CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 83 results for author: <span class="mathjax">Sheng, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Sheng%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sheng, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sheng%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sheng, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sheng%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sheng%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sheng%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19254">arXiv:2411.19254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19254">pdf</a>, <a href="https://arxiv.org/format/2411.19254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13629-1">10.1140/epjc/s10052-024-13629-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maximal Steered Coherence in Accelerating Unruh-DeWitt Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hong-Wei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+Y">Yi-Hao Fan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+S">Shu-Ting Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+X">Xiao-Jing Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xi-Yun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19254v1-abstract-short" style="display: inline;"> Quantum coherence, a fundamental aspect of quantum mechanics, plays a crucial role in various quantum information tasks. However, preserving coherence under extreme conditions, such as relativistic acceleration, poses significant challenges. In this paper, we investigate the influence of Unruh temperature and energy levels on the evolution of maximal steered coherence (MSC) for different initial s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19254v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19254v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19254v1-abstract-full" style="display: none;"> Quantum coherence, a fundamental aspect of quantum mechanics, plays a crucial role in various quantum information tasks. However, preserving coherence under extreme conditions, such as relativistic acceleration, poses significant challenges. In this paper, we investigate the influence of Unruh temperature and energy levels on the evolution of maximal steered coherence (MSC) for different initial states. Our results reveal that MSC is strongly dependent on Unruh temperature, exhibiting behaviors ranging from monotonic decline to non-monotonic recovery, depending on the initial state parameter. Notably, when 螖=1, MSC is generated as Unruh temperature increases. Additionally, we observe that higher energy levels help preserve or enhance MSC in the presence of Unruh effects. These findings offer valuable insights into the intricate relationship between relativistic effects and quantum coherence, with potential applications in developing robust quantum technologies for non-inertial environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19254v1-abstract-full').style.display = 'none'; document.getElementById('2411.19254v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84, 1241 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11299">arXiv:2411.11299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11299">pdf</a>, <a href="https://arxiv.org/format/2411.11299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Receiver-device-independent quantum secure direct communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+C">Cheng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+S">Shi-Pu Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xing-Fu Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11299v1-abstract-short" style="display: inline;"> Quantum secure direct communication (QSDC) enables the message sender to directly send secure messages to the receiver through the quantum channel without keys. Device-independent (DI) and measurement-device-independent (MDI) QSDC protocols can enhance QSDC&#39;s practical security in theory. DI QSDC requires extremely high global detection efficiency and has quite low secure communication distance. D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11299v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11299v1-abstract-full" style="display: none;"> Quantum secure direct communication (QSDC) enables the message sender to directly send secure messages to the receiver through the quantum channel without keys. Device-independent (DI) and measurement-device-independent (MDI) QSDC protocols can enhance QSDC&#39;s practical security in theory. DI QSDC requires extremely high global detection efficiency and has quite low secure communication distance. DI and MDI QSDC both require high-quality entanglement. Current entanglement sources prepare entangled photon pairs with low efficiency, largely reducing their practical communication efficiency. In the paper, we propose a single-photon-based receiver-device-independent (RDI) QSDC protocol. It only relies on the trusted single-photon source, which is nearly on-demand under current technology, and treats all the receiving devices in both communication parties as ``black-boxes&#39;&#39;. The parties ensure the message security only from the observed statistics. We develop a numerical method to simulate its performance in practical noisy communication situation. RDI QSDC provides the same security level as MDI QSDC. Compared with DI and MDI QSDC, RDI QSDC has some advantages. First, it uses the single-photon source and single-photon measurement, which makes it obtain the practical communication efficiency about 3415 times of that in DI QSDC and easy to implement. The whole protocol is feasible with current technology. Second, it has higher photon loss robustness and noise tolerance than DI QSDC, which enables it to have a secure communication distance about 26 times of that in DI QSDC. Based on above features, the RDI QSDC protocol makes it possible to achieve highly-secure and high-efficient QSDC in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11299v1-abstract-full').style.display = 'none'; document.getElementById('2411.11299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04003">arXiv:2410.04003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04003">pdf</a>, <a href="https://arxiv.org/ps/2410.04003">ps</a>, <a href="https://arxiv.org/format/2410.04003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Device-independent quantum secret sharing with advanced random key generation basis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ying%2C+J">Jia-Wei Ying</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhong-Jian Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+S">Shu-Ting Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xi-Yun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">An-Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+S">Shi-Pu Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xing-Fu Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04003v1-abstract-short" style="display: inline;"> Quantum secret sharing (QSS) enables a dealer to securely distribute keys to multiple players. Device-independent (DI) QSS can resist all possible attacks from practical imperfect devices and provide QSS the highest level of security in theory. However, DI QSS requires high-performance devices, especially for low-noise channels, which is a big challenge for its experimental demonstration. We propo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04003v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04003v1-abstract-full" style="display: none;"> Quantum secret sharing (QSS) enables a dealer to securely distribute keys to multiple players. Device-independent (DI) QSS can resist all possible attacks from practical imperfect devices and provide QSS the highest level of security in theory. However, DI QSS requires high-performance devices, especially for low-noise channels, which is a big challenge for its experimental demonstration. We propose a DI QSS protocol with the advanced random key generation basis strategy, which combines the random key generation basis with the noise preprocessing and postselection strategies. We develop the methods to simplify Eve&#39;s conditional entropy bound and numerically simulate the key generation rate in an acceptable time. Our DI QSS protocol has some advantages. First, it can increase the noise tolerance threshold from initial 7.147% to 9.231% (29.16% growth), and reduce the global detection efficiency threshold from 96.32% to 93.41%. The maximal distance between any two users increases to 1.43 km, which is about 5.5 times of the initial value. Second, by randomly selecting two basis combinations to generate the key, our DI QSS protocol can reduce the entanglement resource consumption. Our protocol has potential for DI QSS&#39;s experimental demonstration and application in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04003v1-abstract-full').style.display = 'none'; document.getElementById('2410.04003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12395">arXiv:2408.12395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12395">pdf</a>, <a href="https://arxiv.org/format/2408.12395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-12830-6">10.1140/epjc/s10052-024-12830-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maximal steered coherence in the background of Schwarzschild space-time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hong-Wei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+S">Shu-Ting Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+X">Xiao-Jing Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xi-Yun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12395v1-abstract-short" style="display: inline;"> In the past two decades, the exploration of quantumness within Schwarzschild spacetime has garnered significant interest, particularly regarding the Hawking radiation&#39;s impact on quantum correlations and quantum coherence. Building on this foundation, we investigate how Hawking radiation influences maximal steered coherence (MSC)-a crucial measure for gauging the ability to generate coherence thro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12395v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12395v1-abstract-full" style="display: none;"> In the past two decades, the exploration of quantumness within Schwarzschild spacetime has garnered significant interest, particularly regarding the Hawking radiation&#39;s impact on quantum correlations and quantum coherence. Building on this foundation, we investigate how Hawking radiation influences maximal steered coherence (MSC)-a crucial measure for gauging the ability to generate coherence through steering. We find that as the Hawking temperature increases, the physically accessible MSC degrade while the unaccessible MSC increase. This observation is attributed to a redistribution of the initial quantum correlations, previously acknowledged by inertial observers, across all bipartite modes. In particular, we find that in limit case that the Hawking temperature tends to infinity, the accessible MSC equals to 1/\sqrt{2} of its initial value, and the unaccessible MSC also equals to the same value. Our findings illuminate the intricate dynamics of quantum information in the vicinity of black holes, suggesting that Hawking radiation plays a pivotal role in reshaping the landscape of quantum coherence and entanglement in curved spacetime. This study not only advances our theoretical understanding of black hole thermodynamics but also opens new avenues for investigating the interface between quantum mechanics and general relativity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12395v1-abstract-full').style.display = 'none'; document.getElementById('2408.12395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12370">arXiv:2408.12370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12370">pdf</a>, <a href="https://arxiv.org/format/2408.12370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13164-z">10.1140/epjc/s10052-024-13164-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Basis-independent quantum coherence and its distribution under relativistic motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hong-Wei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+Z">Zhen Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+S">Shu-Ting Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X+Y+X">Xiao-Jing Yan. Xi-Yun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12370v1-abstract-short" style="display: inline;"> Recent studies have increasingly focused on the effect of relativistic motion on quantum coherence. Prior research predominantly examined the influence of relative motion on basis-dependent quantum coherence, underscoring its susceptibility to decoherence under accelerated conditions. Yet, the effect of relativistic motion on basis-independent quantum coherence, which is critical for understanding&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12370v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12370v1-abstract-full" style="display: none;"> Recent studies have increasingly focused on the effect of relativistic motion on quantum coherence. Prior research predominantly examined the influence of relative motion on basis-dependent quantum coherence, underscoring its susceptibility to decoherence under accelerated conditions. Yet, the effect of relativistic motion on basis-independent quantum coherence, which is critical for understanding the intrinsic quantum features of a system, remains an interesting open question. This paper addresses this question by examining how total, collective, and localized coherence are affected by acceleration and coupling strength. Our analysis reveals that both total and collective coherence significantly decrease with increasing acceleration and coupling strength, ultimately vanishing at high levels of acceleration. This underscores the profound impact of Unruh thermal noise. Conversely, localized coherence exhibits relative stability, decreasing to zero only under the extreme condition of infinite acceleration. Moreover, we demonstrate that collective, localized, and basis-independent coherence collectively satisfy the triangle inequality. These findings are crucial for enhancing our understanding of quantum information dynamics in environments subjected to high acceleration and offer valuable insights on the behavior of quantum coherence under relativistic conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12370v1-abstract-full').style.display = 