CINXE.COM
Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3, American Journal of Physical Chemistry, Science Publishing Group
<!doctype html> <html> <head> <title>Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3, American Journal of Physical Chemistry, Science Publishing Group</title> <meta name="description" content="The quantum Rice-Ramsperger-Kassel (QRRK) theory is used to analyze the reaction between the activated CH<sub>3</sub>S CH•CH<sub>3</sub> and molecular oxygen to account for further reaction and collisional and deactivation. hydroxyl radicals initiate the oxidation of Methyl ethyl sulfide (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>) and MES (methylthioethane) under combustion conditions. The CBS-QB3 and G3MP2B3 composite and M062X/6-311+G(2d, p) DFT methods was used to study the thermochemical properties of reactants, products and transition states. These thermochemical properties are used for the calculations for kinetic and thermochemical parameters. Under high pressure and low temperature, isomerization and stabilization of the CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is of importance. Under atmospheric pressure and at temperatures between above 600 ~ 800 K reactions of the chemically activated peroxy adduct become important relative to stabilization. The reaction between CH<sub>3</sub>SCH•CH<sub>3</sub> and O<sub>2</sub> forms an energized peroxy adduct CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> with a calculated well depth of 30.2 kcal/mol at the CBS-QB3 level of theory. Kinetic parameters are calculated using the thermochemical properties of products, reactants and transition states obtained using under CBS-QB3 method of calculation. At temperature below 500 K, Stabilization of CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is of importance. Temperature of 500-900 K, is optimal for intramolecular hydrogen shift and the isomerization of CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct. At temperature above 800 K, all of the subsequent reaction paths are of importance. For a reaction to move forward under pressure 1-4 atm, the recommended optimal temperature is between 600-800 K. A new pathway for the CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is observed, the attachment of peroxyl oxygen radical to sulfur followed by carbon-sulfur bond dissociation and formation of oxygen-sulfur and oxygen-carbon double bonds."> <meta name="Keywords" content="Methyl Ethyl Sulfide, Thermochemistry, Kinetics, Oxidation"> <link rel="stylesheet" href="/js/bootstrap/css/bootstrap.min.css?v=20241122084834"> <meta name="dc.title" content="Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH<sub>3</sub>SCH•CH<sub>3</sub>, with <sup>3</sup>O<sub>2</sub> to CH<sub>2</sub>SCH(OO•)CH<sub>3</sub>"> <meta name="dc.creator" content="Guanghui Song"><meta name="dc.creator" content="Joseph Bozzelli"><meta name="dc.creator" content="Hebah Abdel-Wahab"> <meta name="dc.source" content="American Journal of Physical Chemistry 2021, Volume 10, Page 67"> <meta name="dc.date" content="2021-11-12"> <meta name="dc.identifier" content="10.11648/j.ajpc.20211004.14"> <meta name="dc.publisher" content="Science Publishing Group"> <meta name="dc.rights" content="2021 The Author(s)"> <meta name="dc.copyright" content="2021 The Author(s)"> <meta name="dc.rightsAgent" content="service@sciencepublishinggroup.com"> <meta name="dc.format" content="text/pdf"> <meta name="dc.language" content="En"> <meta name="dc.description" content="The quantum Rice-Ramsperger-Kassel (QRRK) theory is used to analyze the reaction between the activated CH<sub>3</sub>S CH•CH<sub>3</sub> and molecular oxygen to account for further reaction and collisional and deactivation. hydroxyl radicals initiate the oxidation of Methyl ethyl sulfide (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>) and MES (methylthioethane) under combustion conditions. The CBS-QB3 and G3MP2B3 composite and M062X/6-311+G(2d, p) DFT methods was used to study the thermochemical properties of reactants, products and transition states. These thermochemical properties are used for the calculations for kinetic and thermochemical parameters. Under high pressure and low temperature, isomerization and stabilization of the CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is of importance. Under atmospheric pressure and at temperatures between above 600 ~ 800 K reactions of the chemically activated peroxy adduct become important relative to stabilization. The reaction between CH<sub>3</sub>SCH•CH<sub>3</sub> and O<sub>2</sub> forms an energized peroxy adduct CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> with a calculated well depth of 30.2 kcal/mol at the CBS-QB3 level of theory. Kinetic parameters are calculated using the thermochemical properties of products, reactants and transition states obtained using under CBS-QB3 method of calculation. At temperature below 500 K, Stabilization of CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is of importance. Temperature of 500-900 K, is optimal for intramolecular hydrogen shift and the isomerization of CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct. At temperature above 800 K, all of the subsequent reaction paths are of importance. For a reaction to move forward under pressure 1-4 atm, the recommended optimal temperature is between 600-800 K. A new pathway for the CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is observed, the attachment of peroxyl oxygen radical to sulfur followed by carbon-sulfur bond dissociation and formation of oxygen-sulfur and oxygen-carbon double bonds."> <meta name="dc.subject" content="Methyl Ethyl Sulfide"><meta name="dc.subject" content="Thermochemistry"><meta name="dc.subject" content="Kinetics"><meta name="dc.subject" content="Oxidation"> <meta name="prism.issn" content="2327-2449"> <meta name="prism.publicationName" content="American Journal of Physical Chemistry"> <meta name="prism.publicationDate" content="2021-11-12"> <meta name="prism.volume" content="10"> <meta name="prism.number" content="4"> <meta name="prism.startingPage" content="67"> <meta name="prism.endingPage" content="80"> <meta name="prism.copyright" content="2021 The Author(s)"> <meta name="prism.rightsAgent" content="service@sciencepublishinggroup.com"> <meta name="prism.url" content="https://www.sciencepg.com/article/10.11648/j.ajpc.20211004.14"> <meta name="prism.doi" content="doi:10.11648/j.ajpc.20211004.14"> <meta name="citation_issn" content="2327-2449"> <meta name="citation_journal_title" content="American Journal of Physical Chemistry"> <meta name="citation_journal_abbrev" content="Am. J. Phys. Chem."> <meta name="citation_publisher" content="Science Publishing Group"> <meta name="citation_title" content="Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH<sub>3</sub>SCH•CH<sub>3</sub>, with <sup>3</sup>O<sub>2</sub> to CH<sub>2</sub>SCH(OO•)CH<sub>3</sub>"> <meta name="citation_publication_date" content="2021/11"> <meta name="citation_online_date" content="2021/11/12"> <meta name="citation_volume" content="10"> <meta name="citation_issue" content="4"> <meta name="citation_firstpage" content="67"> <meta name="citation_lastpage" content="80"> <meta name="citation_fulltext_world_readable" content=""> <meta name="citation_language" content="En"> <meta name="citation_author" content="Guanghui Song"> <meta name="citation_author" content="Joseph Bozzelli"> <meta name="citation_author" content="Hebah Abdel-Wahab"> <meta name="citation_doi" content="doi:10.11648/j.ajpc.20211004.14"> <meta name="citation_id" content="1281134"> <meta name="citation_pdf_url" content="http://article.sciencepg.com/pdf/ajpc.20211004.14"> <meta name="citation_reference" content="K. Vijayaraghavan, K. Hemanathan, Biodiesel production from freshwater algae, Energy and Fuels 23 (2009) 5448-5453."><meta name="citation_reference" content="F. G. Cerru, A. Kronenburg, R. P. Lindstedt, Systematically reduced chemical mechanisms for sulfur oxidation and pyrolysis, Combustion and Flame 146 (2006) 437-455."><meta name="citation_reference" content="L. Hindiyarti, P. Glarborg, P. Marshall, Reactions of SO<sub>3</sub> with the O/H radical pool under combustion conditions, Journal of Physical Chemistry A 111 (2007) 3984-3991."><meta name="citation_reference" content="I. A. Gargurevich, Hydrogen sulfide combustion: Relevant issues under claus furnace conditions, Industrial and Engineering Chemistry Research 44 (2005) 7706-7729."><meta name="citation_reference" content="A. Gross, I. Barnes, R. M. Sørensen, J. Kongsted, K. V. Mikkelsen, A Theoretical Study of the Reaction between CH<sub>3</sub>S(OH)CH<sub>3</sub> and O<sub>2</sub>, The Journal of Physical Chemistry A 108 (2004) 8659-8671."><meta name="citation_reference" content="M. B. Williams, P. Campuzano-Jost, A. J. Pounds, A. J. Hynes, Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 2. Kinetics and mechanism of the OH initiated oxidation of methylethyl and diethyl sulfides; observations of a two channel oxidation mechanism, Physical Chemistry Chemical Physics 9 (2007) 4370-4382."><meta name="citation_reference" content="M. B. Williams, P. Campuzano-Jost, A. J. Hynes, A. J. Pounds, Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 3. Kinetics and mechanism of the OH initiated oxidation of dimethyl, dipropyl, and dibutyl sulfides: reactivity trends in the alkyl sulfides and development of a predictive expression for the reaction of OH with DMS, Journal of Physical Chemistry A 113 (2009) 6697-6709."><meta name="citation_reference" content="J. Cao, W. Wang, Y. Zhang, T. Zhang, J. Lv, C. Li, Computational study on the reaction of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub> with OH radical: Mechanism and enthalpy of formation, Theoretical Chemistry Accounts 129 (2011) 771-780."><meta name="citation_reference" content="S. Pillai, J. W. Bozzelli, Computational study on structures, thermochemical properties, and bond energies of disulfide oxygen (S-S-O)-bridged CH 3SSOH and CH 3SS(=O)H and radicals, Journal of Physical Organic Chemistry 25 (2012) 475-485."><meta name="citation_reference" content="C. S. Turchi, D. F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, Journal of Catalysis 122 (1990) 178-192."><meta name="citation_reference" content="D. Grosjean, Photooxidation of methyl sulfide, ethyl sulfide, and methanethiol, Environmental Science and Technology 18 (1984) 460-468."><meta name="citation_reference" content="A. J. Hynes, P. H. Wine, D. H. Semmes, Kinetics and mechanism of OH reactions with organic sulfides, Journal of Physical Chemistry 90 (1986) 4148-4156."><meta name="citation_reference" content="M. B. Williams, P. Campuzano-Jost, B. M. Cossairt, A. J. Hynes, A. J. Pounds, Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 1. Direct observations of the formation of the OH-DMS adduct-pressure dependence of the forward rate of addition and development of a predictive expression at low temperature, Journal of Physical Chemistry A 111 (2007) 89-104."