CINXE.COM
Cellular differentiation - Wikipedia
<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Cellular differentiation - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"10b0c286-547c-4116-bfb6-d75eee342727","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Cellular_differentiation","wgTitle":"Cellular differentiation","wgCurRevisionId":1248996696,"wgRevisionId":1248996696, "wgArticleId":152611,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Cellular_differentiation","wgRelevantArticleId":152611,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Cell_differentiation","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby": true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgInternalRedirectTargetUrl":"/wiki/Cellular_differentiation","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{ "lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang": "bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga" ,"autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr", "autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar", "dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir": "ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{ "lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{ "lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym": "isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pl","autonym":"polski","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym": "rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym": "සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg", "autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{ "lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk", "awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or", "os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q210861","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready", "wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Final_stem_cell_differentiation_%281%29.svg/1200px-Final_stem_cell_differentiation_%281%29.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="848"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Final_stem_cell_differentiation_%281%29.svg/800px-Final_stem_cell_differentiation_%281%29.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="566"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Final_stem_cell_differentiation_%281%29.svg/640px-Final_stem_cell_differentiation_%281%29.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="453"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Cellular differentiation - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Cellular_differentiation&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Cellular_differentiation"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Cellular_differentiation rootpage-Cellular_differentiation stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&returnto=Cellular+differentiation" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&returnto=Cellular+differentiation" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en&utm_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Cellular differentiation</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/Cellular_differentiation" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:Cellular_differentiation" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&returnto=Cellular+differentiation" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=Cellular_differentiation&action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Cell_differentiation&redirect=no" class="mw-redirect" title="Cell differentiation">Cell differentiation</a>)</span></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Cell differentiation" redirects here. For the journal, see <a href="/wiki/Cell_Differentiation_(journal)" class="mw-redirect" title="Cell Differentiation (journal)">Cell Differentiation (journal)</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Cell_division" title="Cell division">Cell division</a>.</div> <p><b>Cellular differentiation</b> is the process in which a <a href="/wiki/Stem_cell" title="Stem cell">stem cell</a> changes from one type to a differentiated one.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a <a href="/wiki/Multicellular_organism" title="Multicellular organism">multicellular organism</a> as it changes from a simple <a href="/wiki/Zygote" title="Zygote">zygote</a> to a complex system of <a href="/wiki/Tissue_(biology)" title="Tissue (biology)">tissues</a> and cell types. Differentiation continues in adulthood as <a href="/wiki/Adult_stem_cell" title="Adult stem cell">adult stem cells</a> divide and create fully differentiated <a href="/wiki/Cell_division" title="Cell division">daughter cells</a> during tissue repair and during normal cell turnover. Some differentiation occurs in response to <a href="/wiki/Antigen" title="Antigen">antigen</a> exposure. Differentiation dramatically changes a cell's size, shape, <a href="/wiki/Membrane_potential" title="Membrane potential">membrane potential</a>, <a href="/wiki/Metabolism" title="Metabolism">metabolic activity</a>, and responsiveness to signals. These changes are largely due to highly controlled modifications in <a href="/wiki/Gene_expression" title="Gene expression">gene expression</a> and are the study of <a href="/wiki/Epigenetics" title="Epigenetics">epigenetics</a>. With a few exceptions, cellular differentiation almost never involves a change in the <a href="/wiki/DNA" title="DNA">DNA</a> sequence itself. Metabolic composition, however, gets dramatically altered<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> where stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. Thus, different cells can have very different physical characteristics despite having the same <a href="/wiki/Genome" title="Genome">genome</a>. </p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Final_stem_cell_differentiation_(1).svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Final_stem_cell_differentiation_%281%29.svg/330px-Final_stem_cell_differentiation_%281%29.svg.png" decoding="async" width="330" height="233" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Final_stem_cell_differentiation_%281%29.svg/495px-Final_stem_cell_differentiation_%281%29.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Final_stem_cell_differentiation_%281%29.svg/660px-Final_stem_cell_differentiation_%281%29.svg.png 2x" data-file-width="512" data-file-height="362"></a><figcaption><a href="/wiki/Stem_cell" title="Stem cell">Stem cell</a> differentiation into various animal tissue types</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Stimuli.pdf" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Stimuli.pdf/page1-220px-Stimuli.pdf.jpg" decoding="async" width="220" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Stimuli.pdf/page1-330px-Stimuli.pdf.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Stimuli.pdf/page1-440px-Stimuli.pdf.jpg 2x" data-file-width="675" data-file-height="658"></a><figcaption>Cell-count distribution featuring cellular differentiation for three types of cells (progenitor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>, osteoblast <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>, and chondrocyte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>) exposed to pro-osteoblast stimulus.<sup id="cite_ref-CME_1-0" class="reference"><a href="#cite_note-CME-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>A specialized type of differentiation, known as <a href="/wiki/Terminal_differentiation" class="mw-redirect" title="Terminal differentiation">terminal differentiation</a>, is of importance in some tissues, including vertebrate <a href="/wiki/Nervous_system" title="Nervous system">nervous system</a>, <a href="/wiki/Striated_muscle" class="mw-redirect" title="Striated muscle">striated muscle</a>, <a href="/wiki/Epidermis" title="Epidermis">epidermis</a> and gut. During terminal differentiation, a precursor cell formerly capable of cell division permanently leaves the cell cycle, dismantles the cell cycle machinery and often expresses a range of genes characteristic of the cell's final function (e.g. <a href="/wiki/Myosin" title="Myosin">myosin</a> and <a href="/wiki/Actin" title="Actin">actin</a> for a muscle cell). Differentiation may continue to occur after terminal differentiation if the capacity and functions of the cell undergo further changes. </p><p>Among dividing cells, there are multiple levels of <a href="/wiki/Cell_potency" title="Cell potency">cell potency</a>, which is the cell's ability to differentiate into other cell types. A greater potency indicates a larger number of cell types that can be derived. A cell that can differentiate into all cell types, including the placental tissue, is known as <i><a href="/wiki/Totipotent" class="mw-redirect" title="Totipotent">totipotent</a></i>. In mammals, only the zygote and subsequent <a href="/wiki/Blastomere" title="Blastomere">blastomeres</a> are totipotent, while in plants, many differentiated cells can become totipotent with simple laboratory techniques. A cell that can differentiate into all cell types of the adult organism is known as <i><a href="/wiki/Pluripotent" class="mw-redirect" title="Pluripotent">pluripotent</a></i>. Such cells are called <a href="/wiki/Meristem" title="Meristem">meristematic cells</a> in higher plants and <a href="/wiki/Embryonic_stem_cell" title="Embryonic stem cell">embryonic stem cells</a> in animals, though some groups report the presence of adult pluripotent cells. Virally induced expression of four transcription factors <a href="/wiki/Oct4" class="mw-redirect" title="Oct4">Oct4</a>, <a href="/wiki/Sox2" class="mw-redirect" title="Sox2">Sox2</a>, <span class="nowrap"><a href="/wiki/C-Myc" class="mw-redirect" title="C-Myc">c-Myc</a></span>, and <a href="/wiki/Klf4" class="mw-redirect" title="Klf4">Klf4</a> (<a href="/wiki/Yamanaka_factors" class="mw-redirect" title="Yamanaka factors">Yamanaka factors</a>) is sufficient to create pluripotent (iPS) cells from adult <a href="/wiki/Fibroblast" title="Fibroblast">fibroblasts</a>.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> A <a href="/wiki/Multipotent" class="mw-redirect" title="Multipotent">multipotent</a> cell is one that can differentiate into multiple different, but closely related cell types.<sup id="cite_ref-Schoeler_6-0" class="reference"><a href="#cite_note-Schoeler-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Cell_potency#Oligopotent" title="Cell potency">Oligopotent cells</a> are more restricted than multipotent, but can still differentiate into a few closely related cell types.<sup id="cite_ref-Schoeler_6-1" class="reference"><a href="#cite_note-Schoeler-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Finally, <a href="/wiki/Unipotent" title="Unipotent">unipotent</a> cells can differentiate into only one cell type, but are capable of <a href="/wiki/Stem_cell_self-renewal" class="mw-redirect" title="Stem cell self-renewal">self-renewal</a>.<sup id="cite_ref-Schoeler_6-2" class="reference"><a href="#cite_note-Schoeler-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> In <a href="/wiki/Cytopathology" title="Cytopathology">cytopathology</a>, the level of cellular differentiation is used as a measure of <a href="/wiki/Cancer" title="Cancer">cancer</a> progression. "<a href="/wiki/Grading_(tumors)" title="Grading (tumors)">Grade</a>" is a marker of how differentiated a cell in a tumor is.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Mammalian_cell_types"><span class="tocnumber">1</span> <span class="toctext">Mammalian cell types</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Dedifferentiation"><span class="tocnumber">2</span> <span class="toctext">Dedifferentiation</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Mechanisms"><span class="tocnumber">3</span> <span class="toctext">Mechanisms</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Epigenetic_control"><span class="tocnumber">4</span> <span class="toctext">Epigenetic control</span></a> <ul> <li class="toclevel-2 tocsection-5"><a href="#Importance_of_epigenetic_control"><span class="tocnumber">4.1</span> <span class="toctext">Importance of epigenetic control</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Mechanisms_of_epigenetic_regulation"><span class="tocnumber">4.2</span> <span class="toctext">Mechanisms of epigenetic regulation</span></a> <ul> <li class="toclevel-3 tocsection-7"><a href="#Pioneer_factors_(Oct4,_Sox2,_Nanog)"><span class="tocnumber">4.2.1</span> <span class="toctext">Pioneer factors (Oct4, Sox2, Nanog)</span></a></li> <li class="toclevel-3 tocsection-8"><a href="#Polycomb_repressive_complex_(PRC2)"><span class="tocnumber">4.2.2</span> <span class="toctext">Polycomb repressive complex (PRC2)</span></a></li> <li class="toclevel-3 tocsection-9"><a href="#Trithorax_group_proteins_(TrxG)"><span class="tocnumber">4.2.3</span> <span class="toctext">Trithorax group proteins (TrxG)</span></a></li> <li class="toclevel-3 tocsection-10"><a href="#DNA_methylation"><span class="tocnumber">4.2.4</span> <span class="toctext">DNA methylation</span></a></li> <li class="toclevel-3 tocsection-11"><a href="#Nucleosome_positioning"><span class="tocnumber">4.2.5</span> <span class="toctext">Nucleosome positioning</span></a> <ul> <li class="toclevel-4 tocsection-12"><a href="#Histone_acetylation_and_methylation"><span class="tocnumber">4.2.5.1</span> <span class="toctext">Histone acetylation and methylation</span></a></li> <li class="toclevel-4 tocsection-13"><a href="#In_stem_cells"><span class="tocnumber">4.2.5.2</span> <span class="toctext">In stem cells</span></a></li> </ul> </li> </ul> </li> <li class="toclevel-2 tocsection-14"><a href="#Role_of_signaling_in_epigenetic_control"><span class="tocnumber">4.3</span> <span class="toctext">Role of signaling in epigenetic control</span></a></li> <li class="toclevel-2 tocsection-15"><a href="#Effect_of_matrix_elasticity"><span class="tocnumber">4.4</span> <span class="toctext">Effect of matrix elasticity</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-16"><a href="#Evolutionary_history"><span class="tocnumber">5</span> <span class="toctext">Evolutionary history</span></a></li> <li class="toclevel-1 tocsection-17"><a href="#See_also"><span class="tocnumber">6</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-18"><a href="#References"><span class="tocnumber">7</span> <span class="toctext">References</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Mammalian_cell_types">Mammalian cell types</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=1" title="Edit section: Mammalian cell types" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_distinct_cell_types_in_the_adult_human_body" class="mw-redirect" title="List of distinct cell types in the adult human body">List of distinct cell types in the adult human body</a></div> <p>Three basic categories of cells make up the mammalian body: <a href="/wiki/Germ_cell" title="Germ cell">germ cells</a>, <a href="/wiki/Somatic_cell" title="Somatic cell">somatic cells</a>, and <a href="/wiki/Stem_cell" title="Stem cell">stem cells</a>. Each of the approximately 37.2 trillion (3.72x10<sup>13</sup>) cells in an adult human has its own copy or copies of the <a href="/wiki/Genome" title="Genome">genome</a> except certain <a href="/wiki/Cell_types" class="mw-redirect" title="Cell types">cell types</a>, such as <a href="/wiki/Red_blood_cell" title="Red blood cell">red blood cells</a>, that lack nuclei in their fully differentiated state. Most cells are <a href="/wiki/Diploid" class="mw-redirect" title="Diploid">diploid</a>; they have two copies of each <a href="/wiki/Chromosome" title="Chromosome">chromosome</a>. Such cells, called somatic cells, make up most of the human body, such as skin and muscle cells. Cells differentiate to specialize for different functions.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>Germ line cells are any line of cells that give rise to <a href="/wiki/Gametes" class="mw-redirect" title="Gametes">gametes</a>—eggs and sperm—and thus are continuous through the generations. Stem cells, on the other hand, have the ability to divide for indefinite periods and to give rise to specialized cells. They are best described in the context of normal human development.