CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;37 of 37 results for author: <span class="mathjax">Humble, T S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Humble%2C+T+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Humble, T S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Humble%2C+T+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Humble, T S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13262">arXiv:2501.13262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13262">pdf</a>, <a href="https://arxiv.org/format/2501.13262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> </div> </div> <p class="title is-5 mathjax"> ASDF: A Compiler for Qwerty, a Basis-Oriented Quantum Programming Language </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Adams%2C+A+J">Austin J. Adams</a>, <a href="/search/cs?searchtype=author&amp;query=Khan%2C+S">Sharjeel Khan</a>, <a href="/search/cs?searchtype=author&amp;query=Bhamra%2C+A+S">Arjun S. Bhamra</a>, <a href="/search/cs?searchtype=author&amp;query=Abusaada%2C+R+R">Ryan R. Abusaada</a>, <a href="/search/cs?searchtype=author&amp;query=Cabrera%2C+A+M">Anthony M. Cabrera</a>, <a href="/search/cs?searchtype=author&amp;query=Hoechst%2C+C+C">Cameron C. Hoechst</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Young%2C+J+S">Jeffrey S. Young</a>, <a href="/search/cs?searchtype=author&amp;query=Conte%2C+T+M">Thomas M. Conte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13262v1-abstract-short" style="display: inline;"> Qwerty is a high-level quantum programming language built on bases and functions rather than circuits. This new paradigm introduces new challenges in compilation, namely synthesizing circuits from basis translations and automatically specializing adjoint or predicated forms of functions. This paper presents ASDF, an open-source compiler for Qwerty that answers these challenges in compiling basis-o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13262v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13262v1-abstract-full" style="display: none;"> Qwerty is a high-level quantum programming language built on bases and functions rather than circuits. This new paradigm introduces new challenges in compilation, namely synthesizing circuits from basis translations and automatically specializing adjoint or predicated forms of functions. This paper presents ASDF, an open-source compiler for Qwerty that answers these challenges in compiling basis-oriented languages. Enabled with a novel high-level quantum IR implemented in the MLIR framework, our compiler produces OpenQASM 3 or QIR for either simulation or execution on hardware. Our compiler is evaluated by comparing the fault-tolerant resource requirements of generated circuits with other compilers, finding that ASDF produces circuits with comparable cost to prior circuit-oriented compilers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13262v1-abstract-full').style.display = 'none'; document.getElementById('2501.13262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures. To appear in CGO &#39;25</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04831">arXiv:2501.04831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04831">pdf</a>, <a href="https://arxiv.org/format/2501.04831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum Hybrid Support Vector Machines for Stress Detection in Older Adults </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Onim%2C+M+S+H">Md Saif Hassan Onim</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04831v1-abstract-short" style="display: inline;"> Stress can increase the possibility of cognitive impairment and decrease the quality of life in older adults. Smart healthcare can deploy quantum machine learning to enable preventive and diagnostic support. This work introduces a unique technique to address stress detection as an anomaly detection problem that uses quantum hybrid support vector machines. With the help of a wearable smartwatch, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04831v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04831v1-abstract-full" style="display: none;"> Stress can increase the possibility of cognitive impairment and decrease the quality of life in older adults. Smart healthcare can deploy quantum machine learning to enable preventive and diagnostic support. This work introduces a unique technique to address stress detection as an anomaly detection problem that uses quantum hybrid support vector machines. With the help of a wearable smartwatch, we mapped baseline sensor reading as normal data and stressed sensor reading as anomaly data using cortisol concentration as the ground truth. We have used quantum computing techniques to explore the complex feature spaces with kernel-based preprocessing. We illustrate the usefulness of our method by doing experimental validation on 40 older adults with the help of the TSST protocol. Our findings highlight that using a limited number of features, quantum machine learning provides improved accuracy compared to classical methods. We also observed that the recall value using quantum machine learning is higher compared to the classical method. The higher recall value illustrates the potential of quantum machine learning in healthcare, as missing anomalies could result in delayed diagnostics