitani, Y., Takano, M., Yamaguchi, T., Otsuka, H., et al. (2023). Serotype distribution and antimicrobial resistance of Streptococcus agalactiae isolates in nonpregnant adults with streptococcal toxic shock syndrome in Japan in 2014 to 2021. \u003Cem\u003EMicrobiol. Spectr.\u003C\u002Fem\u003E 11 (2), e0498722. doi:10.1128\u002Fspectrum.04987-22\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36786620\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fspectrum.04987-22\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Serotype+distribution+and+antimicrobial+resistance+of+Streptococcus+agalactiae+isolates+in+nonpregnant+adults+with+streptococcal+toxic+shock+syndrome+in+Japan+in+2014+to+2021&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B89\" id=\"B89\"\u003E\u003C\u002Fa\u003EJia-de, D. (2010) Detection of erythromycin and tetracycline resistant-related genes in skin and soft tissue infection due to group B streptococci. \u003Cem\u003EInt. J. Lab. Med.\u003C\u002Fem\u003E 31 (10), 1057–1058. doi:10.3969\u002Fj.issn.1673-4130.2010.10.001\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3969\u002Fj.issn.1673-4130.2010.10.001\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Detection+of+erythromycin+and+tetracycline+resistant-related+genes+in+skin+and+soft+tissue+infection+due+to+group+B+streptococci&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B90\" id=\"B90\"\u003E\u003C\u002Fa\u003EJung, Y. J., Huynh, B. T., Seck, A., Bercion, R., Sarr, F. D., Herindrainy, P., et al. (2021). Prevalence and factors associated with maternal group B Streptococcus colonization in Madagascar and Senegal. \u003Cem\u003EAm. J. Trop. Med. Hyg.\u003C\u002Fem\u003E 105 (5), 1339–1346. doi:10.4269\u002Fajtmh.21-0113\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34460418\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.4269\u002Fajtmh.21-0113\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence+and+factors+associated+with+maternal+group+B+Streptococcus+colonization+in+Madagascar+and+Senegal&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B91\" id=\"B91\"\u003E\u003C\u002Fa\u003EKalliola, S., Vuopio-Varkila, J., Takala, A. K., and Eskola, J. (1999). Neonatal group B streptococcal disease in Finland: a ten-year nationwide study. \u003Cem\u003EPediatr. Infect. Dis. J.\u003C\u002Fem\u003E 18 (9), 806–810. doi:10.1097\u002F00006454-199909000-00012\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F10493342\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1097\u002F00006454-199909000-00012\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Neonatal+group+B+streptococcal+disease+in+Finland:+a+ten-year+nationwide+study&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B92\" id=\"B92\"\u003E\u003C\u002Fa\u003EKamal, M. (2022). Pap smear collection and preparation: key points. \u003Cem\u003ECytoJournal\u003C\u002Fem\u003E 19, 24. doi:10.25259\u002FCMAS_03_05_2021\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35510105\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.25259\u002FCMAS_03_05_2021\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Pap+smear+collection+and+preparation:+key+points&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B93\" id=\"B93\"\u003E\u003C\u002Fa\u003EKamga, Y. M., Ngunde, J. P., and Akoachere, J. K. T. (2019). Prevalence of bacterial vaginosis and associated risk factors in pregnant women receiving antenatal care at the Kumba Health District (KHD), Cameroon. \u003Cem\u003EBMC pregnancy childbirth\u003C\u002Fem\u003E 19 (1), 166. doi:10.1186\u002Fs12884-019-2312-9\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31077161\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12884-019-2312-9\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+bacterial+vaginosis+and+associated+risk+factors+in+pregnant+women+receiving+antenatal+care+at+the+Kumba+Health+District+(KHD),+Cameroon&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B94\" id=\"B94\"\u003E\u003C\u002Fa\u003EKamińska, D., Ratajczak, M., Nowak-Malczewska, D. M., Karolak, J. A., Kwaśniewski, M., Szumala-Kakol, A., et al. (2024). Macrolide and lincosamide resistance of Streptococcus agalactiae in pregnant women in Poland. \u003Cem\u003ESci. Rep.\u003C\u002Fem\u003E 14 (1), 3877. doi:10.1038\u002Fs41598-024-54521-y\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F38366099\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41598-024-54521-y\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Macrolide+and+lincosamide+resistance+of+Streptococcus+agalactiae+in+pregnant+women+in+Poland&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B95\" id=\"B95\"\u003E\u003C\u002Fa\u003EKao, Y., Tsai, M.-H., Lai, M.-Y., Chu, S.-M., Huang, H.-R., Chiang, M.-C., et al. (2019). Emerging serotype III sequence type 17 group B streptococcus invasive infection in infants: the clinical characteristics and impacts on outcomes. \u003Cem\u003EBMC Infect. Dis.\u003C\u002Fem\u003E 19 (1), 538. doi:10.1186\u002Fs12879-019-4177-y\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31216993\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12879-019-4177-y\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Emerging+serotype+III+sequence+type+17+group+B+streptococcus+invasive+infection+in+infants:+the+clinical+characteristics+and+impacts+on+outcomes&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B96\" id=\"B96\"\u003E\u003C\u002Fa\u003EKardos, S., Tóthpál, A., Laub, K., Kristóf, K., Ostorházi, E., Rozgonyi, F., et al. (2019). High prevalence of group B streptococcus ST17 hypervirulent clone among non-pregnant patients from a Hungarian venereology clinic. \u003Cem\u003EBMC Infect. Dis.\u003C\u002Fem\u003E 19 (1), 1009. doi:10.1186\u002Fs12879-019-4626-7\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31779587\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12879-019-4626-7\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=High+prevalence+of+group+B+streptococcus+ST17+hypervirulent+clone+among+non-pregnant+patients+from+a+Hungarian+venereology+clinic&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B97\" id=\"B97\"\u003E\u003C\u002Fa\u003EKekic, D., Gajic, I., Opavski, N., Kojic, M., Vukotic, G., Smitran, A., et al. (2021). Trends in molecular characteristics and antimicrobial resistance of group B streptococci: a multicenter study in Serbia, 2015-2020. \u003Cem\u003ESci. Rep.\u003C\u002Fem\u003E 11 (1), 540. doi:10.1038\u002Fs41598-020-79354-3\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33436658\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41598-020-79354-3\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Trends+in+molecular+characteristics+and+antimicrobial+resistance+of+group+B+streptococci:+a+multicenter+study+in+Serbia,+2015-2020&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B98\" id=\"B98\"\u003E\u003C\u002Fa\u003EKhan, U. B., Portal, E. A. R., Sands, K., Lo, S., Chalker, V. J., Jauneikaite, E., et al. (2023). Genomic analysis reveals new integrative conjugal elements and transposons in GBS conferring antimicrobial resistance. \u003Cem\u003EAntibiotics\u003C\u002Fem\u003E 12 (3), 544. doi:10.3390\u002Fantibiotics12030544\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36978411\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fantibiotics12030544\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Genomic+analysis+reveals+new+integrative+conjugal+elements+and+transposons+in+GBS+conferring+antimicrobial+resistance&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B99\" id=\"B99\"\u003E\u003C\u002Fa\u003EKimura, K., Suzuki, S., Wachino, J., Kurokawa, H., Yamane, K., Shibata, N., et al. (2008). First molecular characterization of group B streptococci with reduced penicillin susceptibility. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 52 (8), 2890–2897. doi:10.1128\u002FAAC.00185-08\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F18490507\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.00185-08\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=First+molecular+characterization+of+group+B+streptococci+with+reduced+penicillin+susceptibility&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B100\" id=\"B100\"\u003E\u003C\u002Fa\u003EKling, D. E., Cavicchio, A. J., Sollinger, C. A., Madoff, L. C., Schnitzer, J. J., and Kinane, T. B. (2009). Lactic acid is a potential virulence factor for group B Streptococcus. \u003Cem\u003EMicrob. Pathog.\u003C\u002Fem\u003E 46 (1), 43–52. doi:10.1016\u002Fj.micpath.2008.10.009\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F19010409\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.micpath.2008.10.009\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Lactic+acid+is+a+potential+virulence+factor+for+group+B+Streptococcus&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B101\" id=\"B101\"\u003E\u003C\u002Fa\u003EKobayashi, M., Vekemans, J., Baker, C. J., Ratner, A. J., Le Doare, K., Schrag, S. J., et al. (2016). Group B Streptococcus vaccine development: present status and future considerations, with emphasis on perspectives for low and middle income countries. \u003Cem\u003EF1000Research\u003C\u002Fem\u003E 5, 2355. doi:10.12688\u002Ff1000research.9363.1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F27803803\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.12688\u002Ff1000research.9363.1\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+vaccine+development:+present+status+and+future+considerations,+with+emphasis+on+perspectives+for+low+and+middle+income+countries&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B102\" id=\"B102\"\u003E\u003C\u002Fa\u003EKoide, S., Hayashi, W., Taniguchi, Y., Tanaka, H., Kimura, K., Nagano, Y., et al. (2019). Potential effect of selective pressure with different β-lactam molecules on the emergence of reduced susceptibility to β-lactams in group B Streptococci. \u003Cem\u003EMicrobiol. Immunol.\u003C\u002Fem\u003E 63 (2), 65–76. doi:10.1111\u002F1348-0421.12667\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30632638\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002F1348-0421.12667\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Potential+effect+of+selective+pressure+with+different+脦虏-lactam+molecules+on+the+emergence+of+reduced+susceptibility+to+脦虏-lactams+in+group+B+Streptococci&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B103\" id=\"B103\"\u003E\u003C\u002Fa\u003EKoide, S., Nagano, Y., Takizawa, S., Sakaguchi, K., Soga, E., Hayashi, W., et al. (2022). Genomic traits associated with virulence and antimicrobial resistance of invasive group B Streptococcus isolates with reduced penicillin susceptibility from elderly adults. \u003Cem\u003EMicrobiol. Spectr.\u003C\u002Fem\u003E 10 (3), 00568222–e100522. doi:10.1128\u002Fspectrum.00568-22\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fspectrum.00568-22\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Genomic+traits+associated+with+virulence+and+antimicrobial+resistance+of+invasive+group+B+Streptococcus+isolates+with+reduced+penicillin+susceptibility+from+elderly+adults&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B104\" id=\"B104\"\u003E\u003C\u002Fa\u003EKoo, J., Escajadillo, T., Zhang, L., Nizet, V., and Lawrence, S. M. (2019). Erythrocyte-coated nanoparticles block cytotoxic effects of group B Streptococcus β-hemolysin\u002Fcytolysin. \u003Cem\u003EFront. Pediatr.\u003C\u002Fem\u003E 7, 410. doi:10.3389\u002Ffped.2019.00410\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31737584\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffped.2019.00410\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Erythrocyte-coated+nanoparticles+block+cytotoxic+effects+of+group+B+Streptococcus+脦虏-hemolysin\u002Fcytolysin&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B105\" id=\"B105\"\u003E\u003C\u002Fa\u003EKorir, M. L., Manning, S. D., and Davies, H. D. (2017). Intrinsic maturational neonatal immune deficiencies and susceptibility to group B Streptococcus infection. \u003Cem\u003EClin. Microbiol. Rev.\u003C\u002Fem\u003E 30 (4), 973–989. doi:10.1128\u002FCMR.00019-17\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28814408\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FCMR.00019-17\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Intrinsic+maturational+neonatal+immune+deficiencies+and+susceptibility+to+group+B+Streptococcus+infection&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B106\" id=\"B106\"\u003E\u003C\u002Fa\u003EKumar Chaudhary, N., and Piya, R. (2021). Macrolide-lincosamide-streptogramin B resistance among staphylococcus aureus in chitwan medical college teaching hospital, Nepal. \u003Cem\u003EAsian J. Pharm. Clin. Res.\u003C\u002Fem\u003E, 61–65. doi:10.22159\u002Fajpcr.2021.v14i5.41012\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.22159\u002Fajpcr.2021.v14i5.41012\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Macrolide-lincosamide-streptogramin+B+resistance+among+staphylococcus+aureus+in+chitwan+medical+college+teaching+hospital,+Nepal&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B107\" id=\"B107\"\u003E\u003C\u002Fa\u003EKuperwaser, F., Avital, G., Vaz, M. J., Noble, K. N., Dammann, A. N., Randis, T. M., et al. (2023). Host inflammatory dynamics reveal placental immune modulation by Group B Streptococcus during pregnancy. \u003Cem\u003EMol. Syst. Biol.\u003C\u002Fem\u003E 19 (3), e11021. doi:10.15252\u002Fmsb.202211021\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36744393\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.15252\u002Fmsb.202211021\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Host+inflammatory+dynamics+reveal+placental+immune+modulation+by+Group+B+Streptococcus+during+pregnancy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B108\" id=\"B108\"\u003E\u003C\u002Fa\u003EKurian, N. K., and Modi, D. (2022). Mechanisms of group B Streptococcus-mediated preterm birth: lessons learnt from animal models. \u003Cem\u003EReproduction Fertil.\u003C\u002Fem\u003E 3 (3), R109–r120. doi:10.1530\u002FRAF-21-0105\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1530\u002FRAF-21-0105\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Mechanisms+of+group+B+Streptococcus-mediated+preterm+birth:+lessons+learnt+from+animal+models&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B109\" id=\"B109\"\u003E\u003C\u002Fa\u003ELacasse, M., Valentin, A.-S., Corvec, S., Bémer, P., Jolivet-Gougeon, A., Plouzeau, C., et al. (2022). Genotypic characterization and biofilm production of group B Streptococcus strains isolated from bone and Joint infections. \u003Cem\u003EMicrobiol. Spectr.\u003C\u002Fem\u003E 10 (2), 02329211–e302321. doi:10.1128\u002Fspectrum.02329-21\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fspectrum.02329-21\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Genotypic+characterization+and+biofilm+production+of+group+B+Streptococcus+strains+isolated+from+bone+and+Joint+infections&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B110\" id=\"B110\"\u003E\u003C\u002Fa\u003ELamagni, T. L., Keshishian, C., Efstratiou, A., Guy, R., Henderson, K. L., Broughton, K., et al. (2013). Emerging trends in the epidemiology of invasive group B streptococcal disease in England and Wales, 1991-2010. \u003Cem\u003EClin. Infect. Dis. official Publ. Infect. Dis. Soc. Am.\u003C\u002Fem\u003E 57 (5), 682–688. doi:10.1093\u002Fcid\u002Fcit337\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23845950\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Fcid\u002Fcit337\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Emerging+trends+in+the+epidemiology+of+invasive+group+B+streptococcal+disease+in+England+and+Wales,+1991-2010&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B111\" id=\"B111\"\u003E\u003C\u002Fa\u003ELe Doare, K., O'Driscoll, M., Turner, K., Seedat, F., Russell, N. J., Seale, A. C., et al. (2017). Intrapartum antibiotic chemoprophylaxis policies for the prevention of group B streptococcal disease worldwide: systematic review. \u003Cem\u003EClin. Infect. Dis. official Publ. Infect. Dis. Soc. Am.\u003C\u002Fem\u003E 65 (Suppl. l_2), S143–s151. doi:10.1093\u002Fcid\u002Fcix654\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Fcid\u002Fcix654\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Intrapartum+antibiotic+chemoprophylaxis+policies+for+the+prevention+of+group+B+streptococcal+disease+worldwide:+systematic+review&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B112\" id=\"B112\"\u003E\u003C\u002Fa\u003ELe Gallou, B., Pastuszka, A., Lemaire, C., Mereghetti, L., and Lanotte, P. (2023). Group B Streptococcus CRISPR1 typing of maternal, fetal, and neonatal infectious disease isolates highlights the importance of CC1 in \u003Cem\u003Ein utero\u003C\u002Fem\u003E fetal death. \u003Cem\u003EMicrobiol. Spectr.\u003C\u002Fem\u003E 11 (4), e0522122. doi:10.1128\u002Fspectrum.05221-22\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F37341591\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fspectrum.05221-22\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+CRISPR1+typing+of+maternal,+fetal,+and+neonatal+infectious+disease+isolates+highlights+the+importance+of+CC1+in+in+utero+fetal+death&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B113\" id=\"B113\"\u003E\u003C\u002Fa\u003ELi, J., Ji, W., Gao, K., Zhou, H., Zhang, L., Mu, X., et al. (2019). Molecular characteristics of group B Streptococcus isolates from infants in southern mainland China. \u003Cem\u003EBMC Infect. Dis.\u003C\u002Fem\u003E 19 (1), 812. doi:10.1186\u002Fs12879-019-4434-0\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31533652\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12879-019-4434-0\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Molecular+characteristics+of+group+B+Streptococcus+isolates+from+infants+in+southern+mainland+China&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B114\" id=\"B114\"\u003E\u003C\u002Fa\u003ELin, E., Zou, S., Wang, Y., Lee, C. C., Chiu, C. H., and Feng, Y. (2021a). Phylogeny, recombination, and invasiveness of group B Streptococcus revealed by genomic comparisons of its global strains. \u003Cem\u003EEur. J. Clin. Microbiol. Infect. Dis. official Publ. Eur. Soc. Clin. Microbiol.\u003C\u002Fem\u003E 40 (3), 581–590. doi:10.1007\u002Fs10096-020-04067-4\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002Fs10096-020-04067-4\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Phylogeny,+recombination,+and+invasiveness+of+group+B+Streptococcus+revealed+by+genomic+comparisons+of+its+global+strains&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B115\" id=\"B115\"\u003E\u003C\u002Fa\u003ELin, L., Huang, X., Yang, H., He, Y., He, X., Huang, J., et al. (2021b). Molecular epidemiology, antimicrobial activity, and virulence gene clustering of Streptococcus agalactiae isolated from dairy cattle with mastitis in China. \u003Cem\u003EJ. dairy Sci.\u003C\u002Fem\u003E 104 (4), 4893–4903. doi:10.3168\u002Fjds.2020-19139\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33551160\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3168\u002Fjds.2020-19139\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Molecular+epidemiology,+antimicrobial+activity,+and+virulence+gene+clustering+of+Streptococcus+agalactiae+isolated+from+dairy+cattle+with+mastitis+in+China&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B116\" id=\"B116\"\u003E\u003C\u002Fa\u003ELin, S. M., Jang, A. Y., Zhi, Y., Gao, S., Lim, S., Lim, J. H., et al. (2017). Vaccination with a latch peptide provides serotype-independent protection against group B Streptococcus infection in mice. \u003Cem\u003EJ. Infect. Dis.\u003C\u002Fem\u003E 217 (1), 93–102. doi:10.1093\u002Finfdis\u002Fjix565\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29106586\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Finfdis\u002Fjix565\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Vaccination+with+a+latch+peptide+provides+serotype-independent+protection+against+group+B+Streptococcus+infection+in+mice&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B117\" id=\"B117\"\u003E\u003C\u002Fa\u003ELin, S. M., Zhi, Y., Ahn, K. B., Lim, S., and Seo, H. S. (2018). Status of group B streptococcal vaccine development. \u003Cem\u003EClin. Exp. vaccine Res.\u003C\u002Fem\u003E 7 (1), 76–81. doi:10.7774\u002Fcevr.2018.7.1.76\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29399583\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.7774\u002Fcevr.2018.7.1.76\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Status+of+group+B+streptococcal+vaccine+development&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B118\" id=\"B118\"\u003E\u003C\u002Fa\u003ELiu, B., Yi, L., Li, J., Wang, Y., Mao, C., and Wang, Y. (2020). Autoinducer-2 influences tetracycline resistance in Streptococcus suis by regulating the tet(M) gene via transposon Tn916. \u003Cem\u003ERes. veterinary Sci.\u003C\u002Fem\u003E 128, 269–274. doi:10.1016\u002Fj.rvsc.2019.12.007\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31837515\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.rvsc.2019.12.007\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Autoinducer-2+influences+tetracycline+resistance+in+Streptococcus+suis+by+regulating+the+tet(M)+gene+via+transposon+Tn916&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B119\" id=\"B119\"\u003E\u003C\u002Fa\u003ELiu, D., Tan, W., Wang, H., Li, W., Fu, J., Li, J., et al. (2023). Genetic diversity and genome-wide association study of 13 agronomic traits in 977 Beta vulgaris L. germplasms. \u003Cem\u003EBMC genomics\u003C\u002Fem\u003E 24 (1), 413. doi:10.1186\u002Fs12864-023-09522-y\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F37488485\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12864-023-09522-y\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Genetic+diversity+and+genome-wide+association+study+of+13+agronomic+traits+in+977+Beta+vulgaris+L.+germplasms&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B120\" id=\"B120\"\u003E\u003C\u002Fa\u003ELiu, H. Q., and Tong, X. M. (2019). A clinical analysis of late-onset sepsis in very low birth weight and extremely low birth weight infants. \u003Cem\u003EZhongguo dang dai er ke za zhi = Chin. J. Contemp. Pediatr.\u003C\u002Fem\u003E 21 (10), 1038–1043. doi:10.7499\u002Fj.issn.1008-8830.2019.10.016\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31642441\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.7499\u002Fj.issn.1008-8830.2019.10.016\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=A+clinical+analysis+of+late-onset+sepsis+in+very+low+birth+weight+and+extremely+low+birth+weight+infants&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B121\" id=\"B121\"\u003E\u003C\u002Fa\u003ELiu, Y., Li, L., Huang, T., Wu, W., Liang, W., and Chen, M. (2019). The interaction between phagocytes and Streptococcus agalactiae (GBS) mediated by the activated complement system is the key to GBS inducing acute bacterial meningitis of Tilapia. \u003Cem\u003EAnimals\u003C\u002Fem\u003E 9 (10), 818. doi:10.3390\u002Fani9100818\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31623233\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fani9100818\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=The+interaction+between+phagocytes+and+Streptococcus+agalactiae+(GBS)+mediated+by+the+activated+complement+system+is+the+key+to+GBS+inducing+acute+bacterial+meningitis+of+Tilapia&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B122\" id=\"B122\"\u003E\u003C\u002Fa\u003ELiu, Y., Liu, J., and Group, B. (2022). Group B Streptococcus: virulence factors and pathogenic mechanism. \u003Cem\u003EMicroorganisms\u003C\u002Fem\u003E 10 (12), 2483. doi:10.3390\u002Fmicroorganisms10122483\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36557736\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fmicroorganisms10122483\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus:+virulence+factors+and+pathogenic+mechanism&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B123\" id=\"B123\"\u003E\u003C\u002Fa\u003ELiu, Y., Zheng, X., Xu, L., Tong, P., Zhu, M., Peng, B., et al. (2021). Prevalence, antimicrobial resistance, and molecular characterization of \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E isolated from animals, meats, and market environments in xinjiang, China. \u003Cem\u003EFoodborne pathogens Dis.\u003C\u002Fem\u003E 18 (10), 718–726. doi:10.1089\u002Ffpd.2020.2863\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1089\u002Ffpd.2020.2863\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence,+antimicrobial+resistance,+and+molecular+characterization+of+Staphylococcus+aureus+isolated+from+animals,+meats,+and+market+environments+in+xinjiang,+China&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B124\" id=\"B124\"\u003E\u003C\u002Fa\u003ELongtin, J., Vermeiren, C., Shahinas, D., Tamber, G. S., McGeer, A., Low, D. E., et al. (2011). Novel mutations in a patient isolate of Streptococcus agalactiae with reduced penicillin susceptibility emerging after long-term oral suppressive therapy. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 55 (6), 2983–2985. doi:10.1128\u002FAAC.01243-10\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21383092\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.01243-10\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Novel+mutations+in+a+patient+isolate+of+Streptococcus+agalactiae+with+reduced+penicillin+susceptibility+emerging+after+long-term+oral+suppressive+therapy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B125\" id=\"B125\"\u003E\u003C\u002Fa\u003ELopardo, H. A., Vidal, P., Sparo, M., Jeric, P., Centron, D., Facklam, R. R., et al. (2005). Six-month multicenter study on invasive infections due to Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis in Argentina. \u003Cem\u003EJ. Clin. Microbiol.\u003C\u002Fem\u003E 43 (2), 802–807. doi:10.1128\u002FJCM.43.2.802-807.2005\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F15695683\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FJCM.43.2.802-807.2005\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Six-month+multicenter+study+on+invasive+infections+due+to+Streptococcus+pyogenes+and+Streptococcus+dysgalactiae+subsp.+equisimilis+in+Argentina&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B126\" id=\"B126\"\u003E\u003C\u002Fa\u003ELu, B., Li, D., Cui, Y., Sui, W., Huang, L., and Lu, X. (2014). Epidemiology of Group B streptococcus isolated from pregnant women in Beijing, China. \u003Cem\u003EClin. Microbiol. Infect.