><meta name="citation_reference" content="S. P. Pillai, Structure and Thermochemistry of Disulfide-Oxygen Species, Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 2008."><meta name="citation_reference" content="A. G. Vandeputte, M. -F. Reyniers, G. B. Marin, Theoretical Study of the Thermal Decomposition of Dimethyl Disulfide, Journal of Physical Chemistry A 114 (2010) 10531-10549."><meta name="citation_reference" content="X. Zheng, J. W. Bozzelli, E. M. Fisher, F. C. Gouldin, L. Zhu, Experimental and computational study of oxidation of diethyl sulfide in a flow reactor, Proceedings of the Combustion Institute 33 (2011) 467-475."><meta name="citation_reference" content="G. Oksdath-Mansilla, A. B. Peñéñory, I. Barnes, P. Wiesen, M. A. Teruel, Photodegradation of (CH 3CH 2) 2S and CH 3CH 2SCH 3 initiated by OH radicals at atmospheric pressure. Product yields and mechanism in NOx free air, Atmospheric Environment 55 (2012) 263-270."><meta name="citation_reference" content="J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, L. A. Curtiss, Gaussian-1 theory: A general procedure for prediction of molecular energies, The Journal of Chemical Physics 90 (1989) 5622-5629."><meta name="citation_reference" content="J. A. Pople, Nobel lecture: Quantum chemical models, Reviews of Modern Physics 71 (1999) 1267-1274."><meta name="citation_reference" content="M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, A. Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C. 02, 2003."><meta name="citation_reference" content="J. A. Montgomery Jr, M. J. Frisch, J. W. Ochterski, G. A. Petersson, A complete basis set model chemistry. VII. Use of the minimum population localization method, Journal of Chemical Physics 112 (2000) 6532-6542."><meta name="citation_reference" content="J. A. Montgomery Jr, M. J. Frisch, J. W. Ochterski, G. A. Petersson, A complete basis set model chemistry. VI. Use of density functional geometries and frequencies, Journal of Chemical Physics 110 (1999) 2822-2827."><meta name="citation_reference" content="L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, J. A. Pople, Gaussian-3 theory using reduced Møller-Plesset order, Journal of Chemical Physics 110 (1999) 4703-4709."><meta name="citation_reference" content="A. G. Baboul, L. A. Curtiss, P. C. Redfern, K. Raghavachari, Gaussian-3 theory using density functional geometries and zero-point energies, Journal of Chemical Physics 110 (1999) 7650-7657."><meta name="citation_reference" content="L. A. Curtiss, K. Raghavach Ari, P. C. Redfern, V. Rassolov, J. A. Pople, Gaussian-3 (G3) theory for molecules containing first and second-row atoms, Journal of Chemical Physics 109 (1998) 7764-7776."><meta name="citation_reference" content="K. B. Wiberg, G. A. Petersson, A Computational Study of RXHn X-H Bond Dissociation Enthalpies, Journal of Physical Chemistry A 118 (2014) 2353-2359."><meta name="citation_reference" content="K. B. Wiberg, G. B. Ellison, J. M. McBride, G. A. Petersson, Substituent Effects on O-H Bond Dissociation Enthalpies: A Computational Study, Journal of Physical Chemistry A 117 (2013) 213-218."><meta name="citation_reference" content="V. G. Kiselev, N. P. Gritsan, V. E. Zarko, P. I. Kalmykov, V. A. Shandakov, Multilevel quantum chemical calculation of the enthalpy of formation of 1,2,5 oxadiazolo 3,4-e 1,2,3,4 -tetrazine-4,6-Di-N-Dioxide, Combustion Explosion and Shock Waves 43 (2007) 562-566."><meta name="citation_reference" content="C. Y. Sheng, J. W. Bozzelli, A. M. Dean, A. Y. Chang, Detailed Kinetics and Thermochemistry of C<sub>2</sub>H<sub>5</sub> + O<sub>2</sub>: Reaction Kinetics of the Chemically-Activated and Stabilized CH<sub>3</sub>CH<sub>2</sub>OO• Adduct, The Journal of Physical Chemistry A 106 (2002) 7276-7293."><meta name="citation_reference" content="K. B. Wiberg, Ab Initio Molecular Orbital Theory, J. Comput. Chem. 7 (1986) 379-379."><meta name="citation_reference" content="I. K. Ortega, O. Kupiainen, T. Kurtén, T. Olenius, O. Wilkman, M. J. McGrath, V. Loukonen, H. Vehkamäki, From quantum chemical formation free energies to evaporation rates, Atmospheric Chemistry and Physics 12 (2012) 225-235."><meta name="citation_reference" content="R. Casasnovas, J. Frau, J. Ortega-Castro, A. Salvà, J. Donoso, F. Muñoz, Simplification of the CBS-QB3 method for predicting gas-phase deprotonation free energies, International Journal of Quantum Chemistry 110 (2010) 323-330."><meta name="citation_reference" content="A. G. Vandeputte, M. K. Sabbe, M. F. Reyniers, G. B. Marin, Modeling the Gas-Phase Thermochemistry of Organosulfur Compounds, Chemistry-a European Journal 17 (2011) 7656-7673."><meta name="citation_reference" content="C. A. Class, J. Aguilera-Iparraguirre, W. H. Green, A kinetic and thermochemical database for organic sulfur and oxygen compounds, Physical Chemistry Chemical Physics 17 (2015) 13625-13639."><meta name="citation_reference" content="A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (1993) 5648-5652."><meta name="citation_reference" content="T. H. Lay, L. N. Krasnoperov, C. A. Venanzi, J. W. Bozzelli, N. V. Shokhirev, Ab initio study of α-chlorinated ethyl hydroperoxides CH<sub>3</sub>CH<sub>2</sub>OOH, CH<sub>3</sub>CHClOOH, and CH<sub>3</sub>CCl<sub>2</sub>OOH: Conformational analysis, internal rotation barriers, vibrational frequencies, and thermodynamic properties, Journal of Physical Chemistry 100 (1996) 8240-8249."><meta name="citation_reference" content="H. Wang, Á. Castillo, J. W. Bozzelli, Thermochemical Properties Enthalpy, Entropy, and Heat Capacity of C1–C4 Fluorinated Hydrocarbons: Fluorocarbon Group Additivity, The Journal of Physical Chemistry A 119 (2015) 8202-8215."><meta name="citation_reference" content="B. A. Ellingson, V. A. Lynch, S. L. Mielke, D. G. Truhlar, Statistical thermodynamics of bond torsional modes: Tests of separable, almost-separable, and improved Pitzer-Gwinn approximations, Journal of Chemical Physics 125 (2006)."><meta name="citation_reference" content="P. Hui-Yun, The modified Pitzer-Gwinn method for partition function of restricted internal rotation of a molecule, The Journal of Chemical Physics 87 (1987) 4846-4848."><meta name="citation_reference" content="K. S. Pitzer, Thermodynamic functions for molecules having restricted internal rotations, The Journal of Chemical Physics 5 (1937) 469-472."><meta name="citation_reference" content="G. da Silva, J. W. Bozzelli, Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals, Journal of Physical Chemistry A 110 (2006) 13058-13067."><meta name="citation_reference" content="S. R. Hashemi, V. Saheb, Theoretical studies on the mechanism and kinetics of the hydrogen abstraction reactions of threo-CF3CHFCHFC2F5 and erythro-CF3CHFCHFC2F5 (HFC-43-10mee) by OH radicals, Computational and Theoretical Chemistry 1119 (2017) 59-64."><meta name="citation_reference" content="H. S. Johnston, J. Heicklen, TUNNELLING CORRECTIONS FOR UNSYMMETRICAL ECKART POTENTIAL ENERGY BARRIERS, The Journal of Physical Chemistry 66 (1962) 532-533."><meta name="citation_reference" content="H. S. Johnston, Gas phase reaction rate theory, New York, Ronald Press Co. [1966] 1966."><meta name="citation_reference" content="S. Yommee, J. W. Bozzelli, Cyclopentadienone Oxidation Reaction Kinetics and Thermochemistry for the Alcohols, Hydroperoxides, and Vinylic, Alkoxy, and Alkylperoxy Radicals, Journal of Physical Chemistry A 120 (2016) 433-451."><meta name="citation_reference" content="F. Jin, R. Asatryan, J. W. Bozzelli, Thermodynamic and kinetic analysis on the reaction of dimethyl sulfide radical with oxygen, International Journal of Quantum Chemistry 112 (2012) 1945-1958."><meta name="citation_reference" content="S. Snitsiriwat, J. W. Bozzelli, Thermochemistry, reaction paths, and kinetics on the tert -isooctane radical reaction with O<sub>2</sub>, Journal of Physical Chemistry A 118 (2014) 4631-4646."><meta name="citation_reference" content="H. Wang, J. W. Bozzelli, Thermochemistry and Kinetic Analysis of the Unimolecular Oxiranyl Radical Dissociation Reaction: A Theoretical Study, Chem Phys Chem, doi: 10.1002/cphc.201600152(2016)."><meta name="citation_reference" content="B. E. Poling, J. M. Prausnitz, J. P. O'Connell, The properties of gases and liquids, New York: McGraw-Hill, c2001. 5th ed. 2001."><meta name="citation_reference" content="R. Atkinson, J. Arey, Atmospheric Degradation of Volatile Organic Compounds, Chemical Reviews 103 (2003) 4605-4638."><meta name="citation_reference" content="G. Oksdath-Mansilla, A. B. Peñéñory, M. Albu, I. Barnes, P. Wiesen, M. A. Teruel, FTIR relative kinetic study of the reactions of CH<sub>3</sub>CH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub> and CH<sub>3</sub>CH<sub>2</sub>SCH<sub>3</sub> with OH radicals and Cl atoms at atmospheric pressure, Chemical Physics Letters 477 (2009) 22-27."><meta name="citation_reference" content="L. Zhu, J. W. Bozzelli, L. M. Kardos, Thermochemical properties, Δ fH o (298), S o (298), and C p o (298), (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals, Journal of Physical Chemistry A 111 (2007) 6361-6377."><meta name="citation_reference" content="G. Song, J. W. Bozzelli, Structures and thermochemistry of methyl ethyl sulfide and its hydroperoxides: HOOCH<sub>2</sub>SCH<sub>2</sub>CH3, CH<sub>3</sub>SCH(OOH)CH<sub>3</sub>, CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH, and radicals, Journal of Physical Organic Chemistry, doi: 10.1002/poc.3751 e3751-n/a."><meta name="citation_reference" content="G. Song, J. W. Bozzelli, Structural and thermochemical studies on CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO, CH<sub>3</sub>SC(═O)CH3, and radicals corresponding to loss of H atom, Journal of Physical Organic Chemistry, doi: 10.1002/poc.3688(2017) e3688-n/a."><meta name="citation_reference" content="B. Ruscic, Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry, Journal of Physical Chemistry A 119 (2015) 7810-7837."><meta name="citation_reference" content="C. F. Goldsmith, G. R. Magoon, W. H. Green, Database of small molecule thermochemistry for combustion, Journal of Physical Chemistry A 116 (2012) 9033-9047."><meta name="citation_reference" content="Z. Xin, E. M. Fisher, F. C. Gouldin, J. W. Bozzelli, Pyrolysis and oxidation of ethyl methyl sulfide in a flow reactor, Combustion and Flame 158 (2011) 1049-1058."><meta name="citation_reference" content="X. Zheng, E. M. Fisher, F. C. Gouldin, L. Zhu, J. W. Bozzelli, Experimental and computational study of diethyl sulfide pyrolysis and mechanism, Proceedings of the Combustion Institute 32 (2009) 469-476."><meta name="citation_reference" content="K. P. Somers, J. M. Simmie, F. Gillespie, C. Conroy, G. Black, W. K. Metcalfe, F. Battin-Leclerc, P. Dirrenberger, O. Herbinet, P. -A. Glaude, P. Dagaut, C. Togbé, K. Yasunaga, R. Fernandes, C. Lee, R. Tripathi, H. J. Curran, A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation, Combustion and Flame 160 (2013) 2291-2318."