or treatment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04831v1-abstract-full').style.display = 'none'; document.getElementById('2501.04831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02901">arXiv:2410.02901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02901">pdf</a>, <a href="https://arxiv.org/format/2410.02901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/QCE57702.2023.00089">10.1109/QCE57702.2023.00089 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GTQCP: Greedy Topology-Aware Quantum Circuit Partitioning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Clark%2C+J">Joseph Clark</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02901v1-abstract-short" style="display: inline;"> We propose Greedy Topology-Aware Quantum Circuit Partitioning (GTQCP), a novel quantum gate circuit partitioning method which partitions circuits by applying a greedy heuristic to the qubit dependency graph of the circuit. GTQCP is compared against three other gate partitioning methods, two of which (QuickPartitioner and ScanPartitioner) are part of the Berkley Quantum Synthesis Toolkit. GTQCP is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02901v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02901v1-abstract-full" style="display: none;"> We propose Greedy Topology-Aware Quantum Circuit Partitioning (GTQCP), a novel quantum gate circuit partitioning method which partitions circuits by applying a greedy heuristic to the qubit dependency graph of the circuit. GTQCP is compared against three other gate partitioning methods, two of which (QuickPartitioner and ScanPartitioner) are part of the Berkley Quantum Synthesis Toolkit. GTQCP is shown to have 18% run time improvement ratio over the fastest approach (QuickPartitioner), and a 96% improvement over the highest quality approach (ScanPartitioner). The algorithm also demonstrates nearly identical result quality (number of partitions) compared with ScanPartitioner, and a 38% quality improvement over QuickPartitioner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02901v1-abstract-full').style.display = 'none'; document.getElementById('2410.02901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), 2023, pp. 739-744 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06159">arXiv:2409.06159</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06159">pdf</a>, <a href="https://arxiv.org/format/2409.06159">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Visual Analytics of Performance of Quantum Computing Systems and Circuit Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chae%2C+J">Junghoon Chae</a>, <a href="/search/cs?searchtype=author&amp;query=Steed%2C+C+A">Chad A. Steed</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06159v1-abstract-short" style="display: inline;"> Driven by potential exponential speedups in business, security, and scientific scenarios, interest in quantum computing is surging. This interest feeds the development of quantum computing hardware, but several challenges arise in optimizing application performance for hardware metrics (e.g., qubit coherence and gate fidelity). In this work, we describe a visual analytics approach for analyzing th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06159v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06159v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06159v1-abstract-full" style="display: none;"> Driven by potential exponential speedups in business, security, and scientific scenarios, interest in quantum computing is surging. This interest feeds the development of quantum computing hardware, but several challenges arise in optimizing application performance for hardware metrics (e.g., qubit coherence and gate fidelity). In this work, we describe a visual analytics approach for analyzing the performance properties of quantum devices and quantum circuit optimization. Our approach allows users to explore spatial and temporal patterns in quantum device performance data and it computes similarities and variances in key performance metrics. Detailed analysis of the error properties characterizing individual qubits is also supported. We also describe a method for visualizing the optimization of quantum circuits. The resulting visualization tool allows researchers to design more efficient quantum algorithms and applications by increasing the interpretability of quantum computations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06159v1-abstract-full').style.display = 'none'; document.getElementById('2409.06159v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024 International Workshop on Quantum Computing: Circuits Systems Automation and Applications </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16159">arXiv:2408.16159</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16159">pdf</a>, <a href="https://arxiv.org/format/2408.16159">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.future.2024.06.058">10.1016/j.future.2024.06.058 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrating Quantum Computing Resources into Scientific HPC Ecosystems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Beck%2C+T">Thomas Beck</a>, <a href="/search/cs?searchtype=author&amp;query=Baroni%2C+A">Alessandro Baroni</a>, <a href="/search/cs?searchtype=author&amp;query=Bennink%2C+R">Ryan