\u003C\u002Fem\u003E 20 (6), O370–O373. doi:10.1111\u002F1469-0691.12416\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24118553\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002F1469-0691.12416\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Epidemiology+of+Group+B+streptococcus+isolated+from+pregnant+women+in+Beijing,+China&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B127\" id=\"B127\"\u003E\u003C\u002Fa\u003ELuo, Q., Liu, N., Pu, S., Zhuang, Z., Gong, H., and Zhang, D. (2023). A review on the research progress on non-pharmacological therapy of \u003Cem\u003EHelicobacter pylori\u003C\u002Fem\u003E. \u003Cem\u003EFront. Microbiol.\u003C\u002Fem\u003E 14, 1134254. doi:10.3389\u002Ffmicb.2023.1134254\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F37007498\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffmicb.2023.1134254\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=A+review+on+the+research+progress+on+non-pharmacological+therapy+of+Helicobacter+pylori&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B128\" id=\"B128\"\u003E\u003C\u002Fa\u003EMadhi, S. A., Anderson, A. S., Absalon, J., Radley, D., Simon, R., Jongihlati, B., et al. (2023). Potential for maternally administered vaccine for infant group B Streptococcus. \u003Cem\u003EN. Engl. J. Med.\u003C\u002Fem\u003E 389 (3), 215–227. doi:10.1056\u002FNEJMoa2116045\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F37467497\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1056\u002FNEJMoa2116045\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Potential+for+maternally+administered+vaccine+for+infant+group+B+Streptococcus&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B129\" id=\"B129\"\u003E\u003C\u002Fa\u003EMadhi, S. A., Cutland, C. L., Jose, L., Koen, A., Govender, N., Wittke, F., et al. (2016). Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in healthy women and their infants: a randomised phase 1b\u002F2 trial. \u003Cem\u003ELancet Infect. Dis.\u003C\u002Fem\u003E 16 (8), 923–934. doi:10.1016\u002FS1473-3099(16)00152-3\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F27139805\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002FS1473-3099(16)00152-3\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+an+investigational+maternal+trivalent+group+B+streptococcus+vaccine+in+healthy+women+and+their+infants:+a+randomised+phase+1b\u002F2+trial&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B130\" id=\"B130\"\u003E\u003C\u002Fa\u003EMadhi, S. A., Koen, A., Cutland, C. L., Jose, L., Govender, N., Wittke, F., et al. (2017). Antibody kinetics and response to routine vaccinations in infants born to women who received an investigational trivalent group B Streptococcus polysaccharide crm197-conjugate vaccine during pregnancy. \u003Cem\u003EClin. Infect. Dis. official Publ. Infect. Dis. Soc. Am.\u003C\u002Fem\u003E 65 (11), 1897–1904. doi:10.1093\u002Fcid\u002Fcix666\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Fcid\u002Fcix666\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antibody+kinetics+and+response+to+routine+vaccinations+in+infants+born+to+women+who+received+an+investigational+trivalent+group+B+Streptococcus+polysaccharide+crm197-conjugate+vaccine+during+pregnancy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B131\" id=\"B131\"\u003E\u003C\u002Fa\u003EMaeda, T., Fukushima, Y., Yoshida, H., Goto, M., Fujita, T., Tsuyuki, Y., et al. (2021). Biofilm production ability and associated characteristics of Streptococcus agalactiae isolates from companion animals and humans. \u003Cem\u003EJ. Infect. Chemother. official J. Jpn. Soc. Chemother.\u003C\u002Fem\u003E 27 (11), 1571–1577. doi:10.1016\u002Fj.jiac.2021.06.018\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.jiac.2021.06.018\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Biofilm+production+ability+and+associated+characteristics+of+Streptococcus+agalactiae+isolates+from+companion+animals+and+humans&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B132\" id=\"B132\"\u003E\u003C\u002Fa\u003EManzanares, Á., Prieto-Tato, L. M., Escosa-García, L., Navarro, M., Guillén, S., Penin, M., et al. (2023). Increased risk of group B streptococcal sepsis and meningitis in HIV-exposed uninfected infants in a high-income country. \u003Cem\u003EEur. J. Pediatr.\u003C\u002Fem\u003E 182 (2), 575–579. doi:10.1007\u002Fs00431-022-04710-6\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36383285\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002Fs00431-022-04710-6\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Increased+risk+of+group+B+streptococcal+sepsis+and+meningitis+in+HIV-exposed+uninfected+infants+in+a+high-income+country&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B133\" id=\"B133\"\u003E\u003C\u002Fa\u003EMargarit, I., Rinaudo, C. D., Galeotti, C. L., Maione, D., Ghezzo, C., Buttazzoni, E., et al. (2009). Preventing bacterial infections with pilus-based vaccines: the group B streptococcus paradigm. \u003Cem\u003EJ. Infect. Dis.\u003C\u002Fem\u003E 199 (1), 108–115. doi:10.1086\u002F595564\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F19086816\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1086\u002F595564\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Preventing+bacterial+infections+with+pilus-based+vaccines:+the+group+B+streptococcus+paradigm&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B134\" id=\"B134\"\u003E\u003C\u002Fa\u003EMcGee, L., Chochua, S., Li, Z., Mathis, S., Rivers, J., Metcalf, B., et al. (2021). Multistate, population-based distributions of candidate vaccine targets, clonal complexes, and resistance features of invasive Group B Streptococci within the US: 2015-2017. \u003Cem\u003EClin. Infect. Dis. official Publ. Infect. Dis. Soc. Am.\u003C\u002Fem\u003E 72 (6), 1004–1013. doi:10.1093\u002Fcid\u002Fciaa151\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Fcid\u002Fciaa151\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Multistate,+population-based+distributions+of+candidate+vaccine+targets,+clonal+complexes,+and+resistance+features+of+invasive+Group+B+Streptococci+within+the+US:+2015-2017&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B135\" id=\"B135\"\u003E\u003C\u002Fa\u003EMei, J. Y., Silverman, N. S., and Group, B. (2023). Group B Streptococcus in pregnancy. \u003Cem\u003EObstetrics Gynecol. Clin. N. Am.\u003C\u002Fem\u003E 50 (2), 375–387. doi:10.1016\u002Fj.ogc.2023.02.009\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ogc.2023.02.009\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+in+pregnancy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B136\" id=\"B136\"\u003E\u003C\u002Fa\u003EMei, Z., and Li, D. (2022). The role of probiotics in vaginal health. \u003Cem\u003EFront. Cell. Infect. Microbiol.\u003C\u002Fem\u003E 12, 963868. doi:10.3389\u002Ffcimb.2022.963868\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35967876\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffcimb.2022.963868\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=The+role+of+probiotics+in+vaginal+health&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B137\" id=\"B137\"\u003E\u003C\u002Fa\u003EMejia, M. E., Mercado-Evans, V., Zulk, J. J., Ottinger, S., Ruiz, K., Ballard, M. B., et al. (2023). Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. \u003Cem\u003EbioRxiv Prepr. Serv. Biol.\u003C\u002Fem\u003E, 527909. doi:10.1101\u002F2023.02.09.527909\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1101\u002F2023.02.09.527909\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Vaginal+microbial+dynamics+and+pathogen+colonization+in+a+humanized+microbiota+mouse+model&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B138\" id=\"B138\"\u003E\u003C\u002Fa\u003EMetcalf, B. J., Chochua, S., Gertz, R. E., Hawkins, P. A., Ricaldi, J., Li, Z., et al. (2017). Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. \u003Cem\u003EClin. Microbiol. Infect.\u003C\u002Fem\u003E 23 (8), 574.e7–574.e14. doi:10.1016\u002Fj.cmi.2017.02.021\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28257899\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.cmi.2017.02.021\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Short-read+whole+genome+sequencing+for+determination+of+antimicrobial+resistance+mechanisms+and+capsular+serotypes+of+current+invasive+Streptococcus+agalactiae+recovered+in+the+USA&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B139\" id=\"B139\"\u003E\u003C\u002Fa\u003EMettu, R., Chen, C. Y., and Wu, C. Y. (2020). Synthetic carbohydrate-based vaccines: challenges and opportunities. \u003Cem\u003EJ. Biomed. Sci.\u003C\u002Fem\u003E 27 (1), 9. doi:10.1186\u002Fs12929-019-0591-0\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31900143\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12929-019-0591-0\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Synthetic+carbohydrate-based+vaccines:+challenges+and+opportunities&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B140\" id=\"B140\"\u003E\u003C\u002Fa\u003EMiselli, F., Frabboni, I., Di Martino, M., Zinani, I., Buttera, M., Insalaco, A., et al. (2022). Transmission of Group B Streptococcus in late-onset neonatal disease: a narrative review of current evidence. \u003Cem\u003ETher. Adv. Infect. Dis.\u003C\u002Fem\u003E 9, 20499361221142732. doi:10.1177\u002F20499361221142732\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36569815\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1177\u002F20499361221142732\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Transmission+of+Group+B+Streptococcus+in+late-onset+neonatal+disease:+a+narrative+review+of+current+evidence&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B141\" id=\"B141\"\u003E\u003C\u002Fa\u003EMMWR (1997). Decreasing incidence of perinatal Group B streptococcal disease--United States, 1993-1995. \u003Cem\u003EMMWR Morb. Mortal. Wkly. Rep.\u003C\u002Fem\u003E 46 (21), 473–477.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F9182211\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Decreasing+incidence+of+perinatal+Group+B+streptococcal+disease--United+States,+1993-1995&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B142\" id=\"B142\"\u003E\u003C\u002Fa\u003EMohammed, L., Javed, M., Althwanay, A., Ahsan, F., Oliveri, F., Goud, H. K., et al. (2020). Live bacteria supplementation as probiotic for managing fishy, odorous vaginal discharge disease of bacterial vaginosis: an alternative treatment option? \u003Cem\u003ECureus\u003C\u002Fem\u003E 12 (12), e12362. doi:10.7759\u002Fcureus.12362\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33527045\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.7759\u002Fcureus.12362\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Live+bacteria+supplementation+as+probiotic+for+managing+fishy,+odorous+vaginal+discharge+disease+of+bacterial+vaginosis:+an+alternative+treatment+option?&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B143\" id=\"B143\"\u003E\u003C\u002Fa\u003EMu, R., Kim, B. J., Paco, C., Del Rosario, Y., Courtney, H. S., and Doran, K. S. (2014). Identification of a group B streptococcal fibronectin binding protein, SfbA, that contributes to invasion of brain endothelium and development of meningitis. \u003Cem\u003EInfect. Immun.\u003C\u002Fem\u003E 82 (6), 2276–2286. doi:10.1128\u002FIAI.01559-13\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24643538\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FIAI.01559-13\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Identification+of+a+group+B+streptococcal+fibronectin+binding+protein,+SfbA,+that+contributes+to+invasion+of+brain+endothelium+and+development+of+meningitis&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B144\" id=\"B144\"\u003E\u003C\u002Fa\u003EMudzana, R., Mavenyengwa, R. T., and Gudza-Mugabe, M. (2021). Analysis of virulence factors and antibiotic resistance genes in group B streptococcus from clinical samples. \u003Cem\u003EBMC Infect. Dis.\u003C\u002Fem\u003E 21 (1), 125. doi:10.1186\u002Fs12879-021-05820-6\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33509097\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12879-021-05820-6\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Analysis+of+virulence+factors+and+antibiotic+resistance+genes+in+group+B+streptococcus+from+clinical+samples&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B145\" id=\"B145\"\u003E\u003C\u002Fa\u003EMurayama, S. Y., Seki, C., Sakata, H., Sunaoshi, K., Nakayama, E., Iwata, S., et al. (2009). Capsular type and antibiotic resistance in Streptococcus agalactiae isolates from patients, ranging from newborns to the elderly, with invasive infections. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 53 (6), 2650–2653. doi:10.1128\u002FAAC.01716-08\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F19332682\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.01716-08\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Capsular+type+and+antibiotic+resistance+in+Streptococcus+agalactiae+isolates+from+patients,+ranging+from+newborns+to+the+elderly,+with+invasive+infections&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B146\" id=\"B146\"\u003E\u003C\u002Fa\u003ENader-Macías, M. E. F., De Gregorio, P. R., and Silva, J. A. (2021). Probiotic lactobacilli in formulas and hygiene products for the health of the urogenital tract. \u003Cem\u003EPharmacol. Res. Perspect.\u003C\u002Fem\u003E 9 (5), e00787. doi:10.1002\u002Fprp2.787\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34609059\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1002\u002Fprp2.787\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Probiotic+lactobacilli+in+formulas+and+hygiene+products+for+the+health+of+the+urogenital+tract&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B147\" id=\"B147\"\u003E\u003C\u002Fa\u003ENagano, N., Nagano, Y., Toyama, M., Kimura, K., Tamura, T., Shibayama, K., et al. (2012). Nosocomial spread of multidrug-resistant group B streptococci with reduced penicillin susceptibility belonging to clonal complex 1. \u003Cem\u003EJ. Antimicrob. Chemother.\u003C\u002Fem\u003E 67 (4), 849–856. doi:10.1093\u002Fjac\u002Fdkr546\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22210756\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Fjac\u002Fdkr546\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Nosocomial+spread+of+multidrug-resistant+group+B+streptococci+with+reduced+penicillin+susceptibility+belonging+to+clonal+complex+1&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B148\" id=\"B148\"\u003E\u003C\u002Fa\u003ENanduri, S. A., Petit, S., Smelser, C., Apostol, M., Alden, N. B., Harrison, L. H., et al. (2019). Epidemiology of invasive early-onset and late-onset group B streptococcal disease in the United States, 2006 to 2015: multistate laboratory and population-based surveillance. \u003Cem\u003EJAMA Pediatr.\u003C\u002Fem\u003E 173 (3), 224–233. doi:10.1001\u002Fjamapediatrics.2018.4826\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30640366\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1001\u002Fjamapediatrics.2018.4826\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Epidemiology+of+invasive+early-onset+and+late-onset+group+B+streptococcal+disease+in+the+United+States,+2006+to+2015:+multistate+laboratory+and+population-based+surveillance&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B149\" id=\"B149\"\u003E\u003C\u002Fa\u003ENitzan, O., Elias, M., Peretz, A., and Saliba, W. (2016). Role of antibiotics for treatment of inflammatory bowel disease. \u003Cem\u003EWorld J. gastroenterology\u003C\u002Fem\u003E 22 (3), 1078–1087. doi:10.3748\u002Fwjg.v22.i3.1078\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26811648\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3748\u002Fwjg.v22.i3.1078\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Role+of+antibiotics+for+treatment+of+inflammatory+bowel+disease&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B150\" id=\"B150\"\u003E\u003C\u002Fa\u003ENørgaard, S. M., Jensen, C. S., Aalestrup, J., Vandenbroucke-Grauls, C., de Boer, M. G. J., and Pedersen, A. B. (2019). Choice of therapeutic interventions and outcomes for the treatment of infections caused by multidrug-resistant gram-negative pathogens: a systematic review. \u003Cem\u003EAntimicrob. Resist. Infect. control\u003C\u002Fem\u003E 8, 170. doi:10.1186\u002Fs13756-019-0624-1\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31709047\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs13756-019-0624-1\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Choice+of+therapeutic+interventions+and+outcomes+for+the+treatment+of+infections+caused+by+multidrug-resistant+gram-negative+pathogens:+a+systematic+review&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B151\" id=\"B151\"\u003E\u003C\u002Fa\u003ENuccitelli, A., Rinaudo, C. D., and Maione, D. (2015). Group B Streptococcus vaccine: state of the art. \u003Cem\u003ETher. Adv. vaccines\u003C\u002Fem\u003E 3 (3), 76–90. doi:10.1177\u002F2051013615579869\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26288735\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1177\u002F2051013615579869\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+vaccine:+state+of+the+art&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B152\" id=\"B152\"\u003E\u003C\u002Fa\u003EPadekar, H., Samal, B., Dash, L., and J, S. (2020). Prevalence of inducible clindamycin resistance among \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E isolates from a tertiary care hospital. \u003Cem\u003EIp. Int. J. Med. Microbiol. Trop. Dis.\u003C\u002Fem\u003E 6 (3), 161–164. doi:10.18231\u002Fj.ijmmtd.2020.036\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.18231\u002Fj.ijmmtd.2020.036\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+inducible+clindamycin+resistance+among+Staphylococcus+aureus+isolates+from+a+tertiary+care+hospital&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B153\" id=\"B153\"\u003E\u003C\u002Fa\u003EPaoletti, L. C., and Kasper, D. L. (2019). Surface structures of group B Streptococcus important in human immunity. \u003Cem\u003EMicrobiol. Spectr.\u003C\u002Fem\u003E 7 (2). doi:10.1128\u002Fmicrobiolspec.GPP3-0001-2017\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30873933\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fmicrobiolspec.GPP3-0001-2017\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Surface+structures+of+group+B+Streptococcus+important+in+human+immunity&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B154\" id=\"B154\"\u003E\u003C\u002Fa\u003EPark, C., Nichols, M., and Schrag, S. J. (2014). Two cases of invasive vancomycin-resistant group B streptococcus infection. \u003Cem\u003EN. Engl. J. Med.\u003C\u002Fem\u003E 370 (9), 885–886. doi:10.1056\u002FNEJMc1308504\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24571775\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1056\u002FNEJMc1308504\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Two+cases+of+invasive+vancomycin-resistant+group+B+streptococcus+infection&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B155\" id=\"B155\"\u003E\u003C\u002Fa\u003EPaul, P., Gonçalves, B. P., Le Doare, K., and Lawn, J. E. (2023). 20 million pregnant women with group B streptococcus carriage: consequences, challenges, and opportunities for prevention. \u003Cem\u003ECurr. Opin. Pediatr.\u003C\u002Fem\u003E 35 (2), 223–230. doi:10.1097\u002FMOP.0000000000001223\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36749143\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1097\u002FMOP.0000000000001223\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=20+million+pregnant+women+with+group+B+streptococcus+carriage:+consequences,+challenges,+and+opportunities+for+prevention&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B156\" id=\"B156\"\u003E\u003C\u002Fa\u003EPawlowski, A., Lannergård, J., Gonzalez-Miro, M., Cao, D., Larsson, S., Persson, J. J., et al. (2022). A group B Streptococcus alpha-like protein subunit vaccine induces functionally active antibodies in humans targeting homotypic and heterotypic strains. \u003Cem\u003ECell. Rep. Med.\u003C\u002Fem\u003E 3 (2), 100511. doi:10.1016\u002Fj.xcrm.2022.100511\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35243418\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.xcrm.2022.100511\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=A+group+B+Streptococcus+alpha-like+protein+subunit+vaccine+induces+functionally+active+antibodies+in+humans+targeting+homotypic+and+heterotypic+strains&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B157\" id=\"B157\"\u003E\u003C\u002Fa\u003EPersson, E., Berg, S., Bergseng, H., Bergh, K., Valsö-Lyng, R., and Trollfors, B. (2008). Antimicrobial susceptibility of invasive group B streptococcal isolates from south-west Sweden 1988-2001. \u003Cem\u003EScand. J. Infect. Dis.\u003C\u002Fem\u003E 40 (4), 308–313. doi:10.1080\u002F00365540701678702\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F17918014\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F00365540701678702\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+susceptibility+of+invasive+group+B+streptococcal+isolates+from+south-west+Sweden+1988-2001&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B158\" id=\"B158\"\u003E\u003C\u002Fa\u003EPezzicoli, A., Santi, I., Lauer, P., Rosini, R., Rinaudo, D., Grandi, G., et al. (2008). Pilus backbone contributes to group B Streptococcus paracellular translocation through epithelial cells. \u003Cem\u003EJ. Infect. Dis.\u003C\u002Fem\u003E 198 (6), 890–898. doi:10.1086\u002F591182\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F18694342\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1086\u002F591182\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Pilus+backbone+contributes+to+group+B+Streptococcus+paracellular+translocation+through+epithelial+cells&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B159\" id=\"B159\"\u003E\u003C\u002Fa\u003EPiccinelli, G., Biscaro, V., Gargiulo, F., Caruso, A., and De Francesco, M. A. (2015b). Characterization and antibiotic susceptibility of Streptococcus agalactiae isolates causing urinary tract infections. \u003Cem\u003EInfect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis.\u003C\u002Fem\u003E 34, 1–6. doi:10.1016\u002Fj.meegid.2015.07.001\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26144658\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.meegid.2015.07.001\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Characterization+and+antibiotic+susceptibility+of+Streptococcus+agalactiae+isolates+causing+urinary+tract+infections&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B160\" id=\"B160\"\u003E\u003C\u002Fa\u003EPiccinelli, G., Gargiulo, F., Corbellini, S., Ravizzola, G., Bonfanti, C., Caruso, A., et al. (2015a). Emergence of the first levofloxacin-resistant strains of Streptococcus agalactiae isolated in Italy. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 59 (4), 2466–2469. doi:10.1128\u002FAAC.05127-14\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F25666148\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.05127-14\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Emergence+of+the+first+levofloxacin-resistant+strains+of+Streptococcus+agalactiae+isolated+in+Italy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B161\" id=\"B161\"\u003E\u003C\u002Fa\u003EPierański, M. K., Kosiński, J. G., Szymczak, K., Sadowski, P., and Grinholc, M. (2023). Antimicrobial photodynamic inactivation: an alternative for group B Streptococcus vaginal colonization in a murine experimental model. \u003Cem\u003EAntioxidants Basel, Switz.\u003C\u002Fem\u003E 12 (4), 847. doi:10.3390\u002Fantiox12040847\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fantiox12040847\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+photodynamic+inactivation:+an+alternative+for+group+B+Streptococcus+vaginal+colonization+in+a+murine+experimental+model&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B162\" id=\"B162\"\u003E\u003C\u002Fa\u003EPietrocola, G., Arciola, C. R., Rindi, S., Montanaro, L., and Speziale, P. (2018). Streptococcus agalactiae non-pilus, cell wall-anchored proteins: involvement in colonization and pathogenesis and potential as vaccine candidates. \u003Cem\u003EFront. Immunol.\u003C\u002Fem\u003E 9, 602. doi:10.3389\u002Ffimmu.2018.00602\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29686667\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffimmu.2018.00602\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Streptococcus+agalactiae+non-pilus,+cell+wall-anchored+proteins:+involvement+in+colonization+and+pathogenesis+and+potential+as+vaccine+candidates&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B163\" id=\"B163\"\u003E\u003C\u002Fa\u003EPiliponsky, A. M., Sharma, K., Quach, P., Brokaw, A., Nguyen, S., Orvis, A., et al. (2022). Mast cell-derived factor XIIIA contributes to sexual dimorphic defense against group B streptococcal infections. \u003Cem\u003EJ. Clin. investigation\u003C\u002Fem\u003E 132 (20), e157999. doi:10.1172\u002FJCI157999\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1172\u002FJCI157999\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Mast+cell-derived+factor+XIIIA+contributes+to+sexual+dimorphic+defense+against+group+B+streptococcal+infections&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B164\" id=\"B164\"\u003E\u003C\u002Fa\u003EPlatt, M. W., and Gilson, G. J. (1994). Group B streptococcal disease in the perinatal period. \u003Cem\u003EAm. Fam. physician\u003C\u002Fem\u003E 49 (2), 434–442.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F8304264\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+disease+in+the+perinatal+period&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B165\" id=\"B165\"\u003E\u003C\u002Fa\u003EPourmadadi, M., Moammeri, A., Shamsabadipour, A., Moghaddam, Y. F., Rahdar, A., and Pandey, S. (2023). Application of various optical and electrochemical nanobiosensors for detecting cancer antigen 125 (CA-125): a review. \u003Cem\u003EBiosensors\u003C\u002Fem\u003E 13 (1), 99. doi:10.3390\u002Fbios13010099\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36671934\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fbios13010099\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Application+of+various+optical+and+electrochemical+nanobiosensors+for+detecting+cancer+antigen+125+(CA-125):+a+review&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B166\" id=\"B166\"\u003E\u003C\u002Fa\u003EPreenanka, R., and Safeena, M. P. (2023). Morphological, biological and genomic characterization of lytic phages against Streptococcus agalactiae causing streptococcosis in tilapia. \u003Cem\u003EMicrob. Pathog.