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2011)">citation needed</span></a></i>]</sup> </p><p>Development begins when a <a href="/wiki/Sperm" title="Sperm">sperm</a> fertilizes an <a href="/wiki/Egg_(biology)" class="mw-redirect" title="Egg (biology)">egg</a> and creates a single cell that has the potential to form an entire organism. In the first hours after fertilization, this cell divides into identical cells. In humans, approximately four days after fertilization and after several cycles of cell division, these cells begin to specialize, forming a hollow sphere of cells, called a <a href="/wiki/Blastocyst" title="Blastocyst">blastocyst</a>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> The blastocyst has an outer layer of cells, and inside this hollow sphere, there is a cluster of cells called the <a href="/wiki/Inner_cell_mass" title="Inner cell mass">inner cell mass</a>. The cells of the inner cell mass go on to form virtually all of the tissues of the human body. Although the cells of the inner cell mass can form virtually every type of cell found in the human body, they cannot form an organism. These cells are referred to as <a href="/wiki/Pluripotent" class="mw-redirect" title="Pluripotent">pluripotent</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>Pluripotent stem cells undergo further specialization into <a href="/wiki/Multipotent" class="mw-redirect" title="Multipotent">multipotent</a> <a href="/wiki/Progenitor_cell" title="Progenitor cell">progenitor cells</a> that then give rise to functional cells. Examples of stem and progenitor cells include:<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2011)">citation needed</span></a></i>]</sup> </p> <ul><li><i><a href="/wiki/Radial_glial_cell" title="Radial glial cell">Radial glial cells</a></i> (embryonic neural stem cells) that give rise to excitatory neurons in the fetal brain through the process of <a href="/wiki/Neurogenesis" title="Neurogenesis">neurogenesis</a>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup></li> <li><i><a href="/wiki/Hematopoietic_stem_cells" class="mw-redirect" title="Hematopoietic stem cells">Hematopoietic stem cells</a></i> (adult stem cells) from the <a href="/wiki/Bone_marrow" title="Bone marrow">bone marrow</a> that give rise to red blood cells, <a href="/wiki/White_blood_cell" title="White blood cell">white blood cells</a>, and <a href="/wiki/Platelet" title="Platelet">platelets</a>.</li> <li><i><a href="/wiki/Mesenchymal_stem_cells" class="mw-redirect" title="Mesenchymal stem cells">Mesenchymal stem cells</a></i> (adult stem cells) from the bone marrow that give rise to stromal cells, fat cells, and types of bone cells</li> <li><i><a href="/wiki/Epithelia" class="mw-redirect" title="Epithelia">Epithelial</a> stem cells</i> (progenitor cells) that give rise to the various types of skin cells</li> <li><i>Muscle <a href="/wiki/Satellite_cell" class="mw-redirect" title="Satellite cell">satellite cells</a></i> (progenitor cells) that contribute to differentiated <a href="/wiki/Muscle_tissue" class="mw-redirect" title="Muscle tissue">muscle tissue</a>.</li></ul> <p>A pathway that is guided by the cell adhesion molecules consisting of four amino acids, <a href="/wiki/Arginine" title="Arginine">arginine</a>, <a href="/wiki/Glycine" title="Glycine">glycine</a>, <a href="/wiki/Asparagine" title="Asparagine">asparagine</a>, and <a href="/wiki/Serine" title="Serine">serine</a>, is created as the cellular blastomere <a href="/wiki/Gastrulation" title="Gastrulation">differentiates</a> from the single-layered <a href="/wiki/Blastula" class="mw-redirect" title="Blastula">blastula</a> to the three primary <a href="/wiki/Germ_layer" title="Germ layer">layers of germ cells</a> in mammals, namely the <a href="/wiki/Ectoderm" title="Ectoderm">ectoderm</a>, <a href="/wiki/Mesoderm" title="Mesoderm">mesoderm</a> and <a href="/wiki/Endoderm" title="Endoderm">endoderm</a> (listed from most distal (exterior) to proximal (interior)). The ectoderm ends up forming the skin and the nervous system, the mesoderm forms the bones and muscular tissue, and the endoderm forms the internal organ tissues. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Dedifferentiation">Dedifferentiation</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=2" title="Edit section: Dedifferentiation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Dedifferentiated_liposarcoma_-_intermed_mag.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Dedifferentiated_liposarcoma_-_intermed_mag.jpg/220px-Dedifferentiated_liposarcoma_-_intermed_mag.jpg" decoding="async" width="220" height="147" class="mw-file-element" data-file-width="4272" data-file-height="2848"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 147px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Dedifferentiated_liposarcoma_-_intermed_mag.jpg/220px-Dedifferentiated_liposarcoma_-_intermed_mag.jpg" data-width="220" data-height="147" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Dedifferentiated_liposarcoma_-_intermed_mag.jpg/330px-Dedifferentiated_liposarcoma_-_intermed_mag.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Dedifferentiated_liposarcoma_-_intermed_mag.jpg/440px-Dedifferentiated_liposarcoma_-_intermed_mag.jpg 2x" data-class="mw-file-element"> </span></a><figcaption><a href="/wiki/Micrograph" title="Micrograph">Micrograph</a> showing <i>some dedifferentiation</i>, (at left edge of image). + A <i>differentiated</i> component, showing <a href="/wiki/Lipoblast" title="Lipoblast">lipoblasts</a> and increased <a href="/wiki/Blood_vessels" class="mw-redirect" title="Blood vessels">vascularity</a>, (right edge of image). + <i>Fully differentiated</i> <a href="/wiki/Adipose_tissue" title="Adipose tissue">adipose tissue</a>, showing a few blood vessels, (center of image). (<a href="/wiki/Micrograph" title="Micrograph">Micrograph</a> of <a href="/wiki/Liposarcoma" title="Liposarcoma">liposarcoma</a> prepared with <a href="/wiki/H%26E_stain" title="H&E stain">H&E stain</a>).</figcaption></figure> <p><a href="/wiki/Dedifferentiation" title="Dedifferentiation">Dedifferentiation</a>, or integration, is a cellular process seen in the more <a href="/wiki/Basal_(phylogenetics)" title="Basal (phylogenetics)">basal</a> life forms in animals, such as <a href="/wiki/Worm" title="Worm">worms</a> and <a href="/wiki/Amphibian" title="Amphibian">amphibians</a> where a differentiated cell reverts to an earlier developmental stage—usually as part of a <a href="/wiki/Regeneration_(biology)" title="Regeneration (biology)">regenerative</a> process.<sup id="cite_ref-dediff1_14-0" class="reference"><a href="#cite_note-dediff1-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-dediff2_15-0" class="reference"><a href="#cite_note-dediff2-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Dedifferentiation also occurs in plant cells.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> And, in <a href="/wiki/Cell_culture" title="Cell culture">cell culture</a> in the laboratory, cells can change shape or may lose specific properties such as protein expression—which processes are also termed dedifferentiation.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>Some hypothesize that dedifferentiation is an aberration that likely results in <a href="/wiki/Cancer" title="Cancer">cancers</a>,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> but others explain it as a natural part of the immune response that was lost to humans at some point of evolution. </p><p>A newly discovered molecule dubbed <a href="/wiki/Reversine" title="Reversine">reversine</a>, a <a href="/wiki/Purine" title="Purine">purine</a> analog, has proven to induce dedifferentiation in <a href="/wiki/Myotube" class="mw-redirect" title="Myotube">myotubes</a>. These manifestly dedifferentiated cells—now performing essentially as stem cells—could then redifferentiate into <a href="/wiki/Osteoblast" title="Osteoblast">osteoblasts</a> and <a href="/wiki/Adipocyte" title="Adipocyte">adipocytes</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Bischoff_SR_-_Nuclear_Reprogramming.pdf" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Bischoff_SR_-_Nuclear_Reprogramming.pdf/page1-401px-Bischoff_SR_-_Nuclear_Reprogramming.pdf.jpg" decoding="async" width="401" height="310" class="mw-file-element" data-file-width="1650" data-file-height="1275"></noscript><span class="lazy-image-placeholder" style="width: 401px;height: 310px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Bischoff_SR_-_Nuclear_Reprogramming.pdf/page1-401px-Bischoff_SR_-_Nuclear_Reprogramming.pdf.jpg" data-width="401" data-height="310" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Bischoff_SR_-_Nuclear_Reprogramming.pdf/page1-602px-Bischoff_SR_-_Nuclear_Reprogramming.pdf.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/56/Bischoff_SR_-_Nuclear_Reprogramming.pdf/page1-802px-Bischoff_SR_-_Nuclear_Reprogramming.pdf.jpg 2x" data-class="mw-file-element"> </span></a><figcaption>Diagram exposing several methods used to revert adult somatic cells to <a href="/wiki/Totipotency" class="mw-redirect" title="Totipotency">totipotency</a> or <a href="/wiki/Pluripotency" class="mw-redirect" title="Pluripotency">pluripotency</a>.</figcaption></figure> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Mechanisms">Mechanisms</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=3" title="Edit section: Mechanisms" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Embryonic_differentiation_waves" title="Embryonic differentiation waves">Embryonic differentiation waves</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Cell_Differentiation.jpg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Cell_Differentiation.jpg/330px-Cell_Differentiation.jpg" decoding="async" width="330" height="174" class="mw-file-element" data-file-width="727" data-file-height="384"></noscript><span class="lazy-image-placeholder" style="width: 330px;height: 174px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Cell_Differentiation.jpg/330px-Cell_Differentiation.jpg" data-width="330" data-height="174" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Cell_Differentiation.jpg/495px-Cell_Differentiation.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Cell_Differentiation.jpg/660px-Cell_Differentiation.jpg 2x" data-class="mw-file-element"> </span></a><figcaption>Mechanisms of cellular differentiation</figcaption></figure> <p>Each specialized cell type in an organism <a href="/wiki/Gene_expression" title="Gene expression">expresses</a> a <a href="/wiki/Subset" title="Subset">subset</a> of all the <a href="/wiki/Gene" title="Gene">genes</a> that constitute the genome of that <a href="/wiki/Species" title="Species">species</a>. Each cell type is defined by its particular pattern of <a href="/wiki/Regulation_of_gene_expression" title="Regulation of gene expression">regulated gene expression</a>. Cell differentiation is thus a transition of a cell from one cell type to another and it involves a switch from one pattern of gene expression to another. Cellular differentiation during development can be understood as the result of a <a href="/wiki/Gene_regulatory_network" title="Gene regulatory network">gene regulatory network</a>. A regulatory gene and its cis-regulatory modules are nodes in a gene regulatory network; they receive input and create output elsewhere in the network.<sup id="cite_ref-DeLeon_20-0" class="reference"><a href="#cite_note-DeLeon-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Systems_biology" title="Systems biology">systems biology</a> approach to developmental biology emphasizes the importance of investigating how developmental mechanisms interact to produce predictable patterns (<a href="/wiki/Morphogenesis" title="Morphogenesis">morphogenesis</a>). However, an alternative view has been proposed recently<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Manual_of_Style/Dates_and_numbers#Chronological_items" title="Wikipedia:Manual of Style/Dates and numbers"><span title="The time period mentioned near this tag is ambiguous. (June 2019)">when?</span></a></i>]</sup><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Manual_of_Style/Words_to_watch#Unsupported_attributions" title="Wikipedia:Manual of Style/Words to watch"><span title="The material near this tag may use weasel words or too-vague attribution. (June 2019)">by whom?</span></a></i>]</sup>. Based on <a href="/wiki/Stochastic" title="Stochastic">stochastic</a> gene expression, cellular differentiation is the result of a Darwinian selective process occurring among cells. In this frame, protein and gene networks are the result of cellular processes and not their cause.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2019)">citation needed</span></a></i>]</sup> </p> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Signal_transduction_pathways.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Signal_transduction_pathways.svg/240px-Signal_transduction_pathways.svg.png" decoding="async" width="240" height="176" class="mw-file-element" data-file-width="1858" data-file-height="1364"></noscript><span class="lazy-image-placeholder" style="width: 240px;height: 176px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Signal_transduction_pathways.svg/240px-Signal_transduction_pathways.svg.png" data-width="240" data-height="176" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Signal_transduction_pathways.svg/360px-Signal_transduction_pathways.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Signal_transduction_pathways.svg/480px-Signal_transduction_pathways.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>An overview of major signal transduction pathways.</figcaption></figure> <p>While <a href="/wiki/Evolution" title="Evolution">evolutionarily</a> conserved molecular processes are involved in the cellular mechanisms underlying these switches, in animal species these are very different from the well-characterized <a href="/wiki/Operon" title="Operon">gene regulatory mechanisms</a> of <a href="/wiki/Bacteria" title="Bacteria">bacteria</a>, and even from those of the animals' closest <a href="/wiki/Holozoa" title="Holozoa">unicellular relatives</a>.<sup id="cite_ref-Newman_21-0" class="reference"><a href="#cite_note-Newman-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> Specifically, cell differentiation in animals is highly dependent on <a href="/wiki/Biomolecular_condensate" title="Biomolecular condensate">biomolecular condensates</a> of regulatory proteins and <a href="/wiki/Enhancer_(genetics)" title="Enhancer (genetics)">enhancer</a> DNA sequences. </p><p>Cellular differentiation is often controlled by <a href="/wiki/Cell_signaling" title="Cell signaling">cell signaling</a>. Many of the signal molecules that convey information from cell to cell during the control of cellular differentiation are called <a href="/wiki/Growth_factor" title="Growth factor">growth factors</a>. Although the details of specific <a href="/wiki/Signal_transduction" title="Signal transduction">signal transduction</a> pathways vary, these pathways often share the following general steps. A ligand produced by one cell binds to a receptor in the extracellular region of another cell, inducing a conformational change in the receptor. The shape of the cytoplasmic domain of the receptor changes, and the receptor acquires enzymatic activity. The receptor then catalyzes reactions that phosphorylate other proteins, activating them. A cascade of phosphorylation reactions eventually activates a dormant transcription factor or cytoskeletal protein, thus contributing to the differentiation process in the target cell.<sup id="cite_ref-Gilbert_22-0" class="reference"><a href="#cite_note-Gilbert-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Cells and tissues can vary in competence, their ability to respond to external signals.<sup id="cite_ref-Rudel_23-0" class="reference"><a href="#cite_note-Rudel-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p><p>Signal induction refers to cascades of signaling events, during which a cell or tissue signals to another cell or tissue to influence its developmental fate.<sup id="cite_ref-Rudel_23-1" class="reference"><a href="#cite_note-Rudel-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Yamamoto and Jeffery<sup id="cite_ref-Yamamoto_24-0" class="reference"><a href="#cite_note-Yamamoto-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> investigated the role of the lens in eye formation in cave- and surface-dwelling fish, a striking example of induction.<sup id="cite_ref-Rudel_23-2" class="reference"><a href="#cite_note-Rudel-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Through reciprocal transplants, Yamamoto and Jeffery<sup id="cite_ref-Yamamoto_24-1" class="reference"><a href="#cite_note-Yamamoto-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> found that the lens vesicle of surface fish can induce other parts of the eye to develop in cave- and surface-dwelling fish, while the lens vesicle of the cave-dwelling fish cannot.<sup id="cite_ref-Rudel_23-3" class="reference"><a href="#cite_note-Rudel-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p><p>Other important mechanisms fall under the category of <a href="/wiki/Asymmetric_cell_division" title="Asymmetric cell division">asymmetric cell divisions</a>, divisions that give rise to daughter cells with distinct developmental fates. Asymmetric cell divisions can occur because of asymmetrically expressed maternal <b>cytoplasmic determinants</b> or because of signaling.