'none'; document.getElementById('2408.12370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08790">arXiv:2406.08790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08790">pdf</a>, <a href="https://arxiv.org/ps/2406.08790">ps</a>, <a href="https://arxiv.org/format/2406.08790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct generation of multi-photon hyperentanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+P">Peng Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ying%2C+J">Jia-Wei Ying</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+M">Meng-Ying Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+S">Shu-Ting Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yun-Xi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">An-Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08790v1-abstract-short" style="display: inline;"> Multi-photon hyperentangement is of fundamental importance in optical quantum information processing. Existing theory and experiment producing multi-photon hyperentangled states have until now relied on the outcome post-selection, a procedure where only the measurement results corresponding to the desired state are considered. Such approach severely limits the usefulness of the resulting hyperenta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08790v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08790v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08790v1-abstract-full" style="display: none;"> Multi-photon hyperentangement is of fundamental importance in optical quantum information processing. Existing theory and experiment producing multi-photon hyperentangled states have until now relied on the outcome post-selection, a procedure where only the measurement results corresponding to the desired state are considered. Such approach severely limits the usefulness of the resulting hyperentangled states. We present the protocols of direct production of three- and four-photon hyperentanglement and extend the approach to an arbitrary number of photons through a straightforward cascade of spontaneous parametric down-conversion (SPDC) sources. The generated multi-photon hyperentangled states are encoded in polarization-spatial modes and polarization-time bin degrees of freedom, respectively. Numerical calculation shows that if the average photon number $渭$ is set to 1, the down conversion efficiency is $7.6*10^{-6}$ and the repetition frequency of the laser is $10^9$ Hz, the number of the generation of three-photon and four-photon hyperentanglement after cascading can reach about $5.78*10^{-2}$ and $4.44*10^{-7}$ pairs per second, respectively. By eliminating the constraints of outcome post-selection, our protocols may represent important progresses for multi-photon hyperentangement generation and providing a pivotal role in future multi-party and high-capacity communication networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08790v1-abstract-full').style.display = 'none'; document.getElementById('2406.08790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16970">arXiv:2405.16970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16970">pdf</a>, <a href="https://arxiv.org/ps/2405.16970">ps</a>, <a href="https://arxiv.org/format/2405.16970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Memory-assisted measurement-device-independent quantum secret sharing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+S">Shu-Ting Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xi-Yun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">An-Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16970v1-abstract-short" style="display: inline;"> Measurement-device-independent quantum secret sharing (MDI-QSS) can eliminate all the security loopholes associated with imperfect measurement devices and greatly enhance QS&#39;s security under practical experimental condition. MDI-QSS requires each communication user to send single photon to the measurement party for the coincident measurement. However, the unsynchronization of the transmitted photo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16970v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16970v1-abstract-full" style="display: none;"> Measurement-device-independent quantum secret sharing (MDI-QSS) can eliminate all the security loopholes associated with imperfect measurement devices and greatly enhance QS&#39;s security under practical experimental condition. MDI-QSS requires each communication user to send single photon to the measurement party for the coincident measurement. However, the unsynchronization of the transmitted photons greatly limits MDI-QSS&#39;s practical performance.In the paper, we propose a high-efficient quantum memory (QM)-assisted MDI-QSS protocol, which employs the QM-assisted synchronization of three heralded single-photon sources to efficiently generate three simultaneous single-photon states. The QM constructed with all-optical, polarization-insensitive storage loop has superior performance in terms of bandwidth, storage efficiency, and noise resistance, and is feasible under current experiment conditions. Combining with the decoy-state method, we perform the numerical simulation of the secure key rate in the symmetric model without considering the finite-size effect. The simulation results show that our QM-assisted MDI-QSS protocol exhibit largely improved secure key rate and maximal photon transmission distance compared with all existing MDI-QSS protocols without QM. Our protocol provides a promising way for implementing the high-efficient long-distance MDI-QSS in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16970v1-abstract-full').style.display = 'none'; document.getElementById('2405.16970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13475">arXiv:2404.13475</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13475">pdf</a>, <a href="https://arxiv.org/format/2404.13475">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> PristiQ: A Co-Design Framework for Preserving Data Security of Quantum Learning in the Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhepeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yi Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Koirala%2C+N">Nirajan Koirala</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Basu%2C+K">Kanad Basu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jung%2C+T">Taeho Jung</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+C">Cheng-Chang Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+W">Weiwen Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13475v1-abstract-short" style="display: inline;"> Benefiting from cloud computing, today&#39;s early-stage quantum computers can be remotely accessed via the cloud services, known as Quantum-as-a-Service (QaaS). However, it poses a high risk of data leakage in quantum machine learning (QML). To run a QML model with QaaS, users need to locally compile their quantum circuits including the subcircuit of data encoding first and then send the compiled cir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13475v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13475v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13475v1-abstract-full" style="display: none;"> Benefiting from cloud computing, today&#39;s early-stage quantum computers can be remotely accessed via the cloud services, known as Quantum-as-a-Service (QaaS). However, it poses a high risk of data leakage in quantum machine learning (QML). To run a QML model with QaaS, users need to locally compile their quantum circuits including the subcircuit of data encoding first and then send the compiled circuit to the QaaS provider for execution. If the QaaS provider is untrustworthy, the subcircuit to encode the raw data can be easily stolen. Therefore, we propose a co-design framework for preserving the data security of QML with the QaaS paradigm, namely PristiQ. By introducing an encryption subcircuit with extra secure qubits associated with a user-defined security key, the security of data can be greatly enhanced. And an automatic search algorithm is proposed to optimize the model to maintain its performance on the encrypted quantum data. Experimental results on simulation and the actual IBM quantum computer both prove the ability of PristiQ to provide high security for the quantum data while maintaining the model performance in QML. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13475v1-abstract-full').style.display = 'none'; document.getElementById('2404.13475v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10137">arXiv:2403.10137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.10137">pdf</a>, <a href="https://arxiv.org/ps/2403.10137">ps</a>, <a href="https://arxiv.org/format/2403.10137">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.042403">10.1103/PhysRevA.110.042403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Device-independent quantum secret sharing with noise preprocessing and postselection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+S">Shu-Ting Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xi-Yun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">An-Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10137v2-abstract-short" style="display: inline;"> Device-independent (DI) quantum secret sharing (QSS) can relax the security assumptions about the devices&#39; internal workings and provide QSS the highest level of security in theory. The original DI QSS protocol proved its correctness and completeness under a causal independence assumption regarding measurement devices. However, there has been a lack of DI QSS&#39;s performance characterization in prac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10137v2-abstract-full').style.display = 'inline'; document.getElementById('2403.10137v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10137v2-abstract-full" style="display: none;"> Device-independent (DI) quantum secret sharing (QSS) can relax the security assumptions about the devices&#39; internal workings and provide QSS the highest level of security in theory. The original DI QSS protocol proved its correctness and completeness under a causal independence assumption regarding measurement devices. However, there has been a lack of DI QSS&#39;s performance characterization in practical communication situations, which impedes its experimental demonstration and application in the future. Here, we propose a three-partite DI QSS protocol with noise preprocessing and postselection strategies and develop the numerical methods to implement its performance characterization in practical communication situations. The adoption of the noise preprocessing and postselection can reduce DI QSS&#39;s global detection efficiency threshold from 96.32% to 94.30% and increase the noise threshold from 7.148% to 8.072%. Our DI QSS protocol has two advantages. First, it is a DI QSS protocol with performance characterization in practical communication situations. Second, the adoption of noise preprocessing and postselection can effectively relax its experimental requirement and enhance the noise resistance. Our DI QSS protocol has potential for future experimental demonstration and application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10137v2-abstract-full').style.display = 'none'; document.getElementById('2403.10137v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02709">arXiv:2402.02709</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02709">pdf</a>, <a href="https://arxiv.org/format/2402.02709">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Passive decoy-state quantum secure direct communication with heralded single-photon source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ying%2C+J">Jia-Wei Ying</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+P">Peng Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xi-Yun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+S">Shu-Ting Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">An-Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02709v2-abstract-short" style="display: inline;"> Quantum secure direct communications (QSDC) can directly transmit secret messages through a quantum channel without keys. The imperfect photon source is a major obstacle for QSDC&#39;s practical implementation. The unwanted vacuum state and multiphoton components emitted from imperfect photon source largely reduce QSDC&#39;s secrecy message capacity and even threaten its security. In the paper, we propose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02709v2-abstract-full').style.display = 'inline'; document.getElementById('2402.02709v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02709v2-abstract-full" style="display: none;"> Quantum secure direct communications (QSDC) can directly transmit secret messages through a quantum channel without keys. The imperfect photon source is a major obstacle for QSDC&#39;s practical implementation. The unwanted vacuum state and multiphoton components emitted from imperfect photon source largely reduce QSDC&#39;s secrecy message capacity and even threaten its security. In the paper, we propose a high-efficient passive decoy-state QSDC protocol with the heralded single-photon source (HSPS). We adopt a spontaneous parametric down-conversion source to emit entangled photon pairs in two spatial modes. By detecting the photons in one of the two correlated spatial modes, we can infer the photon-number distribution of the other spatial mode. Meanwhile, our protocol allows a simple passive preparation of the signal states and decoy state. The HSPS can effectively reduce the probability of vacuum state and increase QSDC&#39;s secrecy message capacity. Meanwhile, the passive decoy-state method can simplify the experimental operations and enhance QSDC&#39;s robustness against the third-party side-channel attacks. Under the communication distance of 10 km, the secrecy message capacity of our QSDC protocol can achieve 81.85 times with average photon number of 0.1 and 12.79 times with average photon number of 0.01 of that in the original single-photon-based QSDC protocol without the HSPS. Our QSDC protocol has longer maximal communication distance about 17.975 km with average photon number of 0.01. Our work serves as a major step toward the further development of practical passive decoy-state QSDC systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02709v2-abstract-full').style.display = 'none'; document.getElementById('2402.02709v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Appl. 22,024040 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13974">arXiv:2311.13974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13974">pdf</a>, <a