Bennink</a>, <a href="/search/cs?searchtype=author&amp;query=Buchs%2C+G">Gilles Buchs</a>, <a href="/search/cs?searchtype=author&amp;query=Perez%2C+E+A+C">Eduardo Antonio Coello Perez</a>, <a href="/search/cs?searchtype=author&amp;query=Eisenbach%2C+M">Markus Eisenbach</a>, <a href="/search/cs?searchtype=author&amp;query=da+Silva%2C+R+F">Rafael Ferreira da Silva</a>, <a href="/search/cs?searchtype=author&amp;query=Meena%2C+M+G">Muralikrishnan Gopalakrishnan Meena</a>, <a href="/search/cs?searchtype=author&amp;query=Gottiparthi%2C+K">Kalyan Gottiparthi</a>, <a href="/search/cs?searchtype=author&amp;query=Groszkowski%2C+P">Peter Groszkowski</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Landfield%2C+R">Ryan Landfield</a>, <a href="/search/cs?searchtype=author&amp;query=Maheshwari%2C+K">Ketan Maheshwari</a>, <a href="/search/cs?searchtype=author&amp;query=Oral%2C+S">Sarp Oral</a>, <a href="/search/cs?searchtype=author&amp;query=Sandoval%2C+M+A">Michael A. Sandoval</a>, <a href="/search/cs?searchtype=author&amp;query=Shehata%2C+A">Amir Shehata</a>, <a href="/search/cs?searchtype=author&amp;query=Suh%2C+I">In-Saeng Suh</a>, <a href="/search/cs?searchtype=author&amp;query=Zimmer%2C+C">Christopher Zimmer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16159v1-abstract-short" style="display: inline;"> Quantum Computing (QC) offers significant potential to enhance scientific discovery in fields such as quantum chemistry, optimization, and artificial intelligence. Yet QC faces challenges due to the noisy intermediate-scale quantum era&#39;s inherent external noise issues. This paper discusses the integration of QC as a computational accelerator within classical scientific high-performance computing (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16159v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16159v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16159v1-abstract-full" style="display: none;"> Quantum Computing (QC) offers significant potential to enhance scientific discovery in fields such as quantum chemistry, optimization, and artificial intelligence. Yet QC faces challenges due to the noisy intermediate-scale quantum era&#39;s inherent external noise issues. This paper discusses the integration of QC as a computational accelerator within classical scientific high-performance computing (HPC) systems. By leveraging a broad spectrum of simulators and hardware technologies, we propose a hardware-agnostic framework for augmenting classical HPC with QC capabilities. Drawing on the HPC expertise of the Oak Ridge National Laboratory (ORNL) and the HPC lifecycle management of the Department of Energy (DOE), our approach focuses on the strategic incorporation of QC capabilities and acceleration into existing scientific HPC workflows. This includes detailed analyses, benchmarks, and code optimization driven by the needs of the DOE and ORNL missions. Our comprehensive framework integrates hardware, software, workflows, and user interfaces to foster a synergistic environment for quantum and classical computing research. This paper outlines plans to unlock new computational possibilities, driving forward scientific inquiry and innovation in a wide array of research domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16159v1-abstract-full').style.display = 'none'; document.getElementById('2408.16159v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10484">arXiv:2408.10484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10484">pdf</a>, <a href="https://arxiv.org/format/2408.10484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Dependable Classical-Quantum Computer Systems Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Giusto%2C+E">Edoardo Giusto</a>, <a href="/search/cs?searchtype=author&amp;query=Nu%C3%B1ez-Corrales%2C+S">Santiago Nu帽ez-Corrales</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+P">Phuong Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Cilardo%2C+A">Alessandro Cilardo</a>, <a href="/search/cs?searchtype=author&amp;query=Iyer%2C+R+K">Ravishankar K. Iyer</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+W">Weiwen Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Rech%2C+P">Paolo Rech</a>, <a href="/search/cs?searchtype=author&amp;query=Vella%2C+F">Flavio Vella</a>, <a href="/search/cs?searchtype=author&amp;query=Montrucchio%2C+B">Bartolomeo Montrucchio</a>, <a href="/search/cs?searchtype=author&amp;query=Dasgupta%2C+S">Samudra Dasgupta</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10484v1-abstract-short" style="display: inline;"> Quantum Computing (QC) offers the potential to enhance traditional High-Performance Computing (HPC) workloads by leveraging the unique properties of quantum computers, leading to the emergence of a new paradigm: HPC-QC. While this integration presents new opportunities, it also brings novel challenges, particularly in ensuring the dependability of such hybrid systems. This paper aims to identify i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10484v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10484v1-abstract-full" style="display: none;"> Quantum Computing (QC) offers the potential to enhance traditional High-Performance Computing (HPC) workloads by leveraging the unique properties of quantum computers, leading to the emergence of a new