CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 85 results for author: <span class="mathjax">Schaich, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Schaich%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Schaich, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Schaich%2C+D&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Schaich, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Schaich%2C+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Schaich%2C+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Schaich%2C+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14540">arXiv:2412.14540</a> <span> [<a href="https://arxiv.org/pdf/2412.14540">pdf</a>, <a href="https://arxiv.org/format/2412.14540">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hyper Stealth Dark Matter and Long-Lived Particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P+M">Pavlos M. Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14540v1-abstract-short" style="display: inline;"> A new dark matter candidate is proposed that arises as the lightest baryon from a confining $SU(N)$ gauge theory which equilibrates with the Standard Model only through electroweak interactions. Surprisingly, this candidate can be as light as a few GeV. The lower bound arises from the intersection of two competing requirements: i) the equilibration sector of the model must be sufficiently heavy, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14540v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14540v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14540v1-abstract-full" style="display: none;"> A new dark matter candidate is proposed that arises as the lightest baryon from a confining $SU(N)$ gauge theory which equilibrates with the Standard Model only through electroweak interactions. Surprisingly, this candidate can be as light as a few GeV. The lower bound arises from the intersection of two competing requirements: i) the equilibration sector of the model must be sufficiently heavy, at least several TeV, to avoid bounds from colliders, and ii) the lightest dark meson (that may be the dark $畏'$, $蟽$, or the lightest glueball) has suppressed interactions with the SM, and must decay before BBN. The low energy dark sector consists of one flavor that is electrically neutral and an almost electroweak singlet. The dark matter candidate is the lightest baryon consisting of $N$ of these light flavors leading to a highly suppressed elastic scattering rate with the SM. The equilibration sector consists of vector-like dark quarks that transform under the electroweak group, ensuring that the dark sector can reach thermal equilibrium with the SM in the early Universe. The lightest dark meson lifetimes vary between $10^{-3} \lesssim c 蟿\lesssim 10^7$~meters, providing an outstanding target for LHC production and experimental detection. We delineate the interplay between the lifetime of the light mesons, the suppressed direct detection cross section of the lightest baryon, and the scale of equilibration sector that can be probed at the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14540v1-abstract-full').style.display = 'none'; document.getElementById('2412.14540v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-2001590 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13407">arXiv:2412.13407</a> <span> [<a href="https://arxiv.org/pdf/2412.13407">pdf</a>, <a href="https://arxiv.org/format/2412.13407">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Finite-temperature phase diagram of the BMN matrix model on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Joseph%2C+A">Anosh Joseph</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13407v1-abstract-short" style="display: inline;"> We investigate the thermal phase structure of the Berenstein--Maldacena--Nastase (BMN) matrix model using non-perturbative lattice Monte Carlo calculations. Our main analyses span three orders of magnitude in the coupling, involving systems with sizes up to $N_蟿 = 24$ lattice sites and SU($N$) gauge groups with $8 \leq N \leq 16$. In addition, we carry out extended checks of discretization artifac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13407v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13407v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13407v1-abstract-full" style="display: none;"> We investigate the thermal phase structure of the Berenstein--Maldacena--Nastase (BMN) matrix model using non-perturbative lattice Monte Carlo calculations. Our main analyses span three orders of magnitude in the coupling, involving systems with sizes up to $N_蟿 = 24$ lattice sites and SU($N$) gauge groups with $8 \leq N \leq 16$. In addition, we carry out extended checks of discretization artifacts for $N_蟿 \leq 128$ and gauge group SU(4). We find results for the deconfinement temperature that interpolate between the perturbative prediction at weak coupling and the large-$N$ dual supergravity calculation at strong coupling. While we confirm that the phase transition is first order for strong coupling, it appears to be continuous for weaker couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13407v1-abstract-full').style.display = 'none'; document.getElementById('2412.13407v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15083">arXiv:2411.15083</a> <span> [<a href="https://arxiv.org/pdf/2411.15083">pdf</a>, <a href="https://arxiv.org/format/2411.15083">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards quantum simulation of lower-dimensional supersymmetric lattice models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Mendicelli%2C+E">Emanuele Mendicelli</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15083v1-abstract-short" style="display: inline;"> Supersymmetric models are grounded in the intriguing concept of a hypothetical symmetry that relates bosonic and fermionic particles. This symmetry has profound implications, offering valuable extensions to the Standard Model of particle physics and fostering connections to theories of quantum gravity. However, lattice studies exploring the non-perturbative features of these models, such as sponta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15083v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15083v1-abstract-full" style="display: none;"> Supersymmetric models are grounded in the intriguing concept of a hypothetical symmetry that relates bosonic and fermionic particles. This symmetry has profound implications, offering valuable extensions to the Standard Model of particle physics and fostering connections to theories of quantum gravity. However, lattice studies exploring the non-perturbative features of these models, such as spontaneous supersymmetry breaking and real-time evolution encounter significant challenges, particularly due to the infamous sign problem. The sign problem obstructs simulations on classical computers, especially when dealing with high-dimensional lattice systems. While one potential solution is to adopt the Hamiltonian formalism, this approach necessitates an exponential increase in classical resources with the number of lattice sites and degrees of freedom, rendering it impractical for large systems. In contrast, quantum hardware offers a promising alternative, as it requires in principle a polynomial amount of resources, making the study of these models more accessible. In this context, we explore the encoding of lower-dimensional supersymmetric quantum mechanics onto qubits. We also highlight our ongoing efforts to implement and check the model supersymmetry breaking on an IBM gate-based quantum simulator with and without shot noise, addressing the technical challenges we face and the potential implications of our findings for advancing our understanding of supersymmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15083v1-abstract-full').style.display = 'none'; document.getElementById('2411.15083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11514">arXiv:2410.11514</a> <span> [<a href="https://arxiv.org/pdf/2410.11514">pdf</a>, <a href="https://arxiv.org/format/2410.11514">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.453.0212">10.22323/1.453.0212 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring lattice supersymmetry with variational quantum deflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Culver%2C+C">Christopher Culver</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11514v1-abstract-short" style="display: inline;"> Lattice studies of spontaneous supersymmetry breaking suffer from a sign problem that in principle can be evaded through novel methods enabled by quantum computing. Focusing on lower-dimensional lattice systems with more modest resource requirements, in particular the N=1 Wess--Zumino model in 1+1 dimensions, we are exploring ways quantum computing could be used to study spontaneous supersymmetry… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11514v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11514v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11514v1-abstract-full" style="display: none;"> Lattice studies of spontaneous supersymmetry breaking suffer from a sign problem that in principle can be evaded through novel methods enabled by quantum computing. Focusing on lower-dimensional lattice systems with more modest resource requirements, in particular the N=1 Wess--Zumino model in 1+1 dimensions, we are exploring ways quantum computing could be used to study spontaneous supersymmetry breaking. A particularly promising recent development is to apply the variational quantum deflation algorithm, which generalizes the variational quantum eigensolver so as to resolve multiple low-energy states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11514v1-abstract-full').style.display = 'none'; document.getElementById('2410.11514v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Sci. LATTICE2023 (2024) 212 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07836">arXiv:2312.07836</a> <span> [<a href="https://arxiv.org/pdf/2312.07836">pdf</a>, <a href="https://arxiv.org/format/2312.07836">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Stealth dark matter spectrum using LapH and Irreps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Culver%2C+C">Christopher Culver</a>, <a href="/search/hep-lat?searchtype=author&query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&query=Ingoldby%2C+J">James Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X+Y">Xiao Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Owen%2C+E">Evan Owen</a>, <a href="/search/hep-lat?searchtype=author&query=Park%2C+S">Sungwoo Park</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07836v1-abstract-short" style="display: inline;"> We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark matter s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07836v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07836v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07836v1-abstract-full" style="display: none;"> We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark matter self-interactions. Here, we focus on reducing excited state contamination in the single baryon channel by applying the Laplacian Heaviside method, as well as projecting our baryon operators onto the irreducible representations of the octahedral group. We compare our resulting spectrum to previous work involving Gaussian smeared non-projected operators and find good agreement with reduced statistical uncertainties. We also present the spectrum of the low-lying odd-parity baryons for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07836v1-abstract-full').style.display = 'none'; document.getElementById('2312.07836v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-808-T, RIKEN-iTHEMS-Report-23, IPPP/23/71, LLNL-JRNL-858123 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04980">arXiv:2312.04980</a> <span> [<a href="https://arxiv.org/pdf/2312.04980">pdf</a>, <a href="https://arxiv.org/format/2312.04980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.054507">10.1103/PhysRevD.110.054507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative phase diagram of two-dimensional ${\cal N} = (2, 2)$ super-Yang--Mills </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Dhindsa%2C+N+S">Navdeep Singh Dhindsa</a>, <a href="/search/hep-lat?searchtype=author&query=Jha%2C+R+G">Raghav G. Jha</a>, <a href="/search/hep-lat?searchtype=author&query=Joseph%2C+A">Anosh Joseph</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04980v2-abstract-short" style="display: inline;"> We consider two-dimensional ${\cal N} = (2, 2)$ Yang--Mills theory with gauge group SU($N$) in Euclidean signature compactified on a torus with thermal fermion boundary conditions imposed on one cycle. We perform non-perturbative lattice analyses of this theory for large $12 \leq N \leq 20$. Although no holographic dual of this theory is yet known, we conduct numerical investigations to check for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04980v2-abstract-full').style.display = 'inline'; document.getElementById('2312.04980v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04980v2-abstract-full" style="display: none;"> We consider two-dimensional ${\cal N} = (2, 2)$ Yang--Mills theory with gauge group SU($N$) in Euclidean signature compactified on a torus with thermal fermion boundary conditions imposed on one cycle. We perform non-perturbative lattice analyses of this theory for large $12 \leq N \leq 20$. Although no holographic dual of this theory