> <meta name="fulltext_pdf" content="http://article.sciencepg.com/pdf/ajpc.20211004.14"> <meta property="og:site_name" content="Science Publishing Group"> <meta property="og:type" content="article"> <meta property="og:url" content="https://www.sciencepg.com/article/10.11648/j.ajpc.20211004.14"> <meta property="og:title" content="Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH<sub>3</sub>SCH•CH<sub>3</sub>, with <sup>3</sup>O<sub>2</sub> to CH<sub>2</sub>SCH(OO•)CH<sub>3</sub>"> <meta property="og:description" content="The quantum Rice-Ramsperger-Kassel (QRRK) theory is used to analyze the reaction between the activated CH<sub>3</sub>S CH•CH<sub>3</sub> and molecular oxygen to account for further reaction and collisional and deactivation. hydroxyl radicals initiate the oxidation of Methyl ethyl sulfide (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>) and MES (methylthioethane) under combustion conditions. The CBS-QB3 and G3MP2B3 composite and M062X/6-311+G(2d, p) DFT methods was used to study the thermochemical properties of reactants, products and transition states. These thermochemical properties are used for the calculations for kinetic and thermochemical parameters. Under high pressure and low temperature, isomerization and stabilization of the CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is of importance. Under atmospheric pressure and at temperatures between above 600 ~ 800 K reactions of the chemically activated peroxy adduct become important relative to stabilization. The reaction between CH<sub>3</sub>SCH•CH<sub>3</sub> and O<sub>2</sub> forms an energized peroxy adduct CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> with a calculated well depth of 30.2 kcal/mol at the CBS-QB3 level of theory. Kinetic parameters are calculated using the thermochemical properties of products, reactants and transition states obtained using under CBS-QB3 method of calculation. At temperature below 500 K, Stabilization of CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is of importance. Temperature of 500-900 K, is optimal for intramolecular hydrogen shift and the isomerization of CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct. At temperature above 800 K, all of the subsequent reaction paths are of importance. For a reaction to move forward under pressure 1-4 atm, the recommended optimal temperature is between 600-800 K. A new pathway for the CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is observed, the attachment of peroxyl oxygen radical to sulfur followed by carbon-sulfur bond dissociation and formation of oxygen-sulfur and oxygen-carbon double bonds."> <head> <meta charset="utf-8"> <meta charset="utf-8"> <link rel="stylesheet" type="text/css" href="/css/font.min.css?v=20241122084834"> <link rel="stylesheet" type="text/css" href="/css/common.min.css?v=20241122084834"> <link rel="stylesheet" type="text/css" href="/css/selectJournalForm.min.css?v=20241122084834"> <link rel="stylesheet" href="/css/all.min.css?v=20241122084834"> <link rel="stylesheet" href="/css/problem_feedback.min.css?v=20241122084834"> <script src="/js/jquery-1.11.3.min.js?v=20241122084834"></script> <script src="/js/clipboard/clipboard.min.js?v=20241122084834"></script> <script src="/js/common.min.js?v=20241122084834"></script> <script src="/js/jquery.sticky-sidebar.min.js?v=20241122084834"></script> <script src="/js/customsize-validate.min.js?v=20241122084834"></script> <script src="/ajax/libs/layer/layer.min.js?v=20241122084834"></script> <script src="/ajax/libs/layer/lang/en.js?v=20241122084834"></script> <link rel="stylesheet" type="text/css" href="/journal/css/journal_common.min.css?v=20241122084834"> <script src="/js/layout/decorator_single_journal.min.js?v=20241122084834"></script> </head> <script type="text/javascript" src="/js/countUp.min.js?v=20241122084834"></script> <script src="/js/bootstrap/js/bootstrap.min.js?v=20241122084834"></script> <script type="text/javascript" src="/js/mt-tabpage.js?v=20241122084834"></script> <script src="/js/slider.js?v=20241122084834"></script> <script type="text/javascript" src="/js/jquery.cycle.all.min.js?v=20241122084834"></script> <script src="/journal/js/journal.min.js?v=20241122084834"></script> <script src="/journal/js/article_detail.min.js?v=20241122084834"></script> <script src="/journal/js/journal_article.min.js?v=20241122084834"></script> <script src="/js/clipboard/clipboard.min.js?v=20241122084834"></script> <link rel="stylesheet" href="/journal/css/journal_article_new.css?v=20241122084834"> <link rel="stylesheet" type="text/css" href="/journal/css/downloadValidation.min.css?v=20241122084834"> <script type="text/javascript" src="/journal/js/downloadValidation.min.js?v=20241122084834"></script> </head> <body> <div class="article_detail_header"> <div class="article_menu"> <div class="content clearfix"> <div class="logo left"> <a href="/" target="_blank"><img src="/img/logo.png"></a> </div> <div class="browse_item left"> <div class="browse_nav"> <a href="javascript:;" class="browse"> Browse<i class="fas fa-bars"></i> </a> </div> <div class="browse_menu"> <div class="content clearfix"> <div class="borwse_left browse_block left"> <p class="menu_title"><a href="/journals/browse-by-subject" target="_blank">Journals By Subject</a></p> <div class="col-sm"> <div class="menu_subject"> <a href="/journals/browse-by-subject/11" target="_blank"> <i class="fas fa-dna"></i> Life Sciences, Agriculture & Food </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/70" target="_blank"> <i class="fas fa-flask"></i> Chemistry </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/15" target="_blank"> <i class="fas fa-capsules"></i> Medicine & Health </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/51" target="_blank"> <i class="fas fa-gem"></i> Materials Science </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/12" target="_blank"> <i class="fas fa-atom"></i> Mathematics & Physics </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/23" target="_blank"> <i class="fas fa-desktop-alt"></i> Electrical & Computer Science </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/16" target="_blank"> <i class="fas fa-globe-americas"></i> Earth, Energy & Environment </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/60" target="_blank"> <i class="fas fa-digging"></i> Architecture & Civil Engineering </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/19" target="_blank"> <i class="fas fa-graduation-cap"></i> Education </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/17" target="_blank"> <i class="fas fa-coins"></i> Economics & Management </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/20" target="_blank"> <i class="fas fa-male"></i> Humanities & Social Sciences </a> </div> <div class="menu_subject"> <a href="/journals/browse-by-subject/18" target="_blank"> <i class="fas fa-pencil-ruler"></i> Multidisciplinary </a> </div> </div> </div> <div class="borwse_middle browse_block left"> <p class="menu_title"><a href="/books" target="_blank">Books</a></p> <div class="col-sm"> <div class="menu_subject"> <a href="/books/publish-conference-abstract-books" target="_blank"><i class="fas fa-book"></i>Publish Conference Abstract Books</a> </div> <div class="menu_subject"> <a href="/books/upcoming-conference-abstract-books" target="_blank"><i class="fas fa-book"></i>Upcoming Conference Abstract Books</a> </div> <div class="menu_subject"> <a href="/books/published-conference-abstract-books" target="_blank"><i class="fas fa-book"></i>Published Conference Abstract Books</a> </div> <div class="menu_subject"> <a href="/books/publish-your-books" target="_blank"><i class="fas fa-book-open"></i>Publish Your Books</a> </div> <div class="menu_subject"> <a href="/books/upcoming-books" target="_blank"><i class="fas fa-book-open"></i>Upcoming Books</a> </div> <div class="menu_subject"> <a href="/books/published-books" target="_blank"><i class="fas fa-book-open"></i>Published Books</a> </div> </div> <p class="menu_title"><a href="/proceedings" target="_blank">Proceedings</a></p> <p class="menu_title"><a href="/events" target="_blank">Events</a></p> <div class="col-sm"> <div class="menu_subject"> <a href="/events" target="_blank"><i class="fas fa-users"></i>Events</a> </div> <div class="menu_subject"> <a href="/events/five-types-of-conference-publications" target="_blank"><i class="fas fa-file-edit"></i>Five Types of Conference Publications</a> </div> </div> <p class="menu_title"><a href="/join-the-editorial-board" target="_blank">Join</a></p> <div class="col-sm"> <div class="menu_subject"> <a href="/join-us#Join_as_Editorial_Board_Member" target="_blank"><i class="fas fa-user-friends"></i>Join as Editorial Board Member</a> </div> <div class="menu_subject"> <a href="/join-us#Become_a_Reviewer" target="_blank"><i class="fas fa-user-tie"></i>Become a Reviewer</a> </div> </div> </div> <div class="borwse_right browse_block left"> <p class="menu_title"><a href="/information/for-authors" target="_blank">Information</a></p> <div class="col-sm"> <div class="menu_subject"> <a href="/information/for-authors" target="_blank"><i class="fas fa-user-edit"></i>For Authors</a> </div> <div class="menu_subject"> <a href="/information/for-reviewers" target="_blank"><i class="fas fa-user-tie"></i>For Reviewers</a> </div> <div class="menu_subject"> <a href="/information/for-editors" target="_blank"><i class="fas fa-user-friends"></i>For Editors</a> </div> <div class="menu_subject"> <a href="/information/for-conference-organizers" target="_blank"><i class="fas fa-user-friends"></i>For Conference Organizers</a> </div> <div class="menu_subject"> <a href="/information/for-librarians" target="_blank"><i class="fas fa-building"></i>For Librarians</a> </div> <div class="menu_subject" style="margin-top: 20px;"> <a href="/information/article-processing-charges" target="_blank"><i class="fas fa-coins"></i>Article Processing Charges</a> </div> <div class="menu_subject"> <a href="/special-issues/guidelines" target="_blank"><i class="fas fa-compass"></i>Special Issue Guidelines</a> </div> <div class="menu_subject"> <a href="/information/editorial-process" target="_blank"><i class="fas fa-file-alt"></i>Editorial Process</a> </div> <div class="menu_subject"> <a href="/information/manuscript-transfers" target="_blank"><i class="fas fa-random"></i>Manuscript Transfers</a> </div> <div class="menu_subject"> <a href="/information/peer-review-at-sciencepg" target="_blank"><i class="fas fa-file-edit"></i>Peer Review at SciencePG</a> </div> <div class="menu_subject"> <a href="/information/open-access" target="_blank"><i class="fas fa-unlock"></i>Open Access</a> </div> <div class="menu_subject"> <a href="/information/copyright-and-license" target="_blank"><i class="fas