CINXE.COM

Search results for: Image denoising

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Image denoising</title> <meta name="description" content="Search results for: Image denoising"> <meta name="keywords" content="Image denoising"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Image denoising" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Image denoising"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1562</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Image denoising</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1562</span> Performance Improvement in the Bivariate Models by using Modified Marginal Variance of Noisy Observations for Image-Denoising Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Senthilkumar">R. Senthilkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most simple nonlinear thresholding rules for wavelet- based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. This paper attempts to give a recipe for selecting one of the popular image-denoising algorithms based on VisuShrink, SureShrink, OracleShrink, BayesShrink and BiShrink and also this paper compares different Bivariate models used for image denoising applications. The first part of the paper compares different Shrinkage functions used for image-denoising. The second part of the paper compares different bivariate models and the third part of this paper uses the Bivariate model with modified marginal variance which is based on Laplacian assumption. This paper gives an experimental comparison on six 512x512 commonly used images, Lenna, Barbara, Goldhill, Clown, Boat and Stonehenge. The following noise powers 25dB,26dB, 27dB, 28dB and 29dB are added to the six standard images and the corresponding Peak Signal to Noise Ratio (PSNR) values are calculated for each noise level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=BiShrink" title="BiShrink">BiShrink</a>, <a href="https://publications.waset.org/search?q=Image-Denoising" title=" Image-Denoising"> Image-Denoising</a>, <a href="https://publications.waset.org/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/search?q=Shrinkage%20function" title=" Shrinkage function"> Shrinkage function</a> </p> <a href="https://publications.waset.org/6515/performance-improvement-in-the-bivariate-models-by-using-modified-marginal-variance-of-noisy-observations-for-image-denoising-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6515/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6515/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6515/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6515/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6515/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6515/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6515/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6515/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6515/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6515/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1347</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1561</span> Multiscale Blind Image Restoration with a New Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alireza%20Mallahzadeh">Alireza Mallahzadeh</a>, <a href="https://publications.waset.org/search?q=Hamid%20Dehghani"> Hamid Dehghani</a>, <a href="https://publications.waset.org/search?q=Iman%20Elyasi"> Iman Elyasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new method, based on the normal shrink and modified version of Katssagelous and Lay, is proposed for multiscale blind image restoration. The method deals with the noise and blur in the images. It is shown that the normal shrink gives the highest S/N (signal to noise ratio) for image denoising process. The multiscale blind image restoration is divided in two sections. The first part of this paper proposes normal shrink for image denoising and the second part of paper proposes modified version of katssagelous and Lay for blur estimation and the combination of both methods to reach a multiscale blind image restoration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multiscale%20blind%20image%20restoration" title="Multiscale blind image restoration">Multiscale blind image restoration</a>, <a href="https://publications.waset.org/search?q=image%20denoising" title=" image denoising"> image denoising</a>, <a href="https://publications.waset.org/search?q=blur%20estimation." title=" blur estimation."> blur estimation.</a> </p> <a href="https://publications.waset.org/11297/multiscale-blind-image-restoration-with-a-new-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11297/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11297/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11297/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11297/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11297/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11297/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11297/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11297/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11297/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11297/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1722</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1560</span> Feature Preserving Nonlinear Diffusion for Ultrasonic Image Denoising and Edge Enhancement </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shujun%20Fu">Shujun Fu</a>, <a href="https://publications.waset.org/search?q=Qiuqi%20Ruan"> Qiuqi Ruan</a>, <a href="https://publications.waset.org/search?q=Wenqia%20Wang"> Wenqia Wang</a>, <a href="https://publications.waset.org/search?q=Yu%20Li"> Yu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=anisotropic%20diffusion" title="anisotropic diffusion">anisotropic diffusion</a>, <a href="https://publications.waset.org/search?q=coordinate%20transformationdirectional%20derivatives" title=" coordinate transformationdirectional derivatives"> coordinate transformationdirectional derivatives</a>, <a href="https://publications.waset.org/search?q=edge%20enhancement" title=" edge enhancement"> edge enhancement</a>, <a href="https://publications.waset.org/search?q=hyperbolic%20tangentfunction" title=" hyperbolic tangentfunction"> hyperbolic tangentfunction</a>, <a href="https://publications.waset.org/search?q=image%20denoising." title=" image denoising."> image denoising.</a> </p> <a href="https://publications.waset.org/15953/feature-preserving-nonlinear-diffusion-for-ultrasonic-image-denoising-and-edge-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15953/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15953/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15953/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15953/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15953/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15953/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15953/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15953/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15953/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15953/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1813</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1559</span> Adaptive Anisotropic Diffusion for Ultrasonic Image Denoising and Edge Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shujun%20Fu">Shujun Fu</a>, <a href="https://publications.waset.org/search?q=Qiuqi%20Ruan"> Qiuqi Ruan</a>, <a href="https://publications.waset.org/search?q=Wenqia%20Wang"> Wenqia Wang</a>, <a href="https://publications.waset.org/search?q=Yu%20Li"> Yu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=anisotropic%20diffusion" title="anisotropic diffusion">anisotropic diffusion</a>, <a href="https://publications.waset.org/search?q=coordinate%20transformation" title=" coordinate transformation"> coordinate transformation</a>, <a href="https://publications.waset.org/search?q=directional%0D%0Aderivatives" title=" directional derivatives"> directional derivatives</a>, <a href="https://publications.waset.org/search?q=edge%20enhancement" title=" edge enhancement"> edge enhancement</a>, <a href="https://publications.waset.org/search?q=hyperbolic%20tangent%20function" title=" hyperbolic tangent function"> hyperbolic tangent function</a>, <a href="https://publications.waset.org/search?q=image%20denoising." title=" image denoising."