href="https://arxiv.org/format/2311.13974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+D">Dong Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+G">Gui-Lu Long</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+L">Liuguo Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ruan%2C+D">Dong Ruan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ng%2C+S+X">Soon Xin Ng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+J">Jianhua Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hanzo%2C+L">Lajos Hanzo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13974v1-abstract-short" style="display: inline;"> Communication security has to evolve to a higher plane in the face of the threat from the massive computing power of the emerging quantum computers. Quantum secure direct communication (QSDC) constitutes a promising branch of quantum communication, which is provably secure and overcomes the threat of quantum computing, whilst conveying secret messages directly via the quantum channel. In this surv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13974v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13974v1-abstract-full" style="display: none;"> Communication security has to evolve to a higher plane in the face of the threat from the massive computing power of the emerging quantum computers. Quantum secure direct communication (QSDC) constitutes a promising branch of quantum communication, which is provably secure and overcomes the threat of quantum computing, whilst conveying secret messages directly via the quantum channel. In this survey, we highlight the motivation and the status of QSDC research with special emphasis on its theoretical basis and experimental verification. We will detail the associated point-to-point communication protocols and show how information is protected and transmitted. Finally, we discuss the open challenges as well as the future trends of QSDC networks, emphasizing again that QSDC is not a pure quantum key distribution (QKD) protocol, but a fully-fledged secure communication scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13974v1-abstract-full').style.display = 'none'; document.getElementById('2311.13974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10250">arXiv:2311.10250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.10250">pdf</a>, <a href="https://arxiv.org/format/2311.10250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient multipartite entanglement purification with non-identical states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+H">Hao Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xi-Yun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10250v1-abstract-short" style="display: inline;"> We present an efficient and general multipartite entanglement purification protocol (MEPP) for N-photon systems in Greenberger-Horne-Zeilinger (GHZ) states with non-identical input states. As a branch of entanglement purification, besides the cases of successful purification, the recurrence MEPP actually has the reusable discarded items which are usually regarded as a failure. Our protocol contain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10250v1-abstract-full').style.display = 'inline'; document.getElementById('2311.10250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10250v1-abstract-full" style="display: none;"> We present an efficient and general multipartite entanglement purification protocol (MEPP) for N-photon systems in Greenberger-Horne-Zeilinger (GHZ) states with non-identical input states. As a branch of entanglement purification, besides the cases of successful purification, the recurrence MEPP actually has the reusable discarded items which are usually regarded as a failure. Our protocol contains two parts for bit-flip error correction. The first one is the conventional MEPP, corresponding successful cases. The second one includes two efficient approaches, recycling purification with entanglement link and direct residual entanglement purification, that can utilize discarded items. We also make a comparison between two approaches. Which method to use depends on initial input states, and in most cases the approach of direct residual purification is optimal for it not only may obtain a higher fidelity entangled state but also it does not require additional sophisticated links. In addition, for phase-flip errors, the discarded items still have available residual entanglement in the case of different input states. With these approaches, this MEPP has a higher efficiency than all previous MEPPs and it may have potential applications in the future long-distance quantum communications and networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10250v1-abstract-full').style.display = 'none'; document.getElementById('2311.10250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages,12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07150">arXiv:2308.07150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07150">pdf</a>, <a href="https://arxiv.org/ps/2308.07150">ps</a>, <a href="https://arxiv.org/format/2308.07150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Relation between quantum illumination and quantum parameter estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+W">Wen-Yi Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+M">Ming-Ming Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07150v1-abstract-short" style="display: inline;"> Quantum illumination (QI) leverages entangled lights to detect the potential presence of low-reflective objects in a region surrounded by a thermal bath. Homologously, quantum parameter estimation utilizes non-classical probes to accurately estimate the value of the unknown parameter(s) of interest in a system. There appears to be a certain connection between these two areas. However, they are com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07150v1-abstract-full').style.display = 'inline'; document.getElementById('2308.07150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07150v1-abstract-full" style="display: none;"> Quantum illumination (QI) leverages entangled lights to detect the potential presence of low-reflective objects in a region surrounded by a thermal bath. Homologously, quantum parameter estimation utilizes non-classical probes to accurately estimate the value of the unknown parameter(s) of interest in a system. There appears to be a certain connection between these two areas. However, they are commonly studied using different figures of merit: signal-to-noise ratio and quantum Fisher information. In this study, we prove that the two measures are equivalent to QI in the limit of zero object reflectivity. We further demonstrate this equivalence by investigating QI protocols employing non-Gaussian states, which are obtained by de-Gaussifying the two-mode squeezed vacuum state with photon addition and photon subtraction. However, our analysis leads to a no-go result which demonstrates that de-Gaussification operations do not offer an advantage compared to the null case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07150v1-abstract-full').style.display = 'none'; document.getElementById('2308.07150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.12679">arXiv:2304.12679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.12679">pdf</a>, <a href="https://arxiv.org/format/2304.12679">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-022-2065-x">10.1007/s11433-022-2065-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advances in quantum entanglement purification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+P">Peishun Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yubo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.12679v1-abstract-short" style="display: inline;"> Since its discovery, the quantum entanglement becomes a promising resource in quantum communication and computation. However, the entanglement is fragile due to the presence of noise in quantum channels. Entanglement purification is a powerful tool to distill high quality entangled states from the low quality entangled states. In this review, we present an overview of entanglement purification, in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12679v1-abstract-full').style.display = 'inline'; document.getElementById('2304.12679v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.12679v1-abstract-full" style="display: none;"> Since its discovery, the quantum entanglement becomes a promising resource in quantum communication and computation. However, the entanglement is fragile due to the presence of noise in quantum channels. Entanglement purification is a powerful tool to distill high quality entangled states from the low quality entangled states. In this review, we present an overview of entanglement purification, including the basic entanglement purification theory, the entanglement purification protocols (EPPs) with linear optics, EPPs with cross-Kerr nonlinearities, hyperentanglement EPPs, deterministic EPPs, and measurement-based EPPs. We also review experimental progresses of EPPs in linear optics. Finally, we give the discussion on potential outlook for the future development of EPPs. This review may pave the way for practical implementations in future long-distance quantum communication and quantum network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12679v1-abstract-full').style.display = 'none'; document.getElementById('2304.12679v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science China Physics, Mechanics &amp; Astronomy, May 2023 Vol. 66 No. 5: 250301 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15858">arXiv:2303.15858</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15858">pdf</a>, <a href="https://arxiv.org/ps/2303.15858">ps</a>, <a href="https://arxiv.org/format/2303.15858">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.014036">10.1103/PhysRevApplied.19.014036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Device-independent quantum secure direct communication with single photon sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+B">Bao-Wen Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15858v1-abstract-short" style="display: inline;"> Quantum secure direct communication (QSDC) can directly transmit secrete messages through quantum channel. Device-independent (DI) QSDC can guarantee the communication security relying only on the observation of the Bell inequality violation, but not on any detailed description or trust of the inner workings of users&#39; devices. In the paper, we propose a DI-QSDC protocol with practical high-efficie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15858v1-abstract-full').style.display = 'inline'; document.getElementById('2303.15858v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15858v1-abstract-full" style="display: none;"> Quantum secure direct communication (QSDC) can directly transmit secrete messages through quantum channel. Device-independent (DI) QSDC can guarantee the communication security relying only on the observation of the Bell inequality violation, but not on any detailed description or trust of the inner workings of users&#39; devices. In the paper, we propose a DI-QSDC protocol with practical high-efficient single photon sources. The communication parties construct the entanglement channel from single photons by adopting the heralded architecture, which makes the message leakage rate independent of the photon transmission loss. The secure communication distance and the practical communication efficiency of the current DI-QSDC protocol are about 6 times and 600 times of those in the original DI-QSDC protocol. Combining with the entanglement purification, the parties can construct the nearly perfect entanglement channel and completely eliminate the message leakage. This DI-QSDC protocol may have important application in future quantum communication field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15858v1-abstract-full').style.display = 'none'; document.getElementById('2303.15858v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Applied 19, 014036 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08166">arXiv:2301.08166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08166">pdf</a>, <a href="https://arxiv.org/ps/2301.08166">ps</a>, <a href="https://arxiv.org/format/2301.08166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11128-022-03807-z">10.1007/s11128-022-03807-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Even- and odd-orthogonality properties of the Wigner D-matrix and their metrological applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Cui-Fang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08166v1-abstract-short" style="display: inline;"> The Wigner D-matrix is essential in the course of angular momentum techniques. We here derive the new even- and odd-orthogonality properties of the Wigner D-matrix which was yet to be demonstrated in textbooks and also apply them to identifying optimal measurements for linear phase estimation based on two-mode optical interferometry with two specific quantum states. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08166v1-abstract-full" style="display: none;"> The Wigner D-matrix is essential in the course of angular momentum techniques. We here derive the new even- and odd-orthogonality properties of the Wigner D-matrix which was yet to be demonstrated in textbooks and also apply them to identifying optimal measurements for linear phase estimation based on two-mode optical interferometry with two specific quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08166v1-abstract-full').style.display = 'none'; document.getElementById('2301.08166v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03619">arXiv:2202.03619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03619">pdf</a>, <a href="https://arxiv.org/format/2202.03619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/MNET.108.2100375">10.1109/MNET.108.2100375 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Evolutionary Pathway for the Quantum Internet Relying on Secure Classical Repeaters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+G">Gui-Lu Long</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+D">Dong Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+Q">Qikun Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+J">Jianhua Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hanzo%2C+L">Lajos Hanzo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03619v1-abstract-short" style="display: inline;"> Until quantum repeaters become mature, quantum networks remain restricted either to limited areas of directly connected nodes or to nodes connected to a common node. We circumvent this limitation by conceiving quantum networks using secure classical repeaters combined with the quantum secure direct communication (QSDC) principle, which is a compelling form of quantum communication that directly tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03619v1-abstract-full').style.display = 'inline'; document.getElementById('2202.03619v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03619v1-abstract-full" style="display: none;"> Until quantum repeaters become mature, quantum networks remain restricted either to limited areas of directly connected nodes or to nodes connected to a common node. We circumvent this limitation by conceiving quantum networks using secure classical repeaters combined with the quantum secure direct communication (QSDC) principle, which is a compelling form of quantum communication that directly transmits information over quantum channel. The final component of this promising solution is our classical quantum-resistant algorithm. Explicitly, in these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes, where it is read out and then transmitted to the next node. At the repeaters, the information is protected by our quantum-resistant algorithm, which is secure even in the face of a quantum computer. Hence, our solution offers secure end-to-end communication across the entire network, since it is capable of both eavesdropping detection and prevention in the emerging quantum internet. It is compatible with operational networks, and will enjoy the compelling services of the popular Internet, including authentication. Hence, it smoothens the transition from the classical Internet to the Quantum Internet (Qinternet) by following a gradual evolutionary upgrade. It will act as an alternative network in quantum computing networks in the future. We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network constructed by a serial concatenation of an optical fiber and free-space communication link. In conclusion, secure repeater networks may indeed be constructed using existing technology and continue to support a seamless evolutionary pathway to the future Qinternet of quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03619v1-abstract-full').style.display = 'none'; document.getElementById('2202.03619v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Network, 2022, 36(3): 82-88 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01375">arXiv:2111.01375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01375">pdf</a>, <a href="https://arxiv.org/ps/2111.01375">ps</a>, <a href="https://arxiv.org/format/2111.01375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.032609">10.1103/PhysRevA.105.032609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supersensitivity of Kerr phase estimation with two-mode squeezed vacuum states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yun-Feng Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01375v2-abstract-short" style="display: inline;"> We analytically investigate the sensitivity of Kerr nonlinear phase estimation in a Mach-Zehnder interferometer with two-mode squeezed vacuum states. We find that such a metrological scheme could access a sensitivity scaling over the Boixo \emph{et al.}&#39;s generalized sensitivity limit [S. Boixo \emph{et al}., Phys. Rev. Lett. \textbf{98}, 090401 (2007)], which is saturable with celebrated NOON sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01375v2-abstract-full').style.display = 'inline'; document.getElementById('2111.01375v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01375v2-abstract-full" style="display: none;"> We analytically investigate the sensitivity of Kerr nonlinear phase estimation in a Mach-Zehnder interferometer with two-mode squeezed vacuum states. We find that such a metrological scheme could access a sensitivity scaling over the Boixo \emph{et al.}&#39;s generalized sensitivity limit [S. Boixo \emph{et al}., Phys. Rev. Lett. \textbf{98}, 090401 (2007)], which is saturable with celebrated NOON states. We also show that parity detection is a quasioptimal measurement which can nearly saturate the quantum Cram茅r-Rao bound in the aforementioned situation. Moreover, we further clarify the supersensitive performance observed in the above scheme is due to the restriction of Boixo \emph{et al}.&#39;s generalized sensitivity limit (BGSL) to probe states with fixed photon numbers. To conquer this problem, we generalize the BGSL into the case with probe states of a fluctuating number of photons, to which our scheme belongs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01375v2-abstract-full').style.display = 'none'; document.getElementById('2111.01375v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 105, 032609 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04970">arXiv:2110.04970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.04970">pdf</a>, <a href="https://arxiv.org/format/2110.04970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2021.12.018">10.1016/j.scib.2021.12.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental one-step deterministic entanglement purification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+C">Cen-Xiao Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu1%2C+X">Xiao-Min Hu1</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+B">Bi-Heng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04970v1-abstract-short" style="display: inline;"> Entanglement purification is to distill high-quality entangled states from low-quality entangled states. It is a key step in quantum repeaters, determines the efficiency and communication rates of quantum communication protocols, and is hence of central importance in long-distance communications and quantum networks. In this work, we report the first experimental demonstration of deterministic ent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04970v1-abstract-full').style.display = 'inline'; document.getElementById('2110.04970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04970v1-abstract-full" style="display: none;"> Entanglement purification is to distill high-quality entangled states from low-quality entangled states. It is a key step in quantum repeaters, determines the efficiency and communication rates of quantum communication protocols, and is hence of central importance in long-distance communications and quantum networks. In this work, we report the first experimental demonstration of deterministic entanglement purification using polarization and spatial mode hyperentanglement. After purification, the fidelity of polarization entanglement arises from $0.268\pm0.002$ to $0.989\pm0.001$. Assisted with robust spatial mode entanglement, the total purification efficiency can be estimated as $10^{9}$ times that of the entanglement purification protocols using two copies of entangled states when one uses the spontaneous parametric down-conversion sources. Our work may have the potential to be implemented as a part of full repeater protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04970v1-abstract-full').style.display = 'none'; document.getElementById('2110.04970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Bull. 67, 593 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09006">arXiv:2101.09006</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09006">pdf</a>, <a href="https://arxiv.org/ps/2101.09006">ps</a>, <a href="https://arxiv.org/format/2101.09006">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-efficient two-step entanglement purification using hyperentanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09006v2-abstract-short" style="display: inline;"> Entanglement purification is a powerful method to distill the high-quality entanglement from low-quality entanglement. In the paper, we propose an efficient two-step entanglement purification protocol (EPP) for the polarization entanglement by using only one copy of two-photon hyperentangled state in polarization, spatial-mode, and time-bin DOFs. We suppose that the entanglement in all DOFs suffer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09006v2-abstract-full').style.display = 'inline'; document.getElementById('2101.09006v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09006v2-abstract-full" style="display: none;"> Entanglement purification is a powerful method to distill the high-quality entanglement from low-quality entanglement. In the paper, we propose an efficient two-step entanglement purification protocol (EPP) for the polarization entanglement by using only one copy of two-photon hyperentangled state in polarization, spatial-mode, and time-bin DOFs. We suppose that the entanglement in all DOFs suffer from channel noise. In two purification steps, the parties can reduce the bit-flip error and phase-flip error in polarization DOF by consuming the imperfect entanglement in the spatial-mode and time-bin DOFs, respectively. This EPP effectively reduces the consumption of entanglement pairs and the experimental difficulty. Moreover, if consider the practical photon transmission and detector efficiencies, our EPP has much higher purification efficiency than previous recurrence EPPs. Meanwhile, when one or two purification steps fail, the distilled mixed state may have residual entanglement. Taking use of the residual entanglement, the parties may still distill higher-quality polarization entanglement. Even if not, they can still reuse the residual entanglement in the next purification round. The existence of residual entanglement benefits for increasing the yield of the EPP. All the above advantages make our EPP have potential application in future quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09006v2-abstract-full').style.display = 'none'; document.getElementById('2101.09006v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08920">arXiv:2101.08920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08920">pdf</a>, <a href="https://arxiv.org/ps/2101.08920">ps</a>, <a href="https://arxiv.org/format/2101.08920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High efficient multipartite entanglement purification using hyperentanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+P">Pei-Shun Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08920v1-abstract-short" style="display: inline;"> Multipartite entanglement plays an important role in controlled quantum teleportation, quantum secret sharing, quantum metrology and some other important quantum information branches. However, the maximally multipartite entangled state will degrade into the mixed state because of the noise. We present an efficient multipartite entanglement purification protocol (EPP) which can distill the high qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08920v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08920v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08920v1-abstract-full" style="display: none;"> Multipartite entanglement plays an important role in controlled quantum teleportation, quantum secret sharing, quantum metrology and some other important quantum information branches. However, the maximally multipartite entangled state will degrade into the mixed state because of the noise. We present an efficient multipartite entanglement purification protocol (EPP) which can distill the high quality entangled states from low quality entangled states for N-photon systems in a Greenberger-Horne-Zeilinger (GHZ) state in only linear optics. After performing the protocol, the spatial-mode entanglement is used to purify the polarization entanglement and one pair of high quality polarization entangled state will be obtained. This EPP has several advantages. Firstly, with the same purification success probability, this EPP only requires one pair of multipartite GHZ state, while existing EPPs usually require two pairs of multipartite GHZ state. Secondly, if consider the practical transmission and detector efficiency, this EPP may be extremely useful for the ratio of purification efficiency is increased rapidly with both the number of photons and the transmission distance. Thirdly, this protocol requires linear optics and does not add additional measurement operations, so that it is feasible for experiment. All these advantages will make this protocol have potential application for future quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08920v1-abstract-full').style.display = 'none'; document.getElementById('2101.08920v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.07441">arXiv:2101.07441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.07441">pdf</a>, <a href="https://arxiv.org/format/2101.07441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.010503">10.1103/PhysRevLett.126.010503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-distance entanglement purification for quantum communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+X">Xiao-Min Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+C">Cen-Xiao Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+B">Bi-Heng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Y">Yu Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xing%2C+W">Wen-Bo Xing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y">Yun-Feng Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.07441v2-abstract-short" style="display: inline;"> High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a key role in quantum repeaters. The previous significant entanglement purification experiments require two pairs of low-quality entangled states and wer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07441v2-abstract-full').style.display = 'inline'; document.getElementById('2101.07441v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.07441v2-abstract-full" style="display: none;"> High-quality long-distance entanglement is essential for both quantum communication and scalable quantum networks. Entanglement purification is to distill high-quality entanglement from low-quality entanglement in a noisy environment and it plays a key role in quantum repeaters. The previous significant entanglement purification experiments require two pairs of low-quality entangled states and were demonstrated in table-top. Here we propose and report a high-efficiency and long-distance entanglement purification using only one pair of hyperentangled states. We also demonstrate its practical application in entanglement-based quantum key distribution (QKD). One pair of polarization spatial-mode hyperentanglement was distributed over 11 km multicore fiber (noisy channel). After