fa-copyright"></i>Copyright and License</a> </div> <div class="menu_subject"> <a href="/information/ethical-guidelines" target="_blank"><i class="fas fa-pen-square"></i>Ethical Guidelines</a> </div> </div> </div> </div> </div> </div> <div class="submit_item right"> <a href="/submit-an-article" class="submit" target="_blank">Submit an Article</a> </div> <div class="login_item right"> <div class="login_register"> <a href="https://sso.sciencepg.com/login" class="platform_login" target="_blank"> <i class="fas fa-user-circle"></i>Log in </a> <a href="https://sso.sciencepg.com/register" target="_blank"> Register </a> </div> </div> </div> </div> </div> <div class="page_nav_track" id="Back_to_top"> <div class="content"> <nav> <ul> <li> <a href="/" class="tohead">Home</a> </li> <li> <span><i class="fas fa-chevron-right"></i></span> <a href="/journals/browse-by-subject" class="tohead">Journals</a> </li> <li> <span><i class="fas fa-chevron-right"></i></span> <a href="/journal/128/home" class="tohead">American Journal of Physical Chemistry</a> </li> <li> <span><i class="fas fa-chevron-right"></i></span> <a href="/journal/128/archive" class="tohead">Archive</a> </li> <li> <span><i class="fas fa-chevron-right"></i></span> <a href="/journal/128/archive/1281004" class="tohead">Volume 10, Issue 4</a> </li> </ul> </nav> </div> </div> <div class="content clearfix"> <div class="article_content_left left"> <input type="hidden" id="articleUniqueID" value="j.ajpc.20211004.14"> <div class="article_header"> <div class="article_header_top"> <a href="/journal/128/open-access" target="_blank"><img src="/img/oa.png" class="oa"></a> <span>|</span> <a href="/journal/128/peer-review-at-sciencepg" style="color: #00599c; text-decoration: underline;" target="_blank">Peer-Reviewed</a> </div> <h3 class="ArticleTitle">Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH<sub>3</sub>SCH•CH<sub>3</sub>, with <sup>3</sup>O<sub>2</sub> to CH<sub>2</sub>SCH(OO•)CH<sub>3</sub></h3> <div class="article_author"> <span class="author"> <a href="javascript:;" data-target="#author0" class="AuthorName" >Guanghui Song</a>, <div class="author_item person-info" id="author0" style="display: none;"> <p class="author_name">Guanghui Song</p> <p class="Affiliation">Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, USA</p> </div> </span><span class="author"> <a href="javascript:;" data-target="#author1" class="AuthorName" >Joseph Bozzelli</a>, <div class="author_item person-info" id="author1" style="display: none;"> <p class="author_name">Joseph Bozzelli</p> <p class="Affiliation">Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, USA</p> </div> </span><span class="author"> <a href="javascript:;" data-target="#author2" class="AuthorName" >Hebah Abdel-Wahab</a> <div class="author_item person-info" id="author2" style="display: none;"> <p class="author_name">Hebah Abdel-Wahab</p> <p class="Affiliation">Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, USA</p> </div> </span> </div> <div class="published"> <span>Published in </span> <a href="/journal/128/home" target="_blank"><i>American Journal of Physical Chemistry</i></a> (<a href="/journal/128/archive/1281004" target="_blank">Volume 10, Issue 4</a>) </div> <div class="article_time"> <span>Received: </span>4 October 2021 <span>Accepted: </span>29 October 2021 <span>Published: </span>12 November 2021 </div> <div class="vd"> <input type="hidden" id="downloadTotalizationUrl" value="https://w.sciencepublishinggroup.com/"> <span>Views:</span> <span class="spanViews"></span> <span>Downloads:</span> <span class="spanDownloads"></span> </div> <div class="operation clearfix"> <div class="view_more left"> <a href="javascript:;" onclick="downLoadArticle(10062173, "https:\/\/w.sciencepublishinggroup.com\/", '.spanDownloads', "https:\/\/article.sciencepublishinggroup.com\/", "pdf\/ajpc.20211004.14", true)" > <i class="fas fa-file-pdf"></i>Download PDF </a> </div> <!--<div class="add_ope right"> <a href="javascript:;"> <p>Add to Mendeley</p> <img src="/img/mendeley_icon.png"> </a> </div>--> <div class="add_ope share_btn left"> <a href="javascript:;" id="toggleButton"> <img src="/img/share_icon.png">Share This Article </a> <div class="share_item toggle-div" id="myDiv"> <div class="s-popup__arrow"></div> <div class="share_list"> <ul> <li> <a id="twitterUrl" target="_blank"><img src="/img/twitter_icon.png">Twitter</a> </li> <li> <a id="linkedInUrl" target="_blank"><img src="/img/LinkedIn_icon.png">Linked In</a> </li> <li> <a id="facebookUrl" target="_blank"><img src="/img/facebook_icon.png">Facebook</a> </li> </ul> <script type="text/javascript"> var twitterUrl = "https://twitter.com/intent/tweet?text=" + twitterUrlEncode("Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH<sub>3<\/sub>SCH\u2022CH<sub>3<\/sub>, with <sup>3<\/sup>O<sub>2<\/sub> to CH<sub>2<\/sub>SCH(OO\u2022)CH<sub>3<\/sub>"); twitterUrl += "&hashtags=" + twitterUrlEncode("Science Publishing Group"); twitterUrl += "&url=" + twitterUrlEncode(location.origin + "/" + "article\/10.11648\/j.ajpc.20211004.14"); var linkedInUrl = "http://www.linkedin.com/shareArticle?mini=true&title=" + encodeURIComponent("Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH<sub>3<\/sub>SCH\u2022CH<sub>3<\/sub>, with <sup>3<\/sup>O<sub>2<\/sub> to CH<sub>2<\/sub>SCH(OO\u2022)CH<sub>3<\/sub>"); linkedInUrl += encodeURIComponent("&source=" + location.origin + "&summary=" + getMoreContentShow("The quantum Rice-Ramsperger-Kassel (QRRK) theory is used to analyze the reaction between the activated CH<sub>3<\/sub>S CH\u2022CH<sub>3<\/sub> and molecular oxygen to account for further reaction and collisional and deactivation. hydroxyl radicals initiate the oxidation of Methyl ethyl sulfide (CH<sub>3<\/sub>SCH<sub>2<\/sub>CH<sub>3<\/sub>) and MES (methylthioethane) under combustion conditions. The CBS-QB3 and G3MP2B3 composite and M062X\/6-311+G(2d, p) DFT methods was used to study the thermochemical properties of reactants, products and transition states. These thermochemical properties are used for the calculations for kinetic and thermochemical parameters. Under high pressure and low temperature, isomerization and stabilization of the CH<sub>3<\/sub>SCH(OO\u2022)CH<sub>3<\/sub> adduct is of importance. Under atmospheric pressure and at temperatures between above 600 ~ 800 K reactions of the chemically activated peroxy adduct become important relative to stabilization. The reaction between CH<sub>3<\/sub>SCH\u2022CH<sub>3<\/sub> and O<sub>2<\/sub> forms an energized peroxy adduct CH<sub>3<\/sub>SCH(OO\u2022)CH<sub>3<\/sub> with a calculated well depth of 30.2 kcal\/mol at the CBS-QB3 level of theory. Kinetic parameters are calculated using the thermochemical properties of products, reactants and transition states obtained using under CBS-QB3 method of calculation. At temperature below 500 K, Stabilization of CH<sub>3<\/sub>SCH(OO\u2022)CH<sub>3<\/sub> adduct is of importance. Temperature of 500-900 K, is optimal for intramolecular hydrogen shift and the isomerization of CH<sub>3<\/sub>SCH(OO\u2022)CH<sub>3<\/sub> adduct. At temperature above 800 K, all of the subsequent reaction paths are of importance. For a reaction to move forward under pressure 1-4 atm, the recommended optimal temperature is between 600-800 K. A new pathway for the CH<sub>3<\/sub>SCH(OO\u2022)CH<sub>3<\/sub> adduct is observed, the attachment of peroxyl oxygen radical to sulfur followed by carbon-sulfur bond dissociation and formation of oxygen-sulfur and oxygen-carbon double bonds.", 200)) linkedInUrl += "&url=" + encodeURIComponent(location.origin + "/" + "article\/10.11648\/j.ajpc.20211004.14"); var facebookUrl = "https://www.facebook.com/sharer.php?u=" + location.origin + "/" + "article\/10.11648\/j.ajpc.20211004.14"; </script> </div> </div> </div> </div> </div> <div class="article_body"> <div class="section" id="abstract"> <div class="Abatract">Abstract</div> <p class="AbatractContent">The quantum Rice-Ramsperger-Kassel (QRRK) theory is used to analyze the reaction between the activated CH<sub>3</sub>S CH•CH<sub>3</sub> and molecular oxygen to account for further reaction and collisional and deactivation. hydroxyl radicals initiate the oxidation of Methyl ethyl sulfide (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>) and MES (methylthioethane) under combustion conditions. The CBS-QB3 and G3MP2B3 composite and M062X/6-311+G(2d, p) DFT methods was used to study the thermochemical properties of reactants, products and transition states. These thermochemical properties are used for the calculations for kinetic and thermochemical parameters. Under high pressure and low temperature, isomerization and stabilization of the CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is of importance. Under atmospheric pressure and at temperatures between above 600 ~ 800 K reactions of the chemically activated peroxy adduct become important relative to stabilization. The reaction between CH<sub>3</sub>SCH•CH<sub>3</sub> and O<sub>2</sub> forms an energized peroxy adduct CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> with a calculated well depth of 30.2 kcal/mol at the CBS-QB3 level of theory. Kinetic parameters are calculated using the thermochemical properties of products, reactants and transition states obtained using under CBS-QB3 method of calculation. At temperature below 500 K, Stabilization of CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is of importance. Temperature of 500-900 K, is optimal for intramolecular hydrogen shift and the isomerization of CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct. At temperature above 800 K, all of the subsequent reaction paths are of importance. For a reaction to move forward under pressure 1-4 atm, the recommended optimal temperature is between 600-800 K. A new pathway for the CH<sub>3</sub>SCH(OO•)CH<sub>3</sub> adduct is observed, the attachment of peroxyl oxygen radical to sulfur followed by carbon-sulfur bond dissociation and formation of oxygen-sulfur and oxygen-carbon double bonds.