> image denoising.</a> </p> <a href="https://publications.waset.org/6123/adaptive-anisotropic-diffusion-for-ultrasonic-image-denoising-and-edge-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6123/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6123/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6123/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6123/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6123/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6123/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6123/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6123/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6123/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6123/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1900</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1558</span> Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hamid%20A.%20Jalab">Hamid A. Jalab</a>, <a href="https://publications.waset.org/search?q=Rabha%20W.%20Ibrahim"> Rabha W. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn&nbsp;fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fractional%20calculus" title="Fractional calculus">Fractional calculus</a>, <a href="https://publications.waset.org/search?q=fractional%20differential%20operator" title=" fractional differential operator"> fractional differential operator</a>, <a href="https://publications.waset.org/search?q=fractional%20mask" title=" fractional mask"> fractional mask</a>, <a href="https://publications.waset.org/search?q=fractional%20filter." title=" fractional filter."> fractional filter.</a> </p> <a href="https://publications.waset.org/9996971/fractional-masks-based-on-generalized-fractional-differential-operator-for-image-denoising" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996971/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996971/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996971/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996971/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996971/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996971/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996971/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996971/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996971/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996971/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3003</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1557</span> An Efficient Adaptive Thresholding Technique for Wavelet Based Image Denoising</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.Gnanadurai">D.Gnanadurai</a>, <a href="https://publications.waset.org/search?q=V.Sadasivam"> V.Sadasivam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This frame work describes a computationally more efficient and adaptive threshold estimation method for image denoising in the wavelet domain based on Generalized Gaussian Distribution (GGD) modeling of subband coefficients. In this proposed method, the choice of the threshold estimation is carried out by analysing the statistical parameters of the wavelet subband coefficients like standard deviation, arithmetic mean and geometrical mean. The noisy image is first decomposed into many levels to obtain different frequency bands. Then soft thresholding method is used to remove the noisy coefficients, by fixing the optimum thresholding value by the proposed method. Experimental results on several test images by using this method show that this method yields significantly superior image quality and better Peak Signal to Noise Ratio (PSNR). Here, to prove the efficiency of this method in image denoising, we have compared this with various denoising methods like wiener filter, Average filter, VisuShrink and BayesShrink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Wavelet%20Transform" title="Wavelet Transform">Wavelet Transform</a>, <a href="https://publications.waset.org/search?q=Gaussian%20Noise" title=" Gaussian Noise"> Gaussian Noise</a>, <a href="https://publications.waset.org/search?q=ImageDenoising" title=" ImageDenoising"> ImageDenoising</a>, <a href="https://publications.waset.org/search?q=Filter%20Banks%20and%20Thresholding." title=" Filter Banks and Thresholding."> Filter Banks and Thresholding.</a> </p> <a href="https://publications.waset.org/572/an-efficient-adaptive-thresholding-technique-for-wavelet-based-image-denoising" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/572/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/572/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/572/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/572/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/572/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/572/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/572/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/572/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/572/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/572/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2907</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1556</span> Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20P.%20Athira">T. P. Athira</a>, <a href="https://publications.waset.org/search?q=Gibin%20Chacko%20George"> Gibin Chacko George</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dual-tree%20complex%20wavelet%20transform%20%28DT-CWT%29" title="Dual-tree complex wavelet transform (DT-CWT)">Dual-tree complex wavelet transform (DT-CWT)</a>, <a href="https://publications.waset.org/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/search?q=optimal%20estimation" title=" optimal estimation"> optimal estimation</a>, <a href="https://publications.waset.org/search?q=super%20resolution." title=" super resolution."> super resolution.</a> </p> <a href="https://publications.waset.org/9999163/complex-wavelet-transform-based-image-denoising-and-zooming-under-the-lmmse-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999163/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999163/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999163/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999163/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999163/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999163/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999163/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999163/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999163/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999163/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2163</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1555</span> Denoising and Compression in Wavelet Domainvia Projection on to Approximation Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mario%20Mastriani">Mario Mastriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We describe a new filtering approach in the wavelet domain for image denoising and compression, based on the projections of details subbands coefficients (resultants of the splitting procedure, typical in wavelet domain) onto the approximation subband coefficients (much less noisy). The new algorithm is called Projection Onto Approximation Coefficients (POAC). As a result of this approach, only the approximation subband coefficients and three scalars are stored and/or transmitted to the channel. Besides, with the elimination of the details subbands coefficients, we obtain a bigger compression rate. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Compression" title="Compression">Compression</a>, <a href="https://publications.waset.org/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/search?q=projections" title=" projections"> projections</a>, <a href="https://publications.waset.org/search?q=wavelets." title=" wavelets."> wavelets.</a> </p> <a href="https://publications.waset.org/13626/denoising-and-compression-in-wavelet-domainvia-projection-on-to-approximation-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13626/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13626/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13626/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13626/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13626/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13626/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13626/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13626/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13626/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13626/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1615</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1554</span> Elimination Noise by Adaptive Wavelet Threshold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Iman%20Elyasi">Iman Elyasi</a>, <a href="https://publications.waset.org/search?q=Sadegh%20Zarmehi"> Sadegh Zarmehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20denoising" title="Image denoising">Image denoising</a>, <a href="https://publications.waset.org/search?q=Bayes%20Shrink" title=" Bayes Shrink"> Bayes Shrink</a>, <a href="https://publications.waset.org/search?q=Modified%20Bayes%20Shrink" title=" Modified Bayes Shrink"> Modified Bayes Shrink</a>, <a href="https://publications.waset.org/search?q=Normal%20Shrink." title=" Normal Shrink."> Normal Shrink.</a> </p> <a href="https://publications.waset.org/8882/elimination-noise-by-adaptive-wavelet-threshold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8882/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8882/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8882/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8882/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8882/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8882/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8882/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8882/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8882/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8882/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2473</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1553</span> Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gaoyong%20Luo">Gaoyong Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Edge%20strength" title="Edge strength">Edge strength</a>, <a href="https://publications.waset.org/search?q=Fast%20lifting%20wavelet" title=" Fast lifting wavelet"> Fast lifting wavelet</a>, <a href="https://publications.waset.org/search?q=Image%20denoising" title=" Image denoising"> Image denoising</a>, <a href="https://publications.waset.org/search?q=Local%20variance." title="Local variance.">Local variance.</a> </p> <a href="https://publications.waset.org/13725/fast-wavelet-image-denoising-based-on-local-variance-and-edge-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13725/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13725/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13725/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13725/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13725/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13725/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13725/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13725/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13725/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13725/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2028</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1552</span> An Image Enhancement Method Based on Curvelet Transform for CBCT-Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shahriar%20Farzam">Shahriar Farzam</a>, <a href="https://publications.waset.org/search?q=Maryam%20Rastgarpour"> Maryam Rastgarpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Curvelet%20transform" title="Curvelet transform">Curvelet transform</a>, <a href="https://publications.waset.org/search?q=image%20enhancement" title=" image enhancement"> image enhancement</a>, <a href="https://publications.waset.org/search?q=CBCT" title=" CBCT"> CBCT</a>, <a href="https://publications.waset.org/search?q=image%20denoising." title=" image denoising."> image denoising.</a> </p> <a href="https://publications.waset.org/10007177/an-image-enhancement-method-based-on-curvelet-transform-for-cbct-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007177/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007177/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007177/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007177/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007177/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007177/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007177/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007177/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007177/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007177/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1260</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1551</span> A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tudor%20Barbu">Tudor Barbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20denoising%20and%20restoration" title="Image denoising and restoration">Image denoising and restoration</a>, <a href="https://publications.waset.org/search?q=nonlinear%20PDE%0D%0Amodel" title=" nonlinear PDE model"> nonlinear PDE model</a>, <a href="https://publications.waset.org/search?q=anisotropic%20diffusion" title=" anisotropic diffusion"> anisotropic diffusion</a>, <a href="https://publications.waset.org/search?q=numerical%20approximation%20scheme" title=" numerical approximation scheme"> numerical approximation scheme</a>, <a href="https://publications.waset.org/search?q=finite%0D%0Adifferences." title=" finite differences."> finite differences.</a> </p> <a href="https://publications.waset.org/10004972/a-nonlinear-parabolic-partial-differential-equation-model-for-image-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004972/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004972/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004972/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004972/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004972/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004972/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004972/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004972/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004972/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004972/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1303</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1550</span> Electrocardiogram Signal Denoising Using a Hybrid Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Latif">R. Latif</a>, <a href="https://publications.waset.org/search?q=W.