<sup id="cite_ref-Rudel_23-4" class="reference"><a href="#cite_note-Rudel-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> In the former mechanism, distinct daughter cells are created during <a href="/wiki/Cytokinesis" title="Cytokinesis">cytokinesis</a> because of an uneven distribution of regulatory molecules in the parent cell; the distinct cytoplasm that each daughter cell inherits results in a distinct pattern of differentiation for each daughter cell. A well-studied example of pattern formation by asymmetric divisions is <a href="/wiki/Drosophila_embryogenesis#Anterior-posterior_axis_patterning_in_Drosophila" title="Drosophila embryogenesis">body axis patterning in Drosophila</a>. <a href="/wiki/RNA" title="RNA">RNA</a> molecules are an important type of intracellular differentiation control signal. The molecular and genetic basis of asymmetric cell divisions has also been studied in green algae of the genus <i><a href="/wiki/Volvox" title="Volvox">Volvox</a></i>, a model system for studying how unicellular organisms can evolve into multicellular organisms.<sup id="cite_ref-Rudel_23-5" class="reference"><a href="#cite_note-Rudel-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> In <i>Volvox carteri</i>, the 16 cells in the anterior hemisphere of a 32-cell embryo divide asymmetrically, each producing one large and one small daughter cell. The size of the cell at the end of all cell divisions determines whether it becomes a specialized germ or somatic cell.<sup id="cite_ref-Rudel_23-6" class="reference"><a href="#cite_note-Rudel-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kirk_25-0" class="reference"><a href="#cite_note-Kirk-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Epigenetic_control">Epigenetic control</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=4" title="Edit section: Epigenetic control" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Epigenetics_in_stem_cell_differentiation" class="mw-redirect" title="Epigenetics in stem cell differentiation">Epigenetics in stem cell differentiation</a></div> <p>Since each cell, regardless of cell type, possesses the same genome, determination of cell type must occur at the level of gene expression. While the regulation of gene expression can occur through <a href="/wiki/Cis-regulatory_element" title="Cis-regulatory element">cis-</a> and <a href="/wiki/Trans-regulatory_element" title="Trans-regulatory element">trans-regulatory elements</a> including a gene's <a href="/wiki/Promoter_(biology)" class="mw-redirect" title="Promoter (biology)">promoter</a> and <a href="/wiki/Enhancer_(genetics)" title="Enhancer (genetics)">enhancers</a>, the problem arises as to how this expression pattern is maintained over numerous generations of <a href="/wiki/Cell_division" title="Cell division">cell division</a>.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> As it turns out, <a href="/wiki/Epigenetic" class="mw-redirect" title="Epigenetic">epigenetic</a> processes play a crucial role in regulating the decision to adopt a stem, progenitor, or mature <a href="/wiki/Cell_fate" class="mw-redirect" title="Cell fate">cell fate</a> This section will focus primarily on <a href="/wiki/Mammalian" class="mw-redirect" title="Mammalian">mammalian</a> <a href="/wiki/Stem_cells" class="mw-redirect" title="Stem cells">stem cells</a>. </p><p>In systems biology and mathematical modeling of gene regulatory networks, cell-fate determination is predicted to exhibit certain dynamics, such as attractor-convergence (the attractor can be an equilibrium point, limit cycle or <a href="/wiki/Strange_attractor" class="mw-redirect" title="Strange attractor">strange attractor</a>) or oscillatory.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Importance_of_epigenetic_control">Importance of epigenetic control</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=5" title="Edit section: Importance of epigenetic control" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The first question that can be asked is the extent and complexity of the role of epigenetic processes in the determination of cell fate. A clear answer to this question can be seen in the 2011 paper by Lister R, <i>et al.</i> <sup id="cite_ref-Lister_28-0" class="reference"><a href="#cite_note-Lister-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> on aberrant epigenomic programming in <a href="/wiki/Human" title="Human">human</a> <a href="/wiki/Induced_pluripotent_stem_cells" class="mw-redirect" title="Induced pluripotent stem cells">induced pluripotent stem cells</a>. As induced pluripotent stem cells (iPSCs) are thought to mimic <a href="/wiki/Embryonic_stem_cells" class="mw-redirect" title="Embryonic stem cells">embryonic stem cells</a> in their pluripotent properties, few epigenetic differences should exist between them. To test this prediction, the authors conducted whole-genome profiling of <a href="/wiki/DNA_methylation" title="DNA methylation">DNA methylation</a> patterns in several human embryonic stem cell (ESC), iPSC, and progenitor cell lines. </p><p>Female <a href="/wiki/Adipose" class="mw-redirect" title="Adipose">adipose</a> cells, <a href="/wiki/Lung" title="Lung">lung</a> <a href="/wiki/Fibroblasts" class="mw-redirect" title="Fibroblasts">fibroblasts</a>, and foreskin fibroblasts were reprogrammed into induced pluripotent state with the <a href="/wiki/OCT4" class="mw-redirect" title="OCT4">OCT4</a>, <a href="/wiki/SOX2" title="SOX2">SOX2</a>, <a href="/wiki/KLF4" title="KLF4">KLF4</a>, and <a href="/wiki/MYC" title="MYC">MYC</a> genes. Patterns of DNA methylation in ESCs, iPSCs, somatic cells were compared. Lister R, <i>et al.</i> observed significant resemblance in methylation levels between embryonic and induced pluripotent cells. Around 80% of <a href="/wiki/CpG_site" title="CpG site">CG dinucleotides</a> in ESCs and iPSCs were methylated, the same was true of only 60% of CG dinucleotides in somatic cells. In addition, somatic cells possessed minimal levels of <a href="/wiki/Cytosine_methylation" class="mw-redirect" title="Cytosine methylation">cytosine methylation</a> in non-CG dinucleotides, while induced pluripotent cells possessed similar levels of methylation as embryonic stem cells, between 0.5 and 1.5%. Thus, consistent with their respective transcriptional activities,<sup id="cite_ref-Lister_28-1" class="reference"><a href="#cite_note-Lister-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> DNA methylation patterns, at least on the genomic level, are similar between ESCs and iPSCs. </p><p>However, upon examining methylation patterns more closely, the authors discovered 1175 regions of differential CG dinucleotide methylation between at least one ES or iPS cell line. By comparing these regions of differential methylation with regions of cytosine methylation in the original somatic cells, 44-49% of differentially methylated regions reflected methylation patterns of the respective progenitor somatic cells, while 51-56% of these regions were dissimilar to both the progenitor and embryonic cell lines. <a href="/wiki/In_vitro" title="In vitro">In vitro</a>-induced differentiation of iPSC lines saw transmission of 88% and 46% of hyper and hypo-methylated differentially methylated regions, respectively. </p><p>Two conclusions are readily apparent from this study. First, epigenetic processes are heavily involved in <a href="/wiki/Cell_fate_determination" title="Cell fate determination">cell fate determination</a>, as seen from the similar levels of cytosine methylation between induced pluripotent and embryonic stem cells, consistent with their respective patterns of <a href="/wiki/Transcription_(genetics)" class="mw-redirect" title="Transcription (genetics)">transcription</a>. Second, the mechanisms of reprogramming (and by extension, differentiation) are very complex and cannot be easily duplicated, as seen by the significant number of differentially methylated regions between ES and iPS cell lines. Now that these two points have been established, we can examine some of the epigenetic mechanisms that are thought to regulate cellular differentiation. </p> <div class="mw-heading mw-heading3"><h3 id="Mechanisms_of_epigenetic_regulation">Mechanisms of epigenetic regulation</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=6" title="Edit section: Mechanisms of epigenetic regulation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <div class="mw-heading mw-heading4"><h4 id="Pioneer_factors_(Oct4,_Sox2,_Nanog)"><span id="Pioneer_factors_.28Oct4.2C_Sox2.2C_Nanog.29"></span>Pioneer factors (Oct4, Sox2, Nanog)</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=7" title="Edit section: Pioneer factors (Oct4, Sox2, Nanog)" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Three transcription factors, OCT4, SOX2, and <a href="/wiki/Homeobox_protein_NANOG" title="Homeobox protein NANOG">NANOG</a> – the first two of which are used in induced pluripotent stem cell (iPSC) reprogramming, along with <a href="/wiki/Klf4" class="mw-redirect" title="Klf4">Klf4</a> and <a href="/wiki/C-Myc" class="mw-redirect" title="C-Myc">c-Myc</a> – are highly expressed in undifferentiated embryonic stem cells and are necessary for the maintenance of their <a href="/wiki/Pluripotency" class="mw-redirect" title="Pluripotency">pluripotency</a>.<sup id="cite_ref-Christophersen_29-0" class="reference"><a href="#cite_note-Christophersen-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> It is thought that they achieve this through alterations in <a href="/wiki/Chromatin" title="Chromatin">chromatin</a> structure, such as <a href="/wiki/Histone_modification" class="mw-redirect" title="Histone modification">histone modification</a> and DNA methylation, to restrict or permit the transcription of target genes. While highly expressed, their levels require a precise balance to maintain pluripotency, perturbation of which will promote differentiation towards different lineages based on how the gene expression levels change. Differential regulation of <a href="/wiki/Oct-4" title="Oct-4">Oct-4</a> and <a href="/wiki/SOX2" title="SOX2">SOX2</a> levels have been shown to precede germ layer fate selection.<sup id="cite_ref-ReferenceA_30-0" class="reference"><a href="#cite_note-ReferenceA-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Increased levels of Oct4 and decreased levels of Sox2 promote a <a href="/wiki/Gastrulation" title="Gastrulation">mesendodermal</a> fate, with Oct4 actively suppressing genes associated with a neural <a href="/wiki/Neurulation" title="Neurulation">ectodermal</a> fate. Similarly, increased levels of Sox2 and decreased levels of Oct4 promote differentiation towards a neural ectodermal fate, with Sox2 inhibiting differentiation towards a mesendodermal fate. Regardless of the lineage cells differentiate down, suppression of NANOG has been identified as a necessary prerequisite for differentiation.<sup id="cite_ref-ReferenceA_30-1" class="reference"><a href="#cite_note-ReferenceA-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Polycomb_repressive_complex_(PRC2)"><span id="Polycomb_repressive_complex_.28PRC2.29"></span>Polycomb repressive complex (PRC2)</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=8" title="Edit section: Polycomb repressive complex (PRC2)" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In the realm of <a href="/wiki/Gene_silencing" title="Gene silencing">gene silencing</a>, <a href="/wiki/PRC2" title="PRC2">Polycomb repressive complex 2</a>, one of two classes of the <a href="/wiki/Polycomb-group_proteins" title="Polycomb-group proteins">Polycomb group</a> (PcG) family of proteins, catalyzes the di- and tri-methylation of histone H3 lysine 27 (H3K27me2/me3).<sup id="cite_ref-Christophersen_29-1" class="reference"><a href="#cite_note-Christophersen-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Jiang_31-0" class="reference"><a href="#cite_note-Jiang-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Guenther_32-0" class="reference"><a href="#cite_note-Guenther-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> By binding to the H3K27me2/3-tagged nucleosome, PRC1 (also a complex of PcG family proteins) catalyzes the mono-ubiquitinylation of histone H2A at lysine 119 (H2AK119Ub1), blocking <a href="/wiki/RNA_polymerase_II" title="RNA polymerase II">RNA polymerase II</a> activity and resulting in transcriptional suppression.<sup id="cite_ref-Christophersen_29-2" class="reference"><a href="#cite_note-Christophersen-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> PcG knockout ES cells do not differentiate efficiently into the three germ layers, and deletion of the PRC1 and PRC2 genes leads to increased expression of lineage-affiliated genes and unscheduled differentiation.<sup id="cite_ref-Christophersen_29-3" class="reference"><a href="#cite_note-Christophersen-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> Presumably, PcG complexes are responsible for transcriptionally repressing differentiation and development-promoting genes. </p> <div class="mw-heading mw-heading4"><h4 id="Trithorax_group_proteins_(TrxG)"><span id="Trithorax_group_proteins_.28TrxG.29"></span>Trithorax group proteins (TrxG)</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=9" title="Edit section: Trithorax group proteins (TrxG)" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Alternately, upon receiving differentiation signals, PcG proteins are recruited to promoters of pluripotency transcription factors. PcG-deficient ES cells can begin differentiation but cannot maintain the differentiated phenotype.<sup id="cite_ref-Christophersen_29-4" class="reference"><a href="#cite_note-Christophersen-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> Simultaneously, differentiation and development-promoting genes are activated by Trithorax group (TrxG) chromatin regulators and lose their repression.<sup id="cite_ref-Christophersen_29-5" class="reference"><a href="#cite_note-Christophersen-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Guenther_32-1" class="reference"><a href="#cite_note-Guenther-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> TrxG proteins are recruited at regions of high transcriptional activity, where they catalyze the trimethylation of histone H3 lysine 4 (<a href="/wiki/H3K4me3" title="H3K4me3">H3K4me3</a>) and promote gene activation through histone acetylation.<sup id="cite_ref-Guenther_32-2" class="reference"><a href="#cite_note-Guenther-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> PcG and TrxG complexes engage in direct competition and are thought to be functionally antagonistic, creating at differentiation and development-promoting loci what is termed a "bivalent domain" and rendering these genes sensitive to rapid induction or repression.<sup id="cite_ref-Meissner_33-0" class="reference"><a href="#cite_note-Meissner-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="DNA_methylation">DNA methylation</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=10" title="Edit section: DNA methylation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Regulation of gene expression is further achieved through DNA methylation, in which the <a href="/wiki/DNA_methyltransferase" title="DNA methyltransferase">DNA methyltransferase</a>-mediated methylation of cytosine residues in CpG dinucleotides maintains heritable repression by controlling DNA accessibility.<sup id="cite_ref-Meissner_33-1" class="reference"><a href="#cite_note-Meissner-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> The majority of CpG sites in embryonic stem cells are unmethylated and appear to be associated with H3K4me3-carrying nucleosomes.<sup id="cite_ref-Christophersen_29-6" class="reference"><a href="#cite_note-Christophersen-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> Upon differentiation, a small number of genes, including OCT4 and NANOG,<sup id="cite_ref-Meissner_33-2" class="reference"><a href="#cite_note-Meissner-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> are methylated and their promoters repressed to prevent their further expression. Consistently, DNA methylation-deficient embryonic stem cells rapidly enter <a href="/wiki/Apoptosis" title="Apoptosis">apoptosis</a> upon in vitro differentiation.<sup id="cite_ref-Christophersen_29-7" class="reference"><a href="#cite_note-Christophersen-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Nucleosome_positioning">Nucleosome positioning</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=11" title="Edit section: Nucleosome positioning" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>While the <a href="/wiki/Nucleic_acid_sequence" title="Nucleic acid sequence">DNA sequence</a> of most cells of an organism is the same, the binding patterns of transcription factors and the corresponding gene expression patterns are different. To a large extent, differences in transcription factor binding are determined by the chromatin accessibility of their binding sites through <a href="/wiki/Histone_modification" class="mw-redirect" title="Histone modification">histone modification</a> and/or <a href="/wiki/Pioneer_factor" title="Pioneer factor">pioneer factors</a>. In particular, it is important to know whether a <a href="/wiki/Nucleosome" title="Nucleosome">nucleosome</a> is covering a given genomic binding site or not. This can be determined using a <a href="/wiki/Chromatin_immunoprecipitation" title="Chromatin immunoprecipitation">chromatin immunoprecipitation</a> assay.