is yet known, we conduct numerical investigations to check for features similar to the two-dimensional ${\cal N} = (8, 8)$ Yang--Mills theory, which has a well-defined gravity dual. We perform lattice field theory calculations to determine the phase diagram, observing a spatial deconfinement transition similar to the maximally supersymmetric case. However, the transition does not continue to low temperature, implying the absence of a topology-changing transition between black hole geometries in any holographic dual for this four-supercharge theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04980v2-abstract-full').style.display = 'none'; document.getElementById('2312.04980v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Added references, no change in results. Version consistent with the journal version. Data release at http://doi.org/10.5281/zenodo.10083864, 15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 054507 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10243">arXiv:2311.10243</a> <span> [<a href="https://arxiv.org/pdf/2311.10243">pdf</a>, <a href="https://arxiv.org/format/2311.10243">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> First-order bulk transitions in large-$N$ lattice Yang--Mills theories using the density of states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Springer%2C+F">Felix Springer</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10243v1-abstract-short" style="display: inline;"> We use the Logarithmic Linear Relaxation (LLR) density of states algorithm to study the bulk phase transitions of pure-gauge SU($N$) lattice Yang--Mills theories with $4 \leq N \leq 8$. This approach avoids super-critical slowing down at such transitions, which poses a problem for traditional importance sampling Monte-Carlo methods. We analyse the effect of different updating strategies within the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10243v1-abstract-full').style.display = 'inline'; document.getElementById('2311.10243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10243v1-abstract-full" style="display: none;"> We use the Logarithmic Linear Relaxation (LLR) density of states algorithm to study the bulk phase transitions of pure-gauge SU($N$) lattice Yang--Mills theories with $4 \leq N \leq 8$. This approach avoids super-critical slowing down at such transitions, which poses a problem for traditional importance sampling Monte-Carlo methods. We analyse the effect of different updating strategies within the LLR algorithm, different reconstruction techniques of the density of states and different lattice volumes. By comparing our results for the weakly first-order SU(5) bulk phase transition against those for the stronger transitions with $N \geq 6$, we demonstrate the advantages of the LLR method for analyses of strong transitions with large latent heat. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10243v1-abstract-full').style.display = 'none'; document.getElementById('2311.10243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02538">arXiv:2308.02538</a> <span> [<a href="https://arxiv.org/pdf/2308.02538">pdf</a>, <a href="https://arxiv.org/format/2308.02538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-981-97-0289-3_274">10.1007/978-981-97-0289-3_274 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deconfinement Phase Transition in Bosonic BMN Model at General Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Dhindsa%2C+N+S">Navdeep Singh Dhindsa</a>, <a href="/search/hep-lat?searchtype=author&query=Joseph%2C+A">Anosh Joseph</a>, <a href="/search/hep-lat?searchtype=author&query=Samlodia%2C+A">Abhishek Samlodia</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02538v1-abstract-short" style="display: inline;"> We present our analysis of the deconfinement phase transition in the bosonic BMN matrix model. The model is investigated using a non-perturbative lattice framework. We used the Polyakov loop as the order parameter to monitor the phase transition, and the results were verified using the separatrix ratio. The calculations are performed using a large number of colors and a broad range of temperatures… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02538v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02538v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02538v1-abstract-full" style="display: none;"> We present our analysis of the deconfinement phase transition in the bosonic BMN matrix model. The model is investigated using a non-perturbative lattice framework. We used the Polyakov loop as the order parameter to monitor the phase transition, and the results were verified using the separatrix ratio. The calculations are performed using a large number of colors and a broad range of temperatures for all couplings. Our results indicate a first-order phase transition in this theory for all the coupling values that connect the perturbative and non-perturbative regimes of the theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02538v1-abstract-full').style.display = 'none'; document.getElementById('2308.02538v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures. Contribution to the proceedings of the XXV DAE-BRNS HEP Symposium 2022, 12-16 December 2022, IISER Mohali, India</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06095">arXiv:2306.06095</a> <span> [<a href="https://arxiv.org/pdf/2306.06095">pdf</a>, <a href="https://arxiv.org/format/2306.06095">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Light Scalar Meson and Decay Constant in SU(3) Gauge Theory with Eight Dynamical Flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lattice+Strong+Dynamics+Collaboration"> Lattice Strong Dynamics Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Owen%2C+E">E. Owen</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Culver%2C+C">C. Culver</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06095v1-abstract-short" style="display: inline;"> The SU(3) gauge theory with $N_f=8$ nearly massless Dirac fermions has long been of theoretical and phenomenological interest due to the near-conformality arising from its proximity to the conformal window. One particularly interesting feature is the emergence of a relatively light, stable flavor-singlet scalar meson $蟽$ $(J^{PC}=0^{++})$ in contrast to the $N_f=2$ theory QCD. In this work, we stu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06095v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06095v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06095v1-abstract-full" style="display: none;"> The SU(3) gauge theory with $N_f=8$ nearly massless Dirac fermions has long been of theoretical and phenomenological interest due to the near-conformality arising from its proximity to the conformal window. One particularly interesting feature is the emergence of a relatively light, stable flavor-singlet scalar meson $蟽$ $(J^{PC}=0^{++})$ in contrast to the $N_f=2$ theory QCD. In this work, we study the finite-volume dependence of the $蟽$ meson correlation function computed in lattice gauge theory and determine the $蟽$ meson mass and decay constant extrapolated to the infinite-volume limit. We also determine the infinite volume mass and decay constant of the flavor-nonsinglet scalar meson $a_0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06095v1-abstract-full').style.display = 'none'; document.getElementById('2306.06095v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 11 figures, supplementary data in zenodo https://dx.doi.org/10.5281/zenodo.8007955</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-286-T; LLNL-JRNL-850169; RIKEN-iTHEMS-Report-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03665">arXiv:2305.03665</a> <span> [<a href="https://arxiv.org/pdf/2305.03665">pdf</a>, <a href="https://arxiv.org/format/2305.03665">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.L091505">10.1103/PhysRevD.108.L091505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden Conformal Symmetry from the Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=LSD+Collaboration"> LSD Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03665v2-abstract-short" style="display: inline;"> We analyze newly expanded and refined data from lattice studies of an SU(3) gauge theory with eight Dirac fermions in the fundamental representation. We focus on the light composite states emerging from these studies, consisting of a set of pseudoscalars and a single light scalar. We first consider the view that this theory is just outside the conformal window. In this case, the pseudoscalars aris… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03665v2-abstract-full').style.display = 'inline'; document.getElementById('2305.03665v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03665v2-abstract-full" style="display: none;"> We analyze newly expanded and refined data from lattice studies of an SU(3) gauge theory with eight Dirac fermions in the fundamental representation. We focus on the light composite states emerging from these studies, consisting of a set of pseudoscalars and a single light scalar. We first consider the view that this theory is just outside the conformal window. In this case, the pseudoscalars arise from spontaneous breaking of chiral symmetry. Identifying the scalar in this case as an approximate dilaton, we fit the lattice data to a dilaton effective field theory, finding that it yields a good fit even at lowest order. For comparison, we then consider the possibility that the theory is inside the conformal window. The fermion mass provides a deformation, triggering confinement. We employ simple scaling laws to fit the lattice data, and find that it is of lesser quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03665v2-abstract-full').style.display = 'none'; document.getElementById('2305.03665v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-23, LLNL-JRNL-853554, FERMILAB-CONF-23-260-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 9, L091505 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04655">arXiv:2304.04655</a> <span> [<a href="https://arxiv.org/pdf/2304.04655">pdf</a>, <a href="https://arxiv.org/format/2304.04655">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.430.0220">10.22323/1.430.0220 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring conformality in lattice N=4 supersymmetric Yang--Mills </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04655v1-abstract-short" style="display: inline;"> Maximally supersymmetric Yang--Mills theory (N=4 SYM) is conformal for any value of the coupling. Lattice regularization breaks conformality through the introduction of a non-zero lattice spacing and a finite lattice volume. This proceedings presents ongoing numerical computations of conformal scaling dimensions in lattice N=4 SYM, based on a lattice formulation that exactly preserves a supersymme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04655v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04655v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04655v1-abstract-full" style="display: none;"> Maximally supersymmetric Yang--Mills theory (N=4 SYM) is conformal for any value of the coupling. Lattice regularization breaks conformality through the introduction of a non-zero lattice spacing and a finite lattice volume. This proceedings presents ongoing numerical computations of conformal scaling dimensions in lattice N=4 SYM, based on a lattice formulation that exactly preserves a supersymmetry sub-algebra at non-zero lattice spacing. The main targets are the non-trivial anomalous dimension of the Konishi operator, as well as a mass anomalous dimension extracted from the eigenvalue mode number of the fermion operator. The latter is expected to vanish in the conformal continuum theory, providing insight into the interplay of lattice discretization and conformality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04655v1-abstract-full').style.display = 'none'; document.getElementById('2304.04655v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the proceedings of Lattice 2022, August 8--13, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Sci. LATTICE2022 (2023) 220 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13880">arXiv:2303.13880</a> <span> [<a href="https://arxiv.org/pdf/2303.13880">pdf</a>, <a href="https://arxiv.org/format/2303.13880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice Studies of 3D Maximally Supersymmetric Yang--Mills </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Sherletov%2C+A">Angel Sherletov</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13880v1-abstract-short" style="display: inline;"> We present ongoing investigations of maximally supersymmetric Yang--Mills ($Q = 16$ SYM) theory in three space-time dimensions. At low temperatures and large $N$ this theory is related to black branes in higher-dimensional quantum gravity. Building on previous work that focused on the homogeneous `D2' phase of the theory, we are now exploring phase transitions between this D2 phase and the localiz… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13880v1-abstract-full').style.display = 'inline'; document.getElementById('2303.13880v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13880v1-abstract-full" style="display: none;"> We present ongoing investigations of maximally supersymmetric Yang--Mills ($Q = 16$ SYM) theory in three space-time dimensions. At low temperatures and large $N$ this theory is related to black branes in higher-dimensional quantum gravity. Building on previous work that focused on the homogeneous `D2' phase of the theory, we are now exploring phase transitions between this D2 phase and the localized `D0' phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13880v1-abstract-full').style.display = 'none'; document.getElementById('2303.13880v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to LATTICE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01149">arXiv:2303.01149</a> <span> [<a href="https://arxiv.org/pdf/2303.01149">pdf</a>, <a href="https://arxiv.org/format/2303.01149">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.430.0223">10.22323/1.430.0223 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advances in using density of states for large-N Yang--Mills </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Springer%2C+F">Felix Springer</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01149v1-abstract-short" style="display: inline;"> We present work in progress using the Logarithmic Linear Relaxation (LLR) density of states algorithm to analyse first-order phase transitions in pure-gauge SU(N) Yang--Mills theories, focusing on N = 4 and 6. By using the LLR algorithm we aim to avoid super-critical slowing down at such transitions. Motivation for this study comes from composite dark matter models, which may feature a first-order… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01149v1-abstract-full').style.display = 'inline'; document.getElementById('2303.01149v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01149v1-abstract-full" style="display: none;"> We present work in progress using the Logarithmic Linear Relaxation (LLR) density of states algorithm to analyse first-order phase transitions in pure-gauge SU(N) Yang--Mills theories, focusing on N = 4 and 6. By using the LLR algorithm we aim to avoid super-critical slowing down at such transitions. Motivation for this study comes from composite dark matter models, which may feature a first-order confinement transition in the early Universe that would produce a background of gravitational waves. Improving our understanding of these phase transitions will help probe these models using observations from future gravitational-wave observatories. In addition to the confinement transition, we also analyze bulk phase transitions of the lattice theories, which feature much larger latent heat. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01149v1-abstract-full').style.display = 'none'; document.getElementById('2303.01149v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2212.09199</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2022 (2023) 223 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02230">arXiv:2301.02230</a> <span> [<a href="https://arxiv.org/pdf/2301.02230">pdf</a>, <a href="https://arxiv.org/format/2301.02230">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Quantum Computing for the Wess-Zumino Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Culver%2C+C">Christopher Culver</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02230v1-abstract-short" style="display: inline;"> Future quantum computers will enable novel sign-problem-free studies of dynamical phenomena in non-perturbative quantum field theories, including real-time evolution and spontaneous supersymmetry breaking. We are investigating applications of quantum computing to low-dimensional supersymmetric lattice systems that can serve as testbeds for existing and near-future quantum devices. Here we present… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02230v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02230v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02230v1-abstract-full" style="display: none;"> Future quantum computers will enable novel sign-problem-free studies of dynamical phenomena in non-perturbative quantum field theories, including real-time evolution and spontaneous supersymmetry breaking. We are investigating applications of quantum computing to low-dimensional supersymmetric lattice systems that can serve as testbeds for existing and near-future quantum devices. Here we present initial results for the $\mathcal{N} = 1$ Wess--Zumino model in 1+1 dimensions, building on our prior analyses of 0+1-dimensional supersymmetric quantum mechanics. In addition to exploring supersymmetry breaking using the variational quantum eigensolver, we consider the prospects for real-time evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02230v1-abstract-full').style.display = 'none'; document.getElementById('2301.02230v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures, The 38th International Symposium on Lattice Field Theory, LATTICE2022, 8--13 August 2022, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09199">arXiv:2212.09199</a> <span> [<a href="https://arxiv.org/pdf/2212.09199">pdf</a>, <a href="https://arxiv.org/format/2212.09199">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202227408008">10.1051/epjconf/202227408008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Progress applying density of states for gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Springer%2C+F">Felix Springer</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09199v1-abstract-short" style="display: inline;"> Many models of composite dark matter feature a first-order confinement transition in the early Universe, which would produce a stochastic background of gravitational waves that will be searched for by future gravitational-wave observatories. We present work in progress using lattice field theory to predict the properties of such first-order transitions. Targeting SU(N) Yang--Mills theories, this w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09199v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09199v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09199v1-abstract-full" style="display: none;"> Many models of composite dark matter feature a first-order confinement transition in the early Universe, which would produce a stochastic background of gravitational waves that will be searched for by future gravitational-wave observatories. We present work in progress using lattice field theory to predict the properties of such first-order transitions. Targeting SU(N) Yang--Mills theories, this work employs the Logarithmic Linear Relaxation (LLR) density of states algorithm to avoid super-critical slowing down at the transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09199v1-abstract-full').style.display = 'none'; document.getElementById('2212.09199v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings for XVth Quark Confinement and the Hadron Spectrum conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03580">arXiv:2208.03580</a> <span> [<a href="https://arxiv.org/pdf/2208.03580">pdf</a>, <a href="https://arxiv.org/format/2208.03580">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjs/s11734-022-00708-1">10.1140/epjs/s11734-022-00708-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice studies of supersymmetric gauge theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03580v2-abstract-short" style="display: inline;"> Supersymmetry plays prominent roles in the study of quantum field theory and in many proposals for potential new physics beyond the standard model. Lattice field theory provides a non-perturbative regularization suitable for strongly interacting systems. This invited review briefly summarizes significant recent progress in lattice investigations of supersymmetric field theories, as well as some of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03580v2-abstract-full').style.display = 'inline'; document.getElementById('2208.03580v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03580v2-abstract-full" style="display: none;"> Supersymmetry plays prominent roles in the study of quantum field theory and in many proposals for potential new physics beyond the standard model. Lattice field theory provides a non-perturbative regularization suitable for strongly interacting systems. This invited review briefly summarizes significant recent progress in lattice investigations of supersymmetric field theories, as well as some of the challenges that remain to be overcome. I focus on progress in three areas: supersymmetric Yang--Mills (SYM) theories in fewer than four space-time dimensions, as well as both minimal N=1 SYM and maximal N=4 SYM in four dimensions. I also highlight superQCD and sign problems as prominent challenges that will be important to address in future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03580v2-abstract-full').style.display = 'none'; document.getElementById('2208.03580v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited brief review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. Spec. Top. 232 (2023) 305 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span> [<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.08791">arXiv:2201.08791</a> <span> [<a href="https://arxiv.org/pdf/2201.08791">pdf</a>, <a href="https://arxiv.org/format/2201.08791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2022)169">10.1007/JHEP05(2022)169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-perturbative phase structure of the bosonic BMN matrix model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Dhindsa%2C+N+S">Navdeep Singh Dhindsa</a>, <a href="/search/hep-lat?searchtype=author&query=Jha%2C+R+G">Raghav G. Jha</a>, <a href="/search/hep-lat?searchtype=author&query=Joseph%2C+A">Anosh Joseph</a>, <a href="/search/hep-lat?searchtype=author&query=Samlodia%2C+A">Abhishek Samlodia</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.08791v2-abstract-short" style="display: inline;"> We study the bosonic part of the BMN matrix model for wide ranges of temperatures, values of the deformation parameter, and numbers of colors $16 \leq N \leq 48$. Using lattice computations, we analyze phase transitions in the model, observing a single first-order transition from a uniform to a gapped phase for all values of the deformation parameter. We study the functional form of the dependence… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08791v2-abstract-full').style.display = 'inline'; document.getElementById('2201.08791v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.08791v2-abstract-full" style="display: none;"> We study the bosonic part of the BMN matrix model for wide ranges of temperatures, values of the deformation parameter, and numbers of colors $16 \leq N \leq 48$. Using lattice computations, we analyze phase transitions in the model, observing a single first-order transition from a uniform to a gapped phase for all values of the deformation parameter. We study the functional form of the dependence of the critical temperature on the deformation parameter, to describe how our results smoothly interpolate between the limits of the bosonic BFSS model and the gauged Gaussian model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08791v2-abstract-full').style.display = 'none'; document.getElementById('2201.08791v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Added references, no change in results. Version consistent with the journal version. v1: 21 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 05 (2022) 169 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.08626">arXiv:2201.08626</a> <span> [<a href="https://arxiv.org/pdf/2201.08626">pdf</a>, <a href="https://arxiv.org/format/2201.08626">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Investigations of supersymmetric Yang--Mills theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Sherletov%2C+A">Angel Sherletov</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.08626v1-abstract-short" style="display: inline;"> We present new results from ongoing lattice investigations of supersymmetric Yang--Mills (SYM) theories in three and four space-time dimensions. First considering the maximally supersymmetric 3d theory with $Q = 16$ supercharges, we check that the fermion pfaffian is approximately real and positive, validating phase-quenched RHMC calculations. We then initiate lattice studies of running couplings… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08626v1-abstract-full').style.display = 'inline'; document.getElementById('2201.08626v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.08626v1-abstract-full" style="display: none;"> We present new results from ongoing lattice investigations of supersymmetric Yang--Mills (SYM) theories in three and four space-time dimensions. First considering the maximally supersymmetric 3d theory with $Q = 16$ supercharges, we check that the fermion pfaffian is approximately real and positive, validating phase-quenched RHMC calculations. We then initiate lattice studies of running couplings and non-perturbative $尾$ functions for $Q = 16$ SYM in both 3d and 4d, using a simple scheme based on Creutz ratios. Finally, we consider 3d SYM with $Q = 8$ supercharges, developing new software as a first step towards supersymmetric QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08626v1-abstract-full').style.display = 'none'; document.getElementById('2201.08626v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to LATTICE 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03097">arXiv:2201.03097</a> <span> [<a href="https://arxiv.org/pdf/2201.03097">pdf</a>, <a href="https://arxiv.org/format/2201.03097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0187">10.22323/1.396.0187 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal phase structure of dimensionally reduced super-Yang--Mills </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Jha%2C+R+G">Raghav G. Jha</a>, <a href="/search/hep-lat?searchtype=author&query=Joseph%2C+A">Anosh Joseph</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03097v1-abstract-short" style="display: inline;"> We present our current results from ongoing lattice investigations of the Berenstein--Maldacena--Nastase deformation of maximally supersymmetric Yang--Mills quantum mechanics. We focus on the thermal phase structure of this theory, which depends on both the temperature $T$ and the deformation parameter $渭$, through the dimensionless ratios $T / 渭$ and $g = 位/ 渭^3$ with $位$ the 't Hooft coupling. W… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03097v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03097v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03097v1-abstract-full" style="display: none;"> We present our current results from ongoing lattice investigations of the Berenstein--Maldacena--Nastase deformation of maximally supersymmetric Yang--Mills quantum mechanics. We focus on the thermal phase structure of this theory, which depends on both the temperature $T$ and the deformation parameter $渭$, through the dimensionless ratios $T / 渭$ and $g = 位/ 渭^3$ with $位$ the 't Hooft coupling. We determine the critical $T / 渭$ of the confinement transition for couplings $g$ that span three orders of magnitude, to connect weak-coupling perturbative calculations and large-$N$ dual supergravity predictions in the strong-coupling limit. Analyzing multiple lattice sizes up to $N_蟿 = 24$ and numbers of colors up to $N = 16$ allows initial checks of the large-$N$ continuum limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03097v1-abstract-full').style.display = 'none'; document.getElementById('2201.03097v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the proceedings of Lattice 2021, July 26--30, MIT</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Sci. LATTICE2021 (2022) 187 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11868">arXiv:2112.11868</a> <span> [<a href="https://arxiv.org/pdf/2112.11868">pdf</a>, <a href="https://arxiv.org/format/2112.11868">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Density of states for gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Springer%2C+F">Felix Springer</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11868v1-abstract-short" style="display: inline;"> We present ongoing investigations of the first-order confinement transition of a composite dark matter model, to predict the resulting spectrum of gravitational waves. To avoid long autocorrelations at the first-order transition, we employ the Logarithmic Linear Relaxation (LLR) density of states algorithm. After testing our calculations by reproducing existing results for compact U(1) lattice gau… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11868v1-abstract-full').style.display = 'inline'; document.getElementById('2112.11868v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11868v1-abstract-full" style="display: none;"> We present ongoing investigations of the first-order confinement transition of a composite dark matter model, to predict the resulting spectrum of gravitational waves. To avoid long autocorrelations at the first-order transition, we employ the Logarithmic Linear Relaxation (LLR) density of states algorithm. After testing our calculations by reproducing existing results for compact U(1) lattice gauge theory, we focus on the pure-gauge SU(4) theory related to the Stealth Dark Matter model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11868v1-abstract-full').style.display = 'none'; document.getElementById('2112.11868v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the proceedings of Lattice 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.07651">arXiv:2112.07651</a> <span> [<a href="https://arxiv.org/pdf/2112.07651">pdf</a>, <a href="https://arxiv.org/format/2112.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Quantum computing for lattice supersymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Culver%2C+C">Christopher Culver</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.07651v1-abstract-short" style="display: inline;"> Quantum computing promises the possibility of studying the real-time dynamics of nonperturbative quantum field theories while avoiding the sign problem that obstructs conventional lattice approaches. Current and near-future quantum devices are severely limited by noise, making investigations of simple low-dimensional lattice systems ideal testbeds for algorithm development. Considering simple supe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2112.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.07651v1-abstract-full" style="display: none;"> Quantum computing promises the possibility of studying the real-time dynamics of nonperturbative quantum field theories while avoiding the sign problem that obstructs conventional lattice approaches. Current and near-future quantum devices are severely limited by noise, making investigations of simple low-dimensional lattice systems ideal testbeds for algorithm development. Considering simple supersymmetric systems, such as supersymmetric quantum mechanics with different superpotentials, allows for the analysis of phenomena like dynamical supersymmetry breaking. We present ongoing work applying quantum computing techniques to study such theories, targeting real-time dynamics and supersymmetry breaking effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07651v1-abstract-full').style.display = 'none'; document.getElementById('2112.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, Talk given at the 38th International Symposium on Lattice Field Theory, LATTICE2021, 26th-30th July, 2021, Zoom/Gather@MIT, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01001">arXiv:2109.01001</a> <span> [<a href="https://arxiv.org/pdf/2109.01001">pdf</a>, <a href="https://arxiv.org/format/2109.01001">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0433">10.22323/1.396.0433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-$N$ limit of two-dimensional Yang--Mills theory with four supercharges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Dhindsa%2C+N+S">Navdeep Singh Dhindsa</a>, <a href="/search/hep-lat?searchtype=author&query=Jha%2C+R+G">Raghav G. Jha</a>, <a href="/search/hep-lat?searchtype=author&query=Joseph%2C+A">Anosh Joseph</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01001v1-abstract-short" style="display: inline;"> We study the two-dimensional Yang--Mills theory with four supercharges in the large-$N$ limit. By using thermal boundary conditions, we analyze the internal energy and the distribution of scalars. We compare their behavior to the maximally supersymmetric case with sixteen supercharges, which is known to admit a holographic interpretation. Our lattice results for the scalar distribution show no vis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01001v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01001v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01001v1-abstract-full" style="display: none;"> We study the two-dimensional Yang--Mills theory with four supercharges in the large-$N$ limit. By using thermal boundary conditions, we analyze the internal energy and the distribution of scalars. We compare their behavior to the maximally supersymmetric case with sixteen supercharges, which is known to admit a holographic interpretation. Our lattice results for the scalar distribution show no visible dependence on $N$ and the energy at strong coupling appears independent of temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01001v1-abstract-full').style.display = 'none'; document.getElementById('2109.01001v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, talk given at the 38th International Symposium on Lattice Field Theory (LATTICE2021), 26th-30th July 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13534">arXiv:2106.13534</a> <span> [<a href="https://arxiv.org/pdf/2106.13534">pdf</a>, <a href="https://arxiv.org/format/2106.13534">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.034505">10.1103/PhysRevD.105.034505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Goldstone Boson Scattering with a Light Composite Scalar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cushman%2C+K+K">K. K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13534v2-abstract-short" style="display: inline;"> The appearance of a light composite $0^+$ scalar resonance in nearly conformal gauge-fermion theories motivates further study of the low energy structure of these theories. To this end, we present a nonperturbative lattice calculation of s-wave scattering of Goldstone bosons in the maximal-isospin channel in SU(3) gauge theory with $N_f=8$ light, degenerate flavors. The scattering phase shift is m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13534v2-abstract-full').style.display = 'inline'; document.getElementById('2106.13534v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13534v2-abstract-full" style="display: none;"> The appearance of a light composite $0^+$ scalar resonance in nearly conformal gauge-fermion theories motivates further study of the low energy structure of these theories. To this end, we present a nonperturbative lattice calculation of s-wave scattering of Goldstone bosons in the maximal-isospin channel in SU(3) gauge theory with $N_f=8$ light, degenerate flavors. The scattering phase shift is measured both for different values of the underlying fermion mass and for different values of the scattering momentum. We examine the effect of a light flavor-singlet scalar (reported in earlier studies) on Goldstone boson scattering, employing a dilaton effective field theory (EFT) at the tree level. The EFT gives a good description of the scattering data, insofar as the magnitude of deviations between EFT and lattice data are no larger than the expected size of next-to-leading order corrections in the EFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13534v2-abstract-full').style.display = 'none'; document.getElementById('2106.13534v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, 4 tables. References and clarifying comments added. To match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-21, LLNL-JRNL-823329, SI-HEP-2021-18 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06775">arXiv:2102.06775</a> <span> [<a href="https://arxiv.org/pdf/2102.06775">pdf</a>, <a href="https://arxiv.org/format/2102.06775">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2021)260">10.1007/JHEP04(2021)260 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Eigenvalue spectrum and scaling dimension of lattice $\mathcal{N} = 4$ supersymmetric Yang-Mills </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06775v1-abstract-short" style="display: inline;"> We investigate the lattice regularization of $\mathcal{N} = 4$ supersymmetric Yang-Mills theory, by stochastically computing the eigenvalue mode number of the fermion operator. This provides important insight into the non-perturbative renormalization group flow of the lattice theory, through the definition of a scale-dependent effective mass anomalous dimension. While this anomalous dimension is e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06775v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06775v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06775v1-abstract-full" style="display: none;"> We investigate the lattice regularization of $\mathcal{N} = 4$ supersymmetric Yang-Mills theory, by stochastically computing the eigenvalue mode number of the fermion operator. This provides important insight into the non-perturbative renormalization group flow of the lattice theory, through the definition of a scale-dependent effective mass anomalous dimension. While this anomalous dimension is expected to vanish in the conformal continuum theory, the finite lattice volume and lattice spacing generically lead to non-zero values, which we use to study the approach to the continuum limit. Our numerical results, comparing multiple lattice volumes, 't Hooft couplings, and numbers of colors, confirm convergence towards the expected continuum result, while quantifying the increasing significance of lattice artifacts at larger couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06775v1-abstract-full').style.display = 'none'; document.getElementById('2102.06775v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.00026">arXiv:2010.00026</a> <span> [<a href="https://arxiv.org/pdf/2010.00026">pdf</a>, <a href="https://arxiv.org/format/2010.00026">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.106009">10.1103/PhysRevD.102.106009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional super-Yang--Mills theory on the lattice and dual black branes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Giedt%2C+J">Joel Giedt</a>, <a href="/search/hep-lat?searchtype=author&query=Jha%2C+R+G">Raghav G. Jha</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Wiseman%2C+T">Toby Wiseman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.00026v1-abstract-short" style="display: inline;"> In the large-$N$ and strong-coupling limit, maximally supersymmetric SU($N$) Yang--Mills theory in $(2 + 1)$ dimensions is conjectured to be dual to the decoupling limit of a stack of $N$ D$2$-branes, which may be described by IIA supergravity.We study this conjecture in the Euclidean setting using nonperturbative lattice gauge theory calculations.Our supersymmetric lattice construction naturally… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00026v1-abstract-full').style.display = 'inline'; document.getElementById('2010.00026v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.00026v1-abstract-full" style="display: none;"> In the large-$N$ and strong-coupling limit, maximally supersymmetric SU($N$) Yang--Mills theory in $(2 + 1)$ dimensions is conjectured to be dual to the decoupling limit of a stack of $N$ D$2$-branes, which may be described by IIA supergravity.We study this conjecture in the Euclidean setting using nonperturbative lattice gauge theory calculations.Our supersymmetric lattice construction naturally puts the theory on a skewed Euclidean 3-torus. Taking one cycle to have anti-periodic fermion boundary conditions, the large-torus limit is described by certain Euclidean black holes. We compute the bosonic action---the variation of the partition function---and compare our numerical results to the supergravity prediction as the size of the torus is changed, keeping its shape fixed. Our lattice calculations primarily utilize $N = 8$ with extrapolations to the continuum limit, and our results are consistent with the expected gravity behavior in the appropriate large-torus limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00026v1-abstract-full').style.display = 'none'; document.getElementById('2010.00026v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v1: 11 pages with 5 figures and data release at https://zenodo.org/record/4059477</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 106009 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.01810">arXiv:2007.01810</a> <span> [<a href="https://arxiv.org/pdf/2007.01810">pdf</a>, <a href="https://arxiv.org/format/2007.01810">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014504">10.1103/PhysRevD.103.014504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-conformal dynamics in a chirally broken system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cushman%2C+K+K">Kimmy K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A+D">Andrew D. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.01810v2-abstract-short" style="display: inline;"> Composite Higgs models must exhibit very different dynamics from quantum chromodynamics (QCD) regardless whether they describe the Higgs boson as a dilatonlike state or a pseudo-Nambu-Goldstone boson. Large separation of scales and large anomalous dimensions are frequently desired by phenomenological models. Mass-split systems are well-suited for composite Higgs models because they are governed by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01810v2-abstract-full').style.display = 'inline'; document.getElementById('2007.01810v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.01810v2-abstract-full" style="display: none;"> Composite Higgs models must exhibit very different dynamics from quantum chromodynamics (QCD) regardless whether they describe the Higgs boson as a dilatonlike state or a pseudo-Nambu-Goldstone boson. Large separation of scales and large anomalous dimensions are frequently desired by phenomenological models. Mass-split systems are well-suited for composite Higgs models because they are governed by a conformal fixed point in the ultraviolet but are chirally broken in the infrared. In this work we use lattice field theory calculations with domain wall fermions to investigate a system with four light and six heavy flavors. We demonstrate how a nearby conformal fixed point affects the properties of the four light flavors that exhibit chiral symmetry breaking in the infrared. Specifically we describe hyperscaling of dimensionful physical quantities and determine the corresponding anomalous mass dimension. We obtain $y_m=1+纬^*= 1.47(5)$ suggesting that $N_f=10$ lies inside the conformal window. Comparing the low energy spectrum to predictions of dilaton chiral perturbation theory, we observe excellent agreement which supports the expectation that the 4+6 mass-split system exhibits near-conformal dynamics with a relatively light $0^{++}$ isosinglet scalar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01810v2-abstract-full').style.display = 'none'; document.getElementById('2007.01810v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, v2 version published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-812164 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014504 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16429">arXiv:2006.16429</a> <span> [<a href="https://arxiv.org/pdf/2006.16429">pdf</a>, <a href="https://arxiv.org/format/2006.16429">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014505">10.1103/PhysRevD.103.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stealth dark matter confinement transition and gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cushman%2C+K">K. Cushman</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X+Y">X. Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Kribs%2C+G+D">G. D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16429v2-abstract-short" style="display: inline;"> We use non-perturbative lattice calculations to investigate the finite-temperature confinement transition of stealth dark matter, focusing on the regime in which this early-universe transition is first order and would generate a stochastic background of gravitational waves. Stealth dark matter extends the standard model with a new strongly coupled SU(4) gauge sector with four massive fermions in t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16429v2-abstract-full').style.display = 'inline'; document.getElementById('2006.16429v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16429v2-abstract-full" style="display: none;"> We use non-perturbative lattice calculations to investigate the finite-temperature confinement transition of stealth dark matter, focusing on the regime in which this early-universe transition is first order and would generate a stochastic background of gravitational waves. Stealth dark matter extends the standard model with a new strongly coupled SU(4) gauge sector with four massive fermions in the fundamental representation, producing a stable spin-0 'dark baryon' as a viable composite dark matter candidate. Future searches for stochastic gravitational waves will provide a new way to discover or constrain stealth dark matter, in addition to previously investigated direct-detection and collider experiments. As a first step to enabling this phenomenology, we determine how heavy the dark fermions need to be in order to produce a first-order stealth dark matter confinement transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16429v2-abstract-full').style.display = 'none'; document.getElementById('2006.16429v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Data release at doi.org/10.5281/zenodo.3921870</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-811356; RIKEN-iTHEMS-Report-20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014505 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01298">arXiv:2003.01298</a> <span> [<a href="https://arxiv.org/pdf/2003.01298">pdf</a>, <a href="https://arxiv.org/format/2003.01298">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.363.0069">10.22323/1.363.0069 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal phase structure of a supersymmetric matrix model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Jha%2C+R+G">Raghav G. Jha</a>, <a href="/search/hep-lat?searchtype=author&query=Joseph%2C+A">Anosh Joseph</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01298v1-abstract-short" style="display: inline;"> We present initial results from ongoing lattice investigations into the thermal phase structure of the Berenstein--Maldacena--Nastase deformation of maximally supersymmetric Yang--Mills quantum mechanics. The phase diagram of the theory depends on both the temperature $T$ and the deformation parameter $渭$, through the dimensionless ratios $T / 渭$ and $g \equiv 位/ 渭^3$ with $位$ the 't Hooft couplin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01298v1-abstract-full').style.display = 'inline'; document.getElementById('2003.01298v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01298v1-abstract-full" style="display: none;"> We present initial results from ongoing lattice investigations into the thermal phase structure of the Berenstein--Maldacena--Nastase deformation of maximally supersymmetric Yang--Mills quantum mechanics. The phase diagram of the theory depends on both the temperature $T$ and the deformation parameter $渭$, through the dimensionless ratios $T / 渭$ and $g \equiv 位/ 渭^3$ with $位$ the 't Hooft coupling. Considering couplings $g$ that span three orders of magnitude, we reproduce the weak-coupling perturbative prediction for the deconfinement $T / 渭$ and approach recent large-$N$ dual supergravity analyses in the strong-coupling limit. We are carrying out calculations with lattice sizes up to $N_蟿 = 24$ and numbers of colors up to $N = 16$, to allow initial checks of the large-$N$ continuum limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01298v1-abstract-full').style.display = 'none'; document.getElementById('2003.01298v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the proceedings of Lattice 2019, June 16--22, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2019 (2020) 069 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.00187">arXiv:2002.00187</a> <span> [<a href="https://arxiv.org/pdf/2002.00187">pdf</a>, <a href="https://arxiv.org/format/2002.00187">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.363.0068">10.22323/1.363.0068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stealth dark matter and gravitational waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.00187v1-abstract-short" style="display: inline;"> I present first results from ongoing lattice investigations into the finite-temperature dynamics of stealth dark matter, which adds to the standard model a new SU(4) gauge sector with four moderately heavy fundamental fermions. This work by the Lattice Strong Dynamics Collaboration builds on past studies of direct detection and collider searches for stealth dark matter, by analyzing the early-univ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00187v1-abstract-full').style.display = 'inline'; document.getElementById('2002.00187v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.00187v1-abstract-full" style="display: none;"> I present first results from ongoing lattice investigations into the finite-temperature dynamics of stealth dark matter, which adds to the standard model a new SU(4) gauge sector with four moderately heavy fundamental fermions. This work by the Lattice Strong Dynamics Collaboration builds on past studies of direct detection and collider searches for stealth dark matter, by analyzing the early-universe SU(4) confinement transition, which produces a stochastic background of gravitational waves if it is first order. In addition to delineating the parameter space in which a first-order transition is observed, I discuss the quantities we are analyzing in order to predict the resulting gravitational-wave spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00187v1-abstract-full').style.display = 'none'; document.getElementById('2002.00187v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the proceedings of Lattice 2019, June 16--22, Wuhan, China</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2019 (2020) 068 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.00034">arXiv:2002.00034</a> <span> [<a href="https://arxiv.org/pdf/2002.00034">pdf</a>, <a href="https://arxiv.org/format/2002.00034">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Exotic Phases of a Higgs-Yukawa Model with Reduced Staggered Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Butt%2C+N">Nouman Butt</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.00034v1-abstract-short" style="display: inline;"> We investigate the phase structure of a four dimensional SO(4) invariant lattice Higgs-Yukawa model comprising four reduced staggered fermions interacting with a real scalar field. The fermions belong to the fundamental representation of the symmetry group while the three scalar field components transform in the self-dual representation of SO(4). We explore the phase diagram and find evidence of a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00034v1-abstract-full').style.display = 'inline'; document.getElementById('2002.00034v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.00034v1-abstract-full" style="display: none;"> We investigate the phase structure of a four dimensional SO(4) invariant lattice Higgs-Yukawa model comprising four reduced staggered fermions interacting with a real scalar field. The fermions belong to the fundamental representation of the symmetry group while the three scalar field components transform in the self-dual representation of SO(4). We explore the phase diagram and find evidence of a continuous transition between a phase where the fermions are massless to one where the fermions acquire mass. This transition is not associated with symmetry breaking and there is no obvious local order parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00034v1-abstract-full').style.display = 'none'; document.getElementById('2002.00034v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk at lattice 2019, Wuhan, China (7 pages, 5 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09964">arXiv:1904.09964</a> <span> [<a href="https://arxiv.org/pdf/1904.09964">pdf</a>, <a href="https://arxiv.org/format/1904.09964">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12901-5">10.1140/epja/i2019-12901-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Gauge Theory for Physics Beyond the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G">George Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Giedt%2C+J">Joel Giedt</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09964v1-abstract-short" style="display: inline;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice field theory research to make an impact on models of new physics beyond the Standard Model, including composite Higgs, composite dark matter, and supersymmetric theories. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09964v1-abstract-full" style="display: none;"> This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice field theory research to make an impact on models of new physics beyond the Standard Model, including composite Higgs, composite dark matter, and supersymmetric theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09964v1-abstract-full').style.display = 'none'; document.getElementById('1904.09964v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-19 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2019) 55: 198 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09282">arXiv:1810.09282</a> <span> [<a href="https://arxiv.org/pdf/1810.09282">pdf</a>, <a href="https://arxiv.org/format/1810.09282">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.334.0005">10.22323/1.334.0005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Progress and prospects of lattice supersymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09282v2-abstract-short" style="display: inline;"> Supersymmetry plays prominent roles in the study of quantum field theory and in many proposals for potential new physics beyond the standard model, while lattice field theory provides a non-perturbative regularization suitable for strongly interacting systems. Lattice investigations of supersymmetric field theories are currently making significant progress, though many challenges remain to be over… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09282v2-abstract-full').style.display = 'inline'; document.getElementById('1810.09282v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09282v2-abstract-full" style="display: none;"> Supersymmetry plays prominent roles in the study of quantum field theory and in many proposals for potential new physics beyond the standard model, while lattice field theory provides a non-perturbative regularization suitable for strongly interacting systems. Lattice investigations of supersymmetric field theories are currently making significant progress, though many challenges remain to be overcome. In this brief overview I discuss particularly notable progress in three areas: supersymmetric Yang--Mills (SYM) theories in fewer than four dimensions, as well as both minimal N=1 SYM and maximal N=4 SYM in four dimensions. I also highlight super-QCD and sign problems as prominent challenges that will be important to address in future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09282v2-abstract-full').style.display = 'none'; document.getElementById('1810.09282v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited overview for the proceedings of Lattice 2018. v2: update refs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.06117">arXiv:1810.06117</a> <span> [<a href="https://arxiv.org/pdf/1810.06117">pdf</a>, <a href="https://arxiv.org/format/1810.06117">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.114514">10.1103/PhysRevD.98.114514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $SO(4)$ invariant Higgs-Yukawa model with reduced staggered fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Butt%2C+N">Nouman Butt</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.06117v1-abstract-short" style="display: inline;"> We explore the phase structure of a four dimensional $SO(4)$ invariant lattice Higgs-Yukawa model comprising four reduced staggered fermions interacting with a real scalar field. The fermions belong to the fundamental representation of the symmetry group while the three scalar field components transform in the self-dual representation of $SO(4)$. The model is a generalization of a four fermion sys… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06117v1-abstract-full').style.display = 'inline'; document.getElementById('1810.06117v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.06117v1-abstract-full" style="display: none;"> We explore the phase structure of a four dimensional $SO(4)$ invariant lattice Higgs-Yukawa model comprising four reduced staggered fermions interacting with a real scalar field. The fermions belong to the fundamental representation of the symmetry group while the three scalar field components transform in the self-dual representation of $SO(4)$. The model is a generalization of a four fermion system with the same symmetries that has received recent attention because of its unusual phase structure comprising massless and massive symmetric phases separated by a very narrow phase in which a small bilinear condensate breaking $SO(4)$ symmetry is present. The generalization described in this paper simply consists of the addition of a scalar kinetic term. We find a region of the enlarged phase diagram which shows no sign of a fermion condensate or symmetry breaking but in which there is nevertheless evidence of a diverging correlation length. Our results in this region are consistent with the presence of a single continuous phase transition separating the massless and massive symmetric phases observed in the earlier work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06117v1-abstract-full').style.display = 'none'; document.getElementById('1810.06117v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 114514 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02624">arXiv:1809.02624</a> <span> [<a href="https://arxiv.org/pdf/1809.02624">pdf</a>, <a href="https://arxiv.org/ps/1809.02624">ps</a>, <a href="https://arxiv.org/format/1809.02624">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.114510">10.1103/PhysRevD.98.114510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear Sigma EFT for Nearly Conformal Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">A. Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">A. Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Ingoldby%2C+J">J. Ingoldby</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02624v2-abstract-short" style="display: inline;"> We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum ($蟽$) can be much lighter than the vector state ($蟻$) and nearly degenerate with the P… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02624v2-abstract-full').style.display = 'inline'; document.getElementById('1809.02624v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02624v2-abstract-full" style="display: none;"> We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum ($蟽$) can be much lighter than the vector state ($蟻$) and nearly degenerate with the PNGBs ($蟺$) over a large range of quark masses. The EFT incorporates this feature. We highlight the crucial role played by the terms in the potential that explicitly break chiral symmetry. The explicit breaking can be large enough so that a limited set of additional terms in the potential can no longer be neglected, with the EFT still weakly coupled in this new range. The additional terms contribute importantly to the scalar and pion masses. In particular, they relax the inequality $M_蟽^2 \ge 3 M_蟺^2$, allowing for consistency with current lattice data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02624v2-abstract-full').style.display = 'none'; document.getElementById('1809.02624v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1291 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 114510 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08411">arXiv:1807.08411</a> <span> [<a href="https://arxiv.org/pdf/1807.08411">pdf</a>, <a href="https://arxiv.org/format/1807.08411">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014509">10.1103/PhysRevD.99.014509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Dynamics%2C+L+S">Lattice Strong Dynamics</a>, <a href="/search/hep-lat?searchtype=author&query=Collaboration"> Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Gasbarro%2C+A">Andrew Gasbarro</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08411v2-abstract-short" style="display: inline;"> We present our lattice studies of SU(3) gauge theory with $N_f$ = 8 degenerate fermions in the fundamental representation. Using nHYP-smeared staggered fermions we study finite-temperature transitions on lattice volumes as large as $L^3 \times N_t = 48^3 \times 24$, and the zero-temperature composite spectrum on lattice volumes up to $64^3 \times 128$. The spectrum indirectly indicates spontaneous… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08411v2-abstract-full').style.display = 'inline'; document.getElementById('1807.08411v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08411v2-abstract-full" style="display: none;"> We present our lattice studies of SU(3) gauge theory with $N_f$ = 8 degenerate fermions in the fundamental representation. Using nHYP-smeared staggered fermions we study finite-temperature transitions on lattice volumes as large as $L^3 \times N_t = 48^3 \times 24$, and the zero-temperature composite spectrum on lattice volumes up to $64^3 \times 128$. The spectrum indirectly indicates spontaneous chiral symmetry breaking, but finite-temperature transitions with fixed $N_t \leq 24$ enter a strongly coupled lattice phase as the fermion mass decreases, which prevents a direct confirmation of spontaneous chiral symmetry breaking in the chiral limit. In addition to the connected spectrum we focus on the lightest flavor-singlet scalar particle. We find it to be degenerate with the pseudo-Goldstone states down to the lightest masses reached so far by non-perturbative lattice calculations. Using the same lattice approach, we study the behavior of the composite spectrum when the number of light fermions is changed from eight to four. A heavy flavor-singlet scalar in the 4-flavor theory affirms the contrast between QCD-like dynamics and the low-energy behavior of the 8-flavor theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08411v2-abstract-full').style.display = 'none'; document.getElementById('1807.08411v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 36 figures, 8 tables. v2: update to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1286; LLNL-JRNL-753511 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014509 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.07792">arXiv:1804.07792</a> <span> [<a href="https://arxiv.org/pdf/1804.07792">pdf</a>, <a href="https://arxiv.org/format/1804.07792">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> S-duality in lattice super Yang-Mills </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Giedt%2C+J">Joel Giedt</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Damgaard%2C+P">Poul Damgaard</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.07792v1-abstract-short" style="display: inline;"> We present a progress report on studying S-duality in lattice N=4 super Yang-Mills. This is being done through a computation of 1/2-BPS states on the Coulomb branch, especially the 't Hooft--Polyakov monopole and the W boson. Key to these calculations is the use of twisted and C-periodic boundary conditions. In addition we describe a variational method to disentangle operators with definite scalin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.07792v1-abstract-full').style.display = 'inline'; document.getElementById('1804.07792v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.07792v1-abstract-full" style="display: none;"> We present a progress report on studying S-duality in lattice N=4 super Yang-Mills. This is being done through a computation of 1/2-BPS states on the Coulomb branch, especially the 't Hooft--Polyakov monopole and the W boson. Key to these calculations is the use of twisted and C-periodic boundary conditions. In addition we describe a variational method to disentangle operators with definite scaling dimension, particularly the Konishi and supergravity operators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.07792v1-abstract-full').style.display = 'none'; document.getElementById('1804.07792v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, contribution to proceedings of the 34th annual International Symposium on Lattice Field Theory, 24-30 July 2016, University of Southampton, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.07585">arXiv:1712.07585</a> <span> [<a href="https://arxiv.org/pdf/1712.07585">pdf</a>, <a href="https://arxiv.org/format/1712.07585">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.114503">10.1103/PhysRevD.97.114503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solution of the sign problem in the Potts model at fixed fermion number </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Alexandru%2C+A">Andrei Alexandru</a>, <a href="/search/hep-lat?searchtype=author&query=Bergner%2C+G">Georg Bergner</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Wenger%2C+U">Urs Wenger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.07585v2-abstract-short" style="display: inline;"> We consider the heavy-dense limit of QCD at finite fermion density in the canonical formulation and approximate it by a 3-state Potts model. In the strong coupling limit, the model is free of the sign problem. Away from the strong coupling, the sign problem is solved by employing a cluster algorithm which allows to average each cluster over the Z(3) sectors. Improved estimators for physical quanti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07585v2-abstract-full').style.display = 'inline'; document.getElementById('1712.07585v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.07585v2-abstract-full" style="display: none;"> We consider the heavy-dense limit of QCD at finite fermion density in the canonical formulation and approximate it by a 3-state Potts model. In the strong coupling limit, the model is free of the sign problem. Away from the strong coupling, the sign problem is solved by employing a cluster algorithm which allows to average each cluster over the Z(3) sectors. Improved estimators for physical quantities can be constructed by taking into account the triality of the clusters, that is, their transformation properties with respect to Z(3) transformations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.07585v2-abstract-full').style.display = 'none'; document.getElementById('1712.07585v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 8 figures: references added, typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 114503 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08137">arXiv:1710.08137</a> <span> [<a href="https://arxiv.org/pdf/1710.08137">pdf</a>, <a href="https://arxiv.org/format/1710.08137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817503004">10.1051/epjconf/201817503004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phases of a strongly coupled four-fermion theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08137v1-abstract-short" style="display: inline;"> We present ongoing investigations of a four-dimensional lattice field theory with four massless reduced staggered fermions coupled through an SU(4)-invariant four-fermion interaction. As in previous studies of four-fermion and Higgs--Yukawa models with different lattice fermion discretizations, we observe a strong-coupling phase in which the system develops a mass gap without breaking any lattice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08137v1-abstract-full').style.display = 'inline'; document.getElementById('1710.08137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08137v1-abstract-full" style="display: none;"> We present ongoing investigations of a four-dimensional lattice field theory with four massless reduced staggered fermions coupled through an SU(4)-invariant four-fermion interaction. As in previous studies of four-fermion and Higgs--Yukawa models with different lattice fermion discretizations, we observe a strong-coupling phase in which the system develops a mass gap without breaking any lattice symmetry. This symmetric strong-coupling phase is separated from the symmetric weak-coupling phase by a narrow region of four-fermi coupling in which the system exhibits long-range correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08137v1-abstract-full').style.display = 'none'; document.getElementById('1710.08137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the proceedings of Lattice 2017, June 18--24, Granada, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Web of Conferences 175, 03004 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06398">arXiv:1710.06398</a> <span> [<a href="https://arxiv.org/pdf/1710.06398">pdf</a>, <a href="https://arxiv.org/format/1710.06398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817508004">10.1051/epjconf/201817508004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing the holographic principle using lattice simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jha%2C+R+G">Raghav G. Jha</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Wiseman%2C+T">Toby Wiseman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06398v1-abstract-short" style="display: inline;"> The lattice studies of maximally supersymmetric Yang-Mills (MSYM) theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06398v1-abstract-full').style.display = 'inline'; document.getElementById('1710.06398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06398v1-abstract-full" style="display: none;"> The lattice studies of maximally supersymmetric Yang-Mills (MSYM) theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory--Laflamme) between them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06398v1-abstract-full').style.display = 'none'; document.getElementById('1710.06398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at Lattice 2017, the 35th International Symposium on Lattice Field Theory at Granada, Spain (18-24 June 2017)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Web of Conferences 175, 08004 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.07025">arXiv:1709.07025</a> <span> [<a href="https://arxiv.org/pdf/1709.07025">pdf</a>, <a href="https://arxiv.org/format/1709.07025">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.086020">10.1103/PhysRevD.97.086020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing holography using lattice super-Yang--Mills on a 2-torus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Jha%2C+R+G">Raghav G. Jha</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Wiseman%2C+T">Toby Wiseman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.07025v2-abstract-short" style="display: inline;"> We consider maximally supersymmetric SU(N) Yang--Mills theory in Euclidean signature compactified on a flat two-dimensional torus with anti-periodic (`thermal') fermion boundary conditions imposed on one cycle. At large N, holography predicts that this theory describes certain black hole solutions in Type IIA and IIB supergravity, and we use lattice gauge theory to test this. Unlike the one-dimens… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07025v2-abstract-full').style.display = 'inline'; document.getElementById('1709.07025v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.07025v2-abstract-full" style="display: none;"> We consider maximally supersymmetric SU(N) Yang--Mills theory in Euclidean signature compactified on a flat two-dimensional torus with anti-periodic (`thermal') fermion boundary conditions imposed on one cycle. At large N, holography predicts that this theory describes certain black hole solutions in Type IIA and IIB supergravity, and we use lattice gauge theory to test this. Unlike the one-dimensional quantum mechanics case where there is only the dimensionless temperature to vary, here we emphasize there are two more parameters which determine the shape of the flat torus. While a rectangular Euclidean torus yields a thermal interpretation, allowing for skewed tori modifies the holographic dual black hole predictions and results in another direction to test holography. Our lattice calculations are based on a supersymmetric formulation naturally adapted to a particular skewing. Using this we perform simulations up to N=16 with several lattice spacings for both skewed and rectangular tori. We observe the two expected black hole phases with their predicted behavior, with a transition between them that is consistent with the gravity prediction based on the Gregory--Laflamme transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07025v2-abstract-full').style.display = 'none'; document.getElementById('1709.07025v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Ancillary file provide supplemental data. v2 -- Some error estimates (Fig. 6 and 8) are corrected. Added references, text and results are largely unchanged. Matches the version accepted for publication in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 086020 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.06561">arXiv:1611.06561</a> <span> [<a href="https://arxiv.org/pdf/1611.06561">pdf</a>, <a href="https://arxiv.org/format/1611.06561">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.256.0221">10.22323/1.256.0221 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Latest results from lattice N=4 supersymmetric Yang--Mills </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Damgaard%2C+P+H">Poul H. Damgaard</a>, <a href="/search/hep-lat?searchtype=author&query=Giedt%2C+J">Joel Giedt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.06561v1-abstract-short" style="display: inline;"> We present some of the latest results from our numerical investigations of N=4 supersymmetric Yang--Mills theory formulated on a space-time lattice. Based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, we recently developed an improved lattice action that is now being employed in large-scale calculations. Here we update our studies of the static potent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06561v1-abstract-full').style.display = 'inline'; document.getElementById('1611.06561v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.06561v1-abstract-full" style="display: none;"> We present some of the latest results from our numerical investigations of N=4 supersymmetric Yang--Mills theory formulated on a space-time lattice. Based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, we recently developed an improved lattice action that is now being employed in large-scale calculations. Here we update our studies of the static potential using this new action, also applying tree-level lattice perturbation theory to improve the analysis of the potential itself. Considering relatively weak couplings, we obtain results for the Coulomb coefficient that are consistent with continuum perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.06561v1-abstract-full').style.display = 'none'; document.getElementById('1611.06561v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the proceedings of Lattice 2016, July 24--30, Southampton, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.10004">arXiv:1610.10004</a> <span> [<a href="https://arxiv.org/pdf/1610.10004">pdf</a>, <a href="https://arxiv.org/format/1610.10004">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2018)132">10.1007/JHEP02(2018)132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative beta function of twelve-flavor SU(3) gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.10004v2-abstract-short" style="display: inline;"> We study the discrete beta function of SU(3) gauge theory with Nf=12 massless fermions in the fundamental representation. Using an nHYP-smeared staggered lattice action and an improved gradient flow running coupling $\tilde g_c^2(L)$ we determine the continuum-extrapolated discrete beta function up to $g_c^2 \approx 8.2$. We observe an IR fixed point at $g_{\star}^2 = 7.3\left(_{-2}^{+8}\right)$ i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.10004v2-abstract-full').style.display = 'inline'; document.getElementById('1610.10004v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.10004v2-abstract-full" style="display: none;"> We study the discrete beta function of SU(3) gauge theory with Nf=12 massless fermions in the fundamental representation. Using an nHYP-smeared staggered lattice action and an improved gradient flow running coupling $\tilde g_c^2(L)$ we determine the continuum-extrapolated discrete beta function up to $g_c^2 \approx 8.2$. We observe an IR fixed point at $g_{\star}^2 = 7.3\left(_{-2}^{+8}\right)$ in the $c = \sqrt{8t} / L = 0.25$ scheme, and $g_{\star}^2 = 7.3\left(_{-3}^{+6}\right)$ with c=0.3, combining statistical and systematic uncertainties in quadrature. The systematic effects we investigate include the stability of the $(a / L) \to 0$ extrapolations, the interpolation of $\tilde g_c^2(L)$ as a function of the bare coupling, the improvement of the gradient flow running coupling, and the discretization of the energy density. In an appendix we observe that the resulting systematic errors increase dramatically upon combining smaller $c \lesssim 0.2$ with smaller $L \leq 12$, leading to an IR fixed point at $g_{\star}^2 = 5.9(1.9)$ in the c=0.2 scheme, which resolves to $g_{\star}^2 = 6.9\left(_{-1}^{+6}\right)$ upon considering only $L \geq 16$. At the IR fixed point we measure the leading irrelevant critical exponent to be $纬_g^{\star} = 0.26(2)$, comparable to perturbative estimates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.10004v2-abstract-full').style.display = 'none'; document.getElementById('1610.10004v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">One of four consistency checks corrected, changing some systematic uncertainty estimates</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1802 (2018) 132 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.08541">arXiv:1609.08541</a> <span> [<a href="https://arxiv.org/pdf/1609.08541">pdf</a>, <a href="https://arxiv.org/format/1609.08541">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.034506">10.1103/PhysRevD.96.034506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel phases in strongly coupled four-fermion theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.08541v3-abstract-short" style="display: inline;"> We study a lattice model comprising four massless reduced staggered fermions in four dimensions coupled through an $SU(4)$-invariant four-fermion interaction. We present both theoretical arguments and numerical evidence that no bilinear fermion condensates are present for any value of the four-fermi coupling, in contrast to earlier studies of Higgs--Yukawa models with different exact lattice symme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08541v3-abstract-full').style.display = 'inline'; document.getElementById('1609.08541v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.08541v3-abstract-full" style="display: none;"> We study a lattice model comprising four massless reduced staggered fermions in four dimensions coupled through an $SU(4)$-invariant four-fermion interaction. We present both theoretical arguments and numerical evidence that no bilinear fermion condensates are present for any value of the four-fermi coupling, in contrast to earlier studies of Higgs--Yukawa models with different exact lattice symmetries. At strong coupling we observe the formation of a four-fermion condensate and a mass gap in spite of the absence of bilinear condensates. Unlike those previously studied systems we do not find a ferromagnetic phase separating this strong-coupling phase from the massless weak-coupling phase. Instead we observe long-range correlations in a narrow region of the coupling, still with vanishing bilinear condensates. While our numerical results come from relatively small lattice volumes that call for caution in drawing conclusions, if this novel phase structure is verified by future investigations employing larger volumes it may offer the possibility for new continuum limits for strongly interacting fermions in four dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08541v3-abstract-full').style.display = 'none'; document.getElementById('1609.08541v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 14 figures. Version to be published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 034506 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.04027">arXiv:1601.04027</a> <span> [<a href="https://arxiv.org/pdf/1601.04027">pdf</a>, <a href="https://arxiv.org/format/1601.04027">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.114514">10.1103/PhysRevD.93.114514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly interacting dynamics and the search for new physics at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.04027v2-abstract-short" style="display: inline;"> We present results for the spectrum of a strongly interacting SU(3) gauge theory with $N_f = 8$ light fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04027v2-abstract-full').style.display = 'inline'; document.getElementById('1601.04027v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.04027v2-abstract-full" style="display: none;"> We present results for the spectrum of a strongly interacting SU(3) gauge theory with $N_f = 8$ light fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the context of the search for new physics beyond the standard model at the Large Hadron Collider (LHC). Connecting our results to models of dynamical electroweak symmetry breaking, we estimate the vector resonance mass to be about 2 TeV with a width of roughly 450 GeV, and predict additional resonances with masses below ~3 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04027v2-abstract-full').style.display = 'none'; document.getElementById('1601.04027v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures. Added report number. Version submitted to journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-680732, NSF-KITP-16-004 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 114514 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.01137">arXiv:1512.01137</a> <span> [<a href="https://arxiv.org/pdf/1512.01137">pdf</a>, <a href="https://arxiv.org/format/1512.01137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.251.0242">10.22323/1.251.0242 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Aspects of lattice N=4 supersymmetric Yang--Mills </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.01137v1-abstract-short" style="display: inline;"> Non-perturbative investigations of $\mathcal N = 4$ supersymmetric Yang--Mills theory formulated on a space-time lattice have advanced rapidly in recent years. Large-scale numerical calculations are currently being carried out based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing. A recent development is the creation of an improved lattice action through… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.01137v1-abstract-full').style.display = 'inline'; document.getElementById('1512.01137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.01137v1-abstract-full" style="display: none;"> Non-perturbative investigations of $\mathcal N = 4$ supersymmetric Yang--Mills theory formulated on a space-time lattice have advanced rapidly in recent years. Large-scale numerical calculations are currently being carried out based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing. A recent development is the creation of an improved lattice action through a new procedure to regulate flat directions in a manner compatible with this supersymmetry, by modifying the moduli equations. In this proceedings I briefly summarize this new procedure and discuss the parameter space of the resulting improved action that is now being employed in numerical calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.01137v1-abstract-full').style.display = 'none'; document.getElementById('1512.01137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the proceedings of Lattice 2015, July 14--18, Kobe, Japan</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE 2015:242 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.00884">arXiv:1508.00884</a> <span> [<a href="https://arxiv.org/pdf/1508.00884">pdf</a>, <a href="https://arxiv.org/format/1508.00884">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/9789813231467_0028">10.1142/9789813231467_0028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217751X17470194">10.1142/S0217751X17470194 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maximally supersymmetric Yang-Mills on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.00884v1-abstract-short" style="display: inline;"> We summarize recent progress in lattice studies of four-dimensional N=4 supersymmetric Yang--Mills theory and present preliminary results from ongoing investigations. Our work is based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, and we review a new procedure to regulate flat directions by modifying the moduli equations in a manner compatible with th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.00884v1-abstract-full').style.display = 'inline'; document.getElementById('1508.00884v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.00884v1-abstract-full" style="display: none;"> We summarize recent progress in lattice studies of four-dimensional N=4 supersymmetric Yang--Mills theory and present preliminary results from ongoing investigations. Our work is based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, and we review a new procedure to regulate flat directions by modifying the moduli equations in a manner compatible with this supersymmetry. This procedure defines an improved lattice action that we have begun to use in numerical calculations. We discuss some highlights of these investigations, including the static potential and an update on the question of a possible sign problem in the lattice theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.00884v1-abstract-full').style.display = 'none'; document.getElementById('1508.00884v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the Sakata Memorial KMI Workshop on "Origin of Mass and Strong Coupling Gauge Theories" (SCGT15), 3--6 March 2015, Nagoya University</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Int. J. Mod. Phys. A 32, 1747019 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.08791">arXiv:1506.08791</a> <span> [<a href="https://arxiv.org/pdf/1506.08791">pdf</a>, <a href="https://arxiv.org/format/1506.08791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/9789813231467_0051">10.1142/9789813231467_0051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite-temperature study of eight-flavor SU(3) gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.08791v1-abstract-short" style="display: inline;"> We present new lattice investigations of finite-temperature transitions for SU(3) gauge theory with Nf=8 light flavors. Using nHYP-smeared staggered fermions we are able to explore renormalized couplings $g^2 \lesssim 20$ on lattice volumes as large as $48^3 \times 24$. Finite-temperature transitions at non-zero fermion mass do not persist in the chiral limit, instead running into a strongly coupl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08791v1-abstract-full').style.display = 'inline'; document.getElementById('1506.08791v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.08791v1-abstract-full" style="display: none;"> We present new lattice investigations of finite-temperature transitions for SU(3) gauge theory with Nf=8 light flavors. Using nHYP-smeared staggered fermions we are able to explore renormalized couplings $g^2 \lesssim 20$ on lattice volumes as large as $48^3 \times 24$. Finite-temperature transitions at non-zero fermion mass do not persist in the chiral limit, instead running into a strongly coupled lattice phase as the mass decreases. That is, finite-temperature studies with this lattice action require even larger $N_T > 24$ to directly confirm spontaneous chiral symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08791v1-abstract-full').style.display = 'none'; document.getElementById('1506.08791v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the Sakata Memorial KMI Workshop on "Origin of Mass and Strong Coupling Gauge Theories" (SCGT15), 3--6 March 2015, Nagoya University</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.03135">arXiv:1505.03135</a> <span> [<a href="https://arxiv.org/pdf/1505.03135">pdf</a>, <a href="https://arxiv.org/format/1505.03135">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2015)057">10.1007/JHEP07(2015)057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lifting flat directions in lattice supersymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.03135v2-abstract-short" style="display: inline;"> We present a procedure to improve the lattice definition of $\mathcal N = 4$ supersymmetric Yang--Mills theory. The lattice construction necessarily involves U(1) flat directions, and we show how these can be lifted without violating the exact lattice supersymmetry. The basic idea is to modify the equations of motion of an auxiliary field, which determine the moduli space of the system. Applied to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03135v2-abstract-full').style.display = 'inline'; document.getElementById('1505.03135v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.03135v2-abstract-full" style="display: none;"> We present a procedure to improve the lattice definition of $\mathcal N = 4$ supersymmetric Yang--Mills theory. The lattice construction necessarily involves U(1) flat directions, and we show how these can be lifted without violating the exact lattice supersymmetry. The basic idea is to modify the equations of motion of an auxiliary field, which determine the moduli space of the system. Applied to numerical calculations, the resulting improved lattice action leads to dramatically reduced violations of supersymmetric Ward identities and much more rapid approach to the continuum limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03135v2-abstract-full').style.display = 'none'; document.getElementById('1505.03135v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1507 (2015) 057 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04205">arXiv:1503.04205</a> <span> [<a href="https://arxiv.org/pdf/1503.04205">pdf</a>, <a href="https://arxiv.org/format/1503.04205">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.171803">10.1103/PhysRevLett.115.171803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Detection of Stealth Dark Matter through Electromagnetic Polarizability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04205v2-abstract-short" style="display: inline;"> We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar baryon dark matter candidate -- "Stealth Dark Matter", that is based on a dark SU(4) confining gauge theory. In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scatteri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04205v2-abstract-full').style.display = 'inline'; document.getElementById('1503.04205v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04205v2-abstract-full" style="display: none;"> We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar baryon dark matter candidate -- "Stealth Dark Matter", that is based on a dark SU(4) confining gauge theory. In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest baryons in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure, however the steep dependence on the dark matter mass, $1/m_B^6$, suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04205v2-abstract-full').style.display = 'none'; document.getElementById('1503.04205v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures, citations added, typos fixed, minor clarifications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-15-005, LLNL-JRNL-667121 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 171803 (2015) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Schaich%2C+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Schaich%2C+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Schaich%2C+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>