%20Jenkal"> W. Jenkal</a>, <a href="https://publications.waset.org/search?q=A.%20Toumanari"> A. Toumanari</a>, <a href="https://publications.waset.org/search?q=A.%20Hatim"> A. Hatim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hybrid%20technique" title="Hybrid technique">Hybrid technique</a>, <a href="https://publications.waset.org/search?q=ADTF" title=" ADTF"> ADTF</a>, <a href="https://publications.waset.org/search?q=DWT" title=" DWT"> DWT</a>, <a href="https://publications.waset.org/search?q=tresholding" title=" tresholding"> tresholding</a>, <a href="https://publications.waset.org/search?q=ECG%20signal." title=" ECG signal."> ECG signal.</a> </p> <a href="https://publications.waset.org/10006721/electrocardiogram-signal-denoising-using-a-hybrid-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006721/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006721/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006721/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006721/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006721/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006721/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006721/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006721/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006721/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006721/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1200</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1549</span> Speckle Reducing Contourlet Transform for Medical Ultrasound Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.S.%20Hiremath">P.S. Hiremath</a>, <a href="https://publications.waset.org/search?q=Prema%20T.%20Akkasaligar"> Prema T. Akkasaligar</a>, <a href="https://publications.waset.org/search?q=Sharan%20Badiger"> Sharan Badiger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speckle noise affects all coherent imaging systems including medical ultrasound. In medical images, noise suppression is a particularly delicate and difficult task. A tradeoff between noise reduction and the preservation of actual image features has to be made in a way that enhances the diagnostically relevant image content. Even though wavelets have been extensively used for denoising speckle images, we have found that denoising using contourlets gives much better performance in terms of SNR, PSNR, MSE, variance and correlation coefficient. The objective of the paper is to determine the number of levels of Laplacian pyramidal decomposition, the number of directional decompositions to perform on each pyramidal level and thresholding schemes which yields optimal despeckling of medical ultrasound images, in particular. The proposed method consists of the log transformed original ultrasound image being subjected to contourlet transform, to obtain contourlet coefficients. The transformed image is denoised by applying thresholding techniques on individual band pass sub bands using a Bayes shrinkage rule. We quantify the achieved performance improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contourlet%20transform" title="Contourlet transform">Contourlet transform</a>, <a href="https://publications.waset.org/search?q=Despeckling" title=" Despeckling"> Despeckling</a>, <a href="https://publications.waset.org/search?q=Pyramidal%20directionalfilter%20bank" title=" Pyramidal directionalfilter bank"> Pyramidal directionalfilter bank</a>, <a href="https://publications.waset.org/search?q=Thresholding." title=" Thresholding."> Thresholding.</a> </p> <a href="https://publications.waset.org/6361/speckle-reducing-contourlet-transform-for-medical-ultrasound-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6361/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6361/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6361/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6361/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6361/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6361/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6361/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6361/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6361/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6361/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2446</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1548</span> Microarrays Denoising via Smoothing of Coefficients in Wavelet Domain </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mario%20Mastriani">Mario Mastriani</a>, <a href="https://publications.waset.org/search?q=Alberto%20E.%20Giraldez"> Alberto E. Giraldez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on a smoothing of the coefficients of the highest subbands. Specifically, we decompose the noisy microarray into wavelet subbands, apply smoothing within each highest subband, and reconstruct a microarray from the modified wavelet coefficients. This process is applied a single time, and exclusively to the first level of decomposition, i.e., in most of the cases, it is not necessary a multirresoltuion analysis. Denoising results compare favorably to the most of methods in use at the moment.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Directional%20smoothing" title="Directional smoothing">Directional smoothing</a>, <a href="https://publications.waset.org/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/search?q=edge%20preservation" title=" edge preservation"> edge preservation</a>, <a href="https://publications.waset.org/search?q=microarrays" title="microarrays">microarrays</a>, <a href="https://publications.waset.org/search?q=thresholding" title=" thresholding"> thresholding</a>, <a href="https://publications.waset.org/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/9224/microarrays-denoising-via-smoothing-of-coefficients-in-wavelet-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9224/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9224/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9224/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9224/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9224/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9224/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9224/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9224/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9224/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9224/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1502</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1547</span> Empirical Mode Decomposition Based Denoising by Customized Thresholding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wahiba%20Mohguen">Wahiba Mohguen</a>, <a href="https://publications.waset.org/search?q=Ra%C3%AFs%20El%E2%80%99hadi%20Bekka"> Ra茂s El鈥檋adi Bekka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Customized%20thresholding" title="Customized thresholding">Customized thresholding</a>, <a href="https://publications.waset.org/search?q=ECG%20signal" title=" ECG signal"> ECG signal</a>, <a href="https://publications.waset.org/search?q=EMD" title=" EMD"> EMD</a>, <a href="https://publications.waset.org/search?q=hard%20thresholding" title=" hard thresholding"> hard thresholding</a>, <a href="https://publications.waset.org/search?q=Soft-thresholding." title=" Soft-thresholding."> Soft-thresholding.