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading5"><h5 id="Histone_acetylation_and_methylation">Histone acetylation and methylation</h5><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=12" title="Edit section: Histone acetylation and methylation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>DNA-nucleosome interactions are characterized by two states: either tightly bound by nucleosomes and transcriptionally inactive, called <a href="/wiki/Heterochromatin" title="Heterochromatin">heterochromatin</a>, or loosely bound and usually, but not always, transcriptionally active, called <a href="/wiki/Euchromatin" title="Euchromatin">euchromatin</a>. The epigenetic processes of histone methylation and acetylation, and their inverses demethylation and deacetylation primarily account for these changes. The effects of acetylation and deacetylation are more predictable. An acetyl group is either added to or removed from the positively charged Lysine residues in histones by enzymes called <a href="/wiki/Histone_acetyltransferase" title="Histone acetyltransferase">histone acetyltransferases</a> or <a href="/w/index.php?title=Histone_deactylase&action=edit&redlink=1" class="new" title="Histone deactylase (page does not exist)">histone deactylases</a>, respectively. The acetyl group prevents Lysine's association with the negatively charged DNA backbone. Methylation is not as straightforward, as neither methylation nor demethylation consistently correlate with either gene activation or repression. However, certain methylations have been repeatedly shown to either activate or repress genes. The trimethylation of lysine 4 on histone 3 (H3K4Me3) is associated with gene activation, whereas trimethylation of lysine 27 on histone 3 represses genes<sup id="cite_ref-pmid12667454_35-0" class="reference"><a href="#cite_note-pmid12667454-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid12667453_36-0" class="reference"><a href="#cite_note-pmid12667453-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-pmid15680324_37-0" class="reference"><a href="#cite_note-pmid15680324-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading5"><h5 id="In_stem_cells">In stem cells</h5><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=13" title="Edit section: In stem cells" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Stem_cell" title="Stem cell">Stem cell</a></div> <p>During differentiation, stem cells change their gene expression profiles. Recent studies have implicated a role for nucleosome positioning and histone modifications during this process.<sup id="cite_ref-Teif_et_al_38-0" class="reference"><a href="#cite_note-Teif_et_al-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> There are two components of this process: turning off the expression of embryonic stem cell (ESC) genes, and the activation of cell fate genes. Lysine specific demethylase 1 (<a href="/wiki/LSD1" class="mw-redirect" title="LSD1">KDM1A</a>) is thought to prevent the use of <a href="/wiki/Enhancer_(genetics)" title="Enhancer (genetics)">enhancer</a> regions of pluripotency genes, thereby inhibiting their transcription.<sup id="cite_ref-ReferenceB_39-0" class="reference"><a href="#cite_note-ReferenceB-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> It interacts with <a href="/wiki/NuRD" class="mw-redirect" title="NuRD">Mi-2/NuRD complex</a> (nucleosome remodelling and histone deacetylase) complex,<sup id="cite_ref-ReferenceB_39-1" class="reference"><a href="#cite_note-ReferenceB-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> giving an instance where methylation and acetylation are not discrete and mutually exclusive, but intertwined processes. </p> <div class="mw-heading mw-heading3"><h3 id="Role_of_signaling_in_epigenetic_control">Role of signaling in epigenetic control</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=14" title="Edit section: Role of signaling in epigenetic control" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A final question to ask concerns the role of cell signaling in influencing the epigenetic processes governing differentiation. Such a role should exist, as it would be reasonable to think that extrinsic signaling can lead to epigenetic remodeling, just as it can lead to changes in gene expression through the activation or repression of different transcription factors. Little direct data is available concerning the specific signals that influence the <a href="/wiki/Epigenome" title="Epigenome">epigenome</a>, and the majority of current knowledge about the subject consists of speculations on plausible candidate regulators of epigenetic remodeling.<sup id="cite_ref-Mohammad_40-0" class="reference"><a href="#cite_note-Mohammad-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> We will first discuss several major candidates thought to be involved in the induction and maintenance of both embryonic stem cells and their differentiated progeny, and then turn to one example of specific signaling pathways in which more direct evidence exists for its role in epigenetic change. </p><p>The first major candidate is <a href="/wiki/Wnt_signaling_pathway" title="Wnt signaling pathway">Wnt signaling pathway</a>. The Wnt pathway is involved in all stages of differentiation, and the ligand Wnt3a can substitute for the overexpression of c-Myc in the generation of induced pluripotent stem cells.<sup id="cite_ref-Mohammad_40-1" class="reference"><a href="#cite_note-Mohammad-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> On the other hand, disruption of <a href="/wiki/Beta-catenin" class="mw-redirect" title="Beta-catenin">β-catenin</a>, a component of the Wnt signaling pathway, leads to decreased proliferation of neural progenitors. </p><p><a href="/wiki/Growth_factors" class="mw-redirect" title="Growth factors">Growth factors</a> comprise the second major set of candidates of epigenetic regulators of cellular differentiation. These morphogens are crucial for development, and include <a href="/wiki/Bone_morphogenetic_proteins" class="mw-redirect" title="Bone morphogenetic proteins">bone morphogenetic proteins</a>, <a href="/wiki/Transforming_growth_factors" class="mw-redirect" title="Transforming growth factors">transforming growth factors</a> (TGFs), and <a href="/wiki/Fibroblast_growth_factors" class="mw-redirect" title="Fibroblast growth factors">fibroblast growth factors</a> (FGFs). TGFs and FGFs have been shown to sustain expression of OCT4, SOX2, and NANOG by downstream signaling to <a href="/wiki/SMAD_(protein)" title="SMAD (protein)">Smad</a> proteins.<sup id="cite_ref-Mohammad_40-2" class="reference"><a href="#cite_note-Mohammad-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> Depletion of growth factors promotes the differentiation of ESCs, while genes with bivalent chromatin can become either more restrictive or permissive in their transcription.<sup id="cite_ref-Mohammad_40-3" class="reference"><a href="#cite_note-Mohammad-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>Several other signaling pathways are also considered to be primary candidates. Cytokine <a href="/wiki/Leukemia_inhibitory_factor" title="Leukemia inhibitory factor">leukemia inhibitory factors</a> are associated with the maintenance of mouse ESCs in an undifferentiated state. This is achieved through its activation of the Jak-STAT3 pathway, which has been shown to be necessary and sufficient towards maintaining mouse ESC pluripotency.<sup id="cite_ref-Niwa_41-0" class="reference"><a href="#cite_note-Niwa-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Retinoic_acid" title="Retinoic acid">Retinoic acid</a> can induce differentiation of human and mouse ESCs,<sup id="cite_ref-Mohammad_40-4" class="reference"><a href="#cite_note-Mohammad-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Notch_signaling" class="mw-redirect" title="Notch signaling">Notch signaling</a> is involved in the proliferation and self-renewal of stem cells. Finally, <a href="/wiki/Sonic_hedgehog" class="mw-redirect" title="Sonic hedgehog">Sonic hedgehog</a>, in addition to its role as a morphogen, promotes embryonic stem cell differentiation and the self-renewal of somatic stem cells.<sup id="cite_ref-Mohammad_40-5" class="reference"><a href="#cite_note-Mohammad-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>The problem, of course, is that the candidacy of these signaling pathways was inferred primarily on the basis of their role in development and cellular differentiation. While epigenetic regulation is necessary for driving cellular differentiation, they are certainly not sufficient for this process. Direct modulation of gene expression through modification of transcription factors plays a key role that must be distinguished from heritable epigenetic changes that can persist even in the absence of the original environmental signals. Only a few examples of signaling pathways leading to epigenetic changes that alter cell fate currently exist, and we will focus on one of them. </p><p>Expression of Shh (Sonic hedgehog) upregulates the production of <a href="/wiki/BMI1" title="BMI1">BMI1</a>, a component of the PcG complex that recognizes <a href="/wiki/H3K27me3" title="H3K27me3">H3K27me3</a>. This occurs in a Gli-dependent manner, as <a href="/wiki/Gli1" class="mw-redirect" title="Gli1">Gli1</a> and <a href="/wiki/Gli2" class="mw-redirect" title="Gli2">Gli2</a> are downstream effectors of the <a href="/wiki/Hedgehog_signaling_pathway" title="Hedgehog signaling pathway">Hedgehog signaling pathway</a>. In culture, Bmi1 mediates the Hedgehog pathway's ability to promote human mammary stem cell self-renewal.<sup id="cite_ref-Liu_42-0" class="reference"><a href="#cite_note-Liu-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> In both humans and mice, researchers showed Bmi1 to be highly expressed in proliferating immature cerebellar granule cell precursors. When Bmi1 was knocked out in mice, impaired cerebellar development resulted, leading to significant reductions in postnatal brain mass along with abnormalities in motor control and behavior.<sup id="cite_ref-Leung_43-0" class="reference"><a href="#cite_note-Leung-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> A separate study showed a significant decrease in neural stem cell proliferation along with increased astrocyte proliferation in Bmi null mice.<sup id="cite_ref-Zencak_44-0" class="reference"><a href="#cite_note-Zencak-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p><p>An alternative model of cellular differentiation during embryogenesis is that positional information is based on mechanical signalling by the cytoskeleton using <a href="/wiki/Embryonic_differentiation_waves" title="Embryonic differentiation waves">Embryonic differentiation waves</a>. The mechanical signal is then epigenetically transduced via signal transduction systems (of which specific molecules such as Wnt are part) to result in differential gene expression. </p><p>In summary, the role of signaling in the epigenetic control of cell fate in mammals is largely unknown, but distinct examples exist that indicate the likely existence of further such mechanisms. </p> <div class="mw-heading mw-heading3"><h3 id="Effect_of_matrix_elasticity">Effect of matrix elasticity</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=15" title="Edit section: Effect of matrix elasticity" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In order to fulfill the purpose of regenerating a variety of tissues, adult stems are known to migrate from their niches, adhere to new extracellular matrices (ECM) and differentiate. The ductility of these microenvironments are unique to different tissue types. The ECM surrounding brain, muscle and bone tissues range from soft to stiff. The transduction of the stem cells into these cells types is not directed solely by chemokine cues and cell to cell signaling. The elasticity of the microenvironment can also affect the differentiation of mesenchymal stem cells (MSCs which originate in bone marrow.) When MSCs are placed on substrates of the same stiffness as brain, muscle and bone ECM, the MSCs take on properties of those respective cell types.<sup id="cite_ref-:0_45-0" class="reference"><a href="#cite_note-:0-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> Matrix sensing requires the cell to pull against the matrix at focal adhesions, which triggers a cellular mechano-transducer to generate a signal to be informed what force is needed to deform the matrix. To determine the key players in matrix-elasticity-driven lineage specification in MSCs, different matrix microenvironments were mimicked. From these experiments, it was concluded that focal adhesions of the MSCs were the cellular mechano-transducer sensing the differences of the matrix elasticity. The non-muscle myosin IIa-c isoforms generates the forces in the cell that lead to signaling of early commitment markers. Nonmuscle myosin IIa generates the least force increasing to non-muscle myosin IIc. There are also factors in the cell that inhibit non-muscle myosin II, such as <a href="/wiki/Blebbistatin" title="Blebbistatin">blebbistatin</a>. This makes the cell effectively blind to the surrounding matrix.<sup id="cite_ref-:0_45-1" class="reference"><a href="#cite_note-:0-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> Researchers have achieved some success in inducing stem cell-like properties in HEK 239 cells by providing a soft matrix without the use of diffusing factors.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> The stem-cell properties appear to be linked to tension in the cells' actin network. One identified mechanism for matrix-induced differentiation is tension-induced proteins, which remodel chromatin in response to mechanical stretch.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> The RhoA pathway is also implicated in this process.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2022)">citation needed</span></a></i>]</sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Evolutionary_history">Evolutionary history</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=16" title="Edit section: Evolutionary history" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Bangiomorpha" title="Bangiomorpha">Bangiomorpha</a></div> <p>A billion-years-old, likely <a href="/wiki/Holozoa" title="Holozoa">holozoan</a>, <a href="/wiki/Protist" title="Protist">protist</a>, <i><a href="/wiki/Bicellum_brasieri" title="Bicellum brasieri">Bicellum brasieri</a></i> with two types of cells, shows that the evolution of differentiated <a href="/wiki/Multicellularity" class="mw-redirect" title="Multicellularity">multicellularity</a>, possibly but not necessarily of animal lineages, <a href="/wiki/History_of_life" title="History of life">occurred at least 1 billion years ago</a> and possibly mainly in <a href="/wiki/Freshwater_ecosystem" title="Freshwater ecosystem">freshwater lakes</a> rather than the ocean.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup><sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="How does this compare to other findings – like of ''Bangiomorpha'' – and exactly in which way is it a first / oldest specimen (if it is)? (May 2021)">clarification needed</span></a></i>]</sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=17" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-6 collapsible-block" id="mf-section-6"> <ul><li><a href="/wiki/Interbilayer_Forces_in_Membrane_Fusion" class="mw-redirect" title="Interbilayer Forces in Membrane Fusion">Interbilayer Forces in Membrane Fusion</a></li> <li><a href="/wiki/Fusion_mechanism" title="Fusion mechanism">Fusion mechanism</a></li> <li><a href="/wiki/Lipid_bilayer_fusion" title="Lipid bilayer fusion">Lipid bilayer fusion</a></li> <li><a href="/wiki/Cell-cell_fusogens" class="mw-redirect" title="Cell-cell fusogens">Cell-cell fusogens</a></li> <li><a href="/wiki/CAF-1" class="mw-redirect" title="CAF-1">CAF-1</a></li> <li><a href="/wiki/List_of_human_cell_types_derived_from_the_germ_layers" title="List of human cell types derived from the germ layers">List of human cell types derived from the germ layers</a></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Cellular_differentiation&action=edit&section=18" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-7 collapsible-block" id="mf-section-7"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-CME-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-CME_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFKryvenRöblitzSchütte2015" class="citation journal cs1">Kryven, I.; Röblitz, S.; Schütte, Ch. (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599742">"Solution of the chemical master equation by radial basis functions approximation with interface tracking"</a>. <i>BMC Systems Biology</i>. <b>9</b> (1): 67. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1186%2Fs12918-015-0210-y">10.1186/s12918-015-0210-y</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599742">4599742</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26449665">26449665</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BMC+Systems+Biology&rft.atitle=Solution+of+the+chemical+master+equation+by+radial+basis+functions+approximation+with+interface+tracking&rft.volume=9&rft.issue=1&rft.pages=67&rft.date=2015&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4599742%23id-name%3DPMC&rft_id=info%3Apmid%2F26449665&rft_id=info%3Adoi%2F10.1186%2Fs12918-015-0210-y&rft.aulast=Kryven&rft.aufirst=I.