purification, the fidelity of polarization entanglement arises from 0.771 to 0.887 and the effective key rate in entanglement-based QKD increases from 0 to 0.332. The values of Clauser-Horne-Shimony-Holt (CHSH) inequality of polarization entanglement arises from 1.829 to 2.128. Moreover, by using one pair of hyperentanglement and deterministic controlled-NOT gate, the total purification efficiency can be estimated as 6.6x10^3 times than the experiment using two pairs of entangled states with spontaneous parametric down-conversion (SPDC) sources. Our results offer the potential to be implemented as part of a full quantum repeater and large scale quantum network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07441v2-abstract-full').style.display = 'none'; document.getElementById('2101.07441v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The typos in the title and abstract are modified</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 010503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.09555">arXiv:2009.09555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.09555">pdf</a>, <a href="https://arxiv.org/ps/2009.09555">ps</a>, <a href="https://arxiv.org/format/2009.09555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-020-1005-1">10.1007/s11467-020-1005-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Y">Yu-Fei Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.09555v1-abstract-short" style="display: inline;"> Measurement-device-independent quantum key distribution (MDI-QKD) provides us a powerful approach to resist all attacks at detection side. Besides the unconditional security, people also seek for high key generation rate, but MDI-QKD has relatively low key generation rate. In this paper, we provide an efficient approach to increase the key generation rate of MDI-QKD by adopting multiple degrees of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09555v1-abstract-full').style.display = 'inline'; document.getElementById('2009.09555v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.09555v1-abstract-full" style="display: none;"> Measurement-device-independent quantum key distribution (MDI-QKD) provides us a powerful approach to resist all attacks at detection side. Besides the unconditional security, people also seek for high key generation rate, but MDI-QKD has relatively low key generation rate. In this paper, we provide an efficient approach to increase the key generation rate of MDI-QKD by adopting multiple degrees of freedom (DOFs) of single photons to generate keys. Compared with other high-dimension MDI-QKD protocols encoding in one DOF, our protocol is more flexible, for our protocol generating keys in independent subsystems and the detection failure or error in a DOF not affecting the information encoding in other DOFs. Based on above features, our MDI-QKD protocol may have potential application in future quantum communication field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09555v1-abstract-full').style.display = 'none'; document.getElementById('2009.09555v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, accepted in Front. Phys</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11498">arXiv:2006.11498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11498">pdf</a>, <a href="https://arxiv.org/ps/2006.11498">ps</a>, <a href="https://arxiv.org/format/2006.11498">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11128-020-02867-3">10.1007/s11128-020-02867-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ancilla-assisted frequency estimation under phase covariant noises with Greenberger-Horne-Zeilinger states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+R">Rui-Jie Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11498v1-abstract-short" style="display: inline;"> It has been demonstrated that the optimal sensitivity achievable with Greenberger-Horne-Zeilinger states is the same as that with uncorrelated probes in the frequency estimation in the presence of uncorrelated Markovian dephasing [S. F. Huelga, et al., Phys. Rev. Lett. 79, 3865 (1997)]. Here, we extend this issue by examining the optimal frequency sensitivities achievable by the use of ancilla-ass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11498v1-abstract-full').style.display = 'inline'; document.getElementById('2006.11498v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11498v1-abstract-full" style="display: none;"> It has been demonstrated that the optimal sensitivity achievable with Greenberger-Horne-Zeilinger states is the same as that with uncorrelated probes in the frequency estimation in the presence of uncorrelated Markovian dephasing [S. F. Huelga, et al., Phys. Rev. Lett. 79, 3865 (1997)]. Here, we extend this issue by examining the optimal frequency sensitivities achievable by the use of ancilla-assisted strategy, which has been proposed recently for robust phase estimation. We present the ultimate frequency sensitivities bounded by the quantum Fisher information for a general case in the presence of Markovian covariant phase noises, and the optimal measurement observables that can saturate the theoretical sensitivity bounds. We also demonstrate the effectiveness of the ancilla-assisted strategy for preserving frequency sensitivities suffering from specific physically ground noises. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11498v1-abstract-full').style.display = 'none'; document.getElementById('2006.11498v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 figures, Submitted to Quantum Information Processing. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Inf Process 19, 359 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.05797">arXiv:2001.05797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.05797">pdf</a>, <a href="https://arxiv.org/ps/2001.05797">ps</a>, <a href="https://arxiv.org/format/2001.05797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.042611">10.1103/PhysRevA.103.042611 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double-port measurements for robust quantum optical metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.05797v2-abstract-short" style="display: inline;"> It has been proposed and demonstrated that path-entangled Fock states (PEFSs) are robust against photon loss over NOON states [S. D. Huver \emph{et al.}, Phys. Rev. A \textbf{78}, 063828 (2008)]. However, the demonstration was based on a measurement scheme which was yet to be implemented in experiments. In this work, we quantitatively illustrate the advantage of PEFSs over NOON states in the prese&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05797v2-abstract-full').style.display = 'inline'; document.getElementById('2001.05797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.05797v2-abstract-full" style="display: none;"> It has been proposed and demonstrated that path-entangled Fock states (PEFSs) are robust against photon loss over NOON states [S. D. Huver \emph{et al.}, Phys. Rev. A \textbf{78}, 063828 (2008)]. However, the demonstration was based on a measurement scheme which was yet to be implemented in experiments. In this work, we quantitatively illustrate the advantage of PEFSs over NOON states in the presence of photon losses by analytically calculating the quantum Fisher information. To realize such an advantage in practice, we then investigate the achievable sensitivities by employing three types of feasible measurements: parity, photon-number-resolving, and homodyne measurements. We here apply a double-port measurement strategy where the photons at each output port of the interferometer are simultaneously detected with the aforementioned types of measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.05797v2-abstract-full').style.display = 'none'; document.getElementById('2001.05797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 042611 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00302">arXiv:2001.00302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.00302">pdf</a>, <a href="https://arxiv.org/ps/2001.00302">ps</a>, <a href="https://arxiv.org/format/2001.00302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-enhanced interferometry with asymmetric beam splitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+W">Wei Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+F">Fan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00302v1-abstract-short" style="display: inline;"> In this paper, we investigate the phase sensitivities in two-path optical interferometry with asymmetric beam splitters. Here, we present the optimal conditions for the transmission ratio and the phase of the beam splitter to gain the highest sensitivities for a general class of non-classical states with parity symmetry. Additionally, we address the controversial question of whether the scheme wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00302v1-abstract-full').style.display = 'inline'; document.getElementById('2001.00302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00302v1-abstract-full" style="display: none;"> In this paper, we investigate the phase sensitivities in two-path optical interferometry with asymmetric beam splitters. Here, we present the optimal conditions for the transmission ratio and the phase of the beam splitter to gain the highest sensitivities for a general class of non-classical states with parity symmetry. Additionally, we address the controversial question of whether the scheme with a combination of coherent state and photon-added or photon-subtracted squeezed vacuum state is better or worse than the most celebrated one using a combination of coherent state and squeezed vacuum state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00302v1-abstract-full').style.display = 'none'; document.getElementById('2001.00302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China-Phys. Mech. Astron. 63(6): 260312 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.01271">arXiv:1908.01271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.01271">pdf</a>, <a href="https://arxiv.org/format/1908.01271">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-020-0599-8">10.1038/s41566-020-0599-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surpassing the rate-transmittance linear bound of quantum key distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+X">Xiao-Tian Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+P">Pei Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Hui Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+M">Mi Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+W">Weijie Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+Y">Yan-Lin Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Ying-Jie Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+Y">Yao Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Weijun Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+L">Lixing You</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+M">Ming-Jun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yu-Ao Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+C">Cheng-Zhi Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+X">Xiongfeng Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+T">Teng-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.01271v1-abstract-short" style="display: inline;"> Quantum key distribution (QKD offers a long-term solution to establish information-theoretically secure keys between two distant users. In practice, with a careful characterization of quantum sources and the decoy-state method, measure-device-independent quantum key distribution (MDI-QKD) provides secure key distribution. While short-distance fibre-based QKD has already been available for real-lif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01271v1-abstract-full').style.display = 'inline'; document.getElementById('1908.01271v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.01271v1-abstract-full" style="display: none;"> Quantum key distribution (QKD offers a long-term solution to establish information-theoretically secure keys between two distant users. In practice, with a careful characterization of quantum sources and the decoy-state method, measure-device-independent quantum key distribution (MDI-QKD) provides secure key distribution. While short-distance fibre-based QKD has already been available for real-life implementation, the bottleneck of practical QKD lies on the limited transmission distance. Due to photon losses in transmission, it was believed that the key generation rate is bounded by a linear function of the channel transmittance, $O(畏)$, without a quantum repeater, which puts an upper bound on the maximal secure transmission distance. Interestingly, a new phase-encoding MDI-QKD scheme, named twin-field QKD, has been suggested to beat the linear bound, while another variant, named phase-matching quantum key distribution (PM-QKD), has been proven to have a quadratic key-rate improvement, $O(\sqrt畏)$. In reality, however, the intrinsic optical mode mismatch of independent lasers, accompanied by phase fluctuation and drift, impedes the successful experimental implementation of the new schemes. Here, we solve this problem with the assistance of the laser injection technique and the phase post-compensation method. In the experiment, the key rate surpasses the linear key-rate bound via 302 km and 402 km commercial-fibre channels, achieving a key rate over 4 orders of magnitude higher than the existing results in literature. Furthermore, with a 502 km ultralow-loss fibre, our system yields a secret key rate of 0.118 bps. We expect this new type of QKD schemes to become a new standard for future QKD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01271v1-abstract-full').style.display = 'none'; document.getElementById('1908.01271v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics, vol. 14, p. 422425, (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.01235">arXiv:1907.01235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.01235">pdf</a>, <a href="https://arxiv.org/ps/1907.01235">ps</a>, <a href="https://arxiv.org/format/1907.01235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Device-independent quantum secure direct communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+G">Gui-Lu Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.01235v1-abstract-short" style="display: inline;"> &#34;Device-independent&#34; not only represents a relaxation of the security assumptions about the internal working of the quantum devices, but also can enhance the security of the quantum communication. In the paper, we put forward the first device-independent quantum secure