</a> </p> <a href="https://publications.waset.org/10006844/empirical-mode-decomposition-based-denoising-by-customized-thresholding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006844/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006844/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006844/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006844/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006844/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006844/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006844/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006844/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006844/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006844/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1085</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1546</span> Discrete and Stationary Adaptive Sub-Band Threshold Method for Improving Image Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Joyce%20Beryl%20Princess">P. Joyce Beryl Princess</a>, <a href="https://publications.waset.org/search?q=Y.%20Harold%20Robinson"> Y. Harold Robinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image Processing is a structure of Signal Processing for which the input is the image and the output is also an image or parameter of the image. Image Resolution has been frequently referred as an important aspect of an image. In Image Resolution Enhancement, images are being processed in order to obtain more enhanced resolution. To generate highly resoluted image for a low resoluted input image with high PSNR value. Stationary Wavelet Transform is used for Edge Detection and minimize the loss occurs during Downsampling. Inverse Discrete Wavelet Transform is to get highly resoluted image. Highly resoluted output is generated from the Low resolution input with high quality. Noisy input will generate output with low PSNR value. So Noisy resolution enhancement technique has been used for adaptive sub-band thresholding is used. Downsampling in each of the DWT subbands causes information loss in the respective subbands. SWT is employed to minimize this loss. Inverse Discrete wavelet transform (IDWT) is to convert the object which is downsampled using DWT into a highly resoluted object. Used Image denoising and resolution enhancement techniques will generate image with high PSNR value. Our Proposed method will improve Image Resolution and reached the optimized threshold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Processing" title="Image Processing">Image Processing</a>, <a href="https://publications.waset.org/search?q=Inverse%20Discrete%20wavelet%0D%0Atransform" title=" Inverse Discrete wavelet transform"> Inverse Discrete wavelet transform</a>, <a href="https://publications.waset.org/search?q=PSNR." title=" PSNR."> PSNR.</a> </p> <a href="https://publications.waset.org/10001613/discrete-and-stationary-adaptive-sub-band-threshold-method-for-improving-image-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001613/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001613/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001613/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001613/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001613/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001613/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001613/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001613/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001613/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001613/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1790</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1545</span> Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jagadish%20H.%20Pujar">Jagadish H. Pujar</a>, <a href="https://publications.waset.org/search?q=Pallavi%20S.%20Gurjal"> Pallavi S. Gurjal</a>, <a href="https://publications.waset.org/search?q=Shambhavi%20D.%20S"> Shambhavi D. S</a>, <a href="https://publications.waset.org/search?q=Kiran%20S.%20Kunnur"> Kiran S. Kunnur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Segmentation" title="Image Segmentation">Image Segmentation</a>, <a href="https://publications.waset.org/search?q=Image%20smoothing" title=" Image smoothing"> Image smoothing</a>, <a href="https://publications.waset.org/search?q=Edge%20Detection" title=" Edge Detection"> Edge Detection</a>, <a href="https://publications.waset.org/search?q=Impulsive%20noise" title=" Impulsive noise"> Impulsive noise</a>, <a href="https://publications.waset.org/search?q=Gaussian%20noise" title=" Gaussian noise"> Gaussian noise</a>, <a href="https://publications.waset.org/search?q=Median%20filter" title=" Median filter"> Median filter</a>, <a href="https://publications.waset.org/search?q=Canny%20edge" title=" Canny edge"> Canny edge</a>, <a href="https://publications.waset.org/search?q=Eigen%20values" title=" Eigen values"> Eigen values</a>, <a href="https://publications.waset.org/search?q=Eigen%20vector." title=" Eigen vector."> Eigen vector.</a> </p> <a href="https://publications.waset.org/14997/medical-image-segmentation-based-on-vigorous-smoothing-and-edge-detection-ideology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14997/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14997/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14997/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14997/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14997/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14997/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14997/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14997/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14997/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14997/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1912</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1544</span> An Adaptive Mammographic Image Enhancement in Orthogonal Polynomials Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Krishnamoorthy">R. Krishnamoorthy</a>, <a href="https://publications.waset.org/search?q=N.%20Amudhavalli"> N. Amudhavalli</a>, <a href="https://publications.waset.org/search?q=M.K.%20Sivakkolunthu"> M.K. Sivakkolunthu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are of low-contrast and noisy. In this paper, a new algorithm for image denoising and enhancement in Orthogonal Polynomials Transformation (OPT) is proposed for radiologists to screen mammograms. In this method, a set of OPT edge coefficients are scaled to a new set by a scale factor called OPT scale factor. The new set of coefficients is then inverse transformed resulting in contrast improved image. Applications of the proposed method to mammograms with subtle lesions are shown. To validate the effectiveness of the proposed method, we compare the results to those obtained by the Histogram Equalization (HE) and the Unsharp Masking (UM) methods. Our preliminary results strongly suggest that the proposed method offers considerably improved enhancement capability over the HE and UM methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=mammograms" title="mammograms">mammograms</a>, <a href="https://publications.waset.org/search?q=image%20enhancement" title=" image enhancement"> image enhancement</a>, <a href="https://publications.waset.org/search?q=orthogonalpolynomials" title=" orthogonalpolynomials"> orthogonalpolynomials</a>, <a href="https://publications.waset.org/search?q=contrast%20improvement" title=" contrast improvement"> contrast improvement</a> </p> <a href="https://publications.waset.org/6650/an-adaptive-mammographic-image-enhancement-in-orthogonal-polynomials-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6650/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6650/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6650/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6650/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6650/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6650/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6650/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6650/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6650/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6650/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2011</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1543</span> A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Qianhua%20He">Qianhua He</a>, <a href="https://publications.waset.org/search?q=Weili%20Zhou"> Weili Zhou</a>, <a href="https://publications.waset.org/search?q=Aiwu%20Chen"> Aiwu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Speech%20denoising" title="Speech denoising">Speech denoising</a>, <a href="https://publications.waset.org/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a>, <a href="https://publications.waset.org/search?q=K-singular%20value%20decomposition" title=" K-singular value decomposition"> K-singular value decomposition</a>, <a href="https://publications.waset.org/search?q=orthogonal%20matching%20pursuit." title=" orthogonal matching pursuit."