paradigm: HPC-QC. While this integration presents new opportunities, it also brings novel challenges, particularly in ensuring the dependability of such hybrid systems. This paper aims to identify integration challenges, anticipate failures, and foster a diverse co-design for HPC-QC systems by bringing together QC, cloud computing, HPC, and network security. The focus of this emerging inter-disciplinary effort is to develop engineering principles that ensure the dependability of hybrid systems, aiming for a more prescriptive co-design cycle. Our framework will help to prevent design pitfalls and accelerate the maturation of the QC technology ecosystem. Key aspects include building resilient HPC-QC systems, analyzing the applicability of conventional techniques to the quantum domain, and exploring the complexity of scaling in such hybrid systems. This underscores the need for performance-reliability metrics specific to this new computational paradigm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10484v1-abstract-full').style.display = 'none'; document.getElementById('2408.10484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00927">arXiv:2408.00927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00927">pdf</a>, <a href="https://arxiv.org/format/2408.00927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3583781.3590315">10.1145/3583781.3590315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-Resilient and Reduced Depth Approximate Adders for NISQ Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gaur%2C+B">Bhaskar Gaur</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00927v1-abstract-short" style="display: inline;"> The &#34;Noisy intermediate-scale quantum&#34; NISQ machine era primarily focuses on mitigating noise, controlling errors, and executing high-fidelity operations, hence requiring shallow circuit depth and noise robustness. Approximate computing is a novel computing paradigm that produces imprecise results by relaxing the need for fully precise output for error-tolerant applications including multimedia, d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00927v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00927v1-abstract-full" style="display: none;"> The &#34;Noisy intermediate-scale quantum&#34; NISQ machine era primarily focuses on mitigating noise, controlling errors, and executing high-fidelity operations, hence requiring shallow circuit depth and noise robustness. Approximate computing is a novel computing paradigm that produces imprecise results by relaxing the need for fully precise output for error-tolerant applications including multimedia, data mining, and image processing. We investigate how approximate computing can improve the noise resilience of quantum adder circuits in NISQ quantum computing. We propose five designs of approximate quantum adders to reduce depth while making them noise-resilient, in which three designs are with carryout, while two are without carryout. We have used novel design approaches that include approximating the Sum only from the inputs (pass-through designs) and having zero depth, as they need no quantum gates. The second design style uses a single CNOT gate to approximate the SUM with a constant depth of O(1). We performed our experimentation on IBM Qiskit on noise models including thermal, depolarizing, amplitude damping, phase damping, and bitflip: (i) Compared to exact quantum ripple carry adder without carryout the proposed approximate adders without carryout have improved fidelity ranging from 8.34% to 219.22%, and (ii) Compared to exact quantum ripple carry adder with carryout the proposed approximate adders with carryout have improved fidelity ranging from 8.23% to 371%. Further, the proposed approximate quantum adders are evaluated in terms of various error metrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00927v1-abstract-full').style.display = 'none'; document.getElementById('2408.00927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05294">arXiv:2406.05294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05294">pdf</a>, <a href="https://arxiv.org/format/2406.05294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Residue Number System (RNS) based Distributed Quantum Addition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gaur%2C+B">Bhaskar Gaur</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Thapliyal%2C+H">Himanshu Thapliyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05294v1-abstract-short" style="display: inline;"> Quantum Arithmetic faces limitations such as noise and resource constraints in the current Noisy Intermediate Scale Quantum (NISQ) era quantum computers. We propose using Distributed Quantum Computing (DQC) to overcome these limitations by substituting a higher depth quantum addition circuit with Residue Number System (RNS) based quantum modulo adders. The RNS-based distributed quantum addition ci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05294v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05294v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05294v1-abstract-full" style="display: none;"> Quantum Arithmetic faces limitations such as noise and resource constraints in the current Noisy Intermediate Scale Quantum (NISQ) era quantum computers. We propose using Distributed Quantum Computing (DQC) to