direct communication (DI-QSDC) protocol, where no assumptions are made about the way the devices work or on what quantum system th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01235v1-abstract-full').style.display = 'inline'; document.getElementById('1907.01235v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.01235v1-abstract-full" style="display: none;"> &#34;Device-independent&#34; not only represents a relaxation of the security assumptions about the internal working of the quantum devices, but also can enhance the security of the quantum communication. In the paper, we put forward the first device-independent quantum secure direct communication (DI-QSDC) protocol, where no assumptions are made about the way the devices work or on what quantum system they operate. We show that in the absence of noise, the DI-QSDC protocol is absolutely secure and there is no limitation for the communication distance. However, under practical noisy quantum channel condition, the photon transmission loss and photon state decoherence would reduce the communication quality and threaten its absolute security. For solving the photon transmission loss and decoherence problems, we adopt noiseless linear amplification (NLA) protocol and entanglement purification protocol (EPP) to modify the DI-QSDC protocol. With the help of the NLA and EPP, we can guarantee the absolute security of the DI-QSDC and effectively improve its communication quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01235v1-abstract-full').style.display = 'none'; document.getElementById('1907.01235v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.07228">arXiv:1805.07228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.07228">pdf</a>, <a href="https://arxiv.org/format/1805.07228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement-Device-Independent Quantum Secure Direct Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zeng-Rong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+P">Peng-Hao Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+L">Liu-Guo Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+G">Gui-Lu Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.07228v1-abstract-short" style="display: inline;"> Quantum secure direct communication (QSDC) is the technology to transmit secret information directly through a quantum channel without neither key nor ciphertext. It provides us with a secure communication structure that is fundamentally different from the one that we use today. In this Letter, we report the first measurement-device-independent(MDI) QSDC protocol with sequences of entangled photon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07228v1-abstract-full').style.display = 'inline'; document.getElementById('1805.07228v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.07228v1-abstract-full" style="display: none;"> Quantum secure direct communication (QSDC) is the technology to transmit secret information directly through a quantum channel without neither key nor ciphertext. It provides us with a secure communication structure that is fundamentally different from the one that we use today. In this Letter, we report the first measurement-device-independent(MDI) QSDC protocol with sequences of entangled photon pairs and single photons. It eliminates security loopholes associated with the measurement device. In addition, the MDI technique doubles the communication distance compared to those without using the technique. We also give a protocol with linear optical Bell-basis measurement, where only two of the four Bell-basis states could be measured. When the number of qubit in a sequence reduces to 1, the MDI-QSDC protocol reduces to a deterministic MDI quantum key distribution protocol, which is also presented in the Letter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07228v1-abstract-full').style.display = 'none'; document.getElementById('1805.07228v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.07951">arXiv:1710.07951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.07951">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental long-distance quantum secure direct communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+F">Feng Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yubo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y">Yidong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.07951v1-abstract-short" style="display: inline;"> Quantum secure direct communication (QSDC) is an important quantum communication branch, which realizes the secure information transmission directly without encryption and decryption processes. Recently, two table-top experiments have demonstrated the principle of QSDC. Here, we report the first long-distance QSDC experiment, including the security test, information encoding, fiber transmission an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07951v1-abstract-full').style.display = 'inline'; document.getElementById('1710.07951v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.07951v1-abstract-full" style="display: none;"> Quantum secure direct communication (QSDC) is an important quantum communication branch, which realizes the secure information transmission directly without encryption and decryption processes. Recently, two table-top experiments have demonstrated the principle of QSDC. Here, we report the first long-distance QSDC experiment, including the security test, information encoding, fiber transmission and decoding. After the fiber transmission of 0.5 km, quantum state fidelities of the two polarization entangled Bell states are 91% and 88%, respectively, which are used for information coding. We theoretically analyze the performance of the QSDC system based on current optical communication technologies, showing that QSDC over fiber links of several tens kilometers could be expected. It demonstrates the potential of long-distance QSDC and supports its future applications on quantum communication networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07951v1-abstract-full').style.display = 'none'; document.getElementById('1710.07951v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.09184">arXiv:1609.09184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.09184">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.220501">10.1103/PhysRevLett.118.220501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Secure Direct Communication with Quantum Memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+D">Dong-Sheng Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+B">Bao-Sen Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.09184v2-abstract-short" style="display: inline;"> Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09184v2-abstract-full').style.display = 'inline'; document.getElementById('1609.09184v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.09184v2-abstract-full" style="display: none;"> Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this paper, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We used the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding was verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09184v2-abstract-full').style.display = 'none'; document.getElementById('1609.09184v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 220501 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.08902">arXiv:1609.08902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.08902">pdf</a>, <a href="https://arxiv.org/ps/1609.08902">ps</a>, <a href="https://arxiv.org/format/1609.08902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.052343">10.1103/PhysRevA.98.052343 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Blind quantum computation with noise environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.08902v1-abstract-short" style="display: inline;"> Blind quantum computation (BQC) is a new type of quantum computation model. BQC allows a client (Alice) who does not have enough sophisticated technology and knowledge to perform universal quantum computation and resorts a remote quantum computation server (Bob) to delegate universal quantum computation. During the computation, Bob cannot know Alice&#39;s inputs, algorithm and outputs. In single-serve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08902v1-abstract-full').style.display = 'inline'; document.getElementById('1609.08902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.08902v1-abstract-full" style="display: none;"> Blind quantum computation (BQC) is a new type of quantum computation model. BQC allows a client (Alice) who does not have enough sophisticated technology and knowledge to perform universal quantum computation and resorts a remote quantum computation server (Bob) to delegate universal quantum computation. During the computation, Bob cannot know Alice&#39;s inputs, algorithm and outputs. In single-server BQC protocol, it requires Alice to prepare and distribute single-photon states to Bob. Unfortunately, the distributed single photons will suffer from noise, which not only makes the single-photon state decoherence, but also makes it loss. In this protocol, we describe an anti-noise BQC protocol, which combined the ideas of faithful distribution of single-photon state in collective noise, the feasible quantum nondemolition measurement and Broadbent-Fitzsimons-Kashefi (BFK) protocol. This protocol has several advantages. First, Alice does not require any auxiliary resources, which reduces the client&#39;s economic cost. Second, this protocol not only can protect the state from the collective noise, but also can distill the single photon from photon loss. Third, the noise setup in Bob is based on the linear optics, and it is also feasible in experiment. This anti-noise BQC may show that it is possible to perform the BQC protocol in a noisy environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08902v1-abstract-full').style.display = 'none'; document.getElementById('1609.08902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 052343 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.08234">arXiv:1609.08234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.08234">pdf</a>, <a href="https://arxiv.org/ps/1609.08234">ps</a>, <a href="https://arxiv.org/format/1609.08234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Generation of concatenated Greenberger-Horne-Zeilinger-type entangled coherent state based on linear optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+R">Rui Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+S">Shi-Pu Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xing-Fu Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.08234v1-abstract-short" style="display: inline;"> The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from the previous protocols, each logic is encoded in the coherent state. This protocol is based on the linear optics,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08234v1-abstract-full').style.display = 'inline'; document.getElementById('1609.08234v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.08234v1-abstract-full" style="display: none;"> The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from the previous protocols, each logic is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08234v1-abstract-full').style.display = 'none'; document.getElementById('1609.08234v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.00090">arXiv:1606.00090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.00090">pdf</a>, <a href="https://arxiv.org/ps/1606.00090">ps</a>, <a href="https://arxiv.org/format/1606.00090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The heralded amplification for the single-photon multi-mode W state of the time-bin qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.00090v1-abstract-short" style="display: inline;"> We put forward an effective amplification protocol for protecting the single-photon multi-mode W state of the time-bin qubit. The protocol only relies on linear optical elements, such as the $50:50$ beam splitters, variable beam splitters with the transmission of $t$ and the polarizing beam splitters. Only one pair of the single-photon multi-mode W state and some auxiliary single photons are requi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00090v1-abstract-full').style.display = 'inline'; document.getElementById('1606.00090v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.00090v1-abstract-full" style="display: none;"> We put forward an effective amplification protocol for protecting the single-photon multi-mode W state of the time-bin qubit. The protocol only relies on linear optical elements, such as the $50:50$ beam splitters, variable beam splitters with the transmission of $t$ and the polarizing beam splitters. Only one pair of the single-photon multi-mode W state and some auxiliary single photons are required, and the fidelity of the single-photon multi-mode W state can be increased under $t&lt;\frac{1}{2}$. The encoded time-bin information can be perfectly contained. Our protocol is quite simple and economical, and it can be realized under current experimental condition. Based on above features, it may be useful in current and future quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00090v1-abstract-full').style.display = 'none'; document.getElementById('1606.00090v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1605.09480</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.09481">arXiv:1605.09481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.09481">pdf</a>, <a href="https://arxiv.org/ps/1605.09481">ps</a>, <a href="https://arxiv.org/format/1605.09481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The effective protection protocol of single photon state from photon loss and decoherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.09481v1-abstract-short" style="display: inline;"> We design an effect protocol for protecting the single-photon entanglement from photon loss and decoherence. The protocol only requires some auxiliary single photons and the linear optical elements. By operating the protocol, the photon loss can be effectively decreased and the less entangled single photon state can be recovered to the maximally entangled state with some probability. Moreover, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.09481v1-abstract-full').style.display = 'inline'; document.getElementById('1605.09481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.09481v1-abstract-full" style="display: none;"> We design an effect protocol for protecting the single-photon entanglement from photon loss and decoherence. The protocol only requires some auxiliary