> orthogonal matching pursuit.</a> </p> <a href="https://publications.waset.org/10008151/a-sparse-representation-speech-denoising-method-based-on-adapted-stopping-residue-error" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008151/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008151/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008151/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008151/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008151/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008151/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008151/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008151/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008151/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008151/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1014</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1542</span> CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amir%20Moslemi">Amir Moslemi</a>, <a href="https://publications.waset.org/search?q=Amir%20Movafeghi"> Amir Movafeghi</a>, <a href="https://publications.waset.org/search?q=Shahab%20Moradi"> Shahab Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important challenging factors in medical images is nominated as noise. Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjects to low quality due to the noise. Quality of CT images is dependent on absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete Wavelet Transform (DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computed%20Tomography%20%28CT%29" title="Computed Tomography (CT)">Computed Tomography (CT)</a>, <a href="https://publications.waset.org/search?q=noise%20reduction" title=" noise reduction"> noise reduction</a>, <a href="https://publications.waset.org/search?q=curve-let" title=" curve-let"> curve-let</a>, <a href="https://publications.waset.org/search?q=contour-let" title=" contour-let"> contour-let</a>, <a href="https://publications.waset.org/search?q=Signal%20to%20Noise%20Peak-Peak%20Ratio%20%28PSNR%29" title=" Signal to Noise Peak-Peak Ratio (PSNR)"> Signal to Noise Peak-Peak Ratio (PSNR)</a>, <a href="https://publications.waset.org/search?q=Structure%20Similarity%20%28Ssim%29" title=" Structure Similarity (Ssim)"> Structure Similarity (Ssim)</a>, <a href="https://publications.waset.org/search?q=Absorbed%20Dose%20to%20Patient%20%28ADP%29." title=" Absorbed Dose to Patient (ADP)."> Absorbed Dose to Patient (ADP).</a> </p> <a href="https://publications.waset.org/10002440/ct-medical-images-denoising-based-on-new-wavelet-thresholding-compared-with-curvelet-and-contourlet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002440/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002440/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002440/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002440/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002440/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002440/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002440/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002440/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002440/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002440/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2920</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1541</span> Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jianwei%20Ma">Jianwei Ma</a>, <a href="https://publications.waset.org/search?q=Diriba%20Gemechu"> Diriba Gemechu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Anisotropic%20total%20fractional%20order%20variation" title="Anisotropic total fractional order variation">Anisotropic total fractional order variation</a>, <a href="https://publications.waset.org/search?q=fractional%0D%0Aorder%20bounded%20variation" title=" fractional order bounded variation"> fractional order bounded variation</a>, <a href="https://publications.waset.org/search?q=seismic%20random%20noise%20attenuation" title=" seismic random noise attenuation"> seismic random noise attenuation</a>, <a href="https://publications.waset.org/search?q=Split%0D%0ABregman%20Algorithm." title=" Split Bregman Algorithm."> Split Bregman Algorithm.</a> </p> <a href="https://publications.waset.org/10008470/anisotropic-total-fractional-order-variation-model-in-seismic-data-denoising" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008470/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008470/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008470/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008470/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008470/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008470/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008470/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008470/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008470/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008470/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1013</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1540</span> Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mario%20Mastriani">Mario Mastriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on the following procedure: We apply 1) Bidimentional Discrete Wavelet Transform (DWT-2D) to the Noisy Microarray, 2) scaling and rounding to the coefficients of the highest subbands (to obtain integer and positive coefficients), 3) bit-slicing to the new highest subbands (to obtain bit-planes), 4) then we apply the Systholic Boolean Orthonormalizer Network (SBON) to the input bit-plane set and we obtain two orthonormal otput bit-plane sets (in a Boolean sense), we project a set on the other one, by means of an AND operation, and then, 5) we apply re-assembling, and, 6) rescaling. Finally, 7) we apply Inverse DWT-2D and reconstruct a microarray from the modified wavelet coefficients. Denoising results compare favorably to the most of methods in use at the moment.