overcome these limitations by substituting a higher depth quantum addition circuit with Residue Number System (RNS) based quantum modulo adders. The RNS-based distributed quantum addition circuits possess lower depth and are distributed across multiple quantum computers/jobs, resulting in higher noise resilience. We propose the Quantum Superior Modulo Addition based on RNS Tool (QSMART), which can generate RNS sets of quantum adders based on multiple factors such as depth, range, and efficiency. We also propose a novel design of Quantum Diminished-1 Modulo (2n + 1) Adder (QDMA), which forms a crucial part of RNS-based distributed quantum addition and the QSMART tool. We demonstrate the higher noise resilience of the Residue Number System (RNS) based distributed quantum addition by conducting simulations modeling Quantinuum&#39;s H1 ion trap-based quantum computer. Our simulations demonstrate that RNS-based distributed quantum addition has 11.36% to 133.15% higher output probability over 6-bit to 10-bit non-distributed quantum full adders, indicating higher noise fidelity. Furthermore, we present a scalable way of achieving distributed quantum addition higher than limited otherwise by the 20-qubit range of Quantinuum H1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05294v1-abstract-full').style.display = 'none'; document.getElementById('2406.05294v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14299">arXiv:2404.14299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14299">pdf</a>, <a href="https://arxiv.org/format/2404.14299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> A Cross-Platform Execution Engine for the Quantum Intermediate Representation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wong%2C+E">Elaine Wong</a>, <a href="/search/cs?searchtype=author&amp;query=Ortega%2C+V+L">Vicente Leyton Ortega</a>, <a href="/search/cs?searchtype=author&amp;query=Claudino%2C+D">Daniel Claudino</a>, <a href="/search/cs?searchtype=author&amp;query=Johnson%2C+S">Seth Johnson</a>, <a href="/search/cs?searchtype=author&amp;query=Afrose%2C+S">Sharmin Afrose</a>, <a href="/search/cs?searchtype=author&amp;query=Gowrishankar%2C+M">Meenambika Gowrishankar</a>, <a href="/search/cs?searchtype=author&amp;query=Cabrera%2C+A+M">Anthony M. Cabrera</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14299v1-abstract-short" style="display: inline;"> Hybrid languages like the Quantum Intermediate Representation (QIR) are essential for programming systems that mix quantum and conventional computing models, while execution of these programs is often deferred to a system-specific implementation. Here, we describe and demonstrate the QIR Execution Engine (QIR-EE) for parsing, interpreting, and executing QIR across multiple hardware platforms. QIR-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14299v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14299v1-abstract-full" style="display: none;"> Hybrid languages like the Quantum Intermediate Representation (QIR) are essential for programming systems that mix quantum and conventional computing models, while execution of these programs is often deferred to a system-specific implementation. Here, we describe and demonstrate the QIR Execution Engine (QIR-EE) for parsing, interpreting, and executing QIR across multiple hardware platforms. QIR-EE uses LLVM to execute hybrid instructions specifying quantum programs and, by design, presents extension points that support customized runtime and hardware environments. We demonstrate an implementation that uses the XACC quantum hardware-accelerator library to dispatch prototypical quantum programs on different commercial quantum platforms and numerical simulators, and we validate execution of QIR-EE on the IonQ Harmony and Quantinuum H1-1 hardware. Our results highlight the efficiency of hybrid executable architectures for handling mixed instructions, managing mixed data, and integrating with quantum computing frameworks to realize cross-platform execution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14299v1-abstract-full').style.display = 'none'; document.getElementById('2404.14299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14756">arXiv:2308.14756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14756">pdf</a>, <a href="https://arxiv.org/format/2308.14756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Adaptive mitigation of time-varying quantum noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dasgupta%2C+S">Samudra Dasgupta</a>, <a href="/search/cs?searchtype=author&amp;query=Danageozian%2C+A">Arshag Danageozian</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14756v1-abstract-short" style="display: inline;"> Current quantum computers suffer from non-stationary noise channels with high error rates, which undermines their reliability and reproducibility. We propose a Bayesian inference-based adaptive algorithm that can learn and mitigate quantum noise in response to changing channel conditions. Our study emphasizes the need for dynamic inference of critical channel parameters to improve program accuracy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14756v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14756v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14756v1-abstract-full" style="display: none;"> Current