\u003C\u002Fem\u003E 174, 105919. doi:10.1016\u002Fj.micpath.2022.105919\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36460145\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.micpath.2022.105919\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Morphological,+biological+and+genomic+characterization+of+lytic+phages+against+Streptococcus+agalactiae+causing+streptococcosis+in+tilapia&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B167\" id=\"B167\"\u003E\u003C\u002Fa\u003EPreventing neonatal group B streptococcal infection (2011). Preventing neonatal group B streptococcal infection. Intrapartum antibiotic prophylaxis in some high-risk situations. \u003Cem\u003EPrescrire Int.\u003C\u002Fem\u003E 20 (114), 72–77.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21648230\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Preventing+neonatal+group+B+streptococcal+infection.+Intrapartum+antibiotic+prophylaxis+in+some+high-risk+situations&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B168\" id=\"B168\"\u003E\u003C\u002Fa\u003EPrevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion (2020). Prevention of group B streptococcal early-onset disease in newborns: ACOG committee opinion, number 797. \u003Cem\u003EObstetrics Gynecol.\u003C\u002Fem\u003E 135 (2), e51–e72. doi:10.1097\u002FAOG.0000000000003668\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31977795\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1097\u002FAOG.0000000000003668\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevention+of+group+B+streptococcal+early-onset+disease+in+newborns:+ACOG+committee+opinion,+number+797&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B169\" id=\"B169\"\u003E\u003C\u002Fa\u003EProcter, S. R., Gonçalves, B. P., Paul, P., Chandna, J., Seedat, F., Koukounari, A., et al. (2023). Maternal immunisation against Group B Streptococcus: a global analysis of health impact and cost-effectiveness. \u003Cem\u003EPLoS Med.\u003C\u002Fem\u003E 20 (3), e1004068. doi:10.1371\u002Fjournal.pmed.1004068\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36917564\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1371\u002Fjournal.pmed.1004068\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Maternal+immunisation+against+Group+B+Streptococcus:+a+global+analysis+of+health+impact+and+cost-effectiveness&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B170\" id=\"B170\"\u003E\u003C\u002Fa\u003EPulingam, T., Parumasivam, T., Gazzali, A. M., Sulaiman, A. M., Chee, J. Y., Lakshmanan, M., et al. (2022). Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. \u003Cem\u003EEur. J. Pharm. Sci. official J. Eur. Fed. Pharm. Sci.\u003C\u002Fem\u003E 170, 106103. doi:10.1016\u002Fj.ejps.2021.106103\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ejps.2021.106103\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+resistance:+prevalence,+economic+burden,+mechanisms+of+resistance+and+strategies+to+overcome&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B171\" id=\"B171\"\u003E\u003C\u002Fa\u003ERaabe, V. N., Shane, A. L., and Group, B. (2019). Group B Streptococcus (Streptococcus agalactiae). \u003Cem\u003EMicrobiol. Spectr.\u003C\u002Fem\u003E 7 (2). doi:10.1128\u002Fmicrobiolspec.GPP3-0007-2018\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30900541\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fmicrobiolspec.GPP3-0007-2018\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+(Streptococcus+agalactiae)&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B172\" id=\"B172\"\u003E\u003C\u002Fa\u003ERagunathan, P., Sridaran, D., Weigel, A., Shabayek, S., Spellerberg, B., and Ponnuraj, K. (2013). Metal binding is critical for the folding and function of laminin binding protein, lmb of Streptococcus agalactiae. \u003Cem\u003EPloS one\u003C\u002Fem\u003E 8, e67517. doi:10.1371\u002Fjournal.pone.0067517\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23826314\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1371\u002Fjournal.pone.0067517\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Metal+binding+is+critical+for+the+folding+and+function+of+laminin+binding+protein,+lmb+of+Streptococcus+agalactiae&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B173\" id=\"B173\"\u003E\u003C\u002Fa\u003ERajagopal, L. (2009). Understanding the regulation of Group B Streptococcal virulence factors. \u003Cem\u003EFuture Microbiol.\u003C\u002Fem\u003E 4 (2), 201–221. doi:10.2217\u002F17460913.4.2.201\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F19257847\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.2217\u002F17460913.4.2.201\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Understanding+the+regulation+of+Group+B+Streptococcal+virulence+factors&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B174\" id=\"B174\"\u003E\u003C\u002Fa\u003EReza, A., Sutton, J. M., and Rahman, K. M. (2019). Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria. \u003Cem\u003EAntibiot. Basel, Switz.\u003C\u002Fem\u003E 8 (4), 229. doi:10.3390\u002Fantibiotics8040229\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31752382\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fantibiotics8040229\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Effectiveness+of+efflux+pump+inhibitors+as+biofilm+disruptors+and+resistance+breakers+in+gram-negative+(ESKAPEE)+bacteria&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B175\" id=\"B175\"\u003E\u003C\u002Fa\u003ERisser, F., López-Morales, J., and Nash, M. A. (2022). Adhesive virulence factors of \u003Cem\u003EStaphylococcus aureus\u003C\u002Fem\u003E resist digestion by coagulation proteases thrombin and plasmin. \u003Cem\u003EACS Bio Med Chem Au\u003C\u002Fem\u003E 2 (6), 586–599. doi:10.1021\u002Facsbiomedchemau.2c00042\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36573096\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1021\u002Facsbiomedchemau.2c00042\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Adhesive+virulence+factors+of+Staphylococcus+aureus+resist+digestion+by+coagulation+proteases+thrombin+and+plasmin&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B176\" id=\"B176\"\u003E\u003C\u002Fa\u003ERosa-Fraile, M., Dramsi, S., and Spellerberg, B. (2014). Group B streptococcal haemolysin and pigment, a tale of twins. \u003Cem\u003EFEMS Microbiol. Rev.\u003C\u002Fem\u003E 38 (5), 932–946. doi:10.1111\u002F1574-6976.12071\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24617549\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002F1574-6976.12071\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+haemolysin+and+pigment,+a+tale+of+twins&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B177\" id=\"B177\"\u003E\u003C\u002Fa\u003ESadowy, E., Matynia, B., and Hryniewicz, W. (2010). Population structure, virulence factors and resistance determinants of invasive, non-invasive and colonizing Streptococcus agalactiae in Poland. \u003Cem\u003EJ. Antimicrob. Chemother.\u003C\u002Fem\u003E 65 (9), 1907–1914. doi:10.1093\u002Fjac\u002Fdkq230\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F20584746\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Fjac\u002Fdkq230\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Population+structure,+virulence+factors+and+resistance+determinants+of+invasive,+non-invasive+and+colonizing+Streptococcus+agalactiae+in+Poland&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B178\" id=\"B178\"\u003E\u003C\u002Fa\u003ESantana, F. A. F., de Oliveira, T. V. L., Filho, M. B. S., da Silva, L. S. C., de Brito, B. B., de Melo, F. F., et al. (2020). Streptococcus agalactiae: identification methods, antimicrobial susceptibility, and resistance genes in pregnant women. \u003Cem\u003EWorld J. Clin. cases\u003C\u002Fem\u003E 8 (18), 3988–3998. doi:10.12998\u002Fwjcc.v8.i18.3988\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33024755\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.12998\u002Fwjcc.v8.i18.3988\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Streptococcus+agalactiae:+identification+methods,+antimicrobial+susceptibility,+and+resistance+genes+in+pregnant+women&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B179\" id=\"B179\"\u003E\u003C\u002Fa\u003ESanti, I., Scarselli, M., Mariani, M., Pezzicoli, A., Masignani, V., Taddei, A., et al. (2007). BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. \u003Cem\u003EMol. Microbiol.\u003C\u002Fem\u003E 63 (3), 754–767. doi:10.1111\u002Fj.1365-2958.2006.05555.x\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F17212592\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fj.1365-2958.2006.05555.x\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=BibA:+a+novel+immunogenic+bacterial+adhesin+contributing+to+group+B+Streptococcus+survival+in+human+blood&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B180\" id=\"B180\"\u003E\u003C\u002Fa\u003ESantillan, D. A., Andracki, M. E., and Hunter, S. K. (2008). Protective immunization in mice against group B streptococci using encapsulated C5a peptidase. \u003Cem\u003EAm. J. obstetrics Gynecol.\u003C\u002Fem\u003E 198 (1), 114.e111–e6. doi:10.1016\u002Fj.ajog.2007.06.003\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F17905172\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ajog.2007.06.003\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Protective+immunization+in+mice+against+group+B+streptococci+using+encapsulated+C5a+peptidase&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B181\" id=\"B181\"\u003E\u003C\u002Fa\u003ESantillan, D. A., Rai, K. K., Santillan, M. K., Krishnamachari, Y., Salem, A. K., and Hunter, S. K. (2011). Efficacy of polymeric encapsulated C5a peptidase–based group B streptococcus vaccines in a murine model. \u003Cem\u003EAm. J. obstetrics Gynecol.\u003C\u002Fem\u003E 205 (3), 249.e241–e8. doi:10.1016\u002Fj.ajog.2011.06.024\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21802065\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ajog.2011.06.024\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Efficacy+of+polymeric+encapsulated+C5a+peptidase芒聙聯based+group+B+streptococcus+vaccines+in+a+murine+model&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B182\" id=\"B182\"\u003E\u003C\u002Fa\u003ESavoia, D., Gottimer, C., Crocilla, C., and Zucca, M. (2008). Streptococcus agalactiae in pregnant women: phenotypic and genotypic characters. \u003Cem\u003EJ. Infect.\u003C\u002Fem\u003E 56 (2), 120–125. doi:10.1016\u002Fj.jinf.2007.11.007\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F18166228\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.jinf.2007.11.007\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Streptococcus+agalactiae+in+pregnant+women:+phenotypic+and+genotypic+characters&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B183\" id=\"B183\"\u003E\u003C\u002Fa\u003ESayres, L. C., Younge, N. E., Rikard, B., Corcoran, D. L., Modliszewski, J. L., and Hughes, B. L. (2023). The gestational membrane microbiome in the presence or absence of intraamniotic infection. \u003Cem\u003EAm. J. obstetrics Gynecol. MFM\u003C\u002Fem\u003E 5 (3), 100837. doi:10.1016\u002Fj.ajogmf.2022.100837\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ajogmf.2022.100837\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=The+gestational+membrane+microbiome+in+the+presence+or+absence+of+intraamniotic+infection&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B184\" id=\"B184\"\u003E\u003C\u002Fa\u003ESchindler, Y., Rahav, G., Nissan, I., Treygerman, O., Prajgrod, G., Attia, B. Z., et al. (2023). Group B streptococcus virulence factors associated with different clinical syndromes: asymptomatic carriage in pregnant women and early-onset disease in the newborn. \u003Cem\u003EFront. Microbiol.\u003C\u002Fem\u003E 14, 1093288. doi:10.3389\u002Ffmicb.2023.1093288\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36860481\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffmicb.2023.1093288\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcus+virulence+factors+associated+with+different+clinical+syndromes:+asymptomatic+carriage+in+pregnant+women+and+early-onset+disease+in+the+newborn&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B185\" id=\"B185\"\u003E\u003C\u002Fa\u003ESchrag, S., Gorwitz, R., Fultz-Butts, K., and Schuchat, A. (2002). Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC. \u003Cem\u003EMMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep.\u003C\u002Fem\u003E 51 (Rr-11), 1–22.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F12211284\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevention+of+perinatal+group+B+streptococcal+disease.+Revised+guidelines+from+CDC&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B186\" id=\"B186\"\u003E\u003C\u002Fa\u003ESchuchat, A. (1995). Group B streptococcal disease in newborns: a global perspective on prevention. \u003Cem\u003EBiomed. Pharmacother. = Biomedecine Pharmacother.\u003C\u002Fem\u003E 49 (1), 19–25. doi:10.1016\u002F0753-3322(96)82573-X\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F7749075\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002F0753-3322(96)82573-X\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+disease+in+newborns:+a+global+perspective+on+prevention&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B187\" id=\"B187\"\u003E\u003C\u002Fa\u003ESeo, Y. S., Srinivasan, U., Oh, K. Y., Shin, J. H., Chae, J. D., Kim, M. Y., et al. (2010). Changing molecular epidemiology of group B streptococcus in Korea. \u003Cem\u003EJ. Korean Med. Sci.\u003C\u002Fem\u003E 25 (6), 817–823. doi:10.3346\u002Fjkms.2010.25.6.817\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F20514299\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3346\u002Fjkms.2010.25.6.817\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Changing+molecular+epidemiology+of+group+B+streptococcus+in+Korea&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B188\" id=\"B188\"\u003E\u003C\u002Fa\u003EShabayek, S., and Abdalla, S. (2014). Macrolide- and tetracycline-resistance determinants of colonizing group B streptococcus in women in Egypt. \u003Cem\u003EJ. Med. Microbiol.\u003C\u002Fem\u003E 63 (Pt 10), 1324–1327. doi:10.1099\u002Fjmm.0.077057-0\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F25053798\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1099\u002Fjmm.0.077057-0\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Macrolide-+and+tetracycline-resistance+determinants+of+colonizing+group+B+streptococcus+in+women+in+Egypt&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B189\" id=\"B189\"\u003E\u003C\u002Fa\u003EShabayek, S., Spellerberg, B., and Group, B. (2018). Group B streptococcal colonization, molecular characteristics, and epidemiology. \u003Cem\u003EFront. Microbiol.\u003C\u002Fem\u003E 9, 437. doi:10.3389\u002Ffmicb.2018.00437\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29593684\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffmicb.2018.00437\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+colonization,+molecular+characteristics,+and+epidemiology&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B190\" id=\"B190\"\u003E\u003C\u002Fa\u003EShen, A. D., Zhang, G. R., Wang, Y. H., and Yang, Y. H. (2005). Susceptibility patterns and mechanisms of macrolide resistance in group B streptococcus isolates. \u003Cem\u003EZhonghua er ke za zhi = Chin. J. Pediatr.\u003C\u002Fem\u003E 43 (9), 661–664.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F16191298\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Susceptibility+patterns+and+mechanisms+of+macrolide+resistance+in+group+B+streptococcus+isolates&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B191\" id=\"B191\"\u003E\u003C\u002Fa\u003EShimizu, A., Tsukagoshi, H., Sekizuka, T., Kuroda, M., Koizumi, A., Fujita, M., et al. (2020). Meningitis and bacteremia by nonhemolytic Group B Streptococcus strain: a whole genome analysis. \u003Cem\u003EMicrobiol. Immunol.\u003C\u002Fem\u003E 64 (9), 630–634. doi:10.1111\u002F1348-0421.12826\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32484984\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002F1348-0421.12826\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Meningitis+and+bacteremia+by+nonhemolytic+Group+B+Streptococcus+strain:+a+whole+genome+analysis&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B192\" id=\"B192\"\u003E\u003C\u002Fa\u003ESidky, I., and Thomas, M. (2002). Prevalence of Group B streptococcal infection colonisation in pregnant women and their offspring in the Middle East. \u003Cem\u003EJ. Obstetrics Gynaecol.\u003C\u002Fem\u003E 22 (2), 179–180. doi:10.1080\u002F01443610120113364\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F12521703\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F01443610120113364\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+Group+B+streptococcal+infection+colonisation+in+pregnant+women+and+their+offspring+in+the+Middle+East&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B193\" id=\"B193\"\u003E\u003C\u002Fa\u003ESimonsen, K. A., Anderson-Berry, A. L., Delair, S. F., and Davies, H. D. (2014). Early-onset neonatal sepsis. \u003Cem\u003EClin. Microbiol. Rev.\u003C\u002Fem\u003E 27 (1), 21–47. doi:10.1128\u002FCMR.00031-13\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24396135\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FCMR.00031-13\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Early-onset+neonatal+sepsis&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B194\" id=\"B194\"\u003E\u003C\u002Fa\u003ESitkiewicz, I., Green, N. M., Guo, N., Bongiovanni, A. M., Witkin, S. S., and Musser, J. M. (2009). Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid. \u003Cem\u003EPloS one\u003C\u002Fem\u003E 4 (7), e6114. doi:10.1371\u002Fjournal.pone.0006114\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F19568429\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1371\u002Fjournal.pone.0006114\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Transcriptome+adaptation+of+group+B+Streptococcus+to+growth+in+human+amniotic+fluid&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B195\" id=\"B195\"\u003E\u003C\u002Fa\u003ESlotved, H. C., and Hoffmann, S. (2020). The epidemiology of invasive group B Streptococcus in Denmark from 2005 to 2018. \u003Cem\u003EFront. public health\u003C\u002Fem\u003E 8, 40. doi:10.3389\u002Ffpubh.2020.00040\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32211361\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffpubh.2020.00040\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=The+epidemiology+of+invasive+group+B+Streptococcus+in+Denmark+from+2005+to+2018&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B196\" id=\"B196\"\u003E\u003C\u002Fa\u003ESong, K. E., Hwang, N., Ham, J. Y., Cha, H. H., Chong, G. O., and Lee, N. Y. (2022). Prevalence of group B Streptococcus colonization in pregnant women at a university hospital in Korea. \u003Cem\u003EClin. Lab.\u003C\u002Fem\u003E 68 (8). doi:10.7754\u002FClin.Lab.2021.211126\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.7754\u002FClin.Lab.2021.211126\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence+of+group+B+Streptococcus+colonization+in+pregnant+women+at+a+university+hospital+in+Korea&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B197\" id=\"B197\"\u003E\u003C\u002Fa\u003ESpellerberg, B., Rozdzinski, E., Martin, S., Weber-Heynemann, J., Schnitzler, N., Lütticken, R., et al. (1999). Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. \u003Cem\u003EInfect. Immun.\u003C\u002Fem\u003E 67 (2), 871–878. doi:10.1128\u002FIAI.67.2.871-878.1999\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F9916102\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FIAI.67.2.871-878.1999\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Lmb,+a+protein+with+similarities+to+the+LraI+adhesin+family,+mediates+attachment+of+Streptococcus+agalactiae+to+human+laminin&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B198\" id=\"B198\"\u003E\u003C\u002Fa\u003ESpencer, B. L., Deng, L., Patras, K. A., Burcham, Z. M., Sanches, G. F., Nagao, P. E., et al. (2019). Cas9 contributes to group B streptococcal colonization and disease. \u003Cem\u003EFront. Microbiol.\u003C\u002Fem\u003E 10, 1930. doi:10.3389\u002Ffmicb.2019.01930\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31497003\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffmicb.2019.01930\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Cas9+contributes+to+group+B+streptococcal+colonization+and+disease&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B199\" id=\"B199\"\u003E\u003C\u002Fa\u003ESravani, A. B., Ghate, V., and Lewis, S. (2023). Human papillomavirus infection, cervical cancer and the less explored role of trace elements. \u003Cem\u003EBiol. trace Elem. Res.\u003C\u002Fem\u003E 201 (3), 1026–1050. doi:10.1007\u002Fs12011-022-03226-2\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35467267\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002Fs12011-022-03226-2\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Human+papillomavirus+infection,+cervical+cancer+and+the+less+explored+role+of+trace+elements&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B200\" id=\"B200\"\u003E\u003C\u002Fa\u003ESroka-Oleksiak, A., Gosiewski, T., Pabian, W., Gurgul, A., Kapusta, P., Ludwig-Słomczyńska, A. H., et al. (2020). Next-generation sequencing as a tool to detect vaginal microbiota disturbances during pregnancy. \u003Cem\u003EMicroorganisms\u003C\u002Fem\u003E 8 (11), 1813. doi:10.3390\u002Fmicroorganisms8111813\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33217908\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fmicroorganisms8111813\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Next-generation+sequencing+as+a+tool+to+detect+vaginal+microbiota+disturbances+during+pregnancy&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B201\" id=\"B201\"\u003E\u003C\u002Fa\u003EStepanović, S., Djukić, S., Veljković, M., Arsić, B., Garalejić, E., and Ranin, L. (2003). Antimicrobial activity of human follicular fluids. \u003Cem\u003EGynecol. obstetric investigation\u003C\u002Fem\u003E 56 (3), 173–178. doi:10.1159\u002F000074103\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1159\u002F000074103\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+activity+of+human+follicular+fluids&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B202\" id=\"B202\"\u003E\u003C\u002Fa\u003EStephens, K., Charnock-Jones, D. S., and Smith, G. C. S. (2023). Group B Streptococcus and the risk of perinatal morbidity and mortality following term labor. \u003Cem\u003EAm. J. obstetrics Gynecol.\u003C\u002Fem\u003E 228 (5s), S1305–s1312. doi:10.1016\u002Fj.ajog.2022.07.051\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ajog.2022.07.051\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+and+the+risk+of+perinatal+morbidity+and+mortality+following+term+labor&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B203\" id=\"B203\"\u003E\u003C\u002Fa\u003ESuffolk, R., Agertoft, L., Johansen, M., and Zachariassen, G. (2019). Late-onset group B streptococcus infections and severe bronchopulmonary dysplasia in an extremely preterm born infant. \u003Cem\u003EBMJ case Rep.\u003C\u002Fem\u003E 12 (7), e229255. doi:10.1136\u002Fbcr-2019-229255\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31350226\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1136\u002Fbcr-2019-229255\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Late-onset+group+B+streptococcus+infections+and+severe+bronchopulmonary+dysplasia+in+an+extremely+preterm+born+infant&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B204\" id=\"B204\"\u003E\u003C\u002Fa\u003ESundin, C. S., Rigg, K., and Ellis, K. K. (2021). Maternal sepsis: presentation, course, treatment, and outcomes. \u003Cem\u003EMCN Am. J. maternal child Nurs.\u003C\u002Fem\u003E 46, 155–160. doi:10.1097\u002FNMC.0000000000000712\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1097\u002FNMC.0000000000000712\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Maternal+sepsis:+presentation,+course,+treatment,+and+outcomes&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B205\" id=\"B205\"\u003E\u003C\u002Fa\u003ESwamy, G. K., Metz, T. D., Edwards, K. M., Soper, D. E., Beigi, R. H., Campbell, J. D., et al. (2020). Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in pregnant women and their infants: results from a randomized placebo-controlled phase II trial. \u003Cem\u003EVaccine\u003C\u002Fem\u003E 38 (44), 6930–6940. doi:10.1016\u002Fj.vaccine.2020.08.056\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32883555\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.vaccine.2020.08.056\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Safety+and+immunogenicity+of+an+investigational+maternal+trivalent+group+B+streptococcus+vaccine+in+pregnant+women+and+their+infants:+results+from+a+randomized+placebo-controlled+phase+II+trial&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B206\" id=\"B206\"\u003E\u003C\u002Fa\u003ESweeney, E. L., Gardiner, S., Tickner, J., Trim, L., Beagley, K. W., Carey, A. J., et al. (2020). Group B Streptococcus serotypes Ia and V induce differential vaginal immune responses that may contribute to long term colonization of the female reproductive tract. \u003Cem\u003EAm. J. reproductive Immunol.\u003C\u002Fem\u003E 83 (1), e13199. doi:10.1111\u002Faji.13199\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31626718\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Faji.13199\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+serotypes+Ia+and+V+induce+differential+vaginal+immune+responses+that+may+contribute+to+long+term+colonization+of+the+female+reproductive+tract&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B207\" id=\"B207\"\u003E\u003C\u002Fa\u003ETakaya, A., Kitagawa, N., Kuroe, Y., Endo, K., Okazaki, M., Yokoyama, E., et al. (2010). Mutational analysis of reduced telithromycin susceptibility of Streptococcus pneumoniae isolated clinically in Japan. \u003Cem\u003EFEMS Microbiol. Lett.