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bit-Plane" title="Bit-Plane">Bit-Plane</a>, <a href="https://publications.waset.org/search?q=Boolean%20Orthonormalization%20Process" title=" Boolean Orthonormalization Process"> Boolean Orthonormalization Process</a>, <a href="https://publications.waset.org/search?q=Denoising" title=" Denoising"> Denoising</a>, <a href="https://publications.waset.org/search?q=Microarrays" title=" Microarrays"> Microarrays</a>, <a href="https://publications.waset.org/search?q=Wavelets" title=" Wavelets"> Wavelets</a> </p> <a href="https://publications.waset.org/9632/systholic-boolean-orthonormalizer-network-in-wavelet-domain-for-microarray-denoising" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9632/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9632/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9632/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9632/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9632/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9632/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9632/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9632/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9632/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9632/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1490</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1539</span> Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mario%20Mastriani">Mario Mastriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Blur" title="Blur">Blur</a>, <a href="https://publications.waset.org/search?q=Kohonen%20self-organizing%20map" title=" Kohonen self-organizing map"> Kohonen self-organizing map</a>, <a href="https://publications.waset.org/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/search?q=speckle" title=" speckle"> speckle</a>, <a href="https://publications.waset.org/search?q=synthetic%20aperture%20radar." title=" synthetic aperture radar."> synthetic aperture radar.</a> </p> <a href="https://publications.waset.org/4726/denoising-based-on-wavelets-and-deblurring-via-self-organizing-map-for-synthetic-aperture-radar-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4726/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4726/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4726/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4726/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4726/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4726/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4726/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4726/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4726/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4726/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1735</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1538</span> Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Talbi%20Mourad">Talbi Mourad</a>, <a href="https://publications.waset.org/search?q=Salhi%20Lotfi"> Salhi Lotfi</a>, <a href="https://publications.waset.org/search?q=Ch%C3%A9rif%20Adnen"> Ch茅rif Adnen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Enhancement" title="Enhancement">Enhancement</a>, <a href="https://publications.waset.org/search?q=spectral%20subtraction" title=" spectral subtraction"> spectral subtraction</a>, <a href="https://publications.waset.org/search?q=SNR" title=" SNR"> SNR</a>, <a href="https://publications.waset.org/search?q=discrete%0D%0Awavelet%20packet%20transform" title=" discrete wavelet packet transform"> discrete wavelet packet transform</a>, <a href="https://publications.waset.org/search?q=spectral%20entropy%20Histogram" title=" spectral entropy Histogram"> spectral entropy Histogram</a> </p> <a href="https://publications.waset.org/2477/spectral-entropy-employment-in-speech-enhancement-based-on-wavelet-packet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2477/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2477/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2477/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2477/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2477/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2477/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2477/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2477/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2477/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2477/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1992</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1537</span> Tests and Measurements of Image Acquisition Characteristics for Image Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seongsoo%20Lee">Seongsoo Lee</a>, <a href="https://publications.waset.org/search?q=Jong-Bae%20Lee"> Jong-Bae Lee</a>, <a href="https://publications.waset.org/search?q=Wookkang%20Lee"> Wookkang Lee</a>, <a href="https://publications.waset.org/search?q=Duyen%20Hai%20Pham"> Duyen Hai Pham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In the image sensors, the acquired image often differs from the real image in luminance or chrominance due to fabrication defects or nonlinear characteristics, which often lead to pixel defects or sensor failure. Therefore, the image acquisition characteristics of image sensors should be measured and tested before they are mounted on the target product. In this paper, the standardized test and measurement methods of image sensors are introduced. It applies standard light source to the image sensor under test, and the characteristics of the acquired image is compared with ideal values.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Sensor" title="Image Sensor">Image Sensor</a>, <a href="https://publications.waset.org/search?q=Image%20Acquisition%20Characteristics" title=" Image Acquisition Characteristics"> Image Acquisition Characteristics</a>, <a href="https://publications.waset.org/search?q=Defect" title=" Defect"> Defect</a>, <a href="https://publications.waset.org/search?q=Failure" title=" Failure"> Failure</a>, <a href="https://publications.waset.org/search?q=Standard" title=" Standard"> Standard</a>, <a href="https://publications.waset.org/search?q=Test" title=" Test"> Test</a>, <a href="https://publications.waset.org/search?q=Measurement." title=" Measurement."> Measurement.</a> </p> <a href="https://publications.waset.org/17198/tests-and-measurements-of-image-acquisition-characteristics-for-image-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17198/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17198/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17198/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17198/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17198/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17198/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17198/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17198/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17198/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17198/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1689</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1536</span> A Comparative Study of Image Segmentation Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mehdi%20Hosseinzadeh">Mehdi Hosseinzadeh</a>, <a href="https://publications.waset.org/search?q=Parisa%20Khoshvaght"> Parisa Khoshvaght</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some applications, such as image recognition or compression, segmentation refers to the process of partitioning a digital image into multiple segments. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. Image segmentation is to classify or cluster an image into several parts (regions) according to the feature of image, for example, the pixel value or the frequency response. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image. Several image segmentation algorithms were proposed to segment an image before recognition or compression. Up to now, many image segmentation algorithms exist and be extensively applied in science and daily life. According to their segmentation method, we can approximately categorize them into region-based segmentation, data clustering, and edge-base segmentation. In this paper, we give a study of several popular image segmentation algorithms that are available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Segmentation" title="Image Segmentation">Image Segmentation</a>, <a href="https://publications.waset.org/search?q=hierarchical%20segmentation" title=" hierarchical segmentation"> hierarchical segmentation</a>, <a href="https://publications.waset.org/search?q=partitional%20segmentation" title=" partitional segmentation"> partitional segmentation</a>, <a href="https://publications.waset.org/search?q=density%20estimation." title=" density estimation."