</p> </div> <div class="article_basic_info"> <table> <tr> <td> <span>Published in</span> </td> <td> <a href="/journal/128/home" target="_blank"><i>American Journal of Physical Chemistry</i></a> (<a href="/journal/128/archive/1281004" target="_blank">Volume 10, Issue 4</a>) </td> </tr> <tr> <td> <span>DOI</span> </td> <td> <a href="https://doi.org/10.11648/j.ajpc.20211004.14" target="_blank">10.11648/j.ajpc.20211004.14</a> </td> </tr> <tr> <td> <span>Page(s)</span> </td> <td>67-80</td> </tr> <tr> <td> <span>Creative Commons</span> </td> <td> <p class="basic_copyright"><img src="/img/copyright_icon2.png"></p> <p>This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (<a href="http://creativecommons.org/licenses/by/4.0/" target="_blank">http://creativecommons.org/licenses/by/4.0/</a>), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. </p> </td> </tr> <tr> <td> <span>Copyright</span> </td> <td> <p>Copyright © The Author(s), 2021. Published by Science Publishing Group</p> </td> </tr> </table> </div> <div class="pre_next_article clearfix"> <div class="pre"> <a href="/article/10.11648/j.ajpc.s.2015040101.11"><i class="fas fa-chevron-circle-left"></i><span>Previous article</span></a> </div> <div class="next"> <a href="/article/10.11648/j.ajpc.20211004.15"><span>Next article</span><i class="fas fa-chevron-circle-right"></i></a> </div> </div> <div class="section" id="keywords"> <div class="Keywords">Keywords</div> <p class="KeywordsContent">Methyl Ethyl Sulfide, Thermochemistry, Kinetics, Oxidation</p> </div> <div class="section" id="references"> <div class="Heading1">References</div> <div class="references"> <table class="normal_table"> <tbody> <tr class="References"> <td>[1] </td> <td style="word-break: break-word;"> K. Vijayaraghavan, K. Hemanathan, Biodiesel production from freshwater algae, Energy and Fuels 23 (2009) 5448-5453. </td> </tr> <tr class="References"> <td>[2] </td> <td style="word-break: break-word;"> F. G. Cerru, A. Kronenburg, R. P. Lindstedt, Systematically reduced chemical mechanisms for sulfur oxidation and pyrolysis, Combustion and Flame 146 (2006) 437-455. </td> </tr> <tr class="References"> <td>[3] </td> <td style="word-break: break-word;"> L. Hindiyarti, P. Glarborg, P. Marshall, Reactions of SO<sub>3</sub> with the O/H radical pool under combustion conditions, Journal of Physical Chemistry A 111 (2007) 3984-3991. </td> </tr> <tr class="References"> <td>[4] </td> <td style="word-break: break-word;"> I. A. Gargurevich, Hydrogen sulfide combustion: Relevant issues under claus furnace conditions, Industrial and Engineering Chemistry Research 44 (2005) 7706-7729. </td> </tr> <tr class="References"> <td>[5] </td> <td style="word-break: break-word;"> A. Gross, I. Barnes, R. M. Sørensen, J. Kongsted, K. V. Mikkelsen, A Theoretical Study of the Reaction between CH<sub>3</sub>S(OH)CH<sub>3</sub> and O<sub>2</sub>, The Journal of Physical Chemistry A 108 (2004) 8659-8671. </td> </tr> <tr class="References"> <td>[6] </td> <td style="word-break: break-word;"> M. B. Williams, P. Campuzano-Jost, A. J. Pounds, A. J. Hynes, Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 2. Kinetics and mechanism of the OH initiated oxidation of methylethyl and diethyl sulfides; observations of a two channel oxidation mechanism, Physical Chemistry Chemical Physics 9 (2007) 4370-4382. </td> </tr> <tr class="References"> <td>[7] </td> <td style="word-break: break-word;"> M. B. Williams, P. Campuzano-Jost, A. J. Hynes, A. J. Pounds, Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 3. Kinetics and mechanism of the OH initiated oxidation of dimethyl, dipropyl, and dibutyl sulfides: reactivity trends in the alkyl sulfides and development of a predictive expression for the reaction of OH with DMS, Journal of Physical Chemistry A 113 (2009) 6697-6709. </td> </tr> <tr class="References"> <td>[8] </td> <td style="word-break: break-word;"> J. Cao, W. Wang, Y. Zhang, T. Zhang, J. Lv, C. Li, Computational study on the reaction of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub> with OH radical: Mechanism and enthalpy of formation, Theoretical Chemistry Accounts 129 (2011) 771-780. </td> </tr> <tr class="References"> <td>[9] </td> <td style="word-break: break-word;"> S. Pillai, J. W. Bozzelli, Computational study on structures, thermochemical properties, and bond energies of disulfide oxygen (S-S-O)-bridged CH 3SSOH and CH 3SS(=O)H and radicals, Journal of Physical Organic Chemistry 25 (2012) 475-485. </td> </tr> <tr class="References"> <td>[10] </td> <td style="word-break: break-word;"> C. S. Turchi, D. F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, Journal of Catalysis 122 (1990) 178-192. </td> </tr> <tr class="References"> <td>[11] </td> <td style="word-break: break-word;"> D. Grosjean, Photooxidation of methyl sulfide, ethyl sulfide, and methanethiol, Environmental Science and Technology 18 (1984) 460-468. </td> </tr> <tr class="References"> <td>[12] </td> <td style="word-break: break-word;"> A. J. Hynes, P. H. Wine, D. H. Semmes, Kinetics and mechanism of OH reactions with organic sulfides, Journal of Physical Chemistry 90 (1986) 4148-4156. </td> </tr> <tr class="References"> <td>[13] </td> <td style="word-break: break-word;"> M. B. Williams, P. Campuzano-Jost, B. M. Cossairt, A. J. Hynes, A. J. Pounds, Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 1. Direct observations of the formation of the OH-DMS adduct-pressure dependence of the forward rate of addition and development of a predictive expression at low temperature, Journal of Physical Chemistry A 111 (2007) 89-104. </td> </tr> <tr class="References"> <td>[14] </td> <td style="word-break: break-word;"> S. P. Pillai, Structure and Thermochemistry of Disulfide-Oxygen Species, Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 2008. </td> </tr> <tr class="References"> <td>[15] </td> <td style="word-break: break-word;"> A. G. Vandeputte, M. -F. Reyniers, G. B. Marin, Theoretical Study of the Thermal Decomposition of Dimethyl Disulfide, Journal of Physical Chemistry A 114 (2010) 10531-10549. </td> </tr> <tr class="References"> <td>[16] </td> <td style="word-break: break-word;"> X. Zheng, J. W. Bozzelli, E. M. Fisher, F. C. Gouldin, L. Zhu, Experimental and computational study of oxidation of diethyl sulfide in a flow reactor, Proceedings of the Combustion Institute 33 (2011) 467-475. </td> </tr> <tr class="References"> <td>[17] </td> <td style="word-break: break-word;"> G. Oksdath-Mansilla, A. B. Peñéñory, I. Barnes, P. Wiesen, M. A. Teruel, Photodegradation of (CH 3CH 2) 2S and CH 3CH 2SCH 3 initiated by OH radicals at atmospheric pressure. Product yields and mechanism in NOx free air, Atmospheric Environment 55 (2012) 263-270. </td> </tr> <tr class="References"> <td>[18] </td> <td style="word-break: break-word;"> J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, L. A. Curtiss, Gaussian-1 theory: A general procedure for prediction of molecular energies, The Journal of Chemical Physics 90 (1989) 5622-5629. </td> </tr> <tr class="References"> <td>[19] </td> <td style="word-break: break-word;"> J. A. Pople, Nobel lecture: Quantum chemical models, Reviews of Modern Physics 71 (1999) 1267-1274. </td> </tr> <tr class="References"> <td>[20] </td> <td style="word-break: break-word;"> M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, A. Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C. 02, 2003. </td> </tr> <tr class="References"> <td>[21] </td> <td style="word-break: break-word;"> J. A. Montgomery Jr, M. J. Frisch, J. W. Ochterski, G. A. Petersson, A complete basis set model chemistry. VII. Use of the minimum population localization method, Journal of Chemical Physics 112 (2000) 6532-6542. </td> </tr> <tr class="References"> <td>[22] </td> <td style="word-break: break-word;"> J. A. Montgomery Jr, M. J. Frisch, J. W. Ochterski, G. A. Petersson, A complete basis set model chemistry. VI. Use of density functional geometries and frequencies, Journal of Chemical Physics 110 (1999) 2822-2827. </td> </tr> <tr class="References"> <td>[23] </td> <td style="word-break: break-word;"> L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, J. A. Pople, Gaussian-3 theory using reduced Møller-Plesset order, Journal of Chemical Physics 110 (1999) 4703-4709. </td> </tr> <tr class="References"> <td>[24] </td> <td style="word-break: break-word;"> A. G. Baboul, L. A. Curtiss, P. C. Redfern, K. Raghavachari, Gaussian-3 theory using density functional geometries and zero-point energies, Journal of Chemical Physics 110 (1999) 7650-7657. </td> </tr> <tr class="References"> <td>[25] </td> <td style="word-break: break-word;"> L. A. Curtiss, K. Raghavach Ari, P. C. Redfern, V. Rassolov, J. A. Pople, Gaussian-3 (G3) theory for molecules containing first and second-row atoms, Journal of Chemical Physics 109 (1998) 7764-7776. </td> </tr> <tr class="References"> <td>[26] </td> <td style="word-break: break-word;"> K. B. Wiberg, G. A. Petersson, A Computational Study of RXHn X-H Bond Dissociation Enthalpies, Journal of Physical Chemistry A 118 (2014) 2353-2359. </td> </tr> <tr class="References"> <td>[27] </td> <td style="word-break: break-word;"> K. B. Wiberg, G. B. Ellison, J. M. McBride, G. A. Petersson, Substituent Effects on O-H Bond Dissociation Enthalpies: A Computational Study, Journal of Physical Chemistry A 117 (2013) 213-218. </td> </tr> <tr class="References"> <td>[28] </td> <td style="word-break: break-word;"> V. G. Kiselev, N. P. Gritsan, V. E. Zarko, P. I. Kalmykov, V. A. Shandakov, Multilevel quantum chemical calculation of the enthalpy of formation of 1,2,5 oxadiazolo 3,4-e 1,2,3,4 -tetrazine-4,6-Di-N-Dioxide, Combustion Explosion and Shock Waves 43 (2007) 562-566. </td> </tr> <tr class="References"> <td>[29] </td> <td style="word-break: break-word;"> C. Y. Sheng, J. W. Bozzelli, A. M. Dean, A. Y. Chang, Detailed Kinetics and Thermochemistry of C<sub>2</sub>H<sub>5</sub> + O<sub>2</sub>: Reaction Kinetics of the Chemically-Activated and Stabilized CH<sub>3</sub>CH<sub>2</sub>OO• Adduct, The Journal of Physical Chemistry A 106 (2002) 7276-7293. </td> </tr> <tr class="References"> <td>[30] </td> <td style="word-break: break-word;"> K. B. Wiberg, Ab Initio Molecular Orbital Theory, J. Comput. Chem. 7 (1986) 379-379. </td> </tr> <tr class="References"> <td>[31] </td> <td style="word-break: break-word;"> I. K. Ortega, O. Kupiainen, T. Kurtén, T. Olenius, O. Wilkman, M. J. McGrath, V. Loukonen, H. Vehkamäki, From quantum chemical formation free energies to evaporation rates, Atmospheric Chemistry and Physics 12 (2012) 225-235. </td> </tr> <tr class="References"> <td>[32] </td> <td style="word-break: break-word;"> R. Casasnovas, J. Frau, J. Ortega-Castro, A. Salvà, J. Donoso, F. Muñoz, Simplification of the CBS-QB3 method for predicting gas-phase deprotonation free energies, International Journal of Quantum Chemistry 110 (2010) 323-330. </td> </tr> <tr class="References"> <td>[33] </td> <td style="word-break: break-word;"> A. G. Vandeputte, M. K. Sabbe, M. F. Reyniers, G. B. Marin, Modeling the Gas-Phase Thermochemistry of Organosulfur Compounds, Chemistry-a European Journal 17 (2011) 7656-7673. </td> </tr> <tr class="References"> <td>[34] </td> <td style="word-break: break-word;"> C. A. Class, J. Aguilera-Iparraguirre, W. H. Green, A kinetic and thermochemical database for organic sulfur and oxygen compounds, Physical Chemistry Chemical Physics 17 (2015) 13625-13639. </td> </tr> <tr class="References"> <td>[35] </td> <td style="word-break: break-word;"> A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (1993) 5648-5652. </td> </tr> <tr class="References"> <td>[36] </td> <td style="word-break: break-word;"> T. H. Lay, L. N. Krasnoperov, C. A. Venanzi, J. W. Bozzelli, N. V. Shokhirev, Ab initio study of α-chlorinated ethyl hydroperoxides