&rft.au=R%C3%B6blitz%2C+S.&rft.au=Sch%C3%BCtte%2C+Ch.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4599742&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span> <span style="position:relative; top: -2px;"><span typeof="mw:File"><a href="/wiki/Open_access" title="open access publication – free to read"><noscript><img alt="Open access icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/9px-Open_Access_logo_PLoS_transparent.svg.png" decoding="async" width="9" height="14" class="mw-file-element" data-file-width="640" data-file-height="1000"></noscript><span class="lazy-image-placeholder" style="width: 9px;height: 14px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/9px-Open_Access_logo_PLoS_transparent.svg.png" data-alt="Open access icon" data-width="9" data-height="14" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/14px-Open_Access_logo_PLoS_transparent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/18px-Open_Access_logo_PLoS_transparent.svg.png 2x" data-class="mw-file-element"> </span></a></span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Slack, J.M.W. (2013) Essential Developmental Biology. Wiley-Blackwell, Oxford.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSlack2007" class="citation journal cs1">Slack, J.M.W. (2007). "Metaplasia and transdifferentiation: from pure biology to the clinic". <i>Nature Reviews Molecular Cell Biology</i>. <b>8</b> (5): 369–378. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrm2146">10.1038/nrm2146</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17377526">17377526</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3353748">3353748</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews+Molecular+Cell+Biology&rft.atitle=Metaplasia+and+transdifferentiation%3A+from+pure+biology+to+the+clinic&rft.volume=8&rft.issue=5&rft.pages=369-378&rft.date=2007&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3353748%23id-name%3DS2CID&rft_id=info%3Apmid%2F17377526&rft_id=info%3Adoi%2F10.1038%2Fnrm2146&rft.aulast=Slack&rft.aufirst=J.M.W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYanesClarkWongPatti2010" class="citation journal cs1">Yanes, Oscar; Clark, Julie; Wong, Diana M.; Patti, Gary J.; Sánchez-Ruiz, Antonio; Benton, H. Paul; Trauger, Sunia A.; Desponts, Caroline; Ding, Sheng; Siuzdak, Gary (June 2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873061">"Metabolic oxidation regulates embryonic stem cell differentiation"</a>. <i>Nature Chemical Biology</i>. <b>6</b> (6): 411–417. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnchembio.364">10.1038/nchembio.364</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1552-4469">1552-4469</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873061">2873061</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20436487">20436487</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Chemical+Biology&rft.atitle=Metabolic+oxidation+regulates+embryonic+stem+cell+differentiation&rft.volume=6&rft.issue=6&rft.pages=411-417&rft.date=2010-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2873061%23id-name%3DPMC&rft.issn=1552-4469&rft_id=info%3Apmid%2F20436487&rft_id=info%3Adoi%2F10.1038%2Fnchembio.364&rft.aulast=Yanes&rft.aufirst=Oscar&rft.au=Clark%2C+Julie&rft.au=Wong%2C+Diana+M.&rft.au=Patti%2C+Gary+J.&rft.au=S%C3%A1nchez-Ruiz%2C+Antonio&rft.au=Benton%2C+H.+Paul&rft.au=Trauger%2C+Sunia+A.&rft.au=Desponts%2C+Caroline&rft.au=Ding%2C+Sheng&rft.au=Siuzdak%2C+Gary&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2873061&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakahashiYamanaka2006" class="citation journal cs1">Takahashi, K; Yamanaka, S (2006). "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors". <i>Cell</i>. <b>126</b> (4): 663–76. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2006.07.024">10.1016/j.cell.2006.07.024</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2433%2F159777">2433/159777</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16904174">16904174</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1565219">1565219</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Induction+of+pluripotent+stem+cells+from+mouse+embryonic+and+adult+fibroblast+cultures+by+defined+factors&rft.volume=126&rft.issue=4&rft.pages=663-76&rft.date=2006&rft_id=info%3Ahdl%2F2433%2F159777&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1565219%23id-name%3DS2CID&rft_id=info%3Apmid%2F16904174&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2006.07.024&rft.aulast=Takahashi&rft.aufirst=K&rft.au=Yamanaka%2C+S&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Schoeler-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schoeler_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schoeler_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Schoeler_6-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchöler,_Hans_R.2007" class="citation book cs1">Schöler, Hans R. (2007). "The Potential of Stem Cells: An Inventory". In Nikolaus Knoepffler; Dagmar Schipanski; Stefan Lorenz Sorgner (eds.). <i>Humanbiotechnology as Social Challenge</i>. Ashgate Publishing. p. 28. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7546-5755-2" title="Special:BookSources/978-0-7546-5755-2"><bdi>978-0-7546-5755-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Potential+of+Stem+Cells%3A+An+Inventory&rft.btitle=Humanbiotechnology+as+Social+Challenge&rft.pages=28&rft.pub=Ashgate+Publishing&rft.date=2007&rft.isbn=978-0-7546-5755-2&rft.au=Sch%C3%B6ler%2C+Hans+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.cancer.gov/dictionary?CdrID=46445">"NCI Dictionary of Cancer Terms"</a>. National Cancer Institute<span class="reference-accessdate">. Retrieved <span class="nowrap">1 November</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=NCI+Dictionary+of+Cancer+Terms&rft.pub=National+Cancer+Institute&rft_id=http%3A%2F%2Fwww.cancer.gov%2Fdictionary%3FCdrID%3D46445&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLodish2000" class="citation book cs1">Lodish, Harvey (2000). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/molecularcellbio00lodi"><i>Molecular Cell Biology</i></a></span> (4th ed.). New York: W. H. Freeman. Section 14.2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-3136-8" title="Special:BookSources/978-0-7167-3136-8"><bdi>978-0-7167-3136-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Molecular+Cell+Biology&rft.pages=Section+14.2&rft.edition=4th&rft.pub=New+York%3A+W.+H.+Freeman&rft.date=2000&rft.isbn=978-0-7167-3136-8&rft.aulast=Lodish&rft.aufirst=Harvey&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmolecularcellbio00lodi&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKumar2008" class="citation book cs1">Kumar, Rani (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=MhmT-avx3DUC&pg=PA22"><i>Textbook of Human Embryology</i></a>. I.K. International Publishing House. p. 22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9788190675710" title="Special:BookSources/9788190675710"><bdi>9788190675710</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Textbook+of+Human+Embryology&rft.pages=22&rft.pub=I.K.+International+Publishing+House&rft.date=2008&rft.isbn=9788190675710&rft.aulast=Kumar&rft.aufirst=Rani&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DMhmT-avx3DUC%26pg%3DPA22&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD._BinderHirokawaWindhorst2009" class="citation book cs1">D. Binder, Marc; Hirokawa, Nobutaka; Windhorst, Uwe (2009). <i>Encyclopedia of Neuroscience</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3540237358" title="Special:BookSources/978-3540237358"><bdi>978-3540237358</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopedia+of+Neuroscience&rft.pub=Springer&rft.date=2009&rft.isbn=978-3540237358&rft.aulast=D.+Binder&rft.aufirst=Marc&rft.au=Hirokawa%2C+Nobutaka&rft.au=Windhorst%2C+Uwe&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRakic2009" class="citation journal cs1">Rakic, P (October 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913577">"Evolution of the neocortex: a perspective from developmental biology"</a>. <i>Nature Reviews. Neuroscience</i>. <b>10</b> (10): 724–35. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrn2719">10.1038/nrn2719</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913577">2913577</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19763105">19763105</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Reviews.+Neuroscience&rft.atitle=Evolution+of+the+neocortex%3A+a+perspective+from+developmental+biology&rft.volume=10&rft.issue=10&rft.pages=724-35&rft.date=2009-10&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2913577%23id-name%3DPMC&rft_id=info%3Apmid%2F19763105&rft_id=info%3Adoi%2F10.1038%2Fnrn2719&rft.aulast=Rakic&rft.aufirst=P&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2913577&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuiHansenKriegstein2011" class="citation journal cs1">Lui, JH; Hansen, DV; Kriegstein, AR (8 July 2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610574">"Development and evolution of the human neocortex"</a>. <i>Cell</i>. <b>146</b> (1): 18–36. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2011.06.030">10.1016/j.cell.2011.06.030</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610574">3610574</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21729779">21729779</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Development+and+evolution+of+the+human+neocortex.&rft.volume=146&rft.issue=1&rft.pages=18-36&rft.date=2011-07-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3610574%23id-name%3DPMC&rft_id=info%3Apmid%2F21729779&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2011.06.030&rft.aulast=Lui&rft.aufirst=JH&rft.au=Hansen%2C+DV&rft.au=Kriegstein%2C+AR&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3610574&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRashAckmanRakic2016" class="citation journal cs1">Rash, BG; Ackman, JB; Rakic, P (February 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771444">"Bidirectional radial Ca(2+) activity regulates neurogenesis and migration during early cortical column formation"</a>. <i>Science Advances</i>. <b>2</b> (2): e1501733. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016SciA....2E1733R">2016SciA....2E1733R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.1501733">10.1126/sciadv.1501733</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771444">4771444</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26933693">26933693</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=Bidirectional+radial+Ca%282%2B%29+activity+regulates+neurogenesis+and+migration+during+early+cortical+column+formation.&rft.volume=2&rft.issue=2&rft.pages=e1501733&rft.date=2016-02&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4771444%23id-name%3DPMC&rft_id=info%3Apmid%2F26933693&rft_id=info%3Adoi%2F10.1126%2Fsciadv.1501733&rft_id=info%3Abibcode%2F2016SciA....2E1733R&rft.aulast=Rash&rft.aufirst=BG&rft.au=Ackman%2C+JB&rft.au=Rakic%2C+P&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4771444&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-dediff1-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-dediff1_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStocum_DL2004" class="citation book cs1">Stocum DL (2004). "Amphibian Regeneration and Stem Cells". <i>Regeneration: Stem Cells and Beyond</i>. Current Topics in Microbiology and Immunology. Vol. 280. pp. 1–70. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-18846-6_1">10.1007/978-3-642-18846-6_1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-02238-1" title="Special:BookSources/978-3-540-02238-1"><bdi>978-3-540-02238-1</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14594207">14594207</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Amphibian+Regeneration+and+Stem+Cells&rft.btitle=Regeneration%3A+Stem+Cells+and+Beyond&rft.series=Current+Topics+in+Microbiology+and+Immunology&rft.pages=1-70&rft.date=2004&rft_id=info%3Apmid%2F14594207&rft_id=info%3Adoi%2F10.1007%2F978-3-642-18846-6_1&rft.isbn=978-3-540-02238-1&rft.au=Stocum+DL&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">|journal=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-dediff2-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-dediff2_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCasimirGatesPatientBrockes1988" class="citation journal cs1">Casimir CM, Gates PB, Patient RK, Brockes JP (1988-12-01). <a rel="nofollow" class="external text" href="http://dev.biologists.org/cgi/content/abstract/104/4/657">"Evidence for dedifferentiation and metaplasia in amphibian limb regeneration from inheritance of DNA methylation"</a>. <i>Development</i>. <b>104</b> (4): 657–668. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1242%2Fdev.104.4.657">10.1242/dev.104.4.657</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/3268408">3268408</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Development&rft.atitle=Evidence+for+dedifferentiation+and+metaplasia+in+amphibian+limb+regeneration+from+inheritance+of+DNA+methylation&rft.volume=104&rft.issue=4&rft.pages=657-668&rft.date=1988-12-01&rft_id=info%3Adoi%2F10.1242%2Fdev.104.4.657&rft_id=info%3Apmid%2F3268408&rft.aulast=Casimir&rft.aufirst=CM&rft.au=Gates%2C+PB&rft.au=Patient%2C+RK&rft.au=Brockes%2C+JP&rft_id=http%3A%2F%2Fdev.biologists.org%2Fcgi%2Fcontent%2Fabstract%2F104%2F4%2F657&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiles_KL1971" class="citation journal cs1">Giles KL (1971). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20081204174703/http://www.rsnz.org/publish/nzjb/1971/47.php">"Dedifferentiation and Regeneration in Bryophytes: A Selective Review"</a>. <i>New Zealand Journal of Botany</i>. <b>9</b> (4): 689–94. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1971NZJB....9..689G">1971NZJB....9..689G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0028825x.1971.10430231">10.1080/0028825x.1971.10430231</a>. Archived from <a rel="nofollow" class="external text" href="http://www.rsnz.org/publish/nzjb/1971/47.php">the original</a> on 2008-12-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-01-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Zealand+Journal+of+Botany&rft.atitle=Dedifferentiation+and+Regeneration+in+Bryophytes%3A+A+Selective+Review&rft.volume=9&rft.issue=4&rft.pages=689-94&rft.date=1971&rft_id=info%3Adoi%2F10.1080%2F0028825x.1971.10430231&rft_id=info%3Abibcode%2F1971NZJB....9..689G&rft.au=Giles+KL&rft_id=http%3A%2F%2Fwww.rsnz.org%2Fpublish%2Fnzjb%2F1971%2F47.php&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchnabelMarlovitsEckhoff2002" class="citation journal cs1">Schnabel M, Marlovits S, Eckhoff G, et al. (January 2002). <a rel="nofollow" class="external text" href="https://doi.org/10.1053%2Fjoca.2001.0482">"Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture"</a>. <i>Osteoarthr. Cartil</i>. <b>10</b> (1): 62–70. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1053%2Fjoca.2001.0482">10.1053/joca.2001.0482</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11795984">11795984</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Osteoarthr.+Cartil.&rft.atitle=Dedifferentiation-associated+changes+in+morphology+and+gene+expression+in+primary+human+articular+chondrocytes+in+cell+culture&rft.volume=10&rft.issue=1&rft.pages=62-70&rft.date=2002-01&rft_id=info%3Adoi%2F10.1053%2Fjoca.2001.0482&rft_id=info%3Apmid%2F11795984&rft.aulast=Schnabel&rft.aufirst=M&rft.au=Marlovits%2C+S&rft.au=Eckhoff%2C+G&rft_id=https%3A%2F%2Fdoi.org%2F10.1053%252Fjoca.2001.0482&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSell_S1993" class="citation journal cs1">Sell S (December 1993). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519468">"Cellular origin of cancer: dedifferentiation or stem cell maturation arrest?"</a>. <i>Environ. Health Perspect</i>. <b>101</b> (Suppl 5): 15–26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3431838">10.2307/3431838</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3431838">3431838</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519468">1519468</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/7516873">7516873</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Environ.+Health+Perspect.