single photons and the linear optical elements. By operating the protocol, the photon loss can be effectively decreased and the less entangled single photon state can be recovered to the maximally entangled state with some probability. Moreover, the polarization information encoded in the single photon state can be perfectly contained. The protocol can be realized under current experimental condition. As the single photon entanglement is quite important in quantum communication, this protocol may be useful in current and future quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.09481v1-abstract-full').style.display = 'none'; document.getElementById('1605.09481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,5 figures. arXiv admin note: text overlap with arXiv:1605.09480</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.09480">arXiv:1605.09480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.09480">pdf</a>, <a href="https://arxiv.org/ps/1605.09480">ps</a>, <a href="https://arxiv.org/format/1605.09480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The heralded amplification for the single-photon entanglement of the time-bin qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.09480v1-abstract-short" style="display: inline;"> We put forward an effective amplification protocol for protecting the single-photon entangled state of the time-bin qubit. The protocol only requires one pair of the single-photon entangled state and some auxiliary single photons. With the help of the 50:50 beam splitters, variable beam splitters with the transmission of $t$ and the polarizing beam splitters, we can increase the fidelity of the si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.09480v1-abstract-full').style.display = 'inline'; document.getElementById('1605.09480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.09480v1-abstract-full" style="display: none;"> We put forward an effective amplification protocol for protecting the single-photon entangled state of the time-bin qubit. The protocol only requires one pair of the single-photon entangled state and some auxiliary single photons. With the help of the 50:50 beam splitters, variable beam splitters with the transmission of $t$ and the polarizing beam splitters, we can increase the fidelity of the single-photon entangled state under $t&lt;\frac{1}{2}$. Moreover, the encoded time-bin information can be perfectly contained. Our protocol is quite simple and economical. More importantly, it can be realized under current experimental condition. Based on the above features, our protocol may be useful in current and future quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.09480v1-abstract-full').style.display = 'none'; document.getElementById('1605.09480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 page4, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.04633">arXiv:1605.04633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.04633">pdf</a>, <a href="https://arxiv.org/ps/1605.04633">ps</a>, <a href="https://arxiv.org/format/1605.04633">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Distillation of logic-qubit entanglement assisted with cross-Kerr nonlinearity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.04633v1-abstract-short" style="display: inline;"> Logic-qubit entanglement has attracted much attention in both quantum communication and quantum computation. Here, we present an efficient protocol to distill the logic-qubit entanglement with the help of cross-Kerr nonlinearity. This protocol not only can purify the logic bit-flip error and logic phase-flip error, but also can correct the physical bit-flip error completely. We use cross-Kerr nonl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04633v1-abstract-full').style.display = 'inline'; document.getElementById('1605.04633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.04633v1-abstract-full" style="display: none;"> Logic-qubit entanglement has attracted much attention in both quantum communication and quantum computation. Here, we present an efficient protocol to distill the logic-qubit entanglement with the help of cross-Kerr nonlinearity. This protocol not only can purify the logic bit-flip error and logic phase-flip error, but also can correct the physical bit-flip error completely. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors. Our distillation protocol for logic-qubit entanglement may be useful for the practical applications in quantum information, especially in long-distance quantum communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04633v1-abstract-full').style.display = 'none'; document.getElementById('1605.04633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.02331">arXiv:1602.02331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.02331">pdf</a>, <a href="https://arxiv.org/ps/1602.02331">ps</a>, <a href="https://arxiv.org/format/1602.02331">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Entanglement concentration for concatenated Greenberger-Horne-Zeiglinger state with feasible linear optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qu%2C+C">Chang-Cheng Qu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.02331v1-abstract-short" style="display: inline;"> The concatenated Greenberger-Horne-Zeiglinger (C-GHZ) state which is a new type of logic-qubit entanglement has attracted a lot of attentions recently. We present a feasible entanglement concentration protocol (ECP) for logic-qubit entanglement. This ECP is based on the linear optics, and it does not know the initial coefficients of the less-entangled C-GHZ state. This protocol can be extended to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02331v1-abstract-full').style.display = 'inline'; document.getElementById('1602.02331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.02331v1-abstract-full" style="display: none;"> The concatenated Greenberger-Horne-Zeiglinger (C-GHZ) state which is a new type of logic-qubit entanglement has attracted a lot of attentions recently. We present a feasible entanglement concentration protocol (ECP) for logic-qubit entanglement. This ECP is based on the linear optics, and it does not know the initial coefficients of the less-entangled C-GHZ state. This protocol can be extended to arbitrary C-GHZ state. This protocol may be useful in future quantum information processing tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02331v1-abstract-full').style.display = 'none'; document.getElementById('1602.02331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.05980">arXiv:1601.05980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.05980">pdf</a>, <a href="https://arxiv.org/ps/1601.05980">ps</a>, <a href="https://arxiv.org/format/1601.05980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient entanglement purification for polarization logic Bell state with the photonic Faraday rotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.05980v1-abstract-short" style="display: inline;"> Logic-qubit entanglement is a promising resource in quantum information processing, especially in future large-scale quantum networks. In the paper, we put forward an efficient entanglement purification protocol (EPP) for nonlocal mixed logic entangled states with the bit-flip error in the logic qubits of the logic Bell state, resorting to the photon-atom interaction in low-quality (Q) cavity and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05980v1-abstract-full').style.display = 'inline'; document.getElementById('1601.05980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.05980v1-abstract-full" style="display: none;"> Logic-qubit entanglement is a promising resource in quantum information processing, especially in future large-scale quantum networks. In the paper, we put forward an efficient entanglement purification protocol (EPP) for nonlocal mixed logic entangled states with the bit-flip error in the logic qubits of the logic Bell state, resorting to the photon-atom interaction in low-quality (Q) cavity and atomic state measurement. Different from existing EPPs, this protocol can also purify the logic phase-flip error, and the bit-flip error and the phase-flip error in physic qubit. During the protocol, we only require to measure the atom states, and it is useful for improving the entanglement of photon systems in future large-scale quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05980v1-abstract-full').style.display = 'none'; document.getElementById('1601.05980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 page, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.05302">arXiv:1511.05302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.05302">pdf</a>, <a href="https://arxiv.org/ps/1511.05302">ps</a>, <a href="https://arxiv.org/format/1511.05302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Complete analysis for arbitrary concatenated Greenberger-Horne-Zeilinger state assisted with photonic Faraday rotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+S">Shi-Pu Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xing-Fu Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.05302v1-abstract-short" style="display: inline;"> The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state has great potential application in the future quantum network, for it is robust to the decoherence in a noisy environment. In the paper, we propose a complete C-GHZ state analysis protocol with the help of some auxiliary single atoms trapped in the low-quality cavities. In the protocol, we essentially make the parity check for the photonic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05302v1-abstract-full').style.display = 'inline'; document.getElementById('1511.05302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.05302v1-abstract-full" style="display: none;"> The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state has great potential application in the future quantum network, for it is robust to the decoherence in a noisy environment. In the paper, we propose a complete C-GHZ state analysis protocol with the help of some auxiliary single atoms trapped in the low-quality cavities. In the protocol, we essentially make the parity check for the photonic states based on the photonic Faraday rotation effect, and complete the analysis task combined with the Hadamard operation and single qubit measurement. The success probability of our protocol can reach 100\% in principle, and the number of physical qubit encoded in each logic qubit does not affect the analysis. Our analysis protocol may have its practical application in future long-distance quantum communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05302v1-abstract-full').style.display = 'none'; document.getElementById('1511.05302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.05251">arXiv:1511.05251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.05251">pdf</a>, <a href="https://arxiv.org/ps/1511.05251">ps</a>, <a href="https://arxiv.org/format/1511.05251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Feasible logic Bell-state analysis with linear optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.05251v1-abstract-short" style="display: inline;"> We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05251v1-abstract-full').style.display = 'inline'; document.getElementById('1511.05251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.05251v1-abstract-full" style="display: none;"> We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two $N$-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05251v1-abstract-full').style.display = 'none'; document.getElementById('1511.05251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.02344">arXiv:1511.02344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.02344">pdf</a>, <a href="https://arxiv.org/ps/1511.02344">ps</a>, <a href="https://arxiv.org/format/1511.02344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Purification of Logic-Qubit Entanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.02344v1-abstract-short" style="display: inline;"> Recently, the theoretical work of Fr枚wis and W. D眉r (Phys. Rev. Lett. \textbf{106}, 110402 (2011)) and the experiment of Lu \emph{et al.} (Nat. Photon. \textbf{8}, 364 (2014)) both showed that the logic-qubit entanglement has its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.02344v1-abstract-full').style.display = 'inline'; document.getElementById('1511.02344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.02344v1-abstract-full" style="display: none;"> Recently, the theoretical work of Fr枚wis and W. D眉r (Phys. Rev. Lett. \textbf{106}, 110402 (2011)) and the experiment of Lu \emph{et al.