CH<sub>3</sub>CH<sub>2</sub>OOH, CH<sub>3</sub>CHClOOH, and CH<sub>3</sub>CCl<sub>2</sub>OOH: Conformational analysis, internal rotation barriers, vibrational frequencies, and thermodynamic properties, Journal of Physical Chemistry 100 (1996) 8240-8249. </td> </tr> <tr class="References"> <td>[37] </td> <td style="word-break: break-word;"> H. Wang, Á. Castillo, J. W. Bozzelli, Thermochemical Properties Enthalpy, Entropy, and Heat Capacity of C1–C4 Fluorinated Hydrocarbons: Fluorocarbon Group Additivity, The Journal of Physical Chemistry A 119 (2015) 8202-8215. </td> </tr> <tr class="References"> <td>[38] </td> <td style="word-break: break-word;"> B. A. Ellingson, V. A. Lynch, S. L. Mielke, D. G. Truhlar, Statistical thermodynamics of bond torsional modes: Tests of separable, almost-separable, and improved Pitzer-Gwinn approximations, Journal of Chemical Physics 125 (2006). </td> </tr> <tr class="References"> <td>[39] </td> <td style="word-break: break-word;"> P. Hui-Yun, The modified Pitzer-Gwinn method for partition function of restricted internal rotation of a molecule, The Journal of Chemical Physics 87 (1987) 4846-4848. </td> </tr> <tr class="References"> <td>[40] </td> <td style="word-break: break-word;"> K. S. Pitzer, Thermodynamic functions for molecules having restricted internal rotations, The Journal of Chemical Physics 5 (1937) 469-472. </td> </tr> <tr class="References"> <td>[41] </td> <td style="word-break: break-word;"> G. da Silva, J. W. Bozzelli, Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals, Journal of Physical Chemistry A 110 (2006) 13058-13067. </td> </tr> <tr class="References"> <td>[42] </td> <td style="word-break: break-word;"> S. R. Hashemi, V. Saheb, Theoretical studies on the mechanism and kinetics of the hydrogen abstraction reactions of threo-CF3CHFCHFC2F5 and erythro-CF3CHFCHFC2F5 (HFC-43-10mee) by OH radicals, Computational and Theoretical Chemistry 1119 (2017) 59-64. </td> </tr> <tr class="References"> <td>[43] </td> <td style="word-break: break-word;"> H. S. Johnston, J. Heicklen, TUNNELLING CORRECTIONS FOR UNSYMMETRICAL ECKART POTENTIAL ENERGY BARRIERS, The Journal of Physical Chemistry 66 (1962) 532-533. </td> </tr> <tr class="References"> <td>[44] </td> <td style="word-break: break-word;"> H. S. Johnston, Gas phase reaction rate theory, New York, Ronald Press Co. [1966] 1966. </td> </tr> <tr class="References"> <td>[45] </td> <td style="word-break: break-word;"> S. Yommee, J. W. Bozzelli, Cyclopentadienone Oxidation Reaction Kinetics and Thermochemistry for the Alcohols, Hydroperoxides, and Vinylic, Alkoxy, and Alkylperoxy Radicals, Journal of Physical Chemistry A 120 (2016) 433-451. </td> </tr> <tr class="References"> <td>[46] </td> <td style="word-break: break-word;"> F. Jin, R. Asatryan, J. W. Bozzelli, Thermodynamic and kinetic analysis on the reaction of dimethyl sulfide radical with oxygen, International Journal of Quantum Chemistry 112 (2012) 1945-1958. </td> </tr> <tr class="References"> <td>[47] </td> <td style="word-break: break-word;"> S. Snitsiriwat, J. W. Bozzelli, Thermochemistry, reaction paths, and kinetics on the tert -isooctane radical reaction with O<sub>2</sub>, Journal of Physical Chemistry A 118 (2014) 4631-4646. </td> </tr> <tr class="References"> <td>[48] </td> <td style="word-break: break-word;"> H. Wang, J. W. Bozzelli, Thermochemistry and Kinetic Analysis of the Unimolecular Oxiranyl Radical Dissociation Reaction: A Theoretical Study, Chem Phys Chem, doi: 10.1002/cphc.201600152(2016). </td> </tr> <tr class="References"> <td>[49] </td> <td style="word-break: break-word;"> B. E. Poling, J. M. Prausnitz, J. P. O'Connell, The properties of gases and liquids, New York: McGraw-Hill, c2001. 5th ed. 2001. </td> </tr> <tr class="References"> <td>[50] </td> <td style="word-break: break-word;"> R. Atkinson, J. Arey, Atmospheric Degradation of Volatile Organic Compounds, Chemical Reviews 103 (2003) 4605-4638. </td> </tr> <tr class="References"> <td>[51] </td> <td style="word-break: break-word;"> G. Oksdath-Mansilla, A. B. Peñéñory, M. Albu, I. Barnes, P. Wiesen, M. A. Teruel, FTIR relative kinetic study of the reactions of CH<sub>3</sub>CH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub> and CH<sub>3</sub>CH<sub>2</sub>SCH<sub>3</sub> with OH radicals and Cl atoms at atmospheric pressure, Chemical Physics Letters 477 (2009) 22-27. </td> </tr> <tr class="References"> <td>[52] </td> <td style="word-break: break-word;"> L. Zhu, J. W. Bozzelli, L. M. Kardos, Thermochemical properties, Δ fH o (298), S o (298), and C p o (298), (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals, Journal of Physical Chemistry A 111 (2007) 6361-6377. </td> </tr> <tr class="References"> <td>[53] </td> <td style="word-break: break-word;"> G. Song, J. W. Bozzelli, Structures and thermochemistry of methyl ethyl sulfide and its hydroperoxides: HOOCH<sub>2</sub>SCH<sub>2</sub>CH3, CH<sub>3</sub>SCH(OOH)CH<sub>3</sub>, CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH, and radicals, Journal of Physical Organic Chemistry, doi: 10.1002/poc.3751 e3751-n/a. </td> </tr> <tr class="References"> <td>[54] </td> <td style="word-break: break-word;"> G. Song, J. W. Bozzelli, Structural and thermochemical studies on CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO, CH<sub>3</sub>SC(═O)CH3, and radicals corresponding to loss of H atom, Journal of Physical Organic Chemistry, doi: 10.1002/poc.3688(2017) e3688-n/a. </td> </tr> <tr class="References"> <td>[55] </td> <td style="word-break: break-word;"> B. Ruscic, Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry, Journal of Physical Chemistry A 119 (2015) 7810-7837. </td> </tr> <tr class="References"> <td>[56] </td> <td style="word-break: break-word;"> C. F. Goldsmith, G. R. Magoon, W. H. Green, Database of small molecule thermochemistry for combustion, Journal of Physical Chemistry A 116 (2012) 9033-9047. </td> </tr> <tr class="References"> <td>[57] </td> <td style="word-break: break-word;"> Z. Xin, E. M. Fisher, F. C. Gouldin, J. W. Bozzelli, Pyrolysis and oxidation of ethyl methyl sulfide in a flow reactor, Combustion and Flame 158 (2011) 1049-1058. </td> </tr> <tr class="References"> <td>[58] </td> <td style="word-break: break-word;"> X. Zheng, E. M. Fisher, F. C. Gouldin, L. Zhu, J. W. Bozzelli, Experimental and computational study of diethyl sulfide pyrolysis and mechanism, Proceedings of the Combustion Institute 32 (2009) 469-476. </td> </tr> <tr class="References"> <td>[59] </td> <td style="word-break: break-word;"> K. P. Somers, J. M. Simmie, F. Gillespie, C. Conroy, G. Black, W. K. Metcalfe, F. Battin-Leclerc, P. Dirrenberger, O. Herbinet, P. -A. Glaude, P. Dagaut, C. Togbé, K. Yasunaga, R. Fernandes, C. Lee, R. Tripathi, H. J. Curran, A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation, Combustion and Flame 160 (2013) 2291-2318. </td> </tr> </tbody> </table> </div> </div> <div class="section" id="cite_this_article" style="margin-bottom: 20px;"> <div class="Heading1" style="margin-bottom: 26px;">Cite This Article</div> <div class="cite_article"> <div class="mt-tabpage" js-tab="2"> <div class="mt-tabpage-title"> <a class="mt-tabpage-item mt-tabpage-item-cur">Plain Text</a> <a class="mt-tabpage-item">BibTeX</a> <a class="mt-tabpage-item">RIS</a> </div> <div class="mt-tabpage-count"> <ul class="mt-tabpage-cont__wrap"> <li class="mt-tabpage-item"> <div class="tab_div"> <div class="cite_type"> <p class="cite_type_item">APA Style</p> <p class="cite_type_info apa-copy-src">Guanghui Song, Joseph Bozzelli, Hebah Abdel-Wahab. (2021). Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3. <i>American Journal of Physical Chemistry</i>, <i>10</i>(4), 67-80. <a href='https://doi.org/10.11648/j.ajpc.20211004.14'>https://doi.org/10.11648/j.ajpc.20211004.14</a></p> <p class="cite_operation"> <span><a class="apa-copy copy-el" data-clipboard-action="copy" data-clipboard-target=".apa-copy-src" href="javascript:;" ><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.apa.txt", '.apa-copy-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> <div class="cite_type"> <p class="cite_type_item">ACS Style</p> <p class="cite_type_info acs-copy-src">Guanghui Song; Joseph Bozzelli; Hebah Abdel-Wahab. Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3. <i>Am. J. Phys. Chem.</i> <b>2021</b>, <i>10</i>(4), 67-80. <a href='https://doi.org/10.11648/j.ajpc.20211004.14'>doi: 10.11648/j.ajpc.20211004.14</a></p> <p class="cite_operation"> <span><a class="acs-copy copy-el" data-clipboard-action="copy" data-clipboard-target=".acs-copy-src" href="javascript:;"><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.acs.txt", '.acs-copy-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> <div class="cite_type"> <p class="cite_type_item">AMA Style</p> <p class="cite_type_info ama-copy-src">Guanghui Song, Joseph Bozzelli, Hebah Abdel-Wahab. Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3. <i>Am J Phys Chem</i>. 2021;10(4):67-80. <a href='https://doi.org/10.11648/j.ajpc.20211004.14'>doi: 10.11648/j.ajpc.20211004.14</a></p> <p class="cite_operation"> <span><a class="ama-copy copy-el" data-clipboard-action="copy" data-clipboard-target=".ama-copy-src" href="javascript:;"><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.ama.txt", '.ama-copy-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> </div> </li> <li class="mt-tabpage-item"> <div class="tab_div"> <pre _ngcontent-anj-c150="" class="text ris-text bib-copy-src main_content_citetext">@article{10.11648/j.ajpc.20211004.14, author = {Guanghui Song and Joseph Bozzelli and Hebah Abdel-Wahab}, title = {Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3}, journal = {American Journal of Physical Chemistry}, volume = {10}, number = {4}, pages = {67-80}, doi = {10.11648/j.ajpc.20211004.14}, url = {https://doi.org/10.11648/j.ajpc.20211004.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20211004.14}, abstract = {The quantum Rice-Ramsperger-Kassel (QRRK) theory is used to analyze the reaction between the activated CH3S CH•CH3 and molecular oxygen to account for further reaction and collisional and deactivation. hydroxyl radicals initiate the oxidation of Methyl ethyl sulfide (CH3SCH2CH3) and MES (methylthioethane) under combustion conditions. The CBS-QB3 and G3MP2B3 composite and M062X/6-311+G(2d, p) DFT methods was used to study the thermochemical properties of reactants, products and transition states. These thermochemical properties are used for the calculations for kinetic and thermochemical parameters. Under high pressure and low temperature, isomerization and stabilization of the CH3SCH(OO•)CH3 adduct is of importance. Under atmospheric pressure and at temperatures between above 600 ~ 800 K reactions of the chemically activated peroxy adduct become important relative to stabilization. The reaction between CH3SCH•CH3 and O2 forms an energized peroxy adduct CH3SCH(OO•)CH3 with a calculated well depth of 30.2 kcal/mol at the CBS-QB3 level of theory. Kinetic parameters are calculated using the thermochemical properties of products, reactants and transition states obtained using under CBS-QB3 method of calculation. At temperature below 500 K, Stabilization of CH3SCH(OO•)CH3 adduct is of importance. Temperature of 500-900 K, is optimal for intramolecular hydrogen shift and the isomerization of CH3SCH(OO•)CH3 adduct. At temperature above 800 K, all of the subsequent reaction paths are of importance. For a reaction to move forward under pressure 1-4 atm, the recommended optimal temperature is between 600-800 K. A new pathway for the CH3SCH(OO•)CH3 adduct is observed, the attachment of peroxyl oxygen radical to sulfur followed by carbon-sulfur bond dissociation and formation of oxygen-sulfur and oxygen-carbon double bonds.}, year = {2021} } </pre> <p class="cite_operation"> <span><a class="bib-copy copy-el" data-clipboard-action="copy" data-clipboard-target=".bib-copy-src" href="javascript:;"><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.bib", '.bib-copy-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> </li> <li class="mt-tabpage-item"> <div class="tab_div"> <pre _ngcontent-anj-c150="" class="text ris-text ris-copy-src main_content_citetext">TY - JOUR T1 - Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3 AU - Guanghui Song AU - Joseph Bozzelli AU - Hebah Abdel-Wahab Y1 - 2021/11/12 PY - 2021 N1 - https://doi.org/10.11648/j.ajpc.20211004.14 DO - 10.11648/j.ajpc.20211004.14 T2 - American Journal of Physical Chemistry JF - American Journal of Physical Chemistry JO - American Journal of Physical Chemistry SP - 67 EP - 80 PB - Science Publishing Group SN - 2327-2449 UR - https://doi.org/10.11648/j.ajpc.20211004.14 AB - The quantum Rice-Ramsperger-Kassel (QRRK) theory is used to analyze the reaction between the activated CH3S CH•CH3 and molecular oxygen to account for further reaction and collisional and deactivation. hydroxyl radicals initiate the oxidation of Methyl ethyl sulfide (CH3SCH2CH3) and MES (methylthioethane) under combustion conditions. The CBS-QB3 and G3MP2B3 composite and M062X/6-311+G(2d, p) DFT methods was used to study the thermochemical properties of reactants, products and transition states. These thermochemical properties are used for the calculations for kinetic and thermochemical parameters. Under high pressure and low temperature, isomerization and stabilization of the CH3SCH(OO•)CH3 adduct is of importance. Under atmospheric pressure and at temperatures between above 600 ~ 800 K reactions of the chemically activated peroxy adduct become important relative to stabilization. The reaction between CH3SCH•CH3 and O2 forms an energized peroxy adduct CH3SCH(OO•)CH3 with a calculated well depth of 30.2 kcal/mol at the CBS-QB3 level of theory. Kinetic parameters are calculated using the thermochemical properties of products, reactants and transition states obtained using under CBS-QB3 method of calculation. At temperature below 500 K, Stabilization of CH3SCH(OO•)CH3 adduct is of importance. Temperature of 500-900 K, is optimal for intramolecular hydrogen shift and the isomerization of CH3SCH(OO•)CH3 adduct. At temperature above 800 K, all of the subsequent reaction paths are of importance. For a reaction to move forward under pressure 1-4 atm, the recommended optimal temperature is between 600-800 K. A new pathway for the CH3SCH(OO•)CH3 adduct is observed, the attachment of peroxyl oxygen radical to sulfur followed by carbon-sulfur bond dissociation and formation of oxygen-sulfur and oxygen-carbon double bonds. VL - 10 IS - 4 ER - </pre> <p class="cite_operation"> <span><a class="ris-copy copy-el" data-clipboard-action="copy" data-clipboard-target=".ris-copy-src" href="javascript:;"><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.ris", '.ris-copy-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> </li> </ul> </div> </div> </div> </div> <div class="section" id="author_information" style="margin-top: 0px; margin-bottom: 50px;"> <div class="Heading1" style="margin-bottom: 26px;">Author Information</div> <div class="author_information"> <ul> <li> <div class="author_info"> <p class="article_author_name">Guanghui Song</p> <p class="Affiliation">Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, USA</p> </div> </li> <li> <div class="author_info"> <p class="article_author_name">Joseph Bozzelli</p> <p class="Affiliation">Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, USA</p> </div> </li> <li> <div class="author_info"> <p class="article_author_name">Hebah Abdel-Wahab</p> <p class="Affiliation">Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, USA</p> </div> </li> </ul> </div> </div> </div> </div> <div class="article_position right"> <div class="article_content_right"> <div class="toggle-close clearfix"><i class="fas fa-times"></i></div> <input type="hidden" id="articleID" value="10062173"> <div class="right_content_btn download_right"> <a href="javascript:;" onclick="downLoadArticle(10062173, "https:\/\/w.sciencepublishinggroup.com\/", '.spanDownloads', "https:\/\/article.sciencepublishinggroup.com\/", "pdf\/ajpc.20211004.14", true)" > <i class="fas fa-file-pdf"></i>Download PDF </a> </div> <div id="slider" class="article_tab"> <!-- left #slideshow --> <div class="controls-center"> <div id="slider_controls"> <ul id="slider_nav" class="clearfix"> <li><span>Sections</span></li> </ul> </div> </div> <!-- start slideshow --> <div class="article_tab_item" style="background-color: white;"> <div id="slideshow"> <div class="slider-item slider-item-no-html"> <ul class="section_ul"> <li class="section_nav"> <a href="javascript:;" data="abstract">Abstract</a> </li> <li class="section_nav"> <a href="javascript:;" data="keywords">Keywords</a> </li> <li class="section_nav"> <a href="javascript:;" data="references">References</a> </li> <li class="section_nav"> <a href="javascript:;" data="cite_this_article">Cite This Article</a> </li> <li class="section_nav"> <a href="javascript:;" data="author_information">Author Information</a> </li> </ul> </div> </div> </div> <div class="clr"></div> <div class="clearfix"></div> </div> </div> <div class="tab-nav-shortcut"> <ul class="clearfix"> <li> <a href="javascript:;" onclick="downLoadArticle(10062173, "https:\/\/w.sciencepublishinggroup.com\/", '.spanDownloads', "https:\/\/article.sciencepublishinggroup.com\/", "pdf\/ajpc.20211004.14", true)" > <p class="shortcut_i"><i class="fas fa-bars"></i></p> <p class="shortcut_name">Dwonload</p> </a> </li> <li> <a data-toggle="modal" data-target="#citeModalScrollable"> <p class="shortcut_i"><i class="fas fa-file-alt"></i></p> <p class="shortcut_name">Cite</p> </a> </li> <li> <a class="toggle_nav"> <p class="shortcut_i"><i class="fas fa-bars"></i></p> <p class="shortcut_name">Section</p> </a> </li> <!--<li> <a class="toggle_nav"> <p class="shortcut_i"><i class="fas fa-image"></i></p> <p class="shortcut_name">Figures</p> </a> </li> <li> <a class="toggle_nav"> <p class="shortcut_i"><i class="fas fa-border-all"></i></p> <p class="shortcut_name">Table</p> </a> </li>--> </ul> </div> <!-- Get Author Email --> <div class="modal fade" id="emailModalScrollable" tabindex="-1" aria-labelledby="exampleModalScrollableTitle" aria-hidden="true"> <div class="modal-dialog modal-dialog-scrollable modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title">Verification Code/</h5> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="code_item"> <input type="hidden" id="visitId" value="fe07f9aa-afe8-4fd3-ab55-91b7b5d7ae24"> <input type="text" id="txtCode" name="verificationCode" class="fm_code" maxlength="10" onkeyup="hideError(this, '.pCodeError,.pVerificationCodeError')" placeholder="Please type captcha"> <img src="/captcha/captchaImage?type=math&visitId=fe07f9aa-afe8-4fd3-ab55-91b7b5d7ae24" onclick="refreshCaptcha()" id="imgCaptcha" class="vercode"> <a class="renew" onclick="refreshCaptcha()">Renew</a> <p class="error pCodeError" style="display: none;"><i class="fas fa-exclamation-triangle"></i>The captcha is required.</p> <p class="error pVerificationCodeError" style="display: none;"><i class="fas fa-exclamation-triangle"></i>Captcha is not valid.</p> </div> <p class="puple_email"><img src="/img/email_icon.png">Email: <a href="" class="normal_link"></a></p> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary confirm-btn" onclick="getEmailAuthor()">Confirm</button> <button type="button" class="btn btn-secondary" data-dismiss="modal">Cancel</button> </div> </div> </div> </div> <!-- Modal cite this article --> <div class="modal fade" id="citeModalScrollable" tabindex="-1" aria-labelledby="exampleModalScrollableTitle" aria-hidden="true"> <div class="modal-dialog modal-dialog-scrollable modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title">Cite This Article</h5> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="cite_article"> <div class="mt-tabpage puple_cite" js-tab="1"> <div class="mt-tabpage-title puple_cite"> <a href="javascript:;" class="mt-tabpage-item mt-tabpage-item-cur">Plain Text</a> <a href="javascript:;" class="mt-tabpage-item">BibTeX</a> <a href="javascript:;" class="mt-tabpage-item">RIS</a> </div> <div class="mt-tabpage-count_puple puple_cite"> <ul class="mt-tabpage-cont__wrap"> <li class="mt-tabpage-item puple_cite"> <div class="tab_div"> <div class="cite_type_puple"> <p class="cite_type_item">APA Style</p> <p class="cite_type_info apa-copy-pop-src">Guanghui Song, Joseph Bozzelli, Hebah Abdel-Wahab. (2021). Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3. <i>American Journal of Physical Chemistry</i>, <i>10</i>(4), 67-80. <a href='https://doi.org/10.11648/j.ajpc.20211004.14'>https://doi.org/10.11648/j.ajpc.20211004.14</a></p> <p class="cite_operation"> <span><a class="apa-copy-pop copy-el" data-clipboard-action="copy" data-clipboard-target=".apa-copy-pop-src" href="javascript:;"><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.apa.txt", '.apa-copy-pop-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> <div class="cite_type_puple"> <p class="cite_type_item">ACS Style</p> <p class="cite_type_info acs-copy-pop-src">Guanghui Song; Joseph Bozzelli; Hebah Abdel-Wahab. Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3. <i>Am. J. Phys. Chem.</i> <b>2021</b>, <i>10</i>(4), 67-80. <a href='https://doi.org/10.11648/j.ajpc.20211004.14'>doi: 10.11648/j.ajpc.20211004.14</a></p> <p class="cite_operation"> <span><a class="acs-copy-pop copy-el" data-clipboard-action="copy" data-clipboard-target=".acs-copy-pop-src" href="javascript:;"><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.acs.txt", '.acs-copy-pop-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> <div class="cite_type_puple"> <p class="cite_type_item">AMA Style</p> <p class="cite_type_info ama-copy-pop-src">Guanghui Song, Joseph Bozzelli, Hebah Abdel-Wahab. Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3. <i>Am J Phys Chem</i>. 