&rft.atitle=Cellular+origin+of+cancer%3A+dedifferentiation+or+stem+cell+maturation+arrest%3F&rft.volume=101&rft.issue=Suppl+5&rft.pages=15-26&rft.date=1993-12&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1519468%23id-name%3DPMC&rft_id=info%3Apmid%2F7516873&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3431838%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3431838&rft.au=Sell+S&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1519468&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTsonis_PA2004" class="citation journal cs1">Tsonis PA (April 2004). <a rel="nofollow" class="external text" href="http://arquivo.pt/wayback/20160523205221/http://molinterv.aspetjournals.org/cgi/pmidlookup?view=long&pmid=15087480">"Stem cells from differentiated cells"</a>. <i>Mol. Interv</i>. <b>4</b> (2): 81–3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1124%2Fmi.4.2.4">10.1124/mi.4.2.4</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15087480">15087480</a>. Archived from <a rel="nofollow" class="external text" href="http://molinterv.aspetjournals.org/cgi/pmidlookup?view=long&pmid=15087480">the original</a> on 2016-05-23<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-12-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mol.+Interv.&rft.atitle=Stem+cells+from+differentiated+cells&rft.volume=4&rft.issue=2&rft.pages=81-3&rft.date=2004-04&rft_id=info%3Adoi%2F10.1124%2Fmi.4.2.4&rft_id=info%3Apmid%2F15087480&rft.au=Tsonis+PA&rft_id=http%3A%2F%2Fmolinterv.aspetjournals.org%2Fcgi%2Fpmidlookup%3Fview%3Dlong%26pmid%3D15087480&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-DeLeon-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-DeLeon_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen-Tabou_de-LeonDavidson2007" class="citation journal cs1">Ben-Tabou de-Leon S, Davidson EH (2007). <a rel="nofollow" class="external text" href="https://authors.library.caltech.edu/8735/1/LEOarbbs07.pdf">"Gene regulation: gene control network in development"</a> <span class="cs1-format">(PDF)</span>. <i>Annu Rev Biophys Biomol Struct</i>. <b>36</b> (191): 191–212. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev.biophys.35.040405.102002">10.1146/annurev.biophys.35.040405.102002</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17291181">17291181</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annu+Rev+Biophys+Biomol+Struct&rft.atitle=Gene+regulation%3A+gene+control+network+in+development.&rft.volume=36&rft.issue=191&rft.pages=191-212&rft.date=2007&rft_id=info%3Adoi%2F10.1146%2Fannurev.biophys.35.040405.102002&rft_id=info%3Apmid%2F17291181&rft.aulast=Ben-Tabou+de-Leon&rft.aufirst=S&rft.au=Davidson%2C+EH&rft_id=https%3A%2F%2Fauthors.library.caltech.edu%2F8735%2F1%2FLEOarbbs07.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Newman-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Newman_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNewman2020" class="citation journal cs1">Newman, Stuart A. (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jtbi.2019.110031">"Cell differentiation: what have we learned in 50 years?"</a>. <i>Journal of Theoretical Biology</i>. <b>485</b>: 110031. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1907.09551">1907.09551</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020JThBi.48510031N">2020JThBi.48510031N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jtbi.2019.110031">10.1016/j.jtbi.2019.110031</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31568790">31568790</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Theoretical+Biology&rft.atitle=Cell+differentiation%3A+what+have+we+learned+in+50+years%3F&rft.volume=485&rft.pages=110031&rft.date=2020&rft_id=info%3Aarxiv%2F1907.09551&rft_id=info%3Apmid%2F31568790&rft_id=info%3Adoi%2F10.1016%2Fj.jtbi.2019.110031&rft_id=info%3Abibcode%2F2020JThBi.48510031N&rft.aulast=Newman&rft.aufirst=Stuart+A.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jtbi.2019.110031&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Gilbert-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gilbert_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnisely,_KarenGilbert,_Scott_F.2009" class="citation book cs1">Knisely, Karen; Gilbert, Scott F. (2009). <i>Developmental Biology</i> (8th ed.). Sunderland, Mass: Sinauer Associates. p. 147. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-87893-371-6" title="Special:BookSources/978-0-87893-371-6"><bdi>978-0-87893-371-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Developmental+Biology&rft.place=Sunderland%2C+Mass&rft.pages=147&rft.edition=8th&rft.pub=Sinauer+Associates&rft.date=2009&rft.isbn=978-0-87893-371-6&rft.au=Knisely%2C+Karen&rft.au=Gilbert%2C+Scott+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Rudel-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rudel_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rudel_23-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Rudel_23-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Rudel_23-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Rudel_23-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Rudel_23-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Rudel_23-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text">Rudel and Sommer; The evolution of developmental mechanisms. <i>Developmental Biology</i> 264, 15-37, 2003 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudelSommer2003" class="citation journal cs1">Rudel, D.; Sommer, R. J. (2003). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0012-1606%2803%2900353-1">"The evolution of developmental mechanisms"</a>. <i>Developmental Biology</i>. <b>264</b> (1): 15–37. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0012-1606%2803%2900353-1">10.1016/S0012-1606(03)00353-1</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/14623229">14623229</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Developmental+Biology&rft.atitle=The+evolution+of+developmental+mechanisms&rft.volume=264&rft.issue=1&rft.pages=15-37&rft.date=2003&rft_id=info%3Adoi%2F10.1016%2FS0012-1606%2803%2900353-1&rft_id=info%3Apmid%2F14623229&rft.aulast=Rudel&rft.aufirst=D.&rft.au=Sommer%2C+R.+J.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0012-1606%252803%252900353-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Yamamoto-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-Yamamoto_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Yamamoto_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Yamamoto Y and WR Jeffery; Central role for the lens in cave fish eye degeneration. <i> Science </i> 289 (5479), 631-633, 2000 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYamamotoJeffery2000" class="citation journal cs1">Yamamoto, Y.; Jeffery, W. R. (2000). "Central Role for the Lens in Cave Fish Eye Degeneration". <i>Science</i>. <b>289</b> (5479): 631–633. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000Sci...289..631Y">2000Sci...289..631Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.289.5479.631">10.1126/science.289.5479.631</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10915628">10915628</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Central+Role+for+the+Lens+in+Cave+Fish+Eye+Degeneration&rft.volume=289&rft.issue=5479&rft.pages=631-633&rft.date=2000&rft_id=info%3Apmid%2F10915628&rft_id=info%3Adoi%2F10.1126%2Fscience.289.5479.631&rft_id=info%3Abibcode%2F2000Sci...289..631Y&rft.aulast=Yamamoto&rft.aufirst=Y.&rft.au=Jeffery%2C+W.+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Kirk-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kirk_25-0">^</a></b></span> <span class="reference-text">Kirk MM, A Ransick, SE Mcrae, DL Kirk; The relationship between cell size and cell fate in <i>Volvox carteri</i>. <i>Journal of Cell Biology</i> 123, 191-208, 1993 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKirkRansickMcRaeKirk1993" class="citation journal cs1">Kirk, M. M.; Ransick, A.; McRae, S. E.; Kirk, D. L. (1993). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119814">"The relationship between cell size and cell fate in Volvox carteri"</a>. <i><a href="/wiki/Journal_of_Cell_Biology" title="Journal of Cell Biology">Journal of Cell Biology</a></i>. <b>123</b> (1): 191–208. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1083%2Fjcb.123.1.191">10.1083/jcb.123.1.191</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119814">2119814</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/8408198">8408198</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Cell+Biology&rft.atitle=The+relationship+between+cell+size+and+cell+fate+in+Volvox+carteri&rft.volume=123&rft.issue=1&rft.pages=191-208&rft.date=1993&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2119814%23id-name%3DPMC&rft_id=info%3Apmid%2F8408198&rft_id=info%3Adoi%2F10.1083%2Fjcb.123.1.191&rft.aulast=Kirk&rft.aufirst=M.+M.&rft.au=Ransick%2C+A.&rft.au=McRae%2C+S.+E.&rft.au=Kirk%2C+D.+L.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2119814&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMadrigalDengFengMiliti2023" class="citation journal cs1">Madrigal P, Deng S, Feng Y, Militi S, Goh KJ, Nibhani R, Grandy R, Osnato A, Ortmann D, Brown S, Pauklin S (January 25, 2023). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41467-023-36116-9.pdf">"Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation"</a> <span class="cs1-format">(PDF)</span>. <i>Nature Communications</i>. <b>14</b> (405): 405. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023NatCo..14..405M">2023NatCo..14..405M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-023-36116-9">10.1038/s41467-023-36116-9</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876972">9876972</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36697417">36697417</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=Epigenetic+and+transcriptional+regulations+prime+cell+fate+before+division+during+human+pluripotent+stem+cell+differentiation&rft.volume=14&rft.issue=405&rft.pages=405&rft.date=2023-01-25&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9876972%23id-name%3DPMC&rft_id=info%3Apmid%2F36697417&rft_id=info%3Adoi%2F10.1038%2Fs41467-023-36116-9&rft_id=info%3Abibcode%2F2023NatCo..14..405M&rft.aulast=Madrigal&rft.aufirst=P&rft.au=Deng%2C+S&rft.au=Feng%2C+Y&rft.au=Militi%2C+S&rft.au=Goh%2C+KJ&rft.au=Nibhani%2C+R&rft.au=Grandy%2C+R&rft.au=Osnato%2C+A&rft.au=Ortmann%2C+D&rft.au=Brown%2C+S&rft.au=Pauklin%2C+S&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41467-023-36116-9.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRabajanteBabierra2015" class="citation journal cs1">Rabajante JF, Babierra AL (January 30, 2015). <a rel="nofollow" class="external text" href="https://www.biorxiv.org/content/biorxiv/early/2015/01/30/007831.full.pdf">"Branching and oscillations in the epigenetic landscape of cell-fate determination"</a> <span class="cs1-format">(PDF)</span>. <i>Progress in Biophysics and Molecular Biology</i>. <b>117</b> (2–3): 240–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.pbiomolbio.2015.01.006">10.1016/j.pbiomolbio.2015.01.006</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25641423">25641423</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2579314">2579314</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress+in+Biophysics+and+Molecular+Biology&rft.atitle=Branching+and+oscillations+in+the+epigenetic+landscape+of+cell-fate+determination&rft.volume=117&rft.issue=2%E2%80%933&rft.pages=240-9&rft.date=2015-01-30&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2579314%23id-name%3DS2CID&rft_id=info%3Apmid%2F25641423&rft_id=info%3Adoi%2F10.1016%2Fj.pbiomolbio.2015.01.006&rft.aulast=Rabajante&rft.aufirst=JF&rft.au=Babierra%2C+AL&rft_id=https%3A%2F%2Fwww.biorxiv.org%2Fcontent%2Fbiorxiv%2Fearly%2F2015%2F01%2F30%2F007831.full.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Lister-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lister_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lister_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLister_R2011" class="citation journal cs1">Lister R; et al. (2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100360">"Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells"</a>. <i>Nature</i>. <b>471</b> (7336): 68–73. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Natur.471...68L">2011Natur.471...68L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature09798">10.1038/nature09798</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100360">3100360</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21289626">21289626</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Hotspots+of+aberrant+epigenomic+reprogramming+in+human+induced+pluripotent+stem+cells&rft.volume=471&rft.issue=7336&rft.pages=68-73&rft.date=2011&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3100360%23id-name%3DPMC&rft_id=info%3Apmid%2F21289626&rft_id=info%3Adoi%2F10.1038%2Fnature09798&rft_id=info%3Abibcode%2F2011Natur.471...68L&rft.au=Lister+R&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3100360&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Christophersen-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-Christophersen_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Christophersen_29-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Christophersen_29-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Christophersen_29-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Christophersen_29-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Christophersen_29-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Christophersen_29-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Christophersen_29-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristophersenHelin2010" class="citation journal cs1">Christophersen NS, Helin K (2010). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964577">"Epigenetic control of embryonic stem cell fate"</a>. <i>J Exp Med</i>. <b>207</b> (11): 2287–95. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1084%2Fjem.20101438">10.1084/jem.20101438</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964577">2964577</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20975044">20975044</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J+Exp+Med&rft.atitle=Epigenetic+control+of+embryonic+stem+cell+fate&rft.volume=207&rft.issue=11&rft.pages=2287-95&rft.date=2010&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2964577%23id-name%3DPMC&rft_id=info%3Apmid%2F20975044&rft_id=info%3Adoi%2F10.1084%2Fjem.20101438&rft.aulast=Christophersen&rft.aufirst=NS&rft.au=Helin%2C+K&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2964577&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceA-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceA_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceA_30-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomsonLiuZouSmith2011" class="citation journal cs1">Thomson, M; Liu, S. J.; Zou, L. N.; Smith, Z; Meissner, A; Ramanathan, S (2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603300">"Pluripotency factors in embryonic stem cells regulate differentiation into germ layers"</a>. <i>Cell</i>. <b>145</b> (6): 875–89. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2011.05.017">10.1016/j.cell.2011.05.017</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603300">5603300</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21663792">21663792</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Pluripotency+factors+in+embryonic+stem+cells+regulate+differentiation+into+germ+layers&rft.volume=145&rft.issue=6&rft.pages=875-89&rft.date=2011&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5603300%23id-name%3DPMC&rft_id=info%3Apmid%2F21663792&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2011.05.017&rft.aulast=Thomson&rft.aufirst=M&rft.au=Liu%2C+S.+J.&rft.au=Zou%2C+L.+N.&rft.au=Smith%2C+Z&rft.au=Meissner%2C+A&rft.au=Ramanathan%2C+S&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5603300&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Jiang-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Jiang_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhu,_J.2013" class="citation journal cs1">Zhu, J.; et al. (2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563935">"Genome-wide chromatin state transitions associated with developmental and environmental cues"</a>. <i>Cell</i>. <b>152</b> (3): 642–654. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2012.12.033">10.1016/j.cell.2012.12.033</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563935">3563935</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23333102">23333102</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Genome-wide+chromatin+state+transitions+associated+with+developmental+and+environmental+cues&rft.volume=152&rft.issue=3&rft.pages=642-654&rft.date=2013&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3563935%23id-name%3DPMC&rft_id=info%3Apmid%2F23333102&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2012.12.033&rft.au=Zhu%2C+J.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3563935&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Guenther-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Guenther_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Guenther_32-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Guenther_32-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuentherYoung2010" class="citation journal cs1">Guenther MG, Young RA (2010). <a rel="nofollow" class="external text" href="http://dspace.mit.edu/bitstream/1721.1/81257/1/Young_Repressive%20transcription.pdf">"Repressive Transcription"</a> <span class="cs1-format">(PDF)</span>. <i>Science</i>. <b>329</b> (5988): 150–1. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010Sci...329..150G">2010Sci...329..150G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1193995">10.1126/science.1193995</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006433">3006433</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20616255">20616255</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Repressive+Transcription&rft.volume=329&rft.issue=5988&rft.pages=150-1&rft.date=2010&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3006433%23id-name%3DPMC&rft_id=info%3Apmid%2F20616255&rft_id=info%3Adoi%2F10.1126%2Fscience.1193995&rft_id=info%3Abibcode%2F2010Sci...329..150G&rft.aulast=Guenther&rft.aufirst=MG&rft.au=Young%2C+RA&rft_id=http%3A%2F%2Fdspace.mit.edu%2Fbitstream%2F1721.1%2F81257%2F1%2FYoung_Repressive%2520transcription.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Meissner-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-Meissner_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Meissner_33-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Meissner_33-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeissner_A2010" class="citation journal cs1">Meissner A (2010). "Epigenetic modifications in pluripotent and differentiated cells". <i>Nat Biotechnol</i>. <b>28</b> (10): 1079–88. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnbt.1684">10.1038/nbt.1684</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20944600">20944600</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205274850">205274850</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat+Biotechnol&rft.atitle=Epigenetic+modifications+in+pluripotent+and+differentiated+cells&rft.volume=28&rft.issue=10&rft.pages=1079-88&rft.date=2010&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205274850%23id-name%3DS2CID&rft_id=info%3Apmid%2F20944600&rft_id=info%3Adoi%2F10.1038%2Fnbt.1684&rft.au=Meissner+A&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20171125204418/http://www.bio.brandeis.edu/haberlab/jehsite/chIP.html">"Chromatin Immuprecipitation"</a>. <i>www.bio.brandeis.edu</i>. Archived from <a rel="nofollow" class="external text" href="http://www.bio.brandeis.edu/haberlab/jehsite/chIP.html">the original</a> on 2017-11-25<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-12-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.bio.brandeis.edu&rft.atitle=Chromatin+Immuprecipitation&rft_id=http%3A%2F%2Fwww.bio.brandeis.edu%2Fhaberlab%2Fjehsite%2FchIP.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-pmid12667454-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid12667454_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKroganDoverWoodSchneider2003" class="citation journal cs1">Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA, Dean K, Ryan OW, Golshani A, Johnston M, Greenblatt JF, Shilatifard A (Mar 2003). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1097-2765%2803%2900091-1">"The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation"</a>. <i>Molecular Cell</i>. <b>11</b> (3): 721–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1097-2765%2803%2900091-1">10.1016/S1097-2765(03)00091-1</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12667454">12667454</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+Cell&rft.atitle=The+Paf1+complex+is+required+for+histone+H3+methylation+by+COMPASS+and+Dot1p%3A+linking+transcriptional+elongation+to+histone+methylation&rft.volume=11&rft.issue=3&rft.pages=721-9&rft.date=2003-03&rft_id=info%3Adoi%2F10.1016%2FS1097-2765%2803%2900091-1&rft_id=info%3Apmid%2F12667454&rft.aulast=Krogan&rft.aufirst=NJ&rft.au=Dover%2C+J&rft.au=Wood%2C+A&rft.au=Schneider%2C+J&rft.au=Heidt%2C+J&rft.au=Boateng%2C+MA&rft.au=Dean%2C+K&rft.au=Ryan%2C+OW&rft.au=Golshani%2C+A&rft.au=Johnston%2C+M&rft.au=Greenblatt%2C+JF&rft.au=Shilatifard%2C+A&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS1097-2765%252803%252900091-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-pmid12667453-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid12667453_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNgRobertYoungStruhl2003" class="citation journal cs1">Ng HH, Robert F, Young RA, Struhl K (Mar 2003). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1097-2765%2803%2900092-3">"Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity"</a>. <i>Molecular Cell</i>. <b>11</b> (3): 709–19. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1097-2765%2803%2900092-3">10.1016/S1097-2765(03)00092-3</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12667453">12667453</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+Cell&rft.atitle=Targeted+recruitment+of+Set1+histone+methylase+by+elongating+Pol+II+provides+a+localized+mark+and+memory+of+recent+transcriptional+activity&rft.volume=11&rft.issue=3&rft.pages=709-19&rft.date=2003-03&rft_id=info%3Adoi%2F10.1016%2FS1097-2765%2803%2900092-3&rft_id=info%3Apmid%2F12667453&rft.aulast=Ng&rft.aufirst=HH&rft.au=Robert%2C+F&rft.au=Young%2C+RA&rft.au=Struhl%2C+K&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS1097-2765%252803%252900092-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-pmid15680324-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-pmid15680324_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernsteinKamalLindblad-TohBekiranov2005" class="citation journal cs1">Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ, Gingeras TR, Schreiber SL, Lander ES (Jan 2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2005.01.001">"Genomic maps and comparative analysis of histone modifications in human and mouse"</a>. <i>Cell</i>. <b>120</b> (2): 169–81. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2005.01.001">10.1016/j.cell.2005.01.001</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15680324">15680324</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7193829">7193829</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Genomic+maps+and+comparative+analysis+of+histone+modifications+in+human+and+mouse&rft.volume=120&rft.issue=2&rft.pages=169-81&rft.date=2005-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7193829%23id-name%3DS2CID&rft_id=info%3Apmid%2F15680324&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2005.01.001&rft.aulast=Bernstein&rft.aufirst=BE&rft.au=Kamal%2C+M&rft.au=Lindblad-Toh%2C+K&rft.au=Bekiranov%2C+S&rft.au=Bailey%2C+DK&rft.au=Huebert%2C+DJ&rft.au=McMahon%2C+S&rft.au=Karlsson%2C+EK&rft.au=Kulbokas%2C+EJ&rft.au=Gingeras%2C+TR&rft.au=Schreiber%2C+SL&rft.au=Lander%2C+ES&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cell.2005.01.001&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Teif_et_al-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-Teif_et_al_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeifVainshteinCaudron-HergerMallm2012" class="citation journal cs1">Teif VB, Vainshtein Y, Caudron-Herger M, Mallm JP, Marth C, Höfer T, Rippe K (2012). "Genome-wide nucleosome positioning during embryonic stem cell development". <i>Nat Struct Mol Biol</i>. <b>19</b> (11): 1185–92. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnsmb.2419">10.1038/nsmb.2419</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23085715">23085715</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34509771">34509771</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat+Struct+Mol+Biol&rft.atitle=Genome-wide+nucleosome+positioning+during+embryonic+stem+cell+development&rft.volume=19&rft.issue=11&rft.pages=1185-92&rft.date=2012&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34509771%23id-name%3DS2CID&rft_id=info%3Apmid%2F23085715&rft_id=info%3Adoi%2F10.1038%2Fnsmb.2419&rft.aulast=Teif&rft.aufirst=VB&rft.au=Vainshtein%2C+Y&rft.au=Caudron-Herger%2C+M&rft.au=Mallm%2C+JP&rft.au=Marth%2C+C&rft.au=H%C3%B6fer%2C+T&rft.au=Rippe%2C+K&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceB-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceB_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceB_39-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhyteBilodeauOrlandoHoke2012" class="citation journal cs1">Whyte, W. A.; Bilodeau, S; Orlando, D. A.; Hoke, H. A.; Frampton, G. M.; Foster, C. T.; Cowley, S. M.; Young, R. A. (2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144424">"Enhancer decommissioning by LSD1 during embryonic stem cell differentiation"</a>. <i>Nature</i>. <b>482</b> (7384): 221–5. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012Natur.482..221W">2012Natur.482..221W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature10805">10.1038/nature10805</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144424">4144424</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22297846">22297846</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Enhancer+decommissioning+by+LSD1+during+embryonic+stem+cell+differentiation&rft.volume=482&rft.issue=7384&rft.pages=221-5&rft.date=2012&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4144424%23id-name%3DPMC&rft_id=info%3Apmid%2F22297846&rft_id=info%3Adoi%2F10.1038%2Fnature10805&rft_id=info%3Abibcode%2F2012Natur.482..221W&rft.aulast=Whyte&rft.aufirst=W.+A.&rft.au=Bilodeau%2C+S&rft.au=Orlando%2C+D.+A.&rft.au=Hoke%2C+H.+A.&rft.au=Frampton%2C+G.+M.&rft.au=Foster%2C+C.+T.&rft.au=Cowley%2C+S.+M.&rft.au=Young%2C+R.+A.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4144424&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Mohammad-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mohammad_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Mohammad_40-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Mohammad_40-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Mohammad_40-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Mohammad_40-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Mohammad_40-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMohammadBaylin2010" class="citation journal cs1">Mohammad HP, Baylin SB (2010). "Linking cell signaling and the epigenetic machinery". <i>Nat Biotechnol</i>. <b>28</b> (10): 1033–8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnbt1010-1033">10.1038/nbt1010-1033</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20944593">20944593</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6911946">6911946</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nat+Biotechnol&rft.atitle=Linking+cell+signaling+and+the+epigenetic+machinery&rft.volume=28&rft.issue=10&rft.pages=1033-8&rft.date=2010&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6911946%23id-name%3DS2CID&rft_id=info%3Apmid%2F20944593&rft_id=info%3Adoi%2F10.1038%2Fnbt1010-1033&rft.aulast=Mohammad&rft.aufirst=HP&rft.au=Baylin%2C+SB&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Niwa-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-Niwa_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNiwaBurdonChambersSmith1998" class="citation journal cs1">Niwa H, Burdon T, Chambers I, Smith A (1998). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC316954">"Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3"</a>. <i>Genes Dev</i>. <b>12</b> (13): 2048–60. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1101%2Fgad.12.13.2048">10.1101/gad.12.13.2048</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC316954">316954</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9649508">9649508</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genes+Dev&rft.atitle=Self-renewal+of+pluripotent+embryonic+stem+cells+is+mediated+via+activation+of+STAT3&rft.volume=12&rft.issue=13&rft.pages=2048-60&rft.date=1998&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC316954%23id-name%3DPMC&rft_id=info%3Apmid%2F9649508&rft_id=info%3Adoi%2F10.1101%2Fgad.12.13.2048&rft.aulast=Niwa&rft.aufirst=H&rft.au=Burdon%2C+T&rft.au=Chambers%2C+I&rft.au=Smith%2C+A&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC316954&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Liu-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Liu_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiu_S2006" class="citation journal cs1">Liu S; et al. (2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386278">"Hedgehog Signaling and Bmi-1 Regulate Self-renewal of Normal and Malignant Human Mammary Stem Cells"</a>. <i>Cancer Res</i>. <b>66</b> (12): 6063–71. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1158%2F0008-5472.CAN-06-0054">10.1158/0008-5472.CAN-06-0054</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386278">4386278</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16778178">16778178</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cancer+Res&rft.atitle=Hedgehog+Signaling+and+Bmi-1+Regulate+Self-renewal+of+Normal+and+Malignant+Human+Mammary+Stem+Cells&rft.volume=66&rft.issue=12&rft.pages=6063-71&rft.date=2006&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4386278%23id-name%3DPMC&rft_id=info%3Apmid%2F16778178&rft_id=info%3Adoi%2F10.1158%2F0008-5472.CAN-06-0054&rft.au=Liu+S&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4386278&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Leung-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-Leung_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeung_C2004" class="citation journal cs1">Leung C; et al. (2004). "Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas". <i>Nature</i>. <b>428</b> (6980): 337–41. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004Natur.428..337L">2004Natur.428..337L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature02385">10.1038/nature02385</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15029199">15029199</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:29965488">29965488</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Bmi1+is+essential+for+cerebellar+development+and+is+overexpressed+in+human+medulloblastomas&rft.volume=428&rft.issue=6980&rft.pages=337-41&rft.date=2004&rft_id=info%3Adoi%2F10.1038%2Fnature02385&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A29965488%23id-name%3DS2CID&rft_id=info%3Apmid%2F15029199&rft_id=info%3Abibcode%2F2004Natur.428..337L&rft.au=Leung+C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-Zencak-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zencak_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZencak_D2005" class="citation journal cs1">Zencak D; et al. (2005). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724881">"Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation"</a>. <i>J Neurosci</i>. <b>25</b> (24): 5774–83. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1523%2FJNEUROSCI.3452-04.2005">10.1523/JNEUROSCI.3452-04.2005</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724881">6724881</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15958744">15958744</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J+Neurosci&rft.atitle=Bmi1+loss+produces+an+increase+in+astroglial+cells+and+a+decrease+in+neural+stem+cell+population+and+proliferation&rft.volume=25&rft.issue=24&rft.pages=5774-83&rft.date=2005&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6724881%23id-name%3DPMC&rft_id=info%3Apmid%2F15958744&rft_id=info%3Adoi%2F10.1523%2FJNEUROSCI.3452-04.2005&rft.au=Zencak+D&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6724881&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-:0-45"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_45-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_45-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEnglerSenSweeneyDischer2006" class="citation journal cs1">Engler, AJ; Sen, S; Sweeney, HL; Discher, DE (August 2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2006.06.044">"Matrix Elasticity Directs Stem Cell Lineage Specification"</a>. <i>Cell</i>. <b>126</b> (4): 677–689. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cell.2006.06.044">10.1016/j.cell.2006.06.044</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16923388">16923388</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16109483">16109483</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Matrix+Elasticity+Directs+Stem+Cell+Lineage+Specification&rft.volume=126&rft.issue=4&rft.pages=677-689&rft.date=2006-08&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16109483%23id-name%3DS2CID&rft_id=info%3Apmid%2F16923388&rft_id=info%3Adoi%2F10.1016%2Fj.cell.2006.06.044&rft.aulast=Engler&rft.aufirst=AJ&rft.au=Sen%2C+S&rft.au=Sweeney%2C+HL&rft.au=Discher%2C+DE&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cell.2006.06.044&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuoWangSachsMeng2014" class="citation journal cs1">Guo, Jun; Wang, Yuexiu; <a href="/wiki/Frederick_Sachs" title="Frederick Sachs">Sachs, Frederick</a>; Meng, Fanjie (2014-12-09). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267376">"Actin stress in cell reprogramming"</a>. <i>Proceedings of the National Academy of Sciences</i>. <b>111</b> (49): E5252–E5261. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014PNAS..111E5252G">2014PNAS..111E5252G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1411683111">10.1073/pnas.1411683111</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0027-8424">0027-8424</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267376">4267376</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25422450">25422450</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences&rft.atitle=Actin+stress+in+cell+reprogramming&rft.volume=111&rft.issue=49&rft.pages=E5252-E5261&rft.date=2014-12-09&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4267376%23id-name%3DPMC&rft_id=info%3Abibcode%2F2014PNAS..111E5252G&rft_id=info%3Apmid%2F25422450&rft_id=info%3Adoi%2F10.1073%2Fpnas.1411683111&rft.issn=0027-8424&rft.aulast=Guo&rft.aufirst=Jun&rft.au=Wang%2C+Yuexiu&rft.au=Sachs%2C+Frederick&rft.au=Meng%2C+Fanjie&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4267376&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuilakCohenEstesGimble2009" class="citation journal cs1">Guilak, Farshid; Cohen, Daniel M.; Estes, Bradley T.; Gimble, Jeffrey M.; Liedtke, Wolfgang; Chen, Christopher S. (2009-07-02). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768283">"Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix"</a>. <i>Cell Stem Cell</i>. <b>5</b> (1): 17–26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.stem.2009.06.016">10.1016/j.stem.2009.06.016</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768283">2768283</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19570510">19570510</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell+Stem+Cell&rft.atitle=Control+of+Stem+Cell+Fate+by+Physical+Interactions+with+the+Extracellular+Matrix&rft.volume=5&rft.issue=1&rft.pages=17-26&rft.date=2009-07-02&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2768283%23id-name%3DPMC&rft_id=info%3Apmid%2F19570510&rft_id=info%3Adoi%2F10.1016%2Fj.stem.2009.06.016&rft.aulast=Guilak&rft.aufirst=Farshid&rft.au=Cohen%2C+Daniel+M.&rft.au=Estes%2C+Bradley+T.&rft.au=Gimble%2C+Jeffrey+M.&rft.au=Liedtke%2C+Wolfgang&rft.au=Chen%2C+Christopher+S.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2768283&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://phys.org/news/2021-04-billion-year-old-fossil-reveals-link-evolution.html">"Billion-year-old fossil reveals missing link in the evolution of animals"</a>. <i>phys.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">9 May</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=phys.org&rft.atitle=Billion-year-old+fossil+reveals+missing+link+in+the+evolution+of+animals&rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2021-04-billion-year-old-fossil-reveals-link-evolution.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.bbc.com/news/uk-scotland-highlands-islands-56917272">"Billion-year-old fossil found preserved in Torridon rocks"</a>. <i>BBC News</i>. 2021-04-29<span class="reference-accessdate">. Retrieved <span class="nowrap">22 May</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BBC+News&rft.atitle=Billion-year-old+fossil+found+preserved+in+Torridon+rocks&rft.date=2021-04-29&rft_id=https%3A%2F%2Fwww.bbc.com%2Fnews%2Fuk-scotland-highlands-islands-56917272&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrotherBrasierWaceyTimpe2021" class="citation journal cs1">Strother, Paul K.; Brasier, Martin D.; Wacey, David; Timpe, Leslie; Saunders, Martin; Wellman, Charles H. (13 April 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2021.03.051">"A possible billion-year-old holozoan with differentiated multicellularity"</a>. <i>Current Biology</i>. <b>31</b> (12): 2658–2665.e2. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021CBio...31E2658S">2021CBio...31E2658S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cub.2021.03.051">10.1016/j.cub.2021.03.051</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0960-9822">0960-9822</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33852871">33852871</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Current+Biology&rft.atitle=A+possible+billion-year-old+holozoan+with+differentiated+multicellularity&rft.volume=31&rft.issue=12&rft.pages=2658-2665.e2&rft.date=2021-04-13&rft_id=info%3Adoi%2F10.1016%2Fj.cub.2021.03.051&rft.issn=0960-9822&rft_id=info%3Apmid%2F33852871&rft_id=info%3Abibcode%2F2021CBio...31E2658S&rft.aulast=Strother&rft.aufirst=Paul+K.&rft.au=Brasier%2C+Martin+D.&rft.au=Wacey%2C+David&rft.au=Timpe%2C+Leslie&rft.au=Saunders%2C+Martin&rft.au=Wellman%2C+Charles+H.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cub.2021.03.051&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACellular+differentiation" class="Z3988"></span> <span typeof="mw:File"><a href="/wiki/File:CC_BY_icon.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" decoding="async" width="50" height="18" class="mw-file-element" data-file-width="88" data-file-height="31"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 18px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/50px-CC_BY_icon.svg.png" data-width="50" data-height="18" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/75px-CC_BY_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/CC_BY_icon.svg/100px-CC_BY_icon.svg.png 2x" data-class="mw-file-element"> </span></a></span> Available under <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by/4.0/">CC BY 4.0</a>.</span> </li> </ol></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐7j489 Cached time: 20241122140451 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.934 seconds Real time usage: 1.209 seconds Preprocessor visited node count: 5172/1000000 Post‐expand include size: 156753/2097152 bytes Template argument size: 5597/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 15/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 222513/5000000 bytes Lua time usage: 0.581/10.000 seconds Lua memory usage: 6803259/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1009.451 1 -total 45.35% 457.743 1 Template:Reflist 31.71% 320.133 39 Template:Cite_journal 10.35% 104.521 1 Template:Short_description 9.92% 100.158 1 Template:Stem_cells 9.55% 96.445 1 Template:Navbox 7.24% 73.107 2 Template:Pagetype 6.70% 67.616 6 Template:Fix 6.07% 61.233 1 Template:Authority_control 5.76% 58.107 3 Template:Citation_needed --> <!-- Saved in parser cache with key enwiki:pcache:152611:|#|:idhash:canonical and timestamp 20241122140451 and revision id 1248996696. Rendering was triggered because: page-view --> </section></div> <!-- MobileFormatter took 0.029 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Cellular_differentiation&oldid=1248996696">https://en.wikipedia.org/w/index.php?title=Cellular_differentiation&oldid=1248996696</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=Cellular_differentiation&action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="LizardJr8" data-user-gender="male" data-timestamp="1727887462"> <span>Last edited on 2 October 2024, at 16:44</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%85%D8%A7%D9%8A%D8%B2_%D8%AE%D9%84%D9%88%D9%8A" title="تمايز خلوي – Arabic" lang="ar" hreflang="ar" data-title="تمايز خلوي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/S%C3%A8-pau_hun-h%C3%B2a" title="Sè-pau hun-hòa – Minnan" lang="nan" hreflang="nan" data-title="Sè-pau hun-hòa" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B5%D1%82%D1%8A%D1%87%D0%BD%D0%BE_%D0%B4%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D1%80%D0%B0%D0%BD%D0%B5" title="Клетъчно диференциране – Bulgarian" lang="bg" hreflang="bg" data-title="Клетъчно диференциране" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/%C4%86elijska_diferencijacija" title="Ćelijska diferencijacija – Bosnian" lang="bs" hreflang="bs" data-title="Ćelijska diferencijacija" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Diferenciaci%C3%B3_cel%C2%B7lular" title="Diferenciació cel·lular – Catalan" lang="ca" hreflang="ca" data-title="Diferenciació cel·lular" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Bun%C4%9B%C4%8Dn%C3%A1_diferenciace" title="Buněčná diferenciace – Czech" lang="cs" hreflang="cs" data-title="Buněčná diferenciace" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Celledifferentiering" title="Celledifferentiering – Danish" lang="da" hreflang="da" data-title="Celledifferentiering" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Differenzierung_(Biologie)" title="Differenzierung (Biologie) – German" lang="de" hreflang="de" data-title="Differenzierung (Biologie)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Diferentseerumine" title="Diferentseerumine – Estonian" lang="et" hreflang="et" data-title="Diferentseerumine" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9A%CF%85%CF%84%CF%84%CE%B1%CF%81%CE%B9%CE%BA%CE%AE_%CE%B4%CE%B9%CE%B1%CF%86%CE%BF%CF%81%CE%BF%CF%80%CE%BF%CE%AF%CE%B7%CF%83%CE%B7" title="Κυτταρική διαφοροποίηση – Greek" lang="el" hreflang="el" data-title="Κυτταρική διαφοροποίηση" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Diferenciaci%C3%B3n_celular" title="Diferenciación celular – Spanish" lang="es" hreflang="es" data-title="Diferenciación celular" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/%C4%88ela_diferenci%C4%9Do" title="Ĉela diferenciĝo – Esperanto" lang="eo" hreflang="eo" data-title="Ĉela diferenciĝo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zelula_bereizte" title="Zelula bereizte – Basque" lang="eu" hreflang="eu" data-title="Zelula bereizte" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%85%D8%A7%DB%8C%D8%B2_%D8%B3%D9%84%D9%88%D9%84%DB%8C" title="تمایز سلولی – Persian" lang="fa" hreflang="fa" data-title="تمایز سلولی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Diff%C3%A9renciation_cellulaire" title="Différenciation cellulaire – French" lang="fr" hreflang="fr" data-title="Différenciation cellulaire" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Diferenciaci%C3%B3n_celular" title="Diferenciación celular – Galician" lang="gl" hreflang="gl" data-title="Diferenciación celular" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%84%B8%ED%8F%AC_%EB%B6%84%ED%99%94" title="세포 분화 – Korean" lang="ko" hreflang="ko" data-title="세포 분화" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B2%D5%BB%D5%BB%D5%A1%D5%B5%D5%AB%D5%B6_%D5%BF%D5%A1%D6%80%D5%A2%D5%A5%D6%80%D5%A1%D5%AF%D5%B8%D6%82%D5%B4" title="Բջջային տարբերակում – Armenian" lang="hy" hreflang="hy" data-title="Բջջային տարբերակում" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Stani%C4%8Dna_diferencijacija" title="Stanična diferencijacija – Croatian" lang="hr" hreflang="hr" data-title="Stanična diferencijacija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Diferensiasi_sel" title="Diferensiasi sel – Indonesian" lang="id" hreflang="id" data-title="Diferensiasi sel" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Differenziazione_cellulare" title="Differenziazione cellulare – Italian" lang="it" hreflang="it" data-title="Differenziazione cellulare" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%9E%D7%99%D7%99%D7%A0%D7%95%D7%AA_%D7%AA%D7%90%D7%99%D7%9D" title="התמיינות תאים – Hebrew" lang="he" hreflang="he" data-title="התמיינות תאים" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A3%E1%83%AF%E1%83%A0%E1%83%94%E1%83%93%E1%83%94%E1%83%91%E1%83%98%E1%83%A1_%E1%83%93%E1%83%98%E1%83%A4%E1%83%94%E1%83%A0%E1%83%94%E1%83%9C%E1%83%AA%E1%83%98%E1%83%A0%E1%83%94%E1%83%91%E1%83%90" title="უჯრედების დიფერენცირება – Georgian" lang="ka" hreflang="ka" data-title="უჯრედების დიფერენცირება" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%96%D0%B0%D1%81%D1%83%D1%88%D0%B0%D0%BB%D0%B0%D1%80_%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D1%8F%D1%81%D1%8B" title="Жасушалар дифференциясы – Kazakh" lang="kk" hreflang="kk" data-title="Жасушалар дифференциясы" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Pembezaan_sel" title="Pembezaan sel – Malay" lang="ms" hreflang="ms" data-title="Pembezaan sel" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Celdifferentiatie" title="Celdifferentiatie – Dutch" lang="nl" hreflang="nl" data-title="Celdifferentiatie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%B4%B0%E8%83%9E%E5%88%86%E5%8C%96" title="細胞分化 – Japanese" lang="ja" hreflang="ja" data-title="細胞分化" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Celledifferensiering" title="Celledifferensiering – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Celledifferensiering" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Diferencia%C3%A7%C3%A3o_celular" title="Diferenciação celular – Portuguese" lang="pt" hreflang="pt" data-title="Diferenciação celular" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B0_%D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D0%BA" title="Дифференцировка клеток – Russian" lang="ru" hreflang="ru" data-title="Дифференцировка клеток" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Cell_differentiation" title="Cell differentiation – Simple English" lang="en-simple" hreflang="en-simple" data-title="Cell differentiation" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Bunkov%C3%A1_diferenci%C3%A1cia" title="Bunková diferenciácia – Slovak" lang="sk" hreflang="sk" data-title="Bunková diferenciácia" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AC%DB%8C%D8%A7%D9%88%D8%A7%D8%B2%D8%A8%D9%88%D9%88%D9%86%DB%8C_%D8%AE%D8%A7%D9%86%DB%95%DB%8C" title="جیاوازبوونی خانەی – Central Kurdish" lang="ckb" hreflang="ckb" data-title="جیاوازبوونی خانەی" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D1%98%D0%B0%D1%86%D0%B8%D1%98%D0%B0_(%D0%B1%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%98%D0%B0)" title="Диференцијација (биологија) – Serbian" lang="sr" hreflang="sr" data-title="Диференцијација (биологија)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Diferencijacija_(biologija)" title="Diferencijacija (biologija) – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Diferencijacija (biologija)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Solujen_erilaistuminen" title="Solujen erilaistuminen – Finnish" lang="fi" hreflang="fi" data-title="Solujen erilaistuminen" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Celldifferentiering" title="Celldifferentiering – Swedish" lang="sv" hreflang="sv" data-title="Celldifferentiering" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Pagkakaiba-ibang_pangsihay" title="Pagkakaiba-ibang pangsihay – Tagalog" lang="tl" hreflang="tl" data-title="Pagkakaiba-ibang pangsihay" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%89%E0%AE%AF%E0%AE%BF%E0%AE%B0%E0%AE%A3%E0%AF%81_%E0%AE%B5%E0%AF%87%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AF%81%E0%AE%AE%E0%AF%88%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="உயிரணு வேற்றுமைப்பாடு – Tamil" lang="ta" hreflang="ta" data-title="உயிரணு வேற்றுமைப்பாடு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D1%96%D0%B0%D1%86%D1%96%D1%8F_%D0%BA%D0%BB%D1%96%D1%82%D0%B8%D0%BD" title="Диференціація клітин – Ukrainian" lang="uk" hreflang="uk" data-title="Диференціація клітин" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AE%D9%84%DB%8C%D8%A7%D8%AA%DB%8C_%D8%AA%D9%85%D8%A7%D9%8A%D9%8F%D8%B2" title="خلیاتی تمايُز – Urdu" lang="ur" hreflang="ur" data-title="خلیاتی تمايُز" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Bi%E1%BB%87t_h%C3%B3a_t%E1%BA%BF_b%C3%A0o" title="Biệt hóa tế bào – Vietnamese" lang="vi" hreflang="vi" data-title="Biệt hóa tế bào" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%B4%B0%E8%83%9E%E5%88%86%E5%8C%96" title="細胞分化 – Cantonese" lang="yue" hreflang="yue" data-title="細胞分化" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%BB%86%E8%83%9E%E5%88%86%E5%8C%96" title="细胞分化 – Chinese" lang="zh" hreflang="zh" data-title="细胞分化" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 2 October 2024, at 16:44<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=Cellular_differentiation&mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-kgm48","wgBackendResponseTime":221,"wgPageParseReport":{"limitreport":{"cputime":"0.934","walltime":"1.209","ppvisitednodes":{"value":5172,"limit":1000000},"postexpandincludesize":{"value":156753,"limit":2097152},"templateargumentsize":{"value":5597,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":15,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":222513,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1009.451 1 -total"," 45.35% 457.743 1 Template:Reflist"," 31.71% 320.133 39 Template:Cite_journal"," 10.35% 104.521 1 Template:Short_description"," 9.92% 100.158 1 Template:Stem_cells"," 9.55% 96.445 1 Template:Navbox"," 7.24% 73.107 2 Template:Pagetype"," 6.70% 67.616 6 Template:Fix"," 6.07% 61.233 1 Template:Authority_control"," 5.76% 58.107 3 Template:Citation_needed"]},"scribunto":{"limitreport-timeusage":{"value":"0.581","limit":"10.000"},"limitreport-memusage":{"value":6803259,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-7j489","timestamp":"20241122140451","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Cellular differentiation","url":"https:\/\/en.wikipedia.org\/wiki\/Cellular_differentiation","sameAs":"http:\/\/www.wikidata.org\/entity\/Q210861","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q210861","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-11-28T07:42:59Z","dateModified":"2024-10-02T16:44:22Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d3\/Final_stem_cell_differentiation_%281%29.svg","headline":"process in which relatively unspecialized cells acquire specialized features"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>