\u003C\u002Fem\u003E 307 (1), 87–93. doi:10.1111\u002Fj.1574-6968.2010.01962.x\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F20402783\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1111\u002Fj.1574-6968.2010.01962.x\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Mutational+analysis+of+reduced+telithromycin+susceptibility+of+Streptococcus+pneumoniae+isolated+clinically+in+Japan&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B208\" id=\"B208\"\u003E\u003C\u002Fa\u003ETalebi Bezmin Abadi, A., Rizvanov, A. A., Haertlé, T., and Blatt, N. L. (2019). World health organization report: current crisis of antibiotic resistance. \u003Cem\u003EBioNanoScience\u003C\u002Fem\u003E 9 (4), 778–788. doi:10.1007\u002Fs12668-019-00658-4\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002Fs12668-019-00658-4\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=World+health+organization+report:+current+crisis+of+antibiotic+resistance&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B209\" id=\"B209\"\u003E\u003C\u002Fa\u003ETano, S., Ueno, T., Mayama, M., Yamada, T., Takeda, T., Uno, K., et al. (2021). Relationship between vaginal group B streptococcus colonization in the early stage of pregnancy and preterm birth: a retrospective cohort study. \u003Cem\u003EBMC pregnancy childbirth\u003C\u002Fem\u003E 21 (1), 141. doi:10.1186\u002Fs12884-021-03624-9\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33593322\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12884-021-03624-9\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Relationship+between+vaginal+group+B+streptococcus+colonization+in+the+early+stage+of+pregnancy+and+preterm+birth:+a+retrospective+cohort+study&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B210\" id=\"B210\"\u003E\u003C\u002Fa\u003ETiruvayipati, S., Tang, W. Y., Barkham, T. M. S., and Chen, S. L. (2021). GBS-SBG - GBS serotyping by genome sequencing. \u003Cem\u003EMicrob. genomics\u003C\u002Fem\u003E 7 (12), 000688. doi:10.1099\u002Fmgen.0.000688\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1099\u002Fmgen.0.000688\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=GBS-SBG+-+GBS+serotyping+by+genome+sequencing&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B211\" id=\"B211\"\u003E\u003C\u002Fa\u003ETotadhri, M., Lakshmanan, A., Saraswathy, M. P., and Mane, M. S. (2022). Asymptomatic bacteriuria of pregnant women in a tertiary care centre. \u003Cem\u003EJ. Educ. health Promot.\u003C\u002Fem\u003E 11, 249. doi:10.4103\u002Fjehp.jehp_1752_21\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36325203\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.4103\u002Fjehp.jehp_1752_21\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Asymptomatic+bacteriuria+of+pregnant+women+in+a+tertiary+care+centre&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B212\" id=\"B212\"\u003E\u003C\u002Fa\u003ETsega, K. G., Tamrat Abebe, Z., Adane, M., and Mulugeta Desta, T. (2015). Prevalence and antibiotic susceptibility pattern of Streptococcus agalactiae among pregnant women at adigrat zonal hospital and adigrat health center, tigray, Ethiopia. \u003Cem\u003EJ. Gynecol. Obstetrics\u003C\u002Fem\u003E 3 (2), 29–35. doi:10.11648\u002Fj.jgo.20150302.13\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.11648\u002Fj.jgo.20150302.13\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevalence+and+antibiotic+susceptibility+pattern+of+Streptococcus+agalactiae+among+pregnant+women+at+adigrat+zonal+hospital+and+adigrat+health+center,+tigray,+Ethiopia&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B213\" id=\"B213\"\u003E\u003C\u002Fa\u003ETulyaprawat, O., Pharkjaksu, S., Shrestha, R. K., and Ngamskulrungroj, P. (2021). Emergence of multi-drug resistance and its association with uncommon serotypes of Streptococcus agalactiae isolated from non-neonatal patients in Thailand. \u003Cem\u003EFront. Microbiol.\u003C\u002Fem\u003E 12, 719353. doi:10.3389\u002Ffmicb.2021.719353\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34566923\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffmicb.2021.719353\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Emergence+of+multi-drug+resistance+and+its+association+with+uncommon+serotypes+of+Streptococcus+agalactiae+isolated+from+non-neonatal+patients+in+Thailand&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B214\" id=\"B214\"\u003E\u003C\u002Fa\u003EUpadhyay, K., Talati, A., and Group, B. (2022). Group B streptococcal infections in neonates. \u003Cem\u003ENewborn\u003C\u002Fem\u003E 1 (1), 109–119. doi:10.5005\u002Fjp-journals-11002-0022\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.5005\u002Fjp-journals-11002-0022\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+infections+in+neonates&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B215\" id=\"B215\"\u003E\u003C\u002Fa\u003EUruén, C., García, C., Fraile, L., Tommassen, J., and Arenas, J. (2022). How Streptococcus suis escapes antibiotic treatments. \u003Cem\u003EVeterinary Res.\u003C\u002Fem\u003E 53 (1), 91. doi:10.1186\u002Fs13567-022-01111-3\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs13567-022-01111-3\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=How+Streptococcus+suis+escapes+antibiotic+treatments&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B216\" id=\"B216\"\u003E\u003C\u002Fa\u003Evan der Linden, M., Mamede, R., Levina, N., Helwig, P., Vila-Cerqueira, P., Carriço, J. A., et al. (2019). Heterogeneity of penicillin-non-susceptible group B streptococci isolated from a single patient in Germany. \u003Cem\u003EJ. Antimicrob. Chemother.\u003C\u002Fem\u003E 75 (2), 296–299. doi:10.1093\u002Fjac\u002Fdkz465\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1093\u002Fjac\u002Fdkz465\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Heterogeneity+of+penicillin-non-susceptible+group+B+streptococci+isolated+from+a+single+patient+in+Germany&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B217\" id=\"B217\"\u003E\u003C\u002Fa\u003EVan Du, V., Dung, P. T., Toan, N. L., Van Mao, C., Bac, N. T., Van Tong, H., et al. (2021). Antimicrobial resistance in colonizing group B Streptococcus among pregnant women from a hospital in Vietnam. \u003Cem\u003ESci. Rep.\u003C\u002Fem\u003E 11 (1), 20845. doi:10.1038\u002Fs41598-021-00468-3\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34675337\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41598-021-00468-3\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+resistance+in+colonizing+group+B+Streptococcus+among+pregnant+women+from+a+hospital+in+Vietnam&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B218\" id=\"B218\"\u003E\u003C\u002Fa\u003EVerani, J. R., McGee, L., and Schrag, S. J. (2010). Prevention of perinatal group B streptococcal disease--revised guidelines from CDC. \u003Cem\u003EMMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep.\u003C\u002Fem\u003E 59 (10), 1–36.\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21088663\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Prevention+of+perinatal+group+B+streptococcal+disease--revised+guidelines+from+CDC&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B219\" id=\"B219\"\u003E\u003C\u002Fa\u003EVerma, S., Kumari, M., Pathak, A., Yadav, V., Johri, A. K., and Yadav, P. (2023). Antibiotic resistance, biofilm formation, and virulence genes of Streptococcus agalactiae serotypes of Indian origin. \u003Cem\u003EBMC Microbiol.\u003C\u002Fem\u003E 23 (1), 176. doi:10.1186\u002Fs12866-023-02877-y\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F37407919\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12866-023-02877-y\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Antibiotic+resistance,+biofilm+formation,+and+virulence+genes+of+Streptococcus+agalactiae+serotypes+of+Indian+origin&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B220\" id=\"B220\"\u003E\u003C\u002Fa\u003EVieira, L. L., Perez, A. V., Machado, M. M., Kayser, M. L., Vettori, D. V., Alegretti, A. P., et al. (2019). Group B Streptococcus detection in pregnant women: comparison of qPCR assay, culture, and the Xpert GBS rapid test. \u003Cem\u003EBMC pregnancy childbirth\u003C\u002Fem\u003E 19 (1), 532. doi:10.1186\u002Fs12884-019-2681-0\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31888631\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12884-019-2681-0\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+detection+in+pregnant+women:+comparison+of+qPCR+assay,+culture,+and+the+Xpert+GBS+rapid+test&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B221\" id=\"B221\"\u003E\u003C\u002Fa\u003EWang, H., Zhao, C., He, W., Zhang, F., Zhang, L., Cao, B., et al. (2013). High prevalence of fluoroquinolone-resistant group B streptococci among clinical isolates in China and predominance of sequence type 19 with serotype III. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 57 (3), 1538–1541. doi:10.1128\u002FAAC.02317-12\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23295933\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.02317-12\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=High+prevalence+of+fluoroquinolone-resistant+group+B+streptococci+among+clinical+isolates+in+China+and+predominance+of+sequence+type+19+with+serotype+III&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B222\" id=\"B222\"\u003E\u003C\u002Fa\u003EWang, J., Zhang, Y., Lin, M., Bao, J., Wang, G., Dong, R., et al. (2023). Maternal colonization with group B Streptococcus and antibiotic resistance in China: systematic review and meta-analyses. \u003Cem\u003EAnn. Clin. Microbiol. Antimicrob.\u003C\u002Fem\u003E 22 (1), 5. doi:10.1186\u002Fs12941-023-00553-7\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F36639677\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12941-023-00553-7\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Maternal+colonization+with+group+B+Streptococcus+and+antibiotic+resistance+in+China:+systematic+review+and+meta-analyses&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B223\" id=\"B223\"\u003E\u003C\u002Fa\u003EWang, P., Tong, J. J., Ma, X. H., Song, F. L., Fan, L., Guo, C. M., et al. (2015). Serotypes, antibiotic susceptibilities, and multi-locus sequence type profiles of Streptococcus agalactiae isolates circulating in Beijing, China. \u003Cem\u003EPloS one\u003C\u002Fem\u003E 10 (3), e0120035. doi:10.1371\u002Fjournal.pone.0120035\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F25781346\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1371\u002Fjournal.pone.0120035\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Serotypes,+antibiotic+susceptibilities,+and+multi-locus+sequence+type+profiles+of+Streptococcus+agalactiae+isolates+circulating+in+Beijing,+China&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B224\" id=\"B224\"\u003E\u003C\u002Fa\u003EWang, Y., Zhao, Y., Zou, L., Qiao, J., and Benitz, W. E. (2021). Regional variation of early-onset neonatal group B streptococcal disease prevention strategies in mainland China. \u003Cem\u003EPediatr. Infect. Dis. J.\u003C\u002Fem\u003E 40 (7), 663–668. doi:10.1097\u002FINF.0000000000003089\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34097659\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1097\u002FINF.0000000000003089\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Regional+variation+of+early-onset+neonatal+group+B+streptococcal+disease+prevention+strategies+in+mainland+China&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B225\" id=\"B225\"\u003E\u003C\u002Fa\u003EWang, Z., Enotarpi, J., Buffi, G., Pezzicoli, A., Gstöttner, C. J., Nicolardi, S., et al. (2022a). Chemical synthesis and immunological evaluation of fragments of the multiantennary group-specific polysaccharide of group B Streptococcus. \u003Cem\u003EJACS Au\u003C\u002Fem\u003E 2 (7), 1724–1735. doi:10.1021\u002Fjacsau.2c00302\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35911445\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1021\u002Fjacsau.2c00302\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Chemical+synthesis+and+immunological+evaluation+of+fragments+of+the+multiantennary+group-specific+polysaccharide+of+group+B+Streptococcus&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B226\" id=\"B226\"\u003E\u003C\u002Fa\u003EWang, Z., Pu, W., Liu, Q., Zhu, M., Chen, Q., Xu, Y., et al. (2022b). Association of gut microbiota composition in pregnant women colonized with group B Streptococcus with maternal blood routine and neonatal blood-gas analysis. \u003Cem\u003EPathog. Basel, Switz.\u003C\u002Fem\u003E 11 (11), 1297. doi:10.3390\u002Fpathogens11111297\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3390\u002Fpathogens11111297\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Association+of+gut+microbiota+composition+in+pregnant+women+colonized+with+group+B+Streptococcus+with+maternal+blood+routine+and+neonatal+blood-gas+analysis&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B227\" id=\"B227\"\u003E\u003C\u002Fa\u003EWehbeh, W., Rojas-Diaz, R., Li, X., Mariano, N., Grenner, L., Segal-Maurer, S., et al. (2005). Fluoroquinolone-resistant Streptococcus agalactiae: epidemiology and mechanism of resistance. \u003Cem\u003EAntimicrob. agents Chemother.\u003C\u002Fem\u003E 49 (6), 2495–2497. doi:10.1128\u002FAAC.49.6.2495-2497.2005\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F15917553\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002FAAC.49.6.2495-2497.2005\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Fluoroquinolone-resistant+Streptococcus+agalactiae:+epidemiology+and+mechanism+of+resistance&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B228\" id=\"B228\"\u003E\u003C\u002Fa\u003EWei, K., and Chen, T. (2021). Vaginal microbiota transplantation for treatment of bacterial vaginosis: a review. \u003Cem\u003ESheng wu gong cheng xue bao = Chin. J. Biotechnol.\u003C\u002Fem\u003E 37 (11), 3820–3827. doi:10.13345\u002Fj.cjb.210163\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.13345\u002Fj.cjb.210163\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Vaginal+microbiota+transplantation+for+treatment+of+bacterial+vaginosis:+a+review&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B229\" id=\"B229\"\u003E\u003C\u002Fa\u003EWu, B., Su, J., Li, L., Wu, W., Wu, J., Lu, Y., et al. (2019). Phenotypic and genetic differences among group B Streptococcus recovered from neonates and pregnant women in Shenzhen, China: 8-year study. \u003Cem\u003EBMC Microbiol.\u003C\u002Fem\u003E 19 (1), 185. doi:10.1186\u002Fs12866-019-1551-2\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31395013\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1186\u002Fs12866-019-1551-2\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Phenotypic+and+genetic+differences+among+group+B+Streptococcus+recovered+from+neonates+and+pregnant+women+in+Shenzhen,+China:+8-year+study&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B230\" id=\"B230\"\u003E\u003C\u002Fa\u003EXiangru, X. U., Yi, Z., Gang, C., Ming, L., Wen, Z., Xinxin, W. U., et al. (2023). Clinical efficacy of Buzhong Yiqi decoction in the treatment of hospital-acquired pneumonia with multi-drug resistant bacteria: a prospective, randomized, multicenter controlled trial. \u003Cem\u003EJ. traditional Chin. Med. = Chung i tsa chih ying wen pan\u003C\u002Fem\u003E 43 (5), 1010–1018. doi:10.19852\u002Fj.cnki.jtcm.20230713.002\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.19852\u002Fj.cnki.jtcm.20230713.002\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Clinical+efficacy+of+Buzhong+Yiqi+decoction+in+the+treatment+of+hospital-acquired+pneumonia+with+multi-drug+resistant+bacteria:+a+prospective,+randomized,+multicenter+controlled+trial&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B231\" id=\"B231\"\u003E\u003C\u002Fa\u003EXiao, X., Zheng, Z., and Sun, H. (2023). Study on the correlation between genital tract microenvironment and GBS carrier rate of late-stage pregnant women in dongguan. \u003Cem\u003EClin. Lab.\u003C\u002Fem\u003E 69 (4). doi:10.7754\u002FClin.Lab.2022.220742\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.7754\u002FClin.Lab.2022.220742\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Study+on+the+correlation+between+genital+tract+microenvironment+and+GBS+carrier+rate+of+late-stage+pregnant+women+in+dongguan&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B232\" id=\"B232\"\u003E\u003C\u002Fa\u003EXu, X., Lewis Marffy, A. L., Keightley, A., McCarthy, A. J., and Geisbrecht, B. V. (2022). Group B Streptococcus surface protein β: structural characterization of a complement factor H-binding motif and its contribution to immune evasion. \u003Cem\u003EJ. Immunol.\u003C\u002Fem\u003E 208 (5), 1232–1247. doi:10.4049\u002Fjimmunol.2101078\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35110419\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.4049\u002Fjimmunol.2101078\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+Streptococcus+surface+protein+脦虏:+structural+characterization+of+a+complement+factor+H-binding+motif+and+its+contribution+to+immune+evasion&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B233\" id=\"B233\"\u003E\u003C\u002Fa\u003EYao, Z., Jiayin, W., Xinyi, Z., Ling, C., Mingyuan, H., Simin, M., et al. (2020). Identification of group B Streptococcus serotypes and genotypes in late pregnant women and neonates that are associated with neonatal early-onset infection in a south China population. \u003Cem\u003EFront. Pediatr.\u003C\u002Fem\u003E 8, 265. doi:10.3389\u002Ffped.2020.00265\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32537444\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3389\u002Ffped.2020.00265\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Identification+of+group+B+Streptococcus+serotypes+and+genotypes+in+late+pregnant+women+and+neonates+that+are+associated+with+neonatal+early-onset+infection+in+a+south+China+population&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B234\" id=\"B234\"\u003E\u003C\u002Fa\u003EYi, A., Kim, C. K., Kimura, K., Arakawa, Y., Hur, M., Yun, Y. M., et al. (2019). First case in Korea of group B Streptococcus with reduced penicillin susceptibility harboring amino acid substitutions in penicillin-binding protein 2X. \u003Cem\u003EAnn. laboratory Med.\u003C\u002Fem\u003E 39 (4), 414–416. doi:10.3343\u002Falm.2019.39.4.414\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30809991\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.3343\u002Falm.2019.39.4.414\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=First+case+in+Korea+of+group+B+Streptococcus+with+reduced+penicillin+susceptibility+harboring+amino+acid+substitutions+in+penicillin-binding+protein+2X&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B235\" id=\"B235\"\u003E\u003C\u002Fa\u003EYoshida, H., Goto, M., Takahiro, M., Fukushima, Y., Fujita, T., Tsuyuki, Y., et al. (2021). Intracellular invasion ability of Streptococcus agalactiae among non-invasive isolates from human adults and companion animals in Japan. \u003Cem\u003EJ. Infect. Chemother. official J. Jpn. Soc. Chemother.\u003C\u002Fem\u003E 27 (7), 999–1004. doi:10.1016\u002Fj.jiac.2021.02.017\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.jiac.2021.02.017\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Intracellular+invasion+ability+of+Streptococcus+agalactiae+among+non-invasive+isolates+from+human+adults+and+companion+animals+in+Japan&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B236\" id=\"B236\"\u003E\u003C\u002Fa\u003EYu, H. W., Lin, H. C., Yang, P. H., Hsu, C. H., Hsieh, W. S., Tsao, L. Y., et al. (2011). Group B streptococcal infection in Taiwan: maternal colonization and neonatal infection. \u003Cem\u003EPediatr. Neonatol.\u003C\u002Fem\u003E 52 (4), 190–195. doi:10.1016\u002Fj.pedneo.2011.05.008\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21835363\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.pedneo.2011.05.008\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Group+B+streptococcal+infection+in+Taiwan:+maternal+colonization+and+neonatal+infection&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B237\" id=\"B237\"\u003E\u003C\u002Fa\u003EZadoks, R. N., Middleton, J. R., McDougall, S., Katholm, J., and Schukken, Y. H. (2011). Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. \u003Cem\u003EJ. mammary Gl. Biol. neoplasia\u003C\u002Fem\u003E 16 (4), 357–372. doi:10.1007\u002Fs10911-011-9236-y\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21968538\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1007\u002Fs10911-011-9236-y\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Molecular+epidemiology+of+mastitis+pathogens+of+dairy+cattle+and+comparative+relevance+to+humans&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B238\" id=\"B238\"\u003E\u003C\u002Fa\u003EZastempowska, E., Twarużek, M., Grajewski, J., and Lassa, H. (2022). Virulence factor genes and cytotoxicity of Streptococcus agalactiae isolated from bovine mastitis in Poland. \u003Cem\u003EMicrobiol. Spectr.\u003C\u002Fem\u003E 10 (3), e0222421. doi:10.1128\u002Fspectrum.02224-21\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F35608349\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fspectrum.02224-21\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Virulence+factor+genes+and+cytotoxicity+of+Streptococcus+agalactiae+isolated+from+bovine+mastitis+in+Poland&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B239\" id=\"B239\"\u003E\u003C\u002Fa\u003EZhang, L., Ma, L., Zhu, L., Zhou, X.-H., Xu, L.-J., Guo, C., et al. (2021). Molecular characterization of pathogenic group B streptococcus from a tertiary hospital in Shanxi, China: high incidence of sequence type 10 strains in infants\u002Fpregnant women. \u003Cem\u003EJ. Microbiol. Immunol. Infect.\u003C\u002Fem\u003E 54 (6), 1094–1100. doi:10.1016\u002Fj.jmii.2020.07.018\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32826191\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.jmii.2020.07.018\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Molecular+characterization+of+pathogenic+group+B+streptococcus+from+a+tertiary+hospital+in+Shanxi,+China:+high+incidence+of+sequence+type+10+strains+in+infants\u002Fpregnant+women&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B240\" id=\"B240\"\u003E\u003C\u002Fa\u003EZhao, L.-Y., Mei, J.-X., Yu, G., Lei, L., Zhang, W.-H., Liu, K., et al. (2023). Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. \u003Cem\u003ESignal Transduct. Target. Ther.\u003C\u002Fem\u003E 8 (1), 201. doi:10.1038\u002Fs41392-023-01406-7\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F37179402\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41392-023-01406-7\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Role+of+the+gut+microbiota+in+anticancer+therapy:+from+molecular+mechanisms+to+clinical+applications&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"References\"\u003E\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B241\" id=\"B241\"\u003E\u003C\u002Fa\u003EZhu, Y., and Lin, X. Z. (2021). Updates in prevention policies of early-onset group B streptococcal infection in newborns. \u003Cem\u003EPediatr. Neonatol.\u003C\u002Fem\u003E 62 (5), 465–475. doi:10.1016\u002Fj.pedneo.2021.05.007\u003C\u002Fp\u003E\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F34099416\u002F\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.pedneo.2021.05.007\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fscholar.google.com\u002Fscholar?hl=en&as_sdt=0%2C5&q=Updates+in+prevention+policies+of+early-onset+group+B+streptococcal+infection+in+newborns&btnG=\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003C\u002Fdiv\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"thinLineM20\"\u003E\u003C\u002Fdiv\u003E\u003Cdiv class=\"AbstractSummary\"\u003E\u003Cp\u003E\u003Cspan\u003EKeywords:\u003C\u002Fspan\u003E group B streptococcal, obstetrics and gynecology, antibiotic prophylaxis, group B streptococcal vaccine, microbial therapy\u003C\u002Fp\u003E\u003Cp\u003E\u003Cspan\u003ECitation:\u003C\u002Fspan\u003E Liu Y and Ai H (2024) Current research update on group B streptococcal infection related to obstetrics and gynecology. \u003Cem\u003EFront. Pharmacol.\u003C\u002Fem\u003E 15:1395673. doi: 10.3389\u002Ffphar.2024.1395673\u003C\u002Fp\u003E\u003Cp id=\"timestamps\"\u003E\u003Cspan\u003EReceived:\u003C\u002Fspan\u003E 04 March 2024; \u003Cspan\u003EAccepted:\u003C\u002Fspan\u003E 31 May 2024;\u003Cbr\u002F\u003E\u003Cspan\u003EPublished:\u003C\u002Fspan\u003E 17 June 2024.\u003C\u002Fp\u003E\u003Cdiv\u003E\u003Cp\u003EEdited by:\u003C\u002Fp\u003E \u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F2306927\u002Foverview\"\u003EAdrian Oo\u003C\u002Fa\u003E, National University of Singapore, Singapore\u003C\u002Fdiv\u003E\u003Cdiv\u003E\u003Cp\u003EReviewed by:\u003C\u002Fp\u003E \u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F2683183\u002Foverview\"\u003EZhi Xian Kong\u003C\u002Fa\u003E, University of Malaya, Malaysia\u003Cbr\u002F\u003E\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F212007\u002Foverview\"\u003EAdzzie Shazleen Azman\u003C\u002Fa\u003E, Monash University Malaysia, Malaysia\u003C\u002Fdiv\u003E\u003Cp\u003E\u003Cspan\u003ECopyright\u003C\u002Fspan\u003E © 2024 Liu and Ai. This is an open-access article distributed under the terms of the \u003Ca rel=\"license\" href=\"http:\u002F\u002Fcreativecommons.org\u002Flicenses\u002Fby\u002F4.0\u002F\" target=\"_blank\"\u003ECreative Commons Attribution License (CC BY).\u003C\u002Fa\u003E The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.