} (Nat. Photon. \textbf{8}, 364 (2014)) both showed that the logic-qubit entanglement has its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the entanglement purification for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error and in physical-qubit entanglement can be completely corrected. The phase-flip error equals to the bit-flip error in logic-qubit entanglement which can also be purified. This EPP may provide some potential applications in future quantum communication and quantum network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.02344v1-abstract-full').style.display = 'none'; document.getElementById('1511.02344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.07195">arXiv:1507.07195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.07195">pdf</a>, <a href="https://arxiv.org/ps/1507.07195">ps</a>, <a href="https://arxiv.org/format/1507.07195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Blind quantum machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.07195v1-abstract-short" style="display: inline;"> Blind quantum machine learning (BQML) enables a classical client with little quantum technology to delegate a remote quantum machine learning to the quantum server in such a approach that the privacy data is preserved. Here we propose the first BQML protocol that the client can classify two-dimensional vectors to different clusters, resorting to a remote small-scale photon quantum computation proc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07195v1-abstract-full').style.display = 'inline'; document.getElementById('1507.07195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.07195v1-abstract-full" style="display: none;"> Blind quantum machine learning (BQML) enables a classical client with little quantum technology to delegate a remote quantum machine learning to the quantum server in such a approach that the privacy data is preserved. Here we propose the first BQML protocol that the client can classify two-dimensional vectors to different clusters, resorting to a remote small-scale photon quantum computation processor. During the protocol, the client is only required to rotate and measure the single qubit. The protocol is secure without leaking any relevant information to the Eve. Any eavesdropper who attempts to intercept and disturb the learning process can be noticed. In principle, this protocol can be used to classify high dimensional vectors and may provide a new viewpoint and application for quantum machine learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.07195v1-abstract-full').style.display = 'none'; document.getElementById('1507.07195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.0744">arXiv:1411.0744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.0744">pdf</a>, <a href="https://arxiv.org/ps/1411.0744">ps</a>, <a href="https://arxiv.org/format/1411.0744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Distilling and protecting the single-photon entangled state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.0744v1-abstract-short" style="display: inline;"> We propose two efficient entanglement concentration protocols (ECPs) for arbitrary less-entangled single-photon entanglement (SPE). Different from all the previous ECPs, these protocols not only can obtain the maximally SPE, but also can protect the single qubit information encoded in the polarization degree of freedom. These protocols only require one pair of less-entangled single-photon entangle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0744v1-abstract-full').style.display = 'inline'; document.getElementById('1411.0744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.0744v1-abstract-full" style="display: none;"> We propose two efficient entanglement concentration protocols (ECPs) for arbitrary less-entangled single-photon entanglement (SPE). Different from all the previous ECPs, these protocols not only can obtain the maximally SPE, but also can protect the single qubit information encoded in the polarization degree of freedom. These protocols only require one pair of less-entangled single-photon entangled state and some auxiliary single photons, which makes them economical. The first ECP is operated with the linear optical elements, which can be realized in current experiment. The second ECP adopts the cross-Kerr nonlinearities. Moreover, the second ECP can be repeated to concentrate the discard states in some conventional ECPs, so that it can get a high success probability. Based on above properties, our ECPs may be useful in current and future quantum communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0744v1-abstract-full').style.display = 'none'; document.getElementById('1411.0744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.0743">arXiv:1411.0743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.0743">pdf</a>, <a href="https://arxiv.org/ps/1411.0743">ps</a>, <a href="https://arxiv.org/format/1411.0743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cascaded noiseless linear amplification for single-photon state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.0743v1-abstract-short" style="display: inline;"> Photon loss is one of the main obstacles in current long-distance quantum communications. The approach of noiseless linear amplification (NLA) is one of the powerful way to distill the single-photon state (SPS) from a mixed state, which comprises both the SPS and vacuum state. However, existing NLA protocol can only perform the amplification for one time. That is the fidelity of the SPS cannot be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0743v1-abstract-full').style.display = 'inline'; document.getElementById('1411.0743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.0743v1-abstract-full" style="display: none;"> Photon loss is one of the main obstacles in current long-distance quantum communications. The approach of noiseless linear amplification (NLA) is one of the powerful way to distill the single-photon state (SPS) from a mixed state, which comprises both the SPS and vacuum state. However, existing NLA protocol can only perform the amplification for one time. That is the fidelity of the SPS cannot be increased anymore. In this paper, We put forward an efficient cascaded NLA protocol for both the SPS and single-photon entanglement (SPE), respectively, with the help of some auxiliary single photons. By repeating this protocol for sever times, the fidelity of the SPS and SPE can reach near 100\%, which may make this protocol is extremely useful to close the detection loophole in quantum key distribution. Moreover, this protocol is based on the linear optics, which makes it feasible in current technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0743v1-abstract-full').style.display = 'none'; document.getElementById('1411.0743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.3473">arXiv:1407.3473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.3473">pdf</a>, <a href="https://arxiv.org/ps/1407.3473">ps</a>, <a href="https://arxiv.org/format/1407.3473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-step complete polarization logic Bell-state analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.3473v1-abstract-short" style="display: inline;"> Logic qubit entanglement, which is also called the concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, is robust in practical noisy environment. In this paper, we will describe an efficient approach to realize the complete polarization Bell-state analysis which is encoded in the logic qubit. We showed that the logic Bell-state can be distinguished in two steps with the help of the parity-check&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3473v1-abstract-full').style.display = 'inline'; document.getElementById('1407.3473v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.3473v1-abstract-full" style="display: none;"> Logic qubit entanglement, which is also called the concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, is robust in practical noisy environment. In this paper, we will describe an efficient approach to realize the complete polarization Bell-state analysis which is encoded in the logic qubit. We showed that the logic Bell-state can be distinguished in two steps with the help of the parity-check measurement (PCM), which is constructed by the cross-Kerr nonlinearity. We also explain that this approach can be used to distinguish arbitrary C-GHZ state with $N$ logic qubits. This protocol is useful in the long-distance quantum communication based on the logic qubit entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3473v1-abstract-full').style.display = 'none'; document.getElementById('1407.3473v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.2408">arXiv:1405.2408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.2408">pdf</a>, <a href="https://arxiv.org/ps/1405.2408">ps</a>, <a href="https://arxiv.org/format/1405.2408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Bell-state Analysis for Logic Qubits Entanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.2408v1-abstract-short" style="display: inline;"> Decoherence is one of the main obstacles in long-distance quantum communication. Recently, the theoretical work of Fr枚wis and W. D眉r (Phys. Rev. Lett. \textbf{106}, 110402 (2011)) and the experiment of Lu \emph{et al.} (Nat. Photon. \textbf{8}, 364 (2014)) both showed that the logic qubits entanglement say the concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is more robust under decoherence.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2408v1-abstract-full').style.display = 'inline'; document.getElementById('1405.2408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.2408v1-abstract-full" style="display: none;"> Decoherence is one of the main obstacles in long-distance quantum communication. Recently, the theoretical work of Fr枚wis and W. D眉r (Phys. Rev. Lett. \textbf{106}, 110402 (2011)) and the experiment of Lu \emph{et al.} (Nat. Photon. \textbf{8}, 364 (2014)) both showed that the logic qubits entanglement say the concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is more robust under decoherence. In this paper, we describe a protocol for Bell-state analysis for this logic qubits entanglement. This protocol can also be extended to the multipartite C-GHZ state analysis. Also, we discuss its application in the quantum teleportation of a unknown logic qubit and in the entanglement swapping of logic Bell states. As the logic qubits entanglement is more robust under decoherence, our protocol shows that it is possible to realize the long-distance quantum communication based on logic qubits entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.2408v1-abstract-full').style.display = 'none'; document.getElementById('1405.2408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.3594">arXiv:1404.3594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.3594">pdf</a>, <a href="https://arxiv.org/ps/1404.3594">ps</a>, <a href="https://arxiv.org/format/1404.3594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Generalized entanglement distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.3594v1-abstract-short" style="display: inline;"> We present a way for the entanglement distillation of genuine mixed state. Different from the conventional mixed state in entanglement purification protocol, each components of the mixed state in our protocol is a less-entangled state, while it is always a maximally entangled state. With the help of the weak cross-Kerr nonlinearity, this entanglement distillation protocol does not require the soph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3594v1-abstract-full').style.display = 'inline'; document.getElementById('1404.3594v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.3594v1-abstract-full" style="display: none;"> We present a way for the entanglement distillation of genuine mixed state. Different from the conventional mixed state in entanglement purification protocol, each components of the mixed state in our protocol is a less-entangled state, while it is always a maximally entangled state. With the help of the weak cross-Kerr nonlinearity, this entanglement distillation protocol does not require the sophisticated single-photon detectors. Moreover, the distilled high quality entangled state can be retained to perform the further distillation. These properties make it more convenient in practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3594v1-abstract-full').style.display = 'none'; document.getElementById('1404.3594v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.1848">arXiv:1402.1848</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.1848">pdf</a>, <a href="https://arxiv.org/ps/1402.1848">ps</a>, <a href="https://arxiv.org/format/1402.1848">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Protecting sing-photon multi-mode W state from photon loss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ou-Yang%2C+Y">Yang Ou-Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.1848v1-abstract-short" style="display: inline;"> Single-photon entanglement is of major importance in current quantum communications. However, it is sensitive to photon loss. In this paper, we discuss the protection of single-photon multi-mode W state with noiseless linear amplification. It is shown that the amplification factor is only decided with the transmission coefficient of the variable fiber beam splitters, and it does not change with th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.1848v1-abstract-full').style.display = 'inline'; document.getElementById('1402.1848v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.1848v1-abstract-full" style="display: none;"> Single-photon entanglement is of major importance in current quantum communications. However, it is sensitive to photon loss. In this paper, we discuss the protection of single-photon multi-mode W state with noiseless linear amplification. It is shown that the amplification factor is only decided with the transmission coefficient of the variable fiber beam splitters, and it does not change with the number of the spatial mode. This protocol may be useful in current quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.1848v1-abstract-full').style.display = 'none'; document.getElementById('1402.1848v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.3563">arXiv:1401.3563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.3563">pdf</a>, <a href="https://arxiv.org/ps/1401.3563">ps</a>, <a href="https://arxiv.org/format/1401.3563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Distillation of genuine mixed state for quantum communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sheng%2C+Y">Yu-Bo Sheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Lan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xing-Fu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.3563v1-abstract-short" style="display: inline;"> We present a practical entanglement distillation protocol (EDP) with linear optics for a genuine mixed state. Each components of the genuine mixed state is a pure less-entangled state. After successfully performing this EDP, we can obtain a high quality entangled mixed state. Our EDP can work for both ideal entanglement sources and current available spontaneous parametric down-conversion (SPDC)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3563v1-abstract-full').style.display = 'inline'; document.getElementById('1401.3563v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.3563v1-abstract-full" style="display: none;"> We present a practical entanglement distillation protocol (EDP) with linear optics for a genuine mixed state. Each components of the genuine mixed state is a pure less-entangled state. After successfully performing this EDP, we can obtain a high quality entangled mixed state. Our EDP can work for both ideal entanglement sources and current available spontaneous parametric down-conversion (SPDC) sources, which makes it feasible in current experimental technology. Moreover, by using the SPDC source, we can obtain a higher fidelity. This protocol can also be used to distill the multi-partite entangled systems. All the features make it practical and useful in current quantum communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3563v1-abstract-full').style.display = 'none'; document.getElementById('1401.3563v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sheng%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sheng%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sheng%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10