> density estimation.</a> </p> <a href="https://publications.waset.org/10002407/a-comparative-study-of-image-segmentation-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002407/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002407/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002407/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002407/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002407/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002407/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002407/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002407/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002407/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002407/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2918</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1535</span> An Improved Total Variation Regularization Method for Denoising Magnetocardiography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yanping%20Liao">Yanping Liao</a>, <a href="https://publications.waset.org/search?q=Congcong%20He"> Congcong He</a>, <a href="https://publications.waset.org/search?q=Ruigang%20Zhao"> Ruigang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Constraint%20parameters" title="Constraint parameters">Constraint parameters</a>, <a href="https://publications.waset.org/search?q=derivative%20matrix" title=" derivative matrix"> derivative matrix</a>, <a href="https://publications.waset.org/search?q=magnetocardiography" title=" magnetocardiography"> magnetocardiography</a>, <a href="https://publications.waset.org/search?q=regular%20term" title=" regular term"> regular term</a>, <a href="https://publications.waset.org/search?q=total%20variation." title=" total variation. "> total variation. </a> </p> <a href="https://publications.waset.org/10010521/an-improved-total-variation-regularization-method-for-denoising-magnetocardiography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010521/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010521/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010521/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010521/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010521/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010521/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010521/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010521/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010521/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010521/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">698</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1534</span> Survey on Image Mining Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jyoti%20Dua">Jyoti Dua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>One image is worth more than thousand words. Images if analyzed can reveal useful information. Low level image processing deals with the extraction of specific feature from a single image. Now the question arises: What technique should be used to extract patterns of very large and detailed image database? The answer of the question is: &ldquo;Image Mining&rdquo;. Image Mining deals with the extraction of image data relationship, implicit knowledge, and another pattern from the collection of images or image database. It is nothing but the extension of Data Mining. In the following paper, not only we are going to scrutinize the current techniques of image mining but also present a new technique for mining images using Genetic Algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Mining" title="Image Mining">Image Mining</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Genetic%20Algorithm." title=" Genetic Algorithm."> Genetic Algorithm.</a> </p> <a href="https://publications.waset.org/10000598/survey-on-image-mining-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000598/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000598/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000598/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000598/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000598/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000598/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000598/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000598/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000598/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000598/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2445</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1533</span> Robust Statistics Based Algorithm to Remove Salt and Pepper Noise in Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.R.Vijaykumar">V.R.Vijaykumar</a>, <a href="https://publications.waset.org/search?q=P.T.Vanathi"> P.T.Vanathi</a>, <a href="https://publications.waset.org/search?q=P.Kanagasabapathy"> P.Kanagasabapathy</a>, <a href="https://publications.waset.org/search?q=D.Ebenezer"> D.Ebenezer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a robust statistics based filter to remove salt and pepper noise in digital images is presented. The function of the algorithm is to detect the corrupted pixels first since the impulse noise only affect certain pixels in the image and the remaining pixels are uncorrupted. The corrupted pixels are replaced by an estimated value using the proposed robust statistics based filter. The proposed method perform well in removing low to medium density impulse noise with detail preservation upto a noise density of 70% compared to standard median filter, weighted median filter, recursive weighted median filter, progressive switching median filter, signal dependent rank ordered mean filter, adaptive median filter and recently proposed decision based algorithm. The visual and quantitative results show the proposed algorithm outperforms in restoring the original image with superior preservation of edges and better suppression of impulse noise</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20denoising" title="Image denoising">Image denoising</a>, <a href="https://publications.waset.org/search?q=Nonlinear%20filter" title=" Nonlinear filter"> Nonlinear filter</a>, <a href="https://publications.waset.org/search?q=Robust%20Statistics" title=" Robust Statistics"> Robust Statistics</a>, <a href="https://publications.waset.org/search?q=and%20Salt%20and%20Pepper%20Noise." title="and Salt and Pepper Noise.">and Salt and Pepper Noise.</a> </p> <a href="https://publications.waset.org/1823/robust-statistics-based-algorithm-to-remove-salt-and-pepper-noise-in-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1823/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1823/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1823/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1823/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1823/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1823/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1823/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1823/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1823/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1823/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2202</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=52">52</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Image%20denoising&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10