\u003C\u002Fp\u003E\u003Cp\u003E\u003Cspan\u003E*Correspondence:\u003C\u002Fspan\u003E Hao Ai, \u003Ca href=\"mailto:miraclepeking2010@163.com\"\u003Emiraclepeking2010@163.com\u003C\u002Fa\u003E\u003C\u002Fp\u003E\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\u003C\u002Fdiv\u003E",menuHtml:"\u003Cul class=\"flyoutJournal\"\u003E\u003Cli\u003E\u003Ca href=\"#h1\"\u003EAbstract\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h2\"\u003E1 Introduction of GBS\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h3\"\u003E2 Virulence Factors\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h4\"\u003E3 Antibiotic resistance in GBS\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h5\"\u003E4 GBS related clinical diseases in obstetrics and gynecology\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h6\"\u003E5 Prevention, detection, and treatment of GBS\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h7\"\u003E6 GBS Vaccine\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h8\"\u003E7 Conclusion\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h9\"\u003EAuthor contributions\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h10\"\u003EFunding\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h11\"\u003EConflict of interest\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h12\"\u003EPublisher’s note\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003Cli\u003E\u003Ca href=\"#h13\"\u003EReferences\u003C\u002Fa\u003E\u003C\u002Fli\u003E\u003C\u002Ful\u003E"},files:[{name:"EPUB.epub",fileServerPackageEntryId:h,type:{code:am,name:am}},{name:an,fileServerPackageEntryId:"fphar-15-1395673-r1\u002Ffphar-15-1395673.pdf",type:{code:o,name:o}},{name:an,fileServerPackageEntryId:h,type:{code:o,name:o}},{name:"fphar-15-1395673.xml",fileServerPackageEntryId:"fphar-15-1395673-r1\u002Ffphar-15-1395673.xml",type:{code:"NLM_XML",name:"XML"}},{name:"Provisional PDF.pdf",fileServerPackageEntryId:h,type:{code:o,name:o}}]},currentArticlePageMetaInfo:{title:ao,link:[{rel:"canonical",href:ap}],meta:[{hid:u,property:u,name:u,content:aq},{hid:ar,property:ar,name:"title",content:ao},{hid:as,property:as,name:u,content:aq},{hid:at,name:at,content:"Group B streptococcal,Obstetrics and Gynecology,Antibiotic Prophylaxis,Group B streptococcal vaccine,Microbial therapy"},{hid:au,property:au,name:"site_name",content:v},{hid:av,property:av,name:O,content:"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=1200&f=png\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F1395673\u002Ffphar-15-1395673-HTML-r1\u002Fimage_m\u002Ffphar-15-1395673-g001.jpg"},{hid:aw,property:aw,name:"type",content:"article"},{hid:ax,property:ax,name:"url",content:ap},{hid:ay,name:ay,content:"summary_large_image"},{hid:az,name:az,content:"15"},{hid:aA,name:aA,content:m},{hid:aB,name:aB,content:v},{hid:aC,name:aC,content:C},{hid:aD,name:aD,content:D},{hid:aE,name:aE,content:T},{hid:aF,name:aF,content:"1395673"},{hid:aG,name:aG,content:"English"},{hid:aH,name:aH,content:U},{hid:aI,name:aI,content:"Group B streptococcal; Obstetrics and Gynecology; Antibiotic Prophylaxis; Group B streptococcal vaccine; Microbial therapy"},{hid:aJ,name:aJ,content:V},{hid:aK,name:aK,content:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Farticles\u002F10.3389\u002Ffphar.2024.1395673\u002Fpdf"},{hid:aL,name:aL,content:"2024\u002F05\u002F31"},{hid:aM,name:aM,content:"2024\u002F06\u002F17"},{hid:"citation_author_0",name:aN,content:"Liu, Ying"},{hid:"citation_author_institution_0",name:aO,content:aP},{hid:"citation_author_1",name:aN,content:"Ai, Hao"},{hid:"citation_author_institution_1",name:aO,content:aP},{hid:aQ,name:aQ,content:"doi:10.3389\u002Ffphar.2024.1395673"}],script:[{src:"https:\u002F\u002Fcdnjs.cloudflare.com\u002Fpolyfill\u002Fv3\u002Fpolyfill.min.js?features=es6",body:g,async:g},{src:"https:\u002F\u002Fcdnjs.cloudflare.com\u002Fajax\u002Flibs\u002Fmathjax\u002F2.7.1\u002FMathJax.js?config=TeX-MML-AM_CHTML",body:g,async:g},{src:"https:\u002F\u002Fd1bxh8uas1mnw7.cloudfront.net\u002Fassets\u002Faltmetric_badges-f0bc9b243ff5677d05460c1eb71834ca998946d764eb3bc244ab4b18ba50d21e.js",body:g,async:g},{src:"https:\u002F\u002Fapi.altmetric.com\u002Fv1\u002Fdoi\u002F10.3389\u002Ffphar.2024.1395673?callback=_altmetric.embed_callback&domain=www.frontiersin.org&key=3c130976ca2b8f2e88f8377633751ba1&cache_until=14-15",body:g,async:g},{src:"https:\u002F\u002Fwidgets.figshare.com\u002Fstatic\u002Ffigshare.js",body:g,async:g},{src:"https:\u002F\u002Fcrossmark-cdn.crossref.org\u002Fwidget\u002Fv2.0\u002Fwidget.js",body:g,async:g}]},articleHubArticlesList:[],showCrossmarkWidget:g,hasSupplementalData:l,isPreviewArticlePage:l,settingsFeaturesSwitchers:{displayTitlePillLabels:g,displayRelatedArticlesBox:g,showEditors:g,showReviewers:g,showLoopImpactLink:g},tenantConfig:{spaceId:c,name:v,availableJournalPages:[aR,aS,aT,"volumes","about"]},components:{ibar:{tenantLogo:h,journalLogo:h,aboutUs:[{title:"Who we are",links:[{text:"Mission and values",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fmission",target:f,ariaLabel:e},{text:"History",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fhistory",target:f,ariaLabel:e},{text:"Leadership",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fleadership",target:f,ariaLabel:e},{text:"Awards",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fawards",target:f,ariaLabel:e}]},{title:"Impact and progress",links:[{text:"Frontiers' impact",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fimpact",target:f,ariaLabel:e},{text:"Progress Report 2022",url:"https:\u002F\u002Fprogressreport.frontiersin.org\u002F?utm_source=fweb&utm_medium=frep&utm_campaign=pr20",target:k,ariaLabel:e},{text:"All progress reports",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fprogress-reports",target:f,ariaLabel:e}]},{title:"Publishing model",links:[{text:aU,url:aV,target:f,ariaLabel:e},{text:"Open access",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fopen-access",target:f,ariaLabel:e},{text:aW,url:aX,target:f,ariaLabel:e},{text:"Peer review",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fpeer-review",target:f,ariaLabel:e},{text:"Research integrity",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fresearch-integrity",target:f,ariaLabel:e},{text:aY,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fresearch-topics",target:f,ariaLabel:e}]},{title:"Services",links:[{text:"Societies",url:"https:\u002F\u002Fpublishingpartnerships.frontiersin.org\u002F",target:k,ariaLabel:e},{text:"National consortia",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fopen-access-agreements\u002Fconsortia",target:f,ariaLabel:e},{text:"Institutional partnerships",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fopen-access-agreements",target:f,ariaLabel:e},{text:"Collaborators",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fcollaborators",target:f,ariaLabel:e}]},{title:"More from Frontiers",links:[{text:"Frontiers Forum",url:aZ,target:k,ariaLabel:"this link will take you to the Frontiers Forum website"},{text:a_,url:a$,target:k,ariaLabel:ba},{text:"Press office",url:"https:\u002F\u002Fpressoffice.frontiersin.org\u002F",target:k,ariaLabel:"this link will take you to the Frontiers press office website"},{text:"Sustainability",url:"https:\u002F\u002Fwww.frontiersin.orgabout\u002Fsustainability",target:f,ariaLabel:"link to information about Frontiers' sustainability"},{text:bb,url:bc,target:k,ariaLabel:"this link will take you to the Frontiers careers website"},{text:"Contact us",url:bd,target:f,ariaLabel:"this link will take you to the help pages to contact our support team"}]}],submitUrl:"https:\u002F\u002Fwww.frontiersin.org\u002Fsubmission\u002Fsubmit?domainid=1&fieldid=62&specialtyid=0&entitytype=2&entityid=176",showSubmitButton:g,journal:{id:q,name:m,slug:r,sections:[{id:182,name:"Cardiovascular and Smooth Muscle Pharmacology",slug:"cardiovascular-and-smooth-muscle-pharmacology"},{id:199,name:"Drug Metabolism and Transport",slug:"drug-metabolism-and-transport"},{id:202,name:"Drugs Outcomes Research and Policies",slug:"drugs-outcomes-research-and-policies"},{id:650,name:"ELSI in Science and Genetics",slug:"elsi-in-science-and-genetics"},{id:184,name:"Ethnopharmacology",slug:"ethnopharmacology"},{id:183,name:"Experimental Pharmacology and Drug Discovery",slug:"experimental-pharmacology-and-drug-discovery"},{id:186,name:"Gastrointestinal and Hepatic Pharmacology",slug:"gastrointestinal-and-hepatic-pharmacology"},{id:188,name:"Inflammation Pharmacology",slug:"inflammation-pharmacology"},{id:178,name:"Integrative and Regenerative Pharmacology",slug:"integrative-and-regenerative-pharmacology"},{id:26,name:"Neuropharmacology",slug:"neuropharmacology"},{id:196,name:"Obstetric and Pediatric Pharmacology",slug:"obstetric-and-pediatric-pharmacology"},{id:2186,name:"Pharmacoepidemiology",slug:"pharmacoepidemiology"},{id:198,name:"Pharmacogenetics and Pharmacogenomics",slug:"pharmacogenetics-and-pharmacogenomics"},{id:192,name:"Pharmacology of Anti-Cancer Drugs",slug:"pharmacology-of-anti-cancer-drugs"},{id:ai,name:aj,slug:ak},{id:179,name:"Pharmacology of Ion Channels and Channelopathies",slug:"pharmacology-of-ion-channels-and-channelopathies"},{id:195,name:"Predictive Toxicology",slug:"predictive-toxicology"},{id:1357,name:"Renal Pharmacology",slug:"renal-pharmacology"},{id:190,name:"Respiratory Pharmacology",slug:"respiratory-pharmacology"},{id:1251,name:"Translational Pharmacology",slug:"translational-pharmacology"}]},sectionTerm:"Sections",aboutJournal:[{title:"Scope",links:[{text:"Field chief editors",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Fabout#about-editors",target:f,ariaLabel:e},{text:"Mission & scope",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Fabout#about-scope",target:f,ariaLabel:e},{text:"Facts",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Fabout#about-facts",target:f,ariaLabel:e},{text:"Journal sections",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Fabout#about-submission",target:f,ariaLabel:e},{text:"Open access statement",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Fabout#about-open",target:f,ariaLabel:e},{text:"Copyright statement",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Fabout#copyright-statement",target:f,ariaLabel:e},{text:"Quality",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Fabout#about-quality",target:f,ariaLabel:e}]},{title:"For authors",links:[{text:"Why submit?",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Ffor-authors\u002Fwhy-submit",target:f,ariaLabel:e},{text:"Article types",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Ffor-authors\u002Farticle-types",target:f,ariaLabel:e},{text:be,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Ffor-authors\u002Fauthor-guidelines",target:f,ariaLabel:e},{text:bf,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Ffor-authors\u002Feditor-guidelines",target:f,ariaLabel:e},{text:"Publishing fees",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Ffor-authors\u002Fpublishing-fees",target:f,ariaLabel:e},{text:"Submission checklist",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Ffor-authors\u002Fsubmission-checklist",target:f,ariaLabel:e},{text:"Contact editorial office",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Ffor-authors\u002Fcontact-editorial-office",target:f,ariaLabel:e}]}],mainLinks:[{text:"All journals",url:bg,target:f,ariaLabel:e},{text:"All articles",url:bh,target:f,ariaLabel:e}],journalLinks:[{text:bi,url:aR,target:f,ariaLabel:e},{text:aY,url:aT,target:f,ariaLabel:e},{text:"Editorial board",url:aS,target:f,ariaLabel:e}],helpCenterLink:{text:w,url:bj,target:k,ariaLabel:w}},footer:{blocks:[{title:"Guidelines",links:[{text:be,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fguidelines\u002Fauthor-guidelines",target:f,ariaLabel:e},{text:bf,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fguidelines\u002Feditor-guidelines",target:f,ariaLabel:e},{text:"Policies and publication ethics",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fguidelines\u002Fpolicies-and-publication-ethics",target:f,ariaLabel:e},{text:aW,url:aX,target:f,ariaLabel:e}]},{title:"Explore",links:[{text:bi,url:bh,target:f,ariaLabel:e},{text:"Research Topics ",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fresearch-topics",target:f,ariaLabel:e},{text:"Journals",url:bg,target:f,ariaLabel:e},{text:aU,url:aV,target:f,ariaLabel:e}]},{title:"Outreach",links:[{text:"Frontiers Forum ",url:aZ,target:k,ariaLabel:"Frontiers Forum website"},{text:"Frontiers Policy Labs ",url:"https:\u002F\u002Fpolicylabs.frontiersin.org\u002F",target:k,ariaLabel:e},{text:bk,url:"https:\u002F\u002Fkids.frontiersin.org\u002F",target:k,ariaLabel:"Frontiers for Young Minds journal"},{text:a_,url:a$,target:k,ariaLabel:ba}]},{title:"Connect",links:[{text:w,url:bj,target:k,ariaLabel:w},{text:"Emails and alerts ",url:"https:\u002F\u002Floop.frontiersin.org\u002Fsettings\u002Femail-preferences?a=publishers",target:k,ariaLabel:"Subscribe to Frontiers emails"},{text:"Contact us ",url:bd,target:f,ariaLabel:"Subscribe to newsletter"},{text:"Submit",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fsubmission\u002Fsubmit",target:f,ariaLabel:e},{text:bb,url:bc,target:k,ariaLabel:e}]}],socialLinks:[{link:{text:bl,url:"https:\u002F\u002Fwww.facebook.com\u002FFrontiersin",target:k,ariaLabel:bl},type:x,color:y,icon:"Facebook",size:z,hiddenText:g},{link:{text:"Frontiers Twitter",url:"https:\u002F\u002Ftwitter.com\u002Ffrontiersin",target:k,ariaLabel:e},type:x,color:y,icon:"Twitter",size:z,hiddenText:g},{link:{text:"Frontiers LinkedIn",url:"https:\u002F\u002Fwww.linkedin.com\u002Fcompany\u002Ffrontiers",target:k,ariaLabel:e},type:x,color:y,icon:"LinkedIn",size:z,hiddenText:g},{link:{text:"Frontiers Instagram",url:"https:\u002F\u002Fwww.instagram.com\u002Ffrontiersin_",target:k,ariaLabel:e},type:x,color:y,icon:"Instagram",size:z,hiddenText:g}],copyright:"Frontiers Media S.A. All rights reserved",termsAndConditionsUrl:"https:\u002F\u002Fwww.frontiersin.org\u002Flegal\u002Fterms-and-conditions",privacyPolicyUrl:"https:\u002F\u002Fwww.frontiersin.org\u002Flegal\u002Fprivacy-policy"},newsletterComponent:e,snackbarItems:[]},mainHeader:{title:h,image:E,breadcrumbs:[],linksCollection:{total:n,items:[]},metricsCollection:{total:n,items:[]}},user:{loggedUserInfo:E},journals:[{id:F,name:bm,slug:bn,abbreviation:bo,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2445,name:bm,slug:bn,abbreviation:bo,space:{id:c,domainName:d,__typename:b},__typename:a},{id:H,name:"Test SSPH Journal",slug:"test-ssph-journal",abbreviation:"testjournal",space:{id:p,domainName:A,__typename:b},__typename:a},{id:bp,name:"TEST ALF Journal",slug:"test-alf-journal",abbreviation:"talfj",space:{id:s,domainName:I,__typename:b},__typename:a},{id:i,name:bq,slug:br,abbreviation:bs,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2360,name:bq,slug:br,abbreviation:bs,space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Smoke Test Field",slug:"smoke-test-field",abbreviation:"FJST",space:{id:J,domainName:bt,__typename:b},__typename:a},{id:bp,name:bu,slug:bv,abbreviation:bw,space:{id:p,domainName:A,__typename:b},__typename:a},{id:2077,name:bu,slug:bv,abbreviation:bw,space:{id:c,domainName:d,__typename:b},__typename:a},{id:H,name:bx,slug:by,abbreviation:bz,space:{id:s,domainName:I,__typename:b},__typename:a},{id:H,name:bx,slug:by,abbreviation:bz,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bA,name:bB,slug:bC,abbreviation:bD,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3776,name:bB,slug:bC,abbreviation:bD,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bE,name:bF,slug:bG,abbreviation:bH,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3765,name:bF,slug:bG,abbreviation:bH,space:{id:c,domainName:d,__typename:b},__typename:a},{id:14,name:bI,slug:bJ,abbreviation:bK,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3414,name:bI,slug:bJ,abbreviation:bK,space:{id:c,domainName:d,__typename:b},__typename:a},{id:20,name:bL,slug:bM,abbreviation:bN,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3754,name:bL,slug:bM,abbreviation:bN,space:{id:c,domainName:d,__typename:b},__typename:a},{id:J,name:bO,slug:bP,abbreviation:bQ,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2444,name:bO,slug:bP,abbreviation:bQ,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bR,name:bS,slug:bT,abbreviation:bU,space:{id:p,domainName:A,__typename:b},__typename:a},{id:bR,name:bS,slug:bT,abbreviation:bU,space:{id:c,domainName:d,__typename:b},__typename:a},{id:i,name:"GSL Test",slug:"gsl-test",abbreviation:"gslt",space:{id:t,domainName:K,__typename:b},__typename:a},{id:2356,name:"Frontiers in the Internet of Things",slug:"the-internet-of-things",abbreviation:"friot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:656,name:"Frontiers in Zoological Science",slug:"zoological-science",abbreviation:"fzoos",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1720,name:"Frontiers in Zoological Research",slug:"zoological-research",abbreviation:"fzolr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3162,name:"Frontiers in Wound Care",slug:"wound-care",abbreviation:"fwoca",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3136,name:"Frontiers in Worm Science",slug:"worm-science",abbreviation:"fwors",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3583,name:"Frontiers in Wind Energy",slug:"wind-energy",abbreviation:"fwinde",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1451,name:"Frontiers in Water",slug:"water",abbreviation:"frwa",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1561,name:"Frontiers in Virtual Reality",slug:"virtual-reality",abbreviation:"frvir",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2000,name:"Frontiers in Virology",slug:"virology",abbreviation:"fviro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:649,name:"Frontiers in Veterinary Science",slug:"veterinary-science",abbreviation:"fvets",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2176,name:"Frontiers in Urology",slug:"urology",abbreviation:"fruro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3099,name:"Frontiers in Tuberculosis",slug:"tuberculosis",abbreviation:"ftubr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1843,name:"Frontiers in Tropical Diseases",slug:"tropical-diseases",abbreviation:"fitd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2417,name:"Frontiers in Transplantation",slug:"transplantation",abbreviation:"frtra",space:{id:c,domainName:d,__typename:b},__typename:a},{id:473,name:"Frontiers in Toxicology",slug:"toxicology",abbreviation:"ftox",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2105,name:"Frontiers in Thermal Engineering",slug:"thermal-engineering",abbreviation:"fther",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3190,name:"Frontiers in The Neurobiology of Pain",slug:"the-neurobiology-of-pain",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:1967,name:"Frontiers in Test_Field_Science_Archive",slug:"testfieldsciencearchive",abbreviation:"fntesc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1347,name:"Frontiers in Test_Field_Humanities_Archive",slug:"testfieldhumanitiesarchive",abbreviation:"fntes",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3573,name:"Frontiers in Taxonomy",slug:"taxonomy",abbreviation:"Front. Taxon.",space:{id:c,domainName:d,__typename:b},__typename:a},{id:p,name:"Frontiers in Systems Neuroscience",slug:"systems-neuroscience",abbreviation:"fnsys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1721,name:"Frontiers in Systems Biology",slug:"systems-biology",abbreviation:"fsysb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3381,name:"Frontiers in Synthetic Biology",slug:"synthetic-biology",abbreviation:"fsybi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:22,name:"Frontiers in Synaptic Neuroscience",slug:"synaptic-neuroscience",abbreviation:"fnsyn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2299,name:"Frontiers in Sustainable Tourism",slug:"sustainable-tourism",abbreviation:"frsut",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2483,name:"Frontiers in Sustainable Resource Management",slug:"sustainable-resource-management",abbreviation:"fsrma",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1335,name:"Frontiers in Sustainable Food Systems",slug:"sustainable-food-systems",abbreviation:"fsufs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2726,name:"Frontiers in Sustainable Energy Policy",slug:"sustainable-energy-policy",abbreviation:"fsuep",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1468,name:"Frontiers in Sustainable Cities",slug:"sustainable-cities",abbreviation:"frsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1397,name:"Frontiers in Sustainable Business",slug:"sustainable-business",abbreviation:"fisb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1547,name:"Frontiers in Sustainability",slug:"sustainability",abbreviation:"frsus",space:{id:c,domainName:d,__typename:b},__typename:a},{id:604,name:"Frontiers in Surgery",slug:"surgery",abbreviation:"fsurg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2504,name:"Frontiers in Structural Biology",slug:"structural-biology",abbreviation:"frsbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2497,name:"Frontiers in Stroke",slug:"stroke",abbreviation:"fstro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3434,name:"Frontiers in Stem Cells",slug:"stem-cells",abbreviation:"fstce",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1482,name:"Frontiers in Sports and Active Living",slug:"sports-and-active-living",abbreviation:"fspor",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1695,name:"Frontiers in Space Technologies",slug:"space-technologies",abbreviation:"frspt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3519,name:"Frontiers in Solar Energy",slug:"solar-energy",abbreviation:"fsoln",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1718,name:"Frontiers in Soil Science",slug:"soil-science",abbreviation:"fsoil",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2346,name:"Frontiers in Soft Matter",slug:"soft-matter",abbreviation:"frsfm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1213,name:"Frontiers in Sociology",slug:"sociology",abbreviation:"fsoc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:L,name:"Frontiers in Society Journal Archive",slug:"society-journal-archive",abbreviation:M,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2690,name:"Frontiers in Social Psychology",slug:"social-psychology",abbreviation:"frsps",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2819,name:"Frontiers in Smart Grids",slug:"smart-grids",abbreviation:"frsgr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2288,name:"Frontiers in Sleep",slug:"sleep",abbreviation:"frsle",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2552,name:"Frontiers in Skin Cancer",slug:"skin-cancer",abbreviation:"fskcr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1786,name:"Frontiers in Signal Processing",slug:"signal-processing",abbreviation:"frsip",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1704,name:"Frontiers in Sensors",slug:"sensors",abbreviation:"fsens",space:{id:c,domainName:d,__typename:b},__typename:a},{id:p,name:"Frontiers in Science archive",slug:"science-archive",abbreviation:B,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3737,name:"Frontiers in Science Diplomacy",slug:"science-diplomacy",abbreviation:"fsdip",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2766,name:"Frontiers in Science",slug:"science",abbreviation:"fsci",space:{id:c,domainName:d,__typename:b},__typename:a},{id:657,name:"Frontiers in Robotics and AI",slug:"robotics-and-ai",abbreviation:"frobt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1606,name:"Frontiers in Research Metrics and Analytics",slug:"research-metrics-and-analytics",abbreviation:"frma",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1479,name:"Frontiers in Reproductive Health",slug:"reproductive-health",abbreviation:"frph",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1830,name:"Frontiers in Remote Sensing",slug:"remote-sensing",abbreviation:"frsen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:659,name:"Frontiers in Rehabilitation Sciences",slug:"rehabilitation-sciences",abbreviation:"fresc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3550,name:"Frontiers in Regenerative Medicine",slug:"regenerative-medicine",abbreviation:"fregm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1949,name:"Frontiers in Radiology",slug:"radiology",abbreviation:"fradi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3189,name:"Frontiers in RNA Research",slug:"rna-research",abbreviation:"frnar",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2306,name:"Frontiers in Quantum Science and Technology",slug:"quantum-science-and-technology",abbreviation:"frqst",space:{id:c,domainName:d,__typename:b},__typename:a},{id:L,name:"Frontiers in Public Health Archive",slug:"public-health-archive",abbreviation:M,space:{id:p,domainName:A,__typename:b},__typename:a},{id:609,name:"Frontiers in Public Health",slug:"public-health",abbreviation:"fpubh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:36,name:"Frontiers in Psychology",slug:"psychology",abbreviation:"fpsyg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:71,name:"Frontiers in Psychiatry",slug:"psychiatry",abbreviation:"fpsyt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3267,name:"Frontiers in Protistology",slug:"protistology",abbreviation:"frpro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2452,name:"Frontiers in Proteomics",slug:"proteomics",abbreviation:"fprot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3171,name:"Frontiers in Prosthetics and Orthotics",slug:"prosthetics-and-orthotics",abbreviation:"fpror ",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3643,name:"Frontiers in Polymer Science",slug:"polymer-science",abbreviation:"fplms",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1558,name:"Frontiers in Political Science",slug:"political-science",abbreviation:"fpos",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3615,name:"Frontiers in Polar Science",slug:"polar-science",abbreviation:"fposc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:373,name:"Frontiers in Plant Science",slug:"plant-science",abbreviation:"fpls",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3477,name:"Frontiers in Plant Physiology",slug:"plant-physiology",abbreviation:"fphgy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3589,name:"Frontiers in Plant Genomics",slug:"plant-genomics",abbreviation:"fpgen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3579,name:"Frontiers in Plant Ecology",slug:"plant-ecology",abbreviation:"fpley",space:{id:c,domainName:d,__typename:b},__typename:a},{id:210,name:"Frontiers in Physiology",slug:"physiology",abbreviation:"fphys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:616,name:"Frontiers in Physics",slug:"physics",abbreviation:"fphy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1803,name:"Frontiers in Photonics",slug:"photonics",abbreviation:"fphot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3604,name:"Frontiers in Photobiology",slug:"photobiology",abbreviation:"fphbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:q,name:m,slug:r,abbreviation:Q,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3388,name:"Frontiers in Personality Disorders",slug:"personality-disorders",abbreviation:"fprsd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:606,name:"Frontiers in Pediatrics",slug:"pediatrics",abbreviation:"fped",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2554,name:"Frontiers in Pediatric Dermatology",slug:"pediatric-dermatology",abbreviation:"fpdm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:L,name:"Frontiers in Pathology and Oncology Archive",slug:"pathology-and-oncology-archive",abbreviation:M,space:{id:s,domainName:I,__typename:b},__typename:a},{id:610,name:bV,slug:bW,abbreviation:bX,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3351,name:bV,slug:bW,abbreviation:bX,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2705,name:"Frontiers in Parasitology",slug:"parasitology",abbreviation:"fpara",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1727,name:"Frontiers in Pain Research",slug:"pain-research",abbreviation:"fpain",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2679,name:"Frontiers in Organizational Psychology",slug:"organizational-psychology",abbreviation:"forgp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1702,name:"Frontiers in Oral Health",slug:"oral-health",abbreviation:"froh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2232,name:"Frontiers