2021;10(4):67-80. <a href='https://doi.org/10.11648/j.ajpc.20211004.14'>doi: 10.11648/j.ajpc.20211004.14</a></p> <p class="cite_operation"> <span><a class="ama-copy-pop copy-el" data-clipboard-action="copy" data-clipboard-target=".ama-copy-pop-src" href="javascript:;"><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.ama.txt", '.ama-copy-pop-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> </div> </li> <li class="mt-tabpage-item puple_cite"> <div class="tab_div"> <pre _ngcontent-anj-c150="" class="text ris-text bib-copy-pop-src">@article{10.11648/j.ajpc.20211004.14, author = {Guanghui Song and Joseph Bozzelli and Hebah Abdel-Wahab}, title = {Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3}, journal = {American Journal of Physical Chemistry}, volume = {10}, number = {4}, pages = {67-80}, doi = {10.11648/j.ajpc.20211004.14}, url = {https://doi.org/10.11648/j.ajpc.20211004.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20211004.14}, abstract = {The quantum Rice-Ramsperger-Kassel (QRRK) theory is used to analyze the reaction between the activated CH3S CH•CH3 and molecular oxygen to account for further reaction and collisional and deactivation. hydroxyl radicals initiate the oxidation of Methyl ethyl sulfide (CH3SCH2CH3) and MES (methylthioethane) under combustion conditions. The CBS-QB3 and G3MP2B3 composite and M062X/6-311+G(2d, p) DFT methods was used to study the thermochemical properties of reactants, products and transition states. These thermochemical properties are used for the calculations for kinetic and thermochemical parameters. Under high pressure and low temperature, isomerization and stabilization of the CH3SCH(OO•)CH3 adduct is of importance. Under atmospheric pressure and at temperatures between above 600 ~ 800 K reactions of the chemically activated peroxy adduct become important relative to stabilization. The reaction between CH3SCH•CH3 and O2 forms an energized peroxy adduct CH3SCH(OO•)CH3 with a calculated well depth of 30.2 kcal/mol at the CBS-QB3 level of theory. Kinetic parameters are calculated using the thermochemical properties of products, reactants and transition states obtained using under CBS-QB3 method of calculation. At temperature below 500 K, Stabilization of CH3SCH(OO•)CH3 adduct is of importance. Temperature of 500-900 K, is optimal for intramolecular hydrogen shift and the isomerization of CH3SCH(OO•)CH3 adduct. At temperature above 800 K, all of the subsequent reaction paths are of importance. For a reaction to move forward under pressure 1-4 atm, the recommended optimal temperature is between 600-800 K. A new pathway for the CH3SCH(OO•)CH3 adduct is observed, the attachment of peroxyl oxygen radical to sulfur followed by carbon-sulfur bond dissociation and formation of oxygen-sulfur and oxygen-carbon double bonds.}, year = {2021} } </pre> <p class="cite_operation"> <span><a class="bib-copy-pop copy-el" data-clipboard-action="copy" data-clipboard-target=".bib-copy-pop-src" href="javascript:;"><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.bib", '.bib-copy-pop-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> </li> <li class="mt-tabpage-item puple_cite"> <div class="tab_div"> <pre _ngcontent-anj-c150="" class="text ris-text ris-copy-pop-src">TY - JOUR T1 - Thermochemistry and Reaction Kinetics of Secondary Ethyl Radical of Methyl Ethyl Sulfide, CH3SCH•CH3, with 3O2 to CH2SCH(OO•)CH3 AU - Guanghui Song AU - Joseph Bozzelli AU - Hebah Abdel-Wahab Y1 - 2021/11/12 PY - 2021 N1 - https://doi.org/10.11648/j.ajpc.20211004.14 DO - 10.11648/j.ajpc.20211004.14 T2 - American Journal of Physical Chemistry JF - American Journal of Physical Chemistry JO - American Journal of Physical Chemistry SP - 67 EP - 80 PB - Science Publishing Group SN - 2327-2449 UR - https://doi.org/10.11648/j.ajpc.20211004.14 AB - The quantum Rice-Ramsperger-Kassel (QRRK) theory is used to analyze the reaction between the activated CH3S CH•CH3 and molecular oxygen to account for further reaction and collisional and deactivation. hydroxyl radicals initiate the oxidation of Methyl ethyl sulfide (CH3SCH2CH3) and MES (methylthioethane) under combustion conditions. The CBS-QB3 and G3MP2B3 composite and M062X/6-311+G(2d, p) DFT methods was used to study the thermochemical properties of reactants, products and transition states. These thermochemical properties are used for the calculations for kinetic and thermochemical parameters. Under high pressure and low temperature, isomerization and stabilization of the CH3SCH(OO•)CH3 adduct is of importance. Under atmospheric pressure and at temperatures between above 600 ~ 800 K reactions of the chemically activated peroxy adduct become important relative to stabilization. The reaction between CH3SCH•CH3 and O2 forms an energized peroxy adduct CH3SCH(OO•)CH3 with a calculated well depth of 30.2 kcal/mol at the CBS-QB3 level of theory. Kinetic parameters are calculated using the thermochemical properties of products, reactants and transition states obtained using under CBS-QB3 method of calculation. At temperature below 500 K, Stabilization of CH3SCH(OO•)CH3 adduct is of importance. Temperature of 500-900 K, is optimal for intramolecular hydrogen shift and the isomerization of CH3SCH(OO•)CH3 adduct. At temperature above 800 K, all of the subsequent reaction paths are of importance. For a reaction to move forward under pressure 1-4 atm, the recommended optimal temperature is between 600-800 K. A new pathway for the CH3SCH(OO•)CH3 adduct is observed, the attachment of peroxyl oxygen radical to sulfur followed by carbon-sulfur bond dissociation and formation of oxygen-sulfur and oxygen-carbon double bonds. VL - 10 IS - 4 ER - </pre> <p class="cite_operation"> <span><a class="ris-copy-pop copy-el" data-clipboard-action="copy" data-clipboard-target=".ris-copy-pop-src" href="javascript:;"><img src="/img/copy_icon.png">Copy</a></span> <span class="line">|</span> <span><a href="javascript:;" onclick="spgCommon.bindDownloadDataFromEl("10.11648.j.ajpc.20211004.14.ris", '.ris-copy-pop-src')"><img src="/img/download_icon.png">Download</a></span> </p> </div> </li> </ul> </div> </div> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-secondary" data-dismiss="modal">Cancel</button> </div> </div> </div> </div> <div class="modal fade" id="downloadValidationModal" tabindex="-1" aria-labelledby="exampleModalScrollableTitle" aria-hidden="true"> <div class="modal-dialog modal-dialog-scrollable modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title">Verification Code</h5> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="code_item"> <input type="hidden" id="downloadValidationVisitId" value="e07e0c5a-fa36-4f28-b740-5b7a748d56ac"> <input type="hidden" id="downloadValidationUrl" value="https://article.sciencepublishinggroup.com/"> <input type="hidden" id="downloadValidationWebsite"> <input type="text" id="downloadValidationCode" name="downloadValidationCode" class="fm_code" maxlength="10" onkeyup="hideError(this, '.pCodeError,.pVerificationCodeError')" placeholder="Please type captcha"> <img src="https://article.sciencepublishinggroup.com/captcha/captchaImage?type=math&visitId=e07e0c5a-fa36-4f28-b740-5b7a748d56ac" onclick="downloadValidation.fun.refreshCaptcha()" id="downloadValidationCaptcha" class="vercode"> <a class="renew" onclick="downloadValidation.fun.refreshCaptcha()">Renew</a> <p class="error pCodeError" style="display: none;"><i class="fas fa-exclamation-triangle"></i>The captcha is required.</p> <p class="error pVerificationCodeError" style="display: none;"><i class="fas fa-exclamation-triangle"></i>Captcha is not valid.</p> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary confirm-btn" onclick="downloadValidation.fun.downloadArticle()">Confirm</button> <button type="button" class="btn btn-secondary" data-dismiss="modal">Cancel</button> </div> </div> </div> </div> </div> </div> <div class="footer"> <div class="content clearfix"> <div class="foot_item" style="width:408px;"> <p class="foot_p"><a href="/about-sciencepg" target="_blank">About Us</a></p> <p class="foot_about"><a href="/about-sciencepg" target="_blank">Science Publishing Group (SciencePG) is an Open Access publisher, with more than 300 online, peer-reviewed journals covering a wide range of academic disciplines.</a></p> <p class="foot_more_link"><a href="/about-sciencepg" target="_blank" class="foot_about_more">Learn More About SciencePG <i class="fas fa-angle-right"></i></a></p> <div class="foot_logo"> <a href="/" target="_blank"><img src="/img/foot_logo.png"></a> </div> </div> <div class="foot_item"> <p class="foot_p">Products</p> <div class="foot_link"> <ul> <li> <a href="/journals/browse-by-subject" target="_blank">Journals</a> </li> <li> <a href="/special-issues/ongoing" target="_blank">Special Issues</a> </li> <li> <a href="/proceedings" target="_blank">Proceedings</a> </li> <li> <a href="/books" target="_blank">Books</a> </li> <li> <a href="https://www.academicevents.org" target="_blank">AcademicEvents</a> </li> <li> <a href="https://scholarprofiles.com/" target="_blank">ScholarProfiles</a> </li> </ul> </div> </div> <div class="foot_item" style="margin-right: 40px;"> <p class="foot_p">Information</p> <div class="foot_link"> <ul> <li> <a href="/information/for-authors" target="_blank">For Authors</a> </li> <li> <a href="/information/for-reviewers" target="_blank">For Reviewers</a> </li> <li> <a href="/information/for-editors" target="_blank">For Editors</a> </li> <li> <a href="/information/for-conference-organizers" target="_blank">For Conference Organizers</a> </li> <li> <a href="/information/for-librarians" target="_blank">For Librarians</a> </li> <li> <a href="/information/article-processing-charges" target="_blank">Article Processing Charges</a> </li> </ul> </div> </div> <div class="foot_item" style="margin-top:34px;"> <div class="foot_link"> <ul> <li> <a href="/special-issues/guidelines" target="_blank">Special Issues Guidelines</a> </li> <li> <a href="/information/editorial-process" target="_blank">Editorial Process</a> </li> <li> <a href="/information/peer-review-at-sciencepg" target="_blank">Peer Review at SciencePG</a> </li> <li> <a href="/information/open-access" target="_blank">Open Access</a> </li> <li> <a href="/information/ethical-guidelines" target="_blank">Ethical Guidelines</a> </li> </ul> </div> </div> <div class="foot_item double_box"> <p class="foot_p">Important Link</p> <div class="foot_link"> <ul> <li> <a href="/submit-an-article" target="_blank">Manuscript Submission</a> </li> <li> <a href="/special-issues/propose" target="_blank">Propose a Special Issue</a> </li> <li> <a href="/join-us#Join_as_Editorial_Board_Member" target="_blank">Join as Editorial Board Member</a> </li> <li> <a href="/join-us#Become_a_Reviewer" target="_blank">Become a Reviewer</a> </li> </ul> </div> </div> </div> </div> <div class="copyright">Copyright © 2012 -- 2024 Science Publishing Group – All rights reserved.</div> </body> </html>