quantum computers suffer from non-stationary noise channels with high error rates, which undermines their reliability and reproducibility. We propose a Bayesian inference-based adaptive algorithm that can learn and mitigate quantum noise in response to changing channel conditions. Our study emphasizes the need for dynamic inference of critical channel parameters to improve program accuracy. We use the Dirichlet distribution to model the stochasticity of the Pauli channel. This allows us to perform Bayesian inference, which can improve the performance of probabilistic error cancellation (PEC) under time-varying noise. Our work demonstrates the importance of characterizing and mitigating temporal variations in quantum noise, which is crucial for developing more accurate and reliable quantum technologies. Our results show that Bayesian PEC can outperform non-adaptive approaches by a factor of 4.5x when measured using Hellinger distance from the ideal distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14756v1-abstract-full').style.display = 'none'; document.getElementById('2308.14756v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in IEEE QCE 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06833">arXiv:2307.06833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06833">pdf</a>, <a href="https://arxiv.org/format/2307.06833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Impact of unreliable devices on stability of quantum computations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dasgupta%2C+S">Samudra Dasgupta</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06833v3-abstract-short" style="display: inline;"> Noisy intermediate-scale quantum (NISQ) devices are valuable platforms for testing the tenets of quantum computing, but these devices are susceptible to errors arising from de-coherence, leakage, cross-talk and other sources of noise. This raises concerns regarding the stability of results when using NISQ devices since strategies for mitigating errors generally require well-characterized and stati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06833v3-abstract-full').style.display = 'inline'; document.getElementById('2307.06833v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06833v3-abstract-full" style="display: none;"> Noisy intermediate-scale quantum (NISQ) devices are valuable platforms for testing the tenets of quantum computing, but these devices are susceptible to errors arising from de-coherence, leakage, cross-talk and other sources of noise. This raises concerns regarding the stability of results when using NISQ devices since strategies for mitigating errors generally require well-characterized and stationary error models. Here, we quantify the reliability of NISQ devices by assessing the necessary conditions for generating stable results within a given tolerance. We use similarity metrics derived from device characterization data to derive and validate bounds on the stability of a 5-qubit implementation of the Bernstein-Vazirani algorithm. Simulation experiments conducted with noise data from IBM Washington, spanning January 2022 to April 2023, revealed that the reliability metric fluctuated between 41% and 92%. This variation significantly surpasses the maximum allowable threshold of 2.2% needed for stable outcomes. Consequently, the device proved unreliable for consistently reproducing the statistical mean in the context of the Bernstein-Vazirani circuit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06833v3-abstract-full').style.display = 'none'; document.getElementById('2307.06833v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10677">arXiv:2112.10677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.10677">pdf</a>, <a href="https://arxiv.org/ps/2112.10677">ps</a>, <a href="https://arxiv.org/format/2112.10677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> </div> </div> <p class="title is-5 mathjax"> Quantum Circuit Transformations with a Multi-Level Intermediate Representation Compiler </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Nguyen%2C+T">Thien Nguyen</a>, <a href="/search/cs?searchtype=author&amp;query=Lyakh%2C+D">Dmitry Lyakh</a>, <a href="/search/cs?searchtype=author&amp;query=Pooser%2C+R+C">Raphael C. Pooser</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Proctor%2C+T">Timothy Proctor</a>, <a href="/search/cs?searchtype=author&amp;query=Sarovar%2C+M">Mohan Sarovar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10677v1-abstract-short" style="display: inline;"> Quantum computing promises remarkable approaches for processing information, but new tools are needed to compile program representations into the physical instructions required by a quantum computer. Here we present a novel adaptation of the multi-level intermediate representation (MLIR) integrated into a quantum compiler that may be used for checking program execution. We first present how MLIR e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10677v1-abstract-full').style.display = 'inline'; document.getElementById('2112.10677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10677v1-abstract-full" style="display: none;"> Quantum computing promises remarkable approaches for processing information, but new tools are needed to compile program representations into the physical instructions required