in Ophthalmology",slug:"ophthalmology",abbreviation:"fopht",space:{id:c,domainName:d,__typename:b},__typename:a},{id:451,name:"Frontiers in Oncology",slug:"oncology",abbreviation:"fonc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3123,name:"Frontiers in Ocean Sustainability",slug:"ocean-sustainability",abbreviation:"focsu",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2612,name:"Frontiers in Occupational Therapy",slug:"occupational-therapy",abbreviation:"froct",space:{id:c,domainName:d,__typename:b},__typename:a},{id:628,name:"Frontiers in Nutrition",slug:"nutrition",abbreviation:"fnut",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2062,name:"Frontiers in Nuclear Medicine",slug:"nuclear-medicine",abbreviation:"fnume",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2172,name:"Frontiers in Nuclear Engineering",slug:"nuclear-engineering",abbreviation:"fnuen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Frontiers in Neuroscience",slug:"neuroscience",abbreviation:"fnins",space:{id:c,domainName:d,__typename:b},__typename:a},{id:bY,name:"Frontiers in Neurorobotics",slug:"neurorobotics",abbreviation:"fnbot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3056,name:"Frontiers in Neuropsychiatry",slug:"neuropsychiatry",abbreviation:"fnpsy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:141,name:"Frontiers in Neurology",slug:"neurology",abbreviation:"fneur",space:{id:c,domainName:d,__typename:b},__typename:a},{id:bZ,name:"Frontiers in Neuroinformatics",slug:"neuroinformatics",abbreviation:"fninf",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3283,name:"Frontiers in Neuroinflammation",slug:"neuroinflammation",abbreviation:"fnein",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1973,name:"Frontiers in Neuroimaging",slug:"neuroimaging",abbreviation:"fnimg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1833,name:"Frontiers in Neuroergonomics",slug:"neuroergonomics",abbreviation:"fnrgo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:G,name:"Frontiers in Neuroengineering",slug:"neuroengineering",abbreviation:"fneng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:b_,name:"Frontiers in Neuroenergetics",slug:"neuroenergetics",abbreviation:"fnene",space:{id:c,domainName:d,__typename:b},__typename:a},{id:s,name:"Frontiers in Neuroanatomy",slug:"neuroanatomy",abbreviation:"fnana",space:{id:c,domainName:d,__typename:b},__typename:a},{id:bE,name:"Frontiers in Neural Circuits",slug:"neural-circuits",abbreviation:"fncir",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2021,name:"Frontiers in Network Physiology",slug:"network-physiology",abbreviation:"fnetp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3130,name:"Frontiers in Network Neuroscience",slug:"network-neuroscience",abbreviation:"fnnsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2357,name:"Frontiers in Nephrology",slug:"nephrology",abbreviation:"fneph",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2320,name:"Frontiers in Natural Products",slug:"natural-products",abbreviation:"fntpr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1528,name:"Frontiers in Nanotechnology",slug:"nanotechnology",abbreviation:"fnano",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2882,name:"Frontiers in Musculoskeletal Disorders",slug:"musculoskeletal-disorders",abbreviation:"fmscd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3275,name:"Frontiers in Multiple Sclerosis",slug:"multiple-sclerosis",abbreviation:"fmscr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3152,name:"Frontiers in Mollusk Science",slug:"mollusk-science",abbreviation:"fmlsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2031,name:"Frontiers in Molecular Neuroscience",slug:"molecular-neuroscience",abbreviation:"fnmol",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2086,name:"Frontiers in Molecular Medicine",slug:"molecular-medicine",abbreviation:"fmmed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:698,name:"Frontiers in Molecular Biosciences",slug:"molecular-biosciences",abbreviation:"fmolb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2807,name:"Frontiers in Microbiomes",slug:"microbiomes",abbreviation:"frmbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:310,name:"Frontiers in Microbiology",slug:"microbiology",abbreviation:"fmicb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2327,name:"Frontiers in Metals and Alloys",slug:"metals-and-alloys",abbreviation:"ftmal",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2307,name:"Frontiers in Membrane Science and Technology",slug:"membrane-science-and-technology",abbreviation:"frmst",space:{id:c,domainName:d,__typename:b},__typename:a},{id:602,name:"Frontiers in Medicine",slug:"medicine",abbreviation:"fmed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1573,name:"Frontiers in Medical Technology",slug:"medical-technology",abbreviation:"fmedt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3135,name:"Frontiers in Medical Engineering",slug:"medical-engineering",abbreviation:"fmede",space:{id:c,domainName:d,__typename:b},__typename:a},{id:950,name:"Frontiers in Mechanical Engineering",slug:"mechanical-engineering",abbreviation:"fmech",space:{id:c,domainName:d,__typename:b},__typename:a},{id:608,name:"Frontiers in Materials",slug:"materials",abbreviation:"fmats",space:{id:c,domainName:d,__typename:b},__typename:a},{id:655,name:"Frontiers in Marine Science",slug:"marine-science",abbreviation:"fmars",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2100,name:"Frontiers in Manufacturing Technology",slug:"manufacturing-technology",abbreviation:"fmtec",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2931,name:"Frontiers in Mammal Science",slug:"mammal-science",abbreviation:"fmamm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2896,name:"Frontiers in Malaria",slug:"malaria",abbreviation:"fmala",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3107,name:"Frontiers in Lupus",slug:"lupus",abbreviation:"flupu",space:{id:c,domainName:d,__typename:b},__typename:a},{id:435,name:"Frontiers in Linguistics",slug:"linguistics",abbreviation:"fling",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2636,name:"Frontiers in Language Sciences",slug:"language-sciences",abbreviation:"flang",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2670,name:"Frontiers in Lab on a Chip Technologies",slug:"lab-on-a-chip-technologies",abbreviation:"frlct",space:{id:c,domainName:d,__typename:b},__typename:a},{id:b$,name:"Frontiers in Integrative Neuroscience",slug:"integrative-neuroscience",abbreviation:"fnint",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1723,name:"Frontiers in Insect Science",slug:"insect-science",abbreviation:"finsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3093,name:"Frontiers in Influenza",slug:"influenza",abbreviation:"finfl",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3073,name:"Frontiers in Inflammation",slug:"inflammation",abbreviation:"finmn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3200,name:"Frontiers in Industrial Microbiology",slug:"industrial-microbiology",abbreviation:"finmi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3291,name:"Frontiers in Industrial Engineering",slug:"industrial-engineering",abbreviation:"fieng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2765,name:"Frontiers in Impact Journals",slug:"impact-journals",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3078,name:"Frontiers in Immunotherapeutics",slug:"immunotherapeutics",abbreviation:"fimms",space:{id:c,domainName:d,__typename:b},__typename:a},{id:276,name:"Frontiers in Immunology",slug:"immunology",abbreviation:"fimmu",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2379,name:"Frontiers in Imaging",slug:"imaging",abbreviation:"fimag",space:{id:c,domainName:d,__typename:b},__typename:a},{id:629,name:"Frontiers in ICT",slug:"ict",abbreviation:"fict",space:{id:c,domainName:d,__typename:b},__typename:a},{id:16,name:"Frontiers in Humanities and Social Sciences Archive",slug:"humanities-and-social-sciences-archive",abbreviation:B,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3759,name:"Frontiers in Human Rights",slug:"human-rights",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:1588,name:"Frontiers in Human Neuroscience",slug:"human-neuroscience",abbreviation:"fnhum",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1533,name:"Frontiers in Human Dynamics",slug:"human-dynamics",abbreviation:"fhumd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2733,name:"Frontiers in Horticulture",slug:"horticulture",abbreviation:"fhort",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3316,name:"Frontiers in Histology",slug:"histology",abbreviation:"frhis",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2378,name:"Frontiers in High Performance Computing",slug:"high-performance-computing",abbreviation:"fhpcp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2456,name:"Frontiers in Hematology",slug:"hematology",abbreviation:"frhem",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2063,name:"Frontiers in Health Services",slug:"health-services",abbreviation:"frhs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:s,name:"Frontiers in Health Archive",slug:"health-archive",abbreviation:B,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3508,name:"Frontiers in Green Chemistry",slug:"green-chemistry",abbreviation:"fgrch",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1728,name:"Frontiers in Global Women's Health",slug:"global-womens-health",abbreviation:"fgwh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2918,name:"Frontiers in Geochemistry",slug:"geochemistry",abbreviation:"fgeoc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1540,name:"Frontiers in Genome Editing",slug:"genome-editing",abbreviation:"fgeed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:240,name:"Frontiers in Genetics",slug:"genetics",abbreviation:"fgene",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3496,name:"Frontiers in Genetic Microbiology",slug:"genetic-microbiology",abbreviation:"fgemi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3227,name:"Frontiers in Genetic Disorders",slug:"genetic-disorders",abbreviation:"frged",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2333,name:"Frontiers in Gastroenterology",slug:"gastroenterology",abbreviation:"fgstr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1529,name:"Frontiers in Future Transportation",slug:"future-transportation",abbreviation:"ffutr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1725,name:"Frontiers in Fungal Biology",slug:"fungal-biology",abbreviation:"ffunb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2826,name:"Frontiers in Fuels",slug:"fuels",abbreviation:"ffuel",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3207,name:"Frontiers in Freshwater Science",slug:"freshwater-science",abbreviation:"ffwsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1366,name:"Frontiers in Forests and Global Change",slug:"forests-and-global-change",abbreviation:"ffgc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2689,name:"Frontiers in Forensic Science",slug:"forensic-science",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2289,name:"Frontiers in Food Science and Technology",slug:"food-science-and-technology",abbreviation:"frfst",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3559,name:"Frontiers in Fluorescence",slug:"fluorescence",abbreviation:"fflur",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2987,name:"Frontiers in Fish Science",slug:"fish-science",abbreviation:"frish",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3489,name:"Frontiers in Fire Science and Technology",slug:"fire-science-and-technology",abbreviation:"firtc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2749,name:"Frontiers in Financial Economics",slug:"financial-economics",abbreviation:"ffecn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Frontiers in FSHIP Test Journal",slug:"fship-test-journal",abbreviation:"ftest",space:{id:i,domainName:j,__typename:b},__typename:a},{id:bA,name:"Frontiers in Evolutionary Neuroscience",slug:"evolutionary-neuroscience",abbreviation:"fnevo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2955,name:"Frontiers in Ethology",slug:"ethology",abbreviation:"fetho",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3032,name:"Frontiers in Epigenetics and Epigenomics",slug:"epigenetics-and-epigenomics",abbreviation:"freae",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2394,name:"Frontiers in Epidemiology",slug:"epidemiology",abbreviation:"fepid",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3450,name:"Frontiers in Environmental Toxicology",slug:"environmental-toxicology",abbreviation:"fentx",space:{id:c,domainName:d,__typename:b},__typename:a},{id:627,name:"Frontiers in Environmental Science",slug:"environmental-science",abbreviation:"fenvs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2888,name:"Frontiers in Environmental Health",slug:"environmental-health",abbreviation:"fenvh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2851,name:"Frontiers in Environmental Engineering",slug:"environmental-engineering",abbreviation:"fenve",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2547,name:"Frontiers in Environmental Economics",slug:"environmental-economics",abbreviation:"frevc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1697,name:"Frontiers in Environmental Chemistry",slug:"environmental-chemistry",abbreviation:"fenvc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2756,name:"Frontiers in Environmental Archaeology",slug:"environmental-archaeology",abbreviation:"fearc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:al,name:"Frontiers in Engineering archive",slug:"engineering-archive",abbreviation:B,space:{id:i,domainName:j,__typename:b},__typename:a},{id:626,name:"Frontiers in Energy Research",slug:"energy-research",abbreviation:"fenrg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3115,name:"Frontiers in Energy Efficiency",slug:"energy-efficiency",abbreviation:"fenef",space:{id:c,domainName:d,__typename:b},__typename:a},{id:106,name:"Frontiers in Endocrinology",slug:"endocrinology",abbreviation:"fendo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1696,name:"Frontiers in Electronics",slug:"electronics",abbreviation:"felec",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1800,name:"Frontiers in Electronic Materials",slug:"electronic-materials",abbreviation:"femat",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2998,name:"Frontiers in Educational Psychology",slug:"educational-psychology",abbreviation:"fepys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1239,name:"Frontiers in Education",slug:"education",abbreviation:"feduc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:625,name:"Frontiers in Economics",slug:"economics",abbreviation:"fecon",space:{id:c,domainName:d,__typename:b},__typename:a},{id:471,name:"Frontiers in Ecology and Evolution",slug:"ecology-and-evolution",abbreviation:"fevo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Frontiers in Earth Science Archive",slug:"earth-science-archive",abbreviation:"gslfj",space:{id:t,domainName:K,__typename:b},__typename:a},{id:654,name:"Frontiers in Earth Science",slug:"earth-science",abbreviation:"feart",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3309,name:"Frontiers in Earth Observation and Land Monitoring",slug:"earth-observation-and-land-monitoring",abbreviation:"feolm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2161,name:"Frontiers in Drug Safety and Regulation",slug:"drug-safety-and-regulation",abbreviation:"fdsfr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2137,name:"Frontiers in Drug Discovery",slug:"drug-discovery",abbreviation:"fddsv",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2136,name:"Frontiers in Drug Delivery",slug:"drug-delivery",abbreviation:"fddev",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2775,name:"Frontiers in Disaster and Emergency Medicine",slug:"disaster-and-emergency-medicine",abbreviation:"femer",space:{id:c,domainName:d,__typename:b},__typename:a},{id:788,name:"Frontiers in Digital Humanities",slug:"digital-humanities",abbreviation:"fdigh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1534,name:"Frontiers in Digital Health",slug:"digital-health",abbreviation:"fdgth",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2999,name:"Frontiers in Developmental Psychology",slug:"developmental-psychology",abbreviation:"fdpys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2873,name:"Frontiers in Detector Science and Technology",slug:"detector-science-and-technology",abbreviation:"fdest",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3611,name:"Frontiers in Design Engineering",slug:"design-engineering",abbreviation:"fdese",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2550,name:"Frontiers in Dermatological Research",slug:"dermatological-research",abbreviation:"fdmre",space:{id:c,domainName:d,__typename:b},__typename:a},{id:607,name:"Frontiers in Dental Medicine",slug:"dental-medicine",abbreviation:"fdmed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2597,name:"Frontiers in Dementia",slug:"dementia",abbreviation:"frdem",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1785,name:"Frontiers in Control Engineering",slug:"control-engineering",abbreviation:"fcteg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1724,name:"Frontiers in Conservation Science",slug:"conservation-science",abbreviation:"fcosc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3454,name:"Frontiers in Condensed Matter",slug:"condensed-matter",abbreviation:"fconm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1511,name:"Frontiers in Computer Science",slug:"computer-science",abbreviation:"fcomp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3566,name:"Frontiers in Computational Physiology",slug:"computational-physiology",abbreviation:"fcphy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:F,name:"Frontiers in Computational Neuroscience",slug:"computational-neuroscience",abbreviation:"fncom",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3234,name:"Frontiers in Complex Systems",slug:"complex-systems",abbreviation:"fcpxs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1787,name:"Frontiers in Communications and Networks",slug:"communications-and-networks",abbreviation:"frcmn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1238,name:"Frontiers in Communication",slug:"communication",abbreviation:"fcomm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2535,name:"Frontiers in Cognition",slug:"cognition",abbreviation:"fcogn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2857,name:"Frontiers in Coatings, Dyes and Interface Engineering",slug:"coatings-dyes-and-interface-engineering",abbreviation:"frcdi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3222,name:"Frontiers in Clinical Microbiology",slug:"clinical-microbiology",abbreviation:"fclmi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1729,name:"Frontiers in Clinical Diabetes and Healthcare",slug:"clinical-diabetes-and-healthcare",abbreviation:"fcdhc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2551,name:"Frontiers in Clinical Dermatology",slug:"clinical-dermatology",abbreviation:"fcldm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1490,name:"Frontiers in Climate",slug:"climate",abbreviation:"fclim",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3338,name:"Frontiers in Chromosome Research",slug:"chromosome-research",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2587,name:"Frontiers in Child and Adolescent Psychiatry",slug:"child-and-adolescent-psychiatry",abbreviation:"frcha",space:{id:c,domainName:d,__typename:b},__typename:a},{id:601,name:"Frontiers in Chemistry",slug:"chemistry",abbreviation:"fchem",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1532,name:"Frontiers in Chemical Engineering",slug:"chemical-engineering",abbreviation:"fceng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3038,name:"Frontiers in Chemical Biology",slug:"chemical-biology",abbreviation:"fchbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3322,name:"Frontiers in Ceramics",slug:"ceramics",abbreviation:"fceic",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1440,name:"Frontiers in Cellular and Infection Microbiology",slug:"cellular-and-infection-microbiology",abbreviation:"fcimb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1523,name:"Frontiers in Cellular Neuroscience",slug:"cellular-neuroscience",abbreviation:"fncel",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3084,name:"Frontiers in Cellular Immunology",slug:"cellular-immunology",abbreviation:"fcimy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:403,name:"Frontiers in Cell and Developmental Biology",slug:"cell-and-developmental-biology",abbreviation:"fcell",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3178,name:"Frontiers in Cell Signaling",slug:"cell-signaling",abbreviation:"fcsig",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2655,name:"Frontiers in Cell Death",slug:"cell-death",abbreviation:"fceld",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1901,name:"Frontiers in Catalysis",slug:"catalysis",abbreviation:"fctls",space:{id:c,domainName:d,__typename:b},__typename:a},{id:755,name:"Frontiers in Cardiovascular Medicine",slug:"cardiovascular-medicine",abbreviation:"fcvm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2662,name:"Frontiers in Carbon",slug:"carbon",abbreviation:"frcrb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3513,name:"Frontiers in Cancer Interception",slug:"cancer-interception",abbreviation:"fcint",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3433,name:"Frontiers in Cancer Control and Society",slug:"cancer-control-and-society",abbreviation:"fcacs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:921,name:"Frontiers in Built Environment",slug:"built-environment",abbreviation:"fbuil",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1418,name:"Frontiers in Blockchain",slug:"blockchain",abbreviation:"fbloc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2971,name:"Frontiers in Bird Science",slug:"bird-science",abbreviation:"fbirs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3300,name:"Frontiers in Biophysics",slug:"biophysics",abbreviation:"frbis",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2222,name:"Frontiers in Biomaterials Science",slug:"biomaterials-science",abbreviation:"fbiom",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1722,name:"Frontiers in Bioinformatics",slug:"bioinformatics",abbreviation:"fbinf",space:{id:c,domainName:d,__typename:b},__typename:a},{id:452,name:"Frontiers in Bioengineering and Biotechnology",slug:"bioengineering-and-biotechnology",abbreviation:"fbioe",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1380,name:"Frontiers in Big Data",slug:"big-data",abbreviation:"fdata",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1589,name:"Frontiers in Behavioral Neuroscience",slug:"behavioral-neuroscience",abbreviation:"fnbeh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2432,name:"Frontiers in Behavioral Economics",slug:"behavioral-economics",abbreviation:"frbhe",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2796,name:"Frontiers in Bee Science",slug:"bee-science",abbreviation:"frbee",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3214,name:"Frontiers in Batteries and Electrochemistry",slug:"batteries-and-electrochemistry",abbreviation:"fbael",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3011,name:"Frontiers in Bacteriology",slug:"bacteriology",abbreviation:"fbrio",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3040,name:"Frontiers in Audiology and Otology",slug:"audiology-and-otology",abbreviation:"fauot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:603,name:"Frontiers in Astronomy and Space Sciences",slug:"astronomy-and-space-sciences",abbreviation:"fspas",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1437,name:"Frontiers in Artificial Intelligence",slug:"artificial-intelligence",abbreviation:"frai",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2940,name:"Frontiers in Arachnid Science",slug:"arachnid-science",abbreviation:"frchs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2834,name:"Frontiers in Aquaculture",slug:"aquaculture",abbreviation:"faquc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:981,name:"Frontiers in Applied Mathematics and Statistics",slug:"applied-mathematics-and-statistics",abbreviation:"fams",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3417,name:"Frontiers in Applied Environmental Microbiology",slug:"applied-environmental-microbiology",abbreviation:"faemi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2714,name:"Frontiers in Antibiotics",slug:"antibiotics",abbreviation:"frabi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3443,name:"Frontiers in Anti-Cancer Therapies",slug:"anti-cancer-therapies",abbreviation:"facth",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3253,name:"Frontiers in Antennas and Propagation",slug:"antennas-and-propagation",abbreviation:"fanpr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1719,name:"Frontiers in Animal Science",slug:"animal-science",abbreviation:"fanim",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2513,name:"Frontiers in Anesthesiology",slug:"anesthesiology",abbreviation:"fanes",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1989,name:"Frontiers in Analytical Science",slug:"analytical-science",abbreviation:"frans",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2909,name:"Frontiers in Amphibian and Reptile Science",slug:"amphibian-and-reptile-science",abbreviation:"famrs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1705,name:"Frontiers in Allergy",slug:"allergy",abbreviation:"falgy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1541,name:"Frontiers in Agronomy",slug:"agronomy",abbreviation:"fagro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3631,name:"Frontiers in Agricultural Engineering",slug:"agricultural-engineering",abbreviation:"faeng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2477,name:"Frontiers in Aging Neuroscience",slug:"aging-neuroscience",abbreviation:"fnagi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1566,name:"Frontiers in Aging",slug:"aging",abbreviation:"fragi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2449,name:"Frontiers in Aerospace Engineering",slug:"aerospace-engineering",abbreviation:"fpace",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2195,name:"Frontiers in Adolescent Medicine",slug:"adolescent-medicine",abbreviation:"fradm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3426,name:"Frontiers in Acoustics",slug:"acoustics",abbreviation:"facou",space:{id:c,domainName:d,__typename:b},__typename:a},{id:979,name:bk,slug:"frontiers-for-young-minds",abbreviation:"frym",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3260,name:"Frontiers In Ocean Engineering",slug:"frontiers-in-ocean-engineering",abbreviation:"focen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:bY,name:"FSHIP Test Journal 2",slug:"fship-test-journal-2",abbreviation:"FTJ2",space:{id:i,domainName:j,__typename:b},__typename:a},{id:i,name:ca,slug:cb,abbreviation:cc,space:{id:J,domainName:bt,__typename:b},__typename:a},{id:3746,name:ca,slug:cb,abbreviation:cc,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bZ,name:cd,slug:ce,abbreviation:cf,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3231,name:cd,slug:ce,abbreviation:cf,space:{id:c,domainName:d,__typename:b},__typename:a},{id:t,name:cg,slug:ch,abbreviation:ci,space:{id:t,domainName:K,__typename:b},__typename:a},{id:2078,name:cg,slug:ch,abbreviation:ci,space:{id:c,domainName:d,__typename:b},__typename:a},{id:b$,name:cj,slug:ck,abbreviation:cl,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2359,name:cj,slug:ck,abbreviation:cl,space:{id:c,domainName:d,__typename:b},__typename:a},{id:8,name:cm,slug:cn,abbreviation:co,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2446,name:cm,slug:cn,abbreviation:co,space:{id:c,domainName:d,__typename:b},__typename:a},{id:10,name:cp,slug:cq,abbreviation:cr,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3230,name:cp,slug:cq,abbreviation:cr,space:{id:c,domainName:d,__typename:b},__typename:a},{id:t,name:cs,slug:ct,abbreviation:cu,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2358,name:cs,slug:ct,abbreviation:cu,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3660,name:"Advanced Optical Technologies",slug:"advanced-optical-technologies",abbreviation:"aot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:b_,name:cv,slug:cw,abbreviation:cx,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3659,name:cv,slug:cw,abbreviation:cx,space:{id:c,domainName:d,__typename:b},__typename:a},{id:G,name:cy,slug:cz,abbreviation:"abp",space:{id:i,domainName:j,__typename:b},__typename:a},{id:3695,name:cy,slug:cz,abbreviation:"ABP",space:{id:c,domainName:d,__typename:b},__typename:a}]},serverRendered:g,routePath:"\u002Fjournals\u002Fpharmacology\u002Farticles\u002F10.3389\u002Ffphar.2024.1395673\u002Ffull",config:{baseUrl:"https:\u002F\u002Fwww.frontiersin.org",appName:"article-pages-2022",spaceId:c,spaceName:v,domain:d,loopUrl:"https:\u002F\u002Floop.frontiersin.org",ssMainDomain:d,googleRecaptchaKeyName:"FrontiersRecaptchaV2",googleRecaptchaSiteKey:"6LdG3i0UAAAAAOC4qUh35ubHgJotEHp_STXHgr_v",linkedArticleCopyText:"'{\"articleTypeCopyText\":[{\"articleTypeId\":0,\"originalArticleCopyText\":\"Part of this article's content has been mentioned in:\",\"linkedArticleCopyText\":\"This article mentions parts of:\"},{\"articleTypeId\":122,\"originalArticleCopyText\":\"Parts of this article's content have been modified or rectified in:\",\"linkedArticleCopyText\":\"This article is an erratum on:\"},{\"articleTypeId\":129,\"originalArticleCopyText\":\"Parts of this article's content have been modified or rectified in:\",\"linkedArticleCopyText\":\"This article is an addendum to:\"},{\"articleTypeId\":128,\"originalArticleCopyText\":\"A correction has been applied to this article in:\",\"linkedArticleCopyText\":\"This article is a correction to:\"},{\"articleTypeId\":134,\"originalArticleCopyText\":\"A retraction of this article was approved in:\",\"linkedArticleCopyText\":\"This article is a retraction of:\"},{\"articleTypeId\":29,\"originalArticleCopyText\":\"A commentary has been posted on this article:\",\"linkedArticleCopyText\":\"This article is a commentary on:\"},{\"articleTypeId\":30,\"originalArticleCopyText\":\"A commentary has been posted on this article:\",\"linkedArticleCopyText\":\"This article is a commentary on:\"}],\"articleIdCopyText\":[]}'\n",articleTypeConfigurableLabel:"\u003C\u003Carticle-type:uppercase\u003E\u003E article",terminologySettings:"'{\"terms\":[{\"sequenceNumber\":1,\"key\":\"frontiers\",\"tenantTerm\":\"Frontiers\",\"frontiersDefaultTerm\":\"Frontiers\",\"category\":\"Customer\"},{\"sequenceNumber\":2,\"key\":\"submission_system\",\"tenantTerm\":\"submission system\",\"frontiersDefaultTerm\":\"submission system\",\"category\":\"Product\"},{\"sequenceNumber\":3,\"key\":\"public_pages\",\"tenantTerm\":\"public pages\",\"frontiersDefaultTerm\":\"public pages\",\"category\":\"Product\"},{\"sequenceNumber\":4,\"key\":\"my_frontiers\",\"tenantTerm\":\"my frontiers\",\"frontiersDefaultTerm\":\"my frontiers\",\"category\":\"Product\"},{\"sequenceNumber\":5,\"key\":\"digital_editorial_office\",\"tenantTerm\":\"digital editorial office\",\"frontiersDefaultTerm\":\"digital editorial office\",\"category\":\"Product\"},{\"sequenceNumber\":6,\"key\":\"deo\",\"tenantTerm\":\"DEO\",\"frontiersDefaultTerm\":\"DEO\",\"category\":\"Product\"},{\"sequenceNumber\":7,\"key\":\"digital_editorial_office_for_chiefs\",\"tenantTerm\":\"digital editorial office for chiefs\",\"frontiersDefaultTerm\":\"digital editorial office for chiefs\",\"category\":\"Product\"},{\"sequenceNumber\":8,\"key\":\"digital_editorial_office_for_eof\",\"tenantTerm\":\"digital editorial office for eof\",\"frontiersDefaultTerm\":\"digital editorial office for eof\",\"category\":\"Product\"},{\"sequenceNumber\":9,\"key\":\"editorial_office\",\"tenantTerm\":\"editorial office\",\"frontiersDefaultTerm\":\"editorial office\",\"category\":\"Product\"},{\"sequenceNumber\":10,\"key\":\"eof\",\"tenantTerm\":\"EOF\",\"frontiersDefaultTerm\":\"EOF\",\"category\":\"Product\"},{\"sequenceNumber\":11,\"key\":\"research_topic_management\",\"tenantTerm\":\"research topic management\",\"frontiersDefaultTerm\":\"research topic management\",\"category\":\"Product\"},{\"sequenceNumber\":12,\"key\":\"review_forum\",\"tenantTerm\":\"review forum\",\"frontiersDefaultTerm\":\"review forum\",\"category\":\"Product\"},{\"sequenceNumber\":13,\"key\":\"accounting_office\",\"tenantTerm\":\"accounting office\",\"frontiersDefaultTerm\":\"accounting office\",\"category\":\"Product\"},{\"sequenceNumber\":14,\"key\":\"aof\",\"tenantTerm\":\"AOF\",\"frontiersDefaultTerm\":\"AOF\",\"category\":\"Product\"},{\"sequenceNumber\":15,\"key\":\"publishing_office\",\"tenantTerm\":\"publishing office\",\"frontiersDefaultTerm\":\"publishing office\",\"category\":\"Product\"},{\"sequenceNumber\":16,\"key\":\"production_office\",\"tenantTerm\":\"production office forum\",\"frontiersDefaultTerm\":\"production office forum\",\"category\":\"Product\"},{\"sequenceNumber\":17,\"key\":\"pof\",\"tenantTerm\":\"POF\",\"frontiersDefaultTerm\":\"POF\",\"category\":\"Product\"},{\"sequenceNumber\":18,\"key\":\"book_office_forum\",\"tenantTerm\":\"book office forum\",\"frontiersDefaultTerm\":\"book office forum\",\"category\":\"Product\"},{\"sequenceNumber\":19,\"key\":\"bof\",\"tenantTerm\":\"BOF\",\"frontiersDefaultTerm\":\"BOF\",\"category\":\"Product\"},{\"sequenceNumber\":20,\"key\":\"aira\",\"tenantTerm\":\"AIRA\",\"frontiersDefaultTerm\":\"AIRA\",\"category\":\"Product\"},{\"sequenceNumber\":21,\"key\":\"editorial_board_management\",\"tenantTerm\":\"editorial board management\",\"frontiersDefaultTerm\":\"editorial board management\",\"category\":\"Product\"},{\"sequenceNumber\":22,\"key\":\"ebm\",\"tenantTerm\":\"EBM\",\"frontiersDefaultTerm\":\"EBM\",\"category\":\"Product\"},{\"sequenceNumber\":23,\"key\":\"domain\",\"tenantTerm\":\"domain\",\"frontiersDefaultTerm\":\"domain\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":24,\"key\":\"journal\",\"tenantTerm\":\"journal\",\"frontiersDefaultTerm\":\"journal\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":25,\"key\":\"section\",\"tenantTerm\":\"section\",\"frontiersDefaultTerm\":\"section\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":26,\"key\":\"domains\",\"tenantTerm\":\"domains\",\"frontiersDefaultTerm\":\"domains\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":27,\"key\":\"specialty_section\",\"tenantTerm\":\"specialty section\",\"frontiersDefaultTerm\":\"specialty section\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":28,\"key\":\"specialty_journal\",\"tenantTerm\":\"specialty journal\",\"frontiersDefaultTerm\":\"specialty journal\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":29,\"key\":\"journals\",\"tenantTerm\":\"journals\",\"frontiersDefaultTerm\":\"journals\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":30,\"key\":\"sections\",\"tenantTerm\":\"sections\",\"frontiersDefaultTerm\":\"sections\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":31,\"key\":\"specialty_sections\",\"tenantTerm\":\"specialty sections\",\"frontiersDefaultTerm\":\"specialty sections\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":32,\"key\":\"specialty_journals\",\"tenantTerm\":\"specialty journals\",\"frontiersDefaultTerm\":\"specialty journals\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":33,\"key\":\"manuscript\",\"tenantTerm\":\"manuscript\",\"frontiersDefaultTerm\":\"manuscript\",\"category\":\"Core\"},{\"sequenceNumber\":34,\"key\":\"manuscripts\",\"tenantTerm\":\"manuscripts\",\"frontiersDefaultTerm\":\"manuscripts\",\"category\":\"Core\"},{\"sequenceNumber\":35,\"key\":\"article\",\"tenantTerm\":\"article\",\"frontiersDefaultTerm\":\"article\",\"category\":\"Core\"},{\"sequenceNumber\":36,\"key\":\"articles\",\"tenantTerm\":\"articles\",\"frontiersDefaultTerm\":\"articles\",\"category\":\"Core\"},{\"sequenceNumber\":37,\"key\":\"article_type\",\"tenantTerm\":\"article type\",\"frontiersDefaultTerm\":\"article type\",\"category\":\"Core\"},{\"sequenceNumber\":38,\"key\":\"article_types\",\"tenantTerm\":\"article types\",\"frontiersDefaultTerm\":\"article types\",\"category\":\"Core\"},{\"sequenceNumber\":39,\"key\":\"author\",\"tenantTerm\":\"author\",\"frontiersDefaultTerm\":\"author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":40,\"key\":\"authors\",\"tenantTerm\":\"authors\",\"frontiersDefaultTerm\":\"authors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":41,\"key\":\"authoring\",\"tenantTerm\":\"authoring\",\"frontiersDefaultTerm\":\"authoring\",\"category\":\"Core\"},{\"sequenceNumber\":42,\"key\":\"authored\",\"tenantTerm\":\"authored\",\"frontiersDefaultTerm\":\"authored\",\"category\":\"Core\"},{\"sequenceNumber\":43,\"key\":\"accept\",\"tenantTerm\":\"accept\",\"frontiersDefaultTerm\":\"accept\",\"category\":\"Process\"},{\"sequenceNumber\":44,\"key\":\"accepted\",\"tenantTerm\":\"accepted\",\"frontiersDefaultTerm\":\"accepted\",\"category\":\"Process\"},{\"sequenceNumber\":45,\"key\":\"assistant_field_chief_editor\",\"tenantTerm\":\"Assistant Field Chief Editor\",\"frontiersDefaultTerm\":\"Assistant Field Chief Editor\",\"description\":\"An editorial role on a Field Journal that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":46,\"key\":\"assistant_specialty_chief_editor\",\"tenantTerm\":\"Assistant Specialty Chief Editor\",\"frontiersDefaultTerm\":\"Assistant Specialty Chief Editor\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":47,\"key\":\"assistant_specialty_chief_editors\",\"tenantTerm\":\"Assistant Specialty Chief Editors\",\"frontiersDefaultTerm\":\"Assistant Specialty Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":48,\"key\":\"associate_editor\",\"tenantTerm\":\"Associate Editor\",\"frontiersDefaultTerm\":\"Associate Editor\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":49,\"key\":\"specialty_chief_editor\",\"tenantTerm\":\"Specialty Chief Editor\",\"frontiersDefaultTerm\":\"Specialty Chief Editor\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":50,\"key\":\"specialty_chief_editors\",\"tenantTerm\":\"Specialty Chief Editors\",\"frontiersDefaultTerm\":\"Specialty Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":51,\"key\":\"chief_editor\",\"tenantTerm\":\"Chief Editor\",\"frontiersDefaultTerm\":\"Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":52,\"key\":\"chief_editors\",\"tenantTerm\":\"Chief Editors\",\"frontiersDefaultTerm\":\"Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":53,\"key\":\"call_for_participation\",\"tenantTerm\":\"call for participation\",\"frontiersDefaultTerm\":\"call for participation\",\"category\":\"Process\"},{\"sequenceNumber\":54,\"key\":\"citation\",\"tenantTerm\":\"citation\",\"frontiersDefaultTerm\":\"citation\",\"category\":\"Misc.\"},{\"sequenceNumber\":55,\"key\":\"citations\",\"tenantTerm\":\"citations\",\"frontiersDefaultTerm\":\"citations\",\"category\":\"Misc.\"},{\"sequenceNumber\":56,\"key\":\"contributor\",\"tenantTerm\":\"contributor\",\"frontiersDefaultTerm\":\"contributor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":57,\"key\":\"contributors\",\"tenantTerm\":\"contributors\",\"frontiersDefaultTerm\":\"contributors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":58,\"key\":\"corresponding_author\",\"tenantTerm\":\"corresponding author\",\"frontiersDefaultTerm\":\"corresponding author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":59,\"key\":\"corresponding_authors\",\"tenantTerm\":\"corresponding authors\",\"frontiersDefaultTerm\":\"corresponding authors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":60,\"key\":\"decline\",\"tenantTerm\":\"decline\",\"frontiersDefaultTerm\":\"decline\",\"category\":\"Process\"},{\"sequenceNumber\":61,\"key\":\"declined\",\"tenantTerm\":\"declined\",\"frontiersDefaultTerm\":\"declined\",\"category\":\"Process\"},{\"sequenceNumber\":62,\"key\":\"reject\",\"tenantTerm\":\"reject\",\"frontiersDefaultTerm\":\"reject\",\"category\":\"Process\"},{\"sequenceNumber\":63,\"key\":\"rejected\",\"tenantTerm\":\"rejected\",\"frontiersDefaultTerm\":\"rejected\",\"category\":\"Process\"},{\"sequenceNumber\":64,\"key\":\"publish\",\"tenantTerm\":\"publish\",\"frontiersDefaultTerm\":\"publish\",\"category\":\"Core\"},{\"sequenceNumber\":65,\"key\":\"published\",\"tenantTerm\":\"published\",\"frontiersDefaultTerm\":\"published\",\"category\":\"Core\"},{\"sequenceNumber\":66,\"key\":\"publication\",\"tenantTerm\":\"publication\",\"frontiersDefaultTerm\":\"publication\",\"category\":\"Core\"},{\"sequenceNumber\":67,\"key\":\"peer_review\",\"tenantTerm\":\"peer review\",\"frontiersDefaultTerm\":\"peer review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":68,\"key\":\"peer_reviewed\",\"tenantTerm\":\"peer reviewed\",\"frontiersDefaultTerm\":\"peer reviewed\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":69,\"key\":\"initial_validation\",\"tenantTerm\":\"initial validation\",\"frontiersDefaultTerm\":\"initial validation\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":70,\"key\":\"editorial_assignment\",\"tenantTerm\":\"editorial assignment\",\"frontiersDefaultTerm\":\"editorial assignment\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":71,\"key\":\"independent_review\",\"tenantTerm\":\"independent review\",\"frontiersDefaultTerm\":\"independent review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":72,\"key\":\"interactive_review\",\"tenantTerm\":\"interactive review\",\"frontiersDefaultTerm\":\"interactive review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":73,\"key\":\"review\",\"tenantTerm\":\"review\",\"frontiersDefaultTerm\":\"review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":74,\"key\":\"reviewing\",\"tenantTerm\":\"reviewing\",\"frontiersDefaultTerm\":\"reviewing\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":75,\"key\":\"reviewer\",\"tenantTerm\":\"reviewer\",\"frontiersDefaultTerm\":\"reviewer\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":76,\"key\":\"reviewers\",\"tenantTerm\":\"reviewers\",\"frontiersDefaultTerm\":\"reviewers\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":77,\"key\":\"review_finalized\",\"tenantTerm\":\"review finalized\",\"frontiersDefaultTerm\":\"review finalized\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":78,\"key\":\"final_decision\",\"tenantTerm\":\"final decision\",\"frontiersDefaultTerm\":\"final decision\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":79,\"key\":\"final_validation\",\"tenantTerm\":\"final validation\",\"frontiersDefaultTerm\":\"final validation\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":80,\"key\":\"ae_accept_manuscript\",\"tenantTerm\":\"recommend to accept manuscript\",\"frontiersDefaultTerm\":\"accept manuscript\",\"category\":\"Process\"},{\"sequenceNumber\":81,\"key\":\"fee\",\"tenantTerm\":\"fee\",\"frontiersDefaultTerm\":\"fee\",\"category\":\"Accounting\"},{\"sequenceNumber\":82,\"key\":\"fees\",\"tenantTerm\":\"fees\",\"frontiersDefaultTerm\":\"fees\",\"category\":\"Accounting\"},{\"sequenceNumber\":83,\"key\":\"guest_associate_editor\",\"tenantTerm\":\"Guest Associate Editor\",\"frontiersDefaultTerm\":\"Guest Associate Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":84,\"key\":\"guest_associate_editors\",\"tenantTerm\":\"Guest Associate Editors\",\"frontiersDefaultTerm\":\"Guest Associate Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":85,\"key\":\"in_review\",\"tenantTerm\":\"in review\",\"frontiersDefaultTerm\":\"in review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":86,\"key\":\"institutional_member\",\"tenantTerm\":\"institutional partner\",\"frontiersDefaultTerm\":\"institutional partner\",\"category\":\"Accounting\"},{\"sequenceNumber\":87,\"key\":\"institutional_membership\",\"tenantTerm\":\"institutional partnership\",\"frontiersDefaultTerm\":\"institutional partnership\",\"category\":\"Accounting\"},{\"sequenceNumber\":88,\"key\":\"article_processing_charge\",\"tenantTerm\":\"article processing charge\",\"frontiersDefaultTerm\":\"article processing charge\",\"category\":\"Accounting\"},{\"sequenceNumber\":89,\"key\":\"article_processing_charges\",\"tenantTerm\":\"article processing charges\",\"frontiersDefaultTerm\":\"article processing charges\",\"category\":\"Accounting\"},{\"sequenceNumber\":90,\"key\":\"apcs\",\"tenantTerm\":\"APCs\",\"frontiersDefaultTerm\":\"APCs\",\"category\":\"Accounting\"},{\"sequenceNumber\":91,\"key\":\"apc\",\"tenantTerm\":\"APC\",\"frontiersDefaultTerm\":\"APC\",\"category\":\"Accounting\"},{\"sequenceNumber\":92,\"key\":\"received\",\"tenantTerm\":\"received\",\"frontiersDefaultTerm\":\"received\",\"description\":\"Date manuscript was received on.\",\"category\":\"Core\"},{\"sequenceNumber\":93,\"key\":\"transferred\",\"tenantTerm\":\"transferred\",\"frontiersDefaultTerm\":\"transferred\",\"category\":\"Core\"},{\"sequenceNumber\":94,\"key\":\"transfer\",\"tenantTerm\":\"transfer\",\"frontiersDefaultTerm\":\"transfer\",\"category\":\"Core\"},{\"sequenceNumber\":95,\"key\":\"research_topic\",\"tenantTerm\":\"research topic\",\"frontiersDefaultTerm\":\"research topic\",\"category\":\"Core\"},{\"sequenceNumber\":96,\"key\":\"research_topics\",\"tenantTerm\":\"research topics\",\"frontiersDefaultTerm\":\"research topics\",\"category\":\"Core\"},{\"sequenceNumber\":97,\"key\":\"topic_editor\",\"tenantTerm\":\"Topic Editor\",\"frontiersDefaultTerm\":\"Topic Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":98,\"key\":\"review_editor\",\"tenantTerm\":\"Review Editor\",\"frontiersDefaultTerm\":\"Review Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":99,\"key\":\"title\",\"tenantTerm\":\"title\",\"frontiersDefaultTerm\":\"title\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":100,\"key\":\"running_title\",\"tenantTerm\":\"running title\",\"frontiersDefaultTerm\":\"running title\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":101,\"key\":\"submit\",\"tenantTerm\":\"submit\",\"frontiersDefaultTerm\":\"submit\",\"category\":\"Process\"},{\"sequenceNumber\":102,\"key\":\"submitted\",\"tenantTerm\":\"submitted\",\"frontiersDefaultTerm\":\"submitted\",\"category\":\"Process\"},{\"sequenceNumber\":103,\"key\":\"submitting\",\"tenantTerm\":\"submitting\",\"frontiersDefaultTerm\":\"submitting\",\"category\":\"Process\"},{\"sequenceNumber\":104,\"key\":\"t_e\",\"tenantTerm\":\"TE\",\"frontiersDefaultTerm\":\"TE\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":105,\"key\":\"topic\",\"tenantTerm\":\"topic\",\"frontiersDefaultTerm\":\"topic\",\"category\":\"Process\"},{\"sequenceNumber\":106,\"key\":\"topic_summary\",\"tenantTerm\":\"topic summary\",\"frontiersDefaultTerm\":\"topic summary\",\"category\":\"Process\"},{\"sequenceNumber\":107,\"key\":\"figure\",\"tenantTerm\":\"figure\",\"frontiersDefaultTerm\":\"figure\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":108,\"key\":\"figures\",\"tenantTerm\":\"figures\",\"frontiersDefaultTerm\":\"figures\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":109,\"key\":\"editorial_file\",\"tenantTerm\":\"editorial file\",\"frontiersDefaultTerm\":\"editorial file\",\"category\":\"Core\"},{\"sequenceNumber\":110,\"key\":\"editorial_files\",\"tenantTerm\":\"editorial files\",\"frontiersDefaultTerm\":\"editorial files\",\"category\":\"Core\"},{\"sequenceNumber\":111,\"key\":\"e_book\",\"tenantTerm\":\"e-book\",\"frontiersDefaultTerm\":\"e-book\",\"category\":\"Core\"},{\"sequenceNumber\":112,\"key\":\"organization\",\"tenantTerm\":\"organization\",\"frontiersDefaultTerm\":\"organization\",\"category\":\"Core\"},{\"sequenceNumber\":113,\"key\":\"institution\",\"tenantTerm\":\"institution\",\"frontiersDefaultTerm\":\"institution\",\"category\":\"Core\"},{\"sequenceNumber\":114,\"key\":\"reference\",\"tenantTerm\":\"reference\",\"frontiersDefaultTerm\":\"reference\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":115,\"key\":\"references\",\"tenantTerm\":\"references\",\"frontiersDefaultTerm\":\"references\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":116,\"key\":\"sce\",\"tenantTerm\":\"SCE\",\"frontiersDefaultTerm\":\"SCE\",\"description\":\"Abbreviation for Specialty Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":117,\"key\":\"submission\",\"tenantTerm\":\"submission\",\"frontiersDefaultTerm\":\"submission\",\"category\":\"Process\"},{\"sequenceNumber\":118,\"key\":\"submissions\",\"tenantTerm\":\"submissions\",\"frontiersDefaultTerm\":\"submissions\",\"category\":\"Process\"},{\"sequenceNumber\":119,\"key\":\"editing\",\"tenantTerm\":\"editing\",\"frontiersDefaultTerm\":\"editing\",\"category\":\"Process\"},{\"sequenceNumber\":120,\"key\":\"in_preparation\",\"tenantTerm\":\"in preparation\",\"frontiersDefaultTerm\":\"in preparation\",\"category\":\"Process\"},{\"sequenceNumber\":121,\"key\":\"country_region\",\"tenantTerm\":\"country\u002Fregion\",\"frontiersDefaultTerm\":\"country\u002Fregion\",\"description\":\"Because of political issues, some of the country listings are actually classified as `regions` and we need to include this. However other clients may not want to do this.\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":122,\"key\":\"countries_regions\",\"tenantTerm\":\"countries\u002Fregions\",\"frontiersDefaultTerm\":\"countries\u002Fregions\",\"description\":\"Because of political issues, some of the country listings are actually classified as `regions` and we need to include this. However other clients may not want to do this.\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":123,\"key\":\"specialty\",\"tenantTerm\":\"specialty\",\"frontiersDefaultTerm\":\"specialty\",\"category\":\"Core\"},{\"sequenceNumber\":124,\"key\":\"specialties\",\"tenantTerm\":\"specialties\",\"frontiersDefaultTerm\":\"specialties\",\"category\":\"Core\"},{\"sequenceNumber\":125,\"key\":\"associate_editors\",\"tenantTerm\":\"Associate Editors\",\"frontiersDefaultTerm\":\"Associate Editors\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":126,\"key\":\"reviewed\",\"tenantTerm\":\"reviewed\",\"frontiersDefaultTerm\":\"reviewed\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":127,\"key\":\"institutional_members\",\"tenantTerm\":\"institutional partners\",\"frontiersDefaultTerm\":\"institutional partners\",\"category\":\"Accounting\"},{\"sequenceNumber\":128,\"key\":\"institutional_memberships\",\"tenantTerm\":\"institutional partnerships\",\"frontiersDefaultTerm\":\"institutional partnerships\",\"category\":\"Accounting\"},{\"sequenceNumber\":129,\"key\":\"assistant_field_chief_editors\",\"tenantTerm\":\"Assistant Field Chief Editors\",\"frontiersDefaultTerm\":\"Assistant Field Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":130,\"key\":\"publications\",\"tenantTerm\":\"publications\",\"frontiersDefaultTerm\":\"publications\",\"category\":\"Process\"},{\"sequenceNumber\":131,\"key\":\"ae_accepted\",\"tenantTerm\":\"recommended acceptance\",\"frontiersDefaultTerm\":\"accepted\",\"category\":\"Process\"},{\"sequenceNumber\":132,\"key\":\"field_journal\",\"tenantTerm\":\"field journal\",\"frontiersDefaultTerm\":\"field journal\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":133,\"key\":\"field_journals\",\"tenantTerm\":\"field journals\",\"frontiersDefaultTerm\":\"field journals\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":134,\"key\":\"program_manager\",\"tenantTerm\":\"program manager\",\"frontiersDefaultTerm\":\"program manager\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":135,\"key\":\"journal_manager\",\"tenantTerm\":\"journal manager\",\"frontiersDefaultTerm\":\"journal manager\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":136,\"key\":\"journal_specialist\",\"tenantTerm\":\"journal specialist\",\"frontiersDefaultTerm\":\"journal specialist\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":137,\"key\":\"program_managers\",\"tenantTerm\":\"program managers\",\"frontiersDefaultTerm\":\"program managers\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":138,\"key\":\"journal_managers\",\"tenantTerm\":\"journal managers\",\"frontiersDefaultTerm\":\"journal managers\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":139,\"key\":\"journal_specialists\",\"tenantTerm\":\"journal specialists\",\"frontiersDefaultTerm\":\"journal specialists\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":140,\"key\":\"cover_letter\",\"tenantTerm\":\"manuscript contribution to the field\",\"frontiersDefaultTerm\":\"manuscript contribution to the field\",\"category\":\"Process\"},{\"sequenceNumber\":141,\"key\":\"ae_accepted_manuscript\",\"tenantTerm\":\"recommended to accept manuscript\",\"frontiersDefaultTerm\":\"accepted manuscript\",\"category\":\"Process\"},{\"sequenceNumber\":142,\"key\":\"recommend_for_rejection\",\"tenantTerm\":\"recommend for rejection\",\"frontiersDefaultTerm\":\"recommend for rejection\",\"category\":\"Process\"},{\"sequenceNumber\":143,\"key\":\"recommended_for_rejection\",\"tenantTerm\":\"recommended for rejection\",\"frontiersDefaultTerm\":\"recommended for rejection\",\"category\":\"Process\"},{\"sequenceNumber\":144,\"key\":\"ae\",\"tenantTerm\":\"AE\",\"frontiersDefaultTerm\":\"AE\",\"description\":\"Associate Editor - board member\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":145,\"key\":\"re\",\"tenantTerm\":\"RE\",\"frontiersDefaultTerm\":\"RE\",\"description\":\"Review Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":146,\"key\":\"rev\",\"tenantTerm\":\"REV\",\"frontiersDefaultTerm\":\"REV\",\"description\":\"Reviewer\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":147,\"key\":\"aut\",\"tenantTerm\":\"AUT\",\"frontiersDefaultTerm\":\"AUT\",\"description\":\"Author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":148,\"key\":\"coraut\",\"tenantTerm\":\"CORAUT\",\"frontiersDefaultTerm\":\"CORAUT\",\"description\":\"Corresponding author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":149,\"key\":\"saut\",\"tenantTerm\":\"SAUT\",\"frontiersDefaultTerm\":\"SAUT\",\"description\":\"Submitting author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":150,\"key\":\"coaut\",\"tenantTerm\":\"COAUT\",\"frontiersDefaultTerm\":\"COAUT\",\"description\":\"co-author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":151,\"key\":\"tsof\",\"tenantTerm\":\"TSOF\",\"frontiersDefaultTerm\":\"TSOF\",\"description\":\"Typesetter\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":152,\"key\":\"typesetting_office\",\"tenantTerm\":\"typesetting office\",\"frontiersDefaultTerm\":\"typesetting office\",\"category\":\"Product\"},{\"sequenceNumber\":153,\"key\":\"config\",\"tenantTerm\":\"CONFIG\",\"frontiersDefaultTerm\":\"CONFIG\",\"description\":\"Configuration office role\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":154,\"key\":\"jm\",\"tenantTerm\":\"JM\",\"frontiersDefaultTerm\":\"JM\",\"description\":\"Journal Manager\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":155,\"key\":\"rte\",\"tenantTerm\":\"RTE\",\"frontiersDefaultTerm\":\"RTE\",\"description\":\"Research topic editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":156,\"key\":\"organizations\",\"tenantTerm\":\"organizations\",\"frontiersDefaultTerm\":\"organizations\",\"category\":\"Core\"},{\"sequenceNumber\":157,\"key\":\"publishing\",\"tenantTerm\":\"publishing\",\"frontiersDefaultTerm\":\"publishing\",\"category\":\"Core\"},{\"sequenceNumber\":158,\"key\":\"acceptance\",\"tenantTerm\":\"acceptance\",\"frontiersDefaultTerm\":\"acceptance\",\"category\":\"Process\"},{\"sequenceNumber\":159,\"key\":\"preferred_associate_editor\",\"tenantTerm\":\"preferred associate editor\",\"frontiersDefaultTerm\":\"preferred associate editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":160,\"key\":\"topic_editors\",\"tenantTerm\":\"Topic Editors\",\"frontiersDefaultTerm\":\"Topic Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":161,\"key\":\"institutions\",\"tenantTerm\":\"institutions\",\"frontiersDefaultTerm\":\"institutions\",\"category\":\"Core\"},{\"sequenceNumber\":162,\"key\":\"author(s)\",\"tenantTerm\":\"author(s)\",\"frontiersDefaultTerm\":\"author(s)\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":163,\"key\":\"figure(s)\",\"tenantTerm\":\"figure(s)\",\"frontiersDefaultTerm\":\"figure(s)\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":164,\"key\":\"co-authors\",\"tenantTerm\":\"co-authors\",\"frontiersDefaultTerm\":\"co-authors\",\"description\":\"co-authors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":165,\"key\":\"editorial_board_members\",\"tenantTerm\":\"editorial board members\",\"frontiersDefaultTerm\":\"editorial board members\",\"description\":\"editorial board members\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":166,\"key\":\"editorial_board\",\"tenantTerm\":\"editorial board\",\"frontiersDefaultTerm\":\"editorial board\",\"description\":\"editorial board\",\"category\":\"Product\"},{\"sequenceNumber\":167,\"key\":\"co-authorship\",\"tenantTerm\":\"co-authorship\",\"frontiersDefaultTerm\":\"co-authorship\",\"description\":\"co-authorship\",\"category\":\"Misc.\"},{\"sequenceNumber\":168,\"key\":\"role_id_1\",\"tenantTerm\":\"registration office\",\"frontiersDefaultTerm\":\"registration office\",\"category\":\"User Role\"},{\"sequenceNumber\":169,\"key\":\"role_id_2\",\"tenantTerm\":\"editorial office\",\"frontiersDefaultTerm\":\"editorial office\",\"category\":\"User Role\"},{\"sequenceNumber\":170,\"key\":\"role_id_7\",\"tenantTerm\":\"field chief editor\",\"frontiersDefaultTerm\":\"field chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":171,\"key\":\"role_id_8\",\"tenantTerm\":\"assistant field chief editor\",\"frontiersDefaultTerm\":\"assistant field chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":172,\"key\":\"role_id_9\",\"tenantTerm\":\"specialty chief editor\",\"frontiersDefaultTerm\":\"specialty chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":173,\"key\":\"role_id_10\",\"tenantTerm\":\"assistant specialty chief editor\",\"frontiersDefaultTerm\":\"assistant specialty chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":174,\"key\":\"role_id_11\",\"tenantTerm\":\"associate editor\",\"frontiersDefaultTerm\":\"associate editor\",\"category\":\"User Role\"},{\"sequenceNumber\":175,\"key\":\"role_id_12\",\"tenantTerm\":\"guest associate editor\",\"frontiersDefaultTerm\":\"guest associate editor\",\"category\":\"User Role\"},{\"sequenceNumber\":176,\"key\":\"role_id_13\",\"tenantTerm\":\"review editor\",\"frontiersDefaultTerm\":\"review editor\",\"category\":\"User Role\"},{\"sequenceNumber\":177,\"key\":\"role_id_14\",\"tenantTerm\":\"reviewer\",\"frontiersDefaultTerm\":\"reviewer\",\"category\":\"User Role\"},{\"sequenceNumber\":178,\"key\":\"role_id_15\",\"tenantTerm\":\"author\",\"frontiersDefaultTerm\":\"author\",\"category\":\"User Role\"},{\"sequenceNumber\":179,\"key\":\"role_id_16\",\"tenantTerm\":\"corresponding author\",\"frontiersDefaultTerm\":\"corresponding author\",\"category\":\"User Role\"},{\"sequenceNumber\":180,\"key\":\"role_id_17\",\"tenantTerm\":\"submitting author\",\"frontiersDefaultTerm\":\"submitting author\",\"category\":\"User Role\"},{\"sequenceNumber\":181,\"key\":\"role_id_18\",\"tenantTerm\":\"co-author\",\"frontiersDefaultTerm\":\"co-author\",\"category\":\"User Role\"},{\"sequenceNumber\":182,\"key\":\"role_id_20\",\"tenantTerm\":\"production office\",\"frontiersDefaultTerm\":\"production office\",\"category\":\"User Role\"},{\"sequenceNumber\":183,\"key\":\"role_id_22\",\"tenantTerm\":\"typesetting office (typesetter)\",\"frontiersDefaultTerm\":\"typesetting office (typesetter)\",\"category\":\"User Role\"},{\"sequenceNumber\":184,\"key\":\"role_id_24\",\"tenantTerm\":\"registered user\",\"frontiersDefaultTerm\":\"registered user\",\"category\":\"User Role\"},{\"sequenceNumber\":185,\"key\":\"role_id_35\",\"tenantTerm\":\"job office\",\"frontiersDefaultTerm\":\"job office\",\"category\":\"User Role\"},{\"sequenceNumber\":186,\"key\":\"role_id_41\",\"tenantTerm\":\"special event administrator\",\"frontiersDefaultTerm\":\"special event administrator\",\"category\":\"User Role\"},{\"sequenceNumber\":187,\"key\":\"role_id_42\",\"tenantTerm\":\"special event reviewer\",\"frontiersDefaultTerm\":\"special event reviewer\",\"category\":\"User Role\"},{\"sequenceNumber\":188,\"key\":\"role_id_43\",\"tenantTerm\":\"submit abstract\",\"frontiersDefaultTerm\":\"submit abstract\",\"category\":\"User Role\"},{\"sequenceNumber\":189,\"key\":\"role_id_52\",\"tenantTerm\":\"events office\",\"frontiersDefaultTerm\":\"events office\",\"category\":\"User Role\"},{\"sequenceNumber\":190,\"key\":\"role_id_53\",\"tenantTerm\":\"event administrator\",\"frontiersDefaultTerm\":\"event administrator\",\"category\":\"User Role\"},{\"sequenceNumber\":191,\"key\":\"role_id_89\",\"tenantTerm\":\"content management office\",\"frontiersDefaultTerm\":\"content management office\",\"category\":\"User Role\"},{\"sequenceNumber\":192,\"key\":\"role_id_98\",\"tenantTerm\":\"accounting office\",\"frontiersDefaultTerm\":\"accounting office\",\"category\":\"User Role\"},{\"sequenceNumber\":193,\"key\":\"role_id_99\",\"tenantTerm\":\"projects\",\"frontiersDefaultTerm\":\"projects\",\"category\":\"User Role\"},{\"sequenceNumber\":194,\"key\":\"role_id_103\",\"tenantTerm\":\"configuration office\",\"frontiersDefaultTerm\":\"configuration office\",\"category\":\"User Role\"},{\"sequenceNumber\":195,\"key\":\"role_id_104\",\"tenantTerm\":\"beta user\",\"frontiersDefaultTerm\":\"beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":196,\"key\":\"role_id_106\",\"tenantTerm\":\"wfconf\",\"frontiersDefaultTerm\":\"wfconf\",\"category\":\"User Role\"},{\"sequenceNumber\":197,\"key\":\"role_id_107\",\"tenantTerm\":\"rt management beta user\",\"frontiersDefaultTerm\":\"rt management beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":198,\"key\":\"role_id_108\",\"tenantTerm\":\"deo beta user\",\"frontiersDefaultTerm\":\"deo beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":199,\"key\":\"role_id_109\",\"tenantTerm\":\"search beta user\",\"frontiersDefaultTerm\":\"search beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":200,\"key\":\"role_id_110\",\"tenantTerm\":\"journal manager\",\"frontiersDefaultTerm\":\"journal manager\",\"category\":\"User Role\"},{\"sequenceNumber\":201,\"key\":\"role_id_111\",\"tenantTerm\":\"myfrontiers beta user\",\"frontiersDefaultTerm\":\"myfrontiers beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":202,\"key\":\"role_id_21\",\"tenantTerm\":\"copy editor\",\"frontiersDefaultTerm\":\"copy editor\",\"category\":\"User Role\"},{\"sequenceNumber\":203,\"key\":\"role_id_1_abr\",\"tenantTerm\":\"ROF\",\"frontiersDefaultTerm\":\"ROF\",\"category\":\"User Role\"},{\"sequenceNumber\":204,\"key\":\"role_id_2_abr\",\"tenantTerm\":\"EOF\",\"frontiersDefaultTerm\":\"EOF\",\"category\":\"User Role\"},{\"sequenceNumber\":205,\"key\":\"role_id_7_abr\",\"tenantTerm\":\"FCE\",\"frontiersDefaultTerm\":\"FCE\",\"category\":\"User Role\"},{\"sequenceNumber\":206,\"key\":\"role_id_8_abr\",\"tenantTerm\":\"AFCE\",\"frontiersDefaultTerm\":\"AFCE\",\"category\":\"User Role\"},{\"sequenceNumber\":207,\"key\":\"role_id_9_abr\",\"tenantTerm\":\"SCE\",\"frontiersDefaultTerm\":\"SCE\",\"category\":\"User Role\"},{\"sequenceNumber\":208,\"key\":\"role_id_10_abr\",\"tenantTerm\":\"ASCE\",\"frontiersDefaultTerm\":\"ASCE\",\"category\":\"User Role\"},{\"sequenceNumber\":209,\"key\":\"role_id_11_abr\",\"tenantTerm\":\"AE\",\"frontiersDefaultTerm\":\"AE\",\"category\":\"User Role\"},{\"sequenceNumber\":210,\"key\":\"role_id_12_abr\",\"tenantTerm\":\"GAE\",\"frontiersDefaultTerm\":\"GAE\",\"category\":\"User Role\"},{\"sequenceNumber\":211,\"key\":\"role_id_13_abr\",\"tenantTerm\":\"RE\",\"frontiersDefaultTerm\":\"RE\",\"category\":\"User Role\"},{\"sequenceNumber\":212,\"key\":\"role_id_14_abr\",\"tenantTerm\":\"REV\",\"frontiersDefaultTerm\":\"REV\",\"category\":\"User Role\"},{\"sequenceNumber\":213,\"key\":\"role_id_15_abr\",\"tenantTerm\":\"AUT\",\"frontiersDefaultTerm\":\"AUT\",\"category\":\"User Role\"},{\"sequenceNumber\":214,\"key\":\"role_id_16_abr\",\"tenantTerm\":\"CORAUT\",\"frontiersDefaultTerm\":\"CORAUT\",\"category\":\"User Role\"},{\"sequenceNumber\":215,\"key\":\"role_id_17_abr\",\"tenantTerm\":\"SAUT\",\"frontiersDefaultTerm\":\"SAUT\",\"category\":\"User Role\"},{\"sequenceNumber\":216,\"key\":\"role_id_18_abr\",\"tenantTerm\":\"COAUT\",\"frontiersDefaultTerm\":\"COAUT\",\"category\":\"User Role\"},{\"sequenceNumber\":217,\"key\":\"role_id_20_abr\",\"tenantTerm\":\"POF\",\"frontiersDefaultTerm\":\"POF\",\"category\":\"User Role\"},{\"sequenceNumber\":218,\"key\":\"role_id_22_abr\",\"tenantTerm\":\"TSOF\",\"frontiersDefaultTerm\":\"TSOF\",\"category\":\"User Role\"},{\"sequenceNumber\":219,\"key\":\"role_id_24_abr\",\"tenantTerm\":\"RU\",\"frontiersDefaultTerm\":\"RU\",\"category\":\"User Role\"},{\"sequenceNumber\":220,\"key\":\"role_id_35_abr\",\"tenantTerm\":\"JOF\",\"frontiersDefaultTerm\":\"JOF\",\"category\":\"User Role\"},{\"sequenceNumber\":221,\"key\":\"role_id_41_abr\",\"tenantTerm\":\"SE-ADM\",\"frontiersDefaultTerm\":\"SE-ADM\",\"category\":\"User Role\"},{\"sequenceNumber\":222,\"key\":\"role_id_42_abr\",\"tenantTerm\":\"SE-REV\",\"frontiersDefaultTerm\":\"SE-REV\",\"category\":\"User Role\"},{\"sequenceNumber\":223,\"key\":\"role_id_43_abr\",\"tenantTerm\":\"SE-AUT\",\"frontiersDefaultTerm\":\"SE-AUT\",\"category\":\"User Role\"},{\"sequenceNumber\":224,\"key\":\"role_id_52_abr\",\"tenantTerm\":\"EVOF\",\"frontiersDefaultTerm\":\"EVOF\",\"category\":\"User Role\"},{\"sequenceNumber\":225,\"key\":\"role_id_53_abr\",\"tenantTerm\":\"EV-ADM\",\"frontiersDefaultTerm\":\"EV-ADM\",\"category\":\"User Role\"},{\"sequenceNumber\":226,\"key\":\"role_id_89_abr\",\"tenantTerm\":\"COMOF\",\"frontiersDefaultTerm\":\"COMOF\",\"category\":\"User Role\"},{\"sequenceNumber\":227,\"key\":\"role_id_98_abr\",\"tenantTerm\":\"AOF\",\"frontiersDefaultTerm\":\"AOF\",\"category\":\"User Role\"},{\"sequenceNumber\":228,\"key\":\"role_id_99_abr\",\"tenantTerm\":\"Projects\",\"frontiersDefaultTerm\":\"Projects\",\"category\":\"User Role\"},{\"sequenceNumber\":229,\"key\":\"role_id_103_abr\",\"tenantTerm\":\"CONFIG\",\"frontiersDefaultTerm\":\"CONFIG\",\"category\":\"User Role\"},{\"sequenceNumber\":230,\"key\":\"role_id_104_abr\",\"tenantTerm\":\"BETA\",\"frontiersDefaultTerm\":\"BETA\",\"category\":\"User Role\"},{\"sequenceNumber\":231,\"key\":\"role_id_106_abr\",\"tenantTerm\":\"WFCONF\",\"frontiersDefaultTerm\":\"WFCONF\",\"category\":\"User Role\"},{\"sequenceNumber\":232,\"key\":\"role_id_107_abr\",\"tenantTerm\":\"RTBETA\",\"frontiersDefaultTerm\":\"RTBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":233,\"key\":\"role_id_108_abr\",\"tenantTerm\":\"DEOBETA\",\"frontiersDefaultTerm\":\"DEOBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":234,\"key\":\"role_id_109_abr\",\"tenantTerm\":\"SEARCHBETA\",\"frontiersDefaultTerm\":\"SEARCHBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":235,\"key\":\"role_id_110_abr\",\"tenantTerm\":\"JM\",\"frontiersDefaultTerm\":\"JM\",\"category\":\"User Role\"},{\"sequenceNumber\":236,\"key\":\"role_id_111_abr\",\"tenantTerm\":\"MFBETA\",\"frontiersDefaultTerm\":\"MFBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":237,\"key\":\"role_id_21_abr\",\"tenantTerm\":\"COPED\",\"frontiersDefaultTerm\":\"COPED\",\"category\":\"User Role\"},{\"sequenceNumber\":238,\"key\":\"reviewer_editorial_board\",\"tenantTerm\":\"editorial board\",\"frontiersDefaultTerm\":\"editorial board\",\"description\":\"This is the label for the review editorial board\",\"category\":\"Label\"},{\"sequenceNumber\":239,\"key\":\"field_chief_editor\",\"tenantTerm\":\"Field Chief Editor\",\"frontiersDefaultTerm\":\"Field Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":240,\"key\":\"field_chief_editors\",\"tenantTerm\":\"Field Chief Editors\",\"frontiersDefaultTerm\":\"Field Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":241,\"key\":\"editor\",\"tenantTerm\":\"editor\",\"frontiersDefaultTerm\":\"editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":242,\"key\":\"editors\",\"tenantTerm\":\"editors\",\"frontiersDefaultTerm\":\"editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":243,\"key\":\"board\",\"tenantTerm\":\"board\",\"frontiersDefaultTerm\":\"board\",\"category\":\"Label\"},{\"sequenceNumber\":244,\"key\":\"boards\",\"tenantTerm\":\"boards\",\"frontiersDefaultTerm\":\"boards\",\"category\":\"Label\"},{\"sequenceNumber\":245,\"key\":\"article_collection\",\"tenantTerm\":\"article collection\",\"frontiersDefaultTerm\":\"article collection\",\"category\":\"Label\"},{\"sequenceNumber\":246,\"key\":\"article_collections\",\"tenantTerm\":\"article collections\",\"frontiersDefaultTerm\":\"article collections\",\"category\":\"Label\"},{\"sequenceNumber\":247,\"key\":\"handling_editor\",\"tenantTerm\":\"handling editor\",\"frontiersDefaultTerm\":\"associate editor\",\"description\":\"This terminology key is for the person assigned to edit a manuscript. It is a label for the temporary handling editor assignment.\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":248,\"key\":\"handling_editors\",\"tenantTerm\":\"handling editors\",\"frontiersDefaultTerm\":\"associate editors\",\"description\":\"This terminology key is for the person assigned to edit a manuscript. It is a label for the temporary handling editor assignment.\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":249,\"key\":\"ae_accept\",\"tenantTerm\":\"recommend acceptance\",\"frontiersDefaultTerm\":\"accept\",\"category\":\"Process\"},{\"sequenceNumber\":250,\"key\":\"rtm\",\"tenantTerm\":\"RTM\",\"frontiersDefaultTerm\":\"RTM\",\"category\":\"Product\"},{\"sequenceNumber\":251,\"key\":\"frontiers_media_sa\",\"tenantTerm\":\"Frontiers Media S.A\",\"frontiersDefaultTerm\":\"Frontiers Media S.A\",\"category\":\"Customer\"},{\"sequenceNumber\":252,\"key\":\"review_editors\",\"tenantTerm\":\"Review Editors\",\"frontiersDefaultTerm\":\"Review Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":253,\"key\":\"journal_card_chief_editor\",\"tenantTerm\":\"Chief Editor\",\"frontiersDefaultTerm\":\"Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":254,\"key\":\"journal_card_chief_editors\",\"tenantTerm\":\"Chief Editors\",\"frontiersDefaultTerm\":\"Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":255,\"key\":\"call_for_papers\",\"tenantTerm\":\"Call for papers\",\"frontiersDefaultTerm\":\"Call for papers\",\"category\":\"Label\"},{\"sequenceNumber\":256,\"key\":\"calls_for_papers\",\"tenantTerm\":\"Calls for papers\",\"frontiersDefaultTerm\":\"Calls for papers\",\"category\":\"Label\"},{\"sequenceNumber\":257,\"key\":\"supervising_editor\",\"tenantTerm\":\"Supervising Editor\",\"frontiersDefaultTerm\":\"Supervising Editor\",\"description\":\"A Chief or Assistant Chief editor who is assigned to a manuscript to supervise.\",\"category\":\"Role\",\"externalKey\":\"supervising_editor\"},{\"sequenceNumber\":258,\"key\":\"supervising_editors\",\"tenantTerm\":\"Supervising Editors\",\"frontiersDefaultTerm\":\"Supervising Editors\",\"description\":\"A Chief or Assistant Chief editor who is assigned to a manuscript to supervise.\",\"category\":\"Role\",\"externalKey\":\"supervising_editors\"},{\"sequenceNumber\":259,\"key\":\"reviewer_endorse\",\"tenantTerm\":\"endorse\",\"frontiersDefaultTerm\":\"endorse\",\"category\":\"Label\"},{\"sequenceNumber\":260,\"key\":\"reviewer_endorsed\",\"tenantTerm\":\"endorsed\",\"frontiersDefaultTerm\":\"endorsed\",\"category\":\"Label\"},{\"sequenceNumber\":261,\"key\":\"reviewer_endorse_publication\",\"tenantTerm\":\"endorse publication\",\"frontiersDefaultTerm\":\"endorse publication\",\"category\":\"Label\"},{\"sequenceNumber\":262,\"key\":\"reviewer_endorsed_publication\",\"tenantTerm\":\"endorsed publication\",\"frontiersDefaultTerm\":\"endorsed publication\",\"category\":\"Label\"},{\"sequenceNumber\":263,\"key\":\"editor_role\",\"tenantTerm\":\"editor role\",\"frontiersDefaultTerm\":\"Editor Role\",\"category\":\"Label\"},{\"sequenceNumber\":264,\"key\":\"editor_roles\",\"tenantTerm\":\"editor roles\",\"frontiersDefaultTerm\":\"Editor Roles\",\"category\":\"Label\"},{\"sequenceNumber\":265,\"key\":\"editorial_role\",\"tenantTerm\":\"editorial role\",\"frontiersDefaultTerm\":\"Editorial Role\",\"category\":\"Label\"},{\"sequenceNumber\":266,\"key\":\"editorial_roles\",\"tenantTerm\":\"editorial roles\",\"frontiersDefaultTerm\":\"Editorial Roles\",\"category\":\"Label\"},{\"sequenceNumber\":267,\"key\":\"call_for_paper\",\"tenantTerm\":\"Call for paper\",\"frontiersDefaultTerm\":\"Call for paper\",\"category\":\"Label\"},{\"sequenceNumber\":268,\"key\":\"research_topic_abstract\",\"tenantTerm\":\"manuscript summary\",\"frontiersDefaultTerm\":\"manuscript summary\",\"category\":\"Process\"},{\"sequenceNumber\":269,\"key\":\"research_topic_abstracts\",\"tenantTerm\":\"manuscript summaries\",\"frontiersDefaultTerm\":\"manuscript summaries\",\"category\":\"Process\"},{\"sequenceNumber\":270,\"key\":\"submissions_team_manager\",\"tenantTerm\":\"Content Manager\",\"frontiersDefaultTerm\":\"Content Manager\",\"category\":\"Process\"},{\"sequenceNumber\":271,\"key\":\"submissions_team\",\"tenantTerm\":\"Content Team\",\"frontiersDefaultTerm\":\"Content Team\",\"category\":\"Process\"},{\"sequenceNumber\":272,\"key\":\"topic_coordinator\",\"tenantTerm\":\"topic coordinator\",\"frontiersDefaultTerm\":\"topic coordinator\",\"category\":\"Process\"},{\"sequenceNumber\":273,\"key\":\"topic_coordinators\",\"tenantTerm\":\"topic coordinators\",\"frontiersDefaultTerm\":\"topic coordinators\",\"category\":\"Process\"}]}'\n",gtmId:"GTM-M322FV2",gtmAuth:"owVbWxfaJr21yQv1fe1cAQ",gtmServerUrl:"https:\u002F\u002Ftag-manager.frontiersin.org",gtmPreview:"env-1",faviconSize512:"https:\u002F\u002Fbrand.frontiersin.org\u002Fm\u002Fed3f9ce840a03d7\u002Ffavicon_512-tenantFavicon-Frontiers.png",socialMediaImg:"https:\u002F\u002Fbrand.frontiersin.org\u002Fm\u002F1c8bcb536c789e11\u002FGuidelines-Frontiers_Logo_1200x628_1-91to1.png",_app:{basePath:"\u002F",assetsPath:"\u002Farticle-pages\u002F_nuxt\u002F",cdnURL:e}},apollo:{contentfulJournalsDelivery:Object.create(null),contentfulJournalsPreview:Object.create(null),contentfulHomeDelivery:Object.create(null),contentfulHomePreview:Object.create(null),frontiersGraph:Object.create(null)}}}("journal_journal","public_space",1,"frontiersin.org",null,"_self",true,"",3,"frontierspartnerships.org","_blank",false,"Frontiers in Pharmacology",0,"PDF",5,176,"pharmacology",4,2,"description","Frontiers","Help center","Link","Grey","Medium","ssph-journal.org","fship","Front. Pharmacol.","1663-9812",void 0,9,18,1920,"por-journal.com",7,"escubed.org",1918,"fipp","https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F754E12A9-443F-4EA8-AB01E0811E45131D\u002Fwebimage-9D720582-24AD-4D2E-9205AB9D241919DA.jpg","image","2022-06-27T10:00:45Z","fphar",62,"journal_field","10.3389\u002Ffphar.2024.1395673","Current research update on group B streptococcal infection related to obstetrics and gynecology","\u003Cp\u003EGroup B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.\u003C\u002Fp\u003E",2243969,"Ying","Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health","China",2673124,"Hao",2306927,"Adrian",212007,"Adzzie Shazleen","Malaysia",2683183,"Zhi Xian",{},2216,"Pharmacology of Infectious Diseases","pharmacology-of-infectious-diseases",15,"EPUB","fphar-15-1395673.pdf","Frontiers | Current research update on group B streptococcal infection related to obstetrics and gynecology","https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fpharmacology\u002Farticles\u002F10.3389\u002Ffphar.2024.1395673\u002Ffull","Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pr...","og:title","og:description","keywords","og:site_name","og:image","og:type","og:url","twitter:card","citation_volume","citation_journal_title","citation_publisher","citation_journal_abbrev","citation_issn","citation_doi","citation_firstpage","citation_language","citation_title","citation_keywords","citation_abstract","citation_pdf_url","citation_online_date","citation_publication_date","citation_author","citation_author_institution","Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, China","dc.identifier","articles","editors","research-topics","How we publish","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fhow-we-publish","Fee policy","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Ffee-policy","Research Topics","https:\u002F\u002Fforum.frontiersin.org\u002F","Frontiers Planet Prize","https:\u002F\u002Fwww.frontiersplanetprize.org\u002F","this link will take you to the Frontiers Planet Prize website","Career opportunities","https:\u002F\u002Fcareers.frontiersin.org\u002F","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fcontact","Author guidelines","Editor guidelines","https:\u002F\u002Fwww.frontiersin.org\u002Fjournals","https:\u002F\u002Fwww.frontiersin.org\u002Farticles","Articles","https:\u002F\u002Fhelpcenter.frontiersin.org","Frontiers for Young Minds","Frontiers Facebook","Transplant International","transplant-international","ti",1921,"Spanish Journal of Soil Science","spanish-journal-of-soil-science","sjss","ebm-journal.org","Public Health Reviews","public-health-reviews","phrs","Pathology and Oncology Research","pathology-and-oncology-research","pore",21,"Pastoralism: Research, Policy and Practice","pastoralism-research-policy-and-practice","past",11,"Oncology Reviews","oncology-reviews","or","Journal of Pharmacy & Pharmaceutical Sciences","journal-of-pharmacy-pharmaceutical-sciences","jpps","Journal of Cutaneous Immunology and Allergy","journal-of-cutaneous-immunology-and-allergy","JCIA","Journal of Abdominal Wall Surgery","journal-of-abdominal-wall-surgery","jaws",1919,"International Journal of Public Health","international-journal-of-public-health","ijph","Frontiers in Pathology","pathology","fpath",13,12,17,6,"Experimental Biology and Medicine","experimental-biology-and-medicine","EBM","European Journal of Cultural Management and Policy","european-journal-of-cultural-management-and-policy","ejcmp","Earth Science, Systems and Society","earth-science-systems-and-society","esss","Dystonia","dystonia","dyst","British Journal of Biomedical Science","british-journal-of-biomedical-science","bjbs","Aerospace Research Communications","aerospace-research-communications","arc","Advances in Drug and Alcohol Research","advances-in-drug-and-alcohol-research","adar","Acta Virologica","acta-virologica","av","Acta Biochimica Polonica","acta-biochimica-polonica"));</script><script src="/article-pages/_nuxt/4764e3b.js" defer></script><script src="/article-pages/_nuxt/a07a553.js" defer></script><script src="/article-pages/_nuxt/94ee25c.js" defer></script><script src="/article-pages/_nuxt/5465e0e.js" defer></script><script src="/article-pages/_nuxt/fb04c78.js" defer></script><script src="/article-pages/_nuxt/f8f682e.js" defer></script><script src="/article-pages/_nuxt/8e7ee66.js" defer></script><script src="/article-pages/_nuxt/232bf4b.js" defer></script><script src="/article-pages/_nuxt/3b10072.js" defer></script><script data-n-head="ssr" src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6" data-body="true" async></script><script data-n-head="ssr" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML" data-body="true" async></script><script data-n-head="ssr" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/altmetric_badges-f0bc9b243ff5677d05460c1eb71834ca998946d764eb3bc244ab4b18ba50d21e.js" data-body="true" async></script><script data-n-head="ssr" src="https://api.altmetric.com/v1/doi/10.3389/fphar.2024.1395673?callback=_altmetric.embed_callback&domain=www.frontiersin.org&key=3c130976ca2b8f2e88f8377633751ba1&cache_until=14-15" data-body="true" async></script><script data-n-head="ssr" src="https://widgets.figshare.com/static/figshare.js" data-body="true" async></script><script data-n-head="ssr" src="https://crossmark-cdn.crossref.org/widget/v2.0/widget.js" data-body="true" async></script> </body> </html>