by a quantum computer. Here we present a novel adaptation of the multi-level intermediate representation (MLIR) integrated into a quantum compiler that may be used for checking program execution. We first present how MLIR enables quantum circuit transformations for efficient execution on quantum computing devices and then give an example of compiler transformations based on so-called mirror circuits. We demonstrate that mirror circuits inserted during compilation may test hardware performance by assessing quantum circuit accuracy on several superconducting and ion trap hardware platforms. Our results validate MLIR as an efficient and effective method for collecting hardware-dependent diagnostics through automated transformations of quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10677v1-abstract-full').style.display = 'none'; document.getElementById('2112.10677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">These methods are implemented and available for download at github.com/ORNL-QCI/qcor</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10196">arXiv:2107.10196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10196">pdf</a>, <a href="https://arxiv.org/format/2107.10196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Prime Factorization Using Quantum Variational Imaginary Time Evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Selvarajan%2C+R">Raja Selvarajan</a>, <a href="/search/cs?searchtype=author&amp;query=Dixit%2C+V">Vivek Dixit</a>, <a href="/search/cs?searchtype=author&amp;query=Cui%2C+X">Xingshan Cui</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Kais%2C+S">Sabre Kais</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10196v1-abstract-short" style="display: inline;"> The road to computing on quantum devices has been accelerated by the promises that come from using Shor&#39;s algorithm to reduce the complexity of prime factorization. However, this promise hast not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore a promising, alternative method for prime factorization that uses well-established techniques from variat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10196v1-abstract-full').style.display = 'inline'; document.getElementById('2107.10196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10196v1-abstract-full" style="display: none;"> The road to computing on quantum devices has been accelerated by the promises that come from using Shor&#39;s algorithm to reduce the complexity of prime factorization. However, this promise hast not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore a promising, alternative method for prime factorization that uses well-established techniques from variational imaginary time evolution. We create a Hamiltonian whose ground state encodes the solution to the problem and use variational techniques to evolve a state iteratively towards these prime factors. We show that the number of circuits evaluated in each iteration scales as O(n^{5}d), where n is the bit-length of the number to be factorized and $d$ is the depth of the circuit. We use a single layer of entangling gates to factorize several numbers represented using 7, 8, and 9-qubit Hamiltonians. We also verify the method&#39;s performance by implementing it on the IBMQ Lima hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10196v1-abstract-full').style.display = 'none'; document.getElementById('2107.10196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 graphs, 1 circuit image, 1 supplementary page</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05134">arXiv:2106.05134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05134">pdf</a>, <a href="https://arxiv.org/format/2106.05134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum Annealing for Automated Feature Selection in Stress Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Nath%2C+R+K">Rajdeep Kumar Nath</a>, <a href="/search/cs?searchtype=author&amp;query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05134v1-abstract-short" style="display: inline;"> We present a novel methodology for automated feature subset selection from a pool of physiological signals using Quantum Annealing (QA). As a case study, we will investigate the effectiveness of QA-based feature selection techniques in selecting the optimal feature subset for stress detection. Features are extracted from four signal sources: foot EDA, hand EDA, ECG, and respiration. The proposed m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05134v1-abstract-full').style.display = 'inline'; document.getElementById('2106.05134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05134v1-abstract-full" style="display: none;"> We present a novel methodology for automated feature subset selection from a pool of physiological signals using Quantum Annealing (QA). As a case study, we will investigate the effectiveness of QA-based feature selection techniques in selecting the optimal feature subset for stress detection. Features are extracted from four signal sources: foot EDA, hand EDA, ECG, and respiration. The proposed method embeds the feature variables extracted from the physiological signals in a binary quadratic model. The bias of the feature variable is calculated using the Pearson correlation coefficient between the feature variable and the target variable. The weight of the edge connecting the two feature variables is calculated using the Pearson correlation coefficient between two feature variables in the binary quadratic model. Subsequently, D-Wave&#39;s clique sampler is used to sample cliques from the binary quadratic model. The underlying solution is then re-sampled to obtain multiple good solutions and the clique with the lowest energy is returned as the optimal solution. The proposed method is compared with commonly used feature selection techniques for stress detection. Results indicate that QA-based feature subset selection performed equally as that of classical techniques. However, under data uncertainty conditions such as limited training data, the performance of quantum annealing for selecting optimum features remained unaffected, whereas a significant decrease in performance is observed with classical feature selection techniques. Preliminary results show the promise of quantum annealing in optimizing the training phase of a machine learning classifier, especially under data uncertainty conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05134v1-abstract-full').style.display = 'none'; document.getElementById('2106.05134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages, 2nd International Workshop on Quantum Computing: Circuits Systems Automation and Applications (QC-CSAA) in conjuction with the ISVLSI 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.02964">arXiv:2106.02964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.02964">pdf</a>, <a href="https://arxiv.org/format/2106.02964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Review of Machine Learning Classification Using Quantum Annealing for Real-world Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Nath%2C+R+K">Rajdeep Kumar Nath</a>, <a href="/search/cs?searchtype=author&amp;query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.02964v1-abstract-short" style="display: inline;"> Optimizing the training of a machine learning pipeline helps in reducing training costs and improving model performance. One such optimizing strategy is quantum annealing, which is an emerging computing paradigm that has shown potential in optimizing the training of a machine learning model. The implementation of a physical quantum annealer has been realized by D-Wave systems and is available to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02964v1-abstract-full').style.display = 'inline'; document.getElementById('2106.02964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.02964v1-abstract-full" style="display: none;"> Optimizing the training of a machine learning pipeline helps in reducing training costs and improving model performance. One such optimizing strategy is quantum annealing, which is an emerging computing paradigm that has shown potential in optimizing the training of a machine learning model. The implementation of a physical quantum annealer has been realized by D-Wave systems and is available to the research community for experiments. Recent experimental results on a variety of machine learning applications using quantum annealing have shown interesting results where the performance of classical machine learning techniques is limited by limited training data and high dimensional features. This article explores the application of D-Wave&#39;s quantum annealer for optimizing machine learning pipelines for real-world classification problems. We review the application domains on which a physical quantum annealer has been used to train machine learning classifiers. We discuss and analyze the experiments performed on the D-Wave quantum annealer for applications such as image recognition, remote sensing imagery, computational biology, and particle physics. We discuss the possible advantages and the problems for which quantum annealing is likely to be advantageous over classical computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02964v1-abstract-full').style.display = 'none'; document.getElementById('2106.02964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 Pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Springer Nature Computer Science (SNCS), 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09472">arXiv:2105.09472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09472">pdf</a>, <a href="https://arxiv.org/format/2105.09472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Stability of noisy quantum computing devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dasgupta%2C+S">Samudra Dasgupta</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09472v1-abstract-short" style="display: inline;"> Noisy, intermediate-scale quantum (NISQ) computing devices offer opportunities to test the principles of quantum computing but are prone to errors arising from various sources of noise. Fluctuations in the noise itself lead to unstable devices that undermine the reproducibility of NISQ results. Here we characterize the reliability of NISQ devices by quantifying the stability of essential performan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09472v1-abstract-full').style.display = 'inline'; document.getElementById('2105.09472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09472v1-abstract-full" style="display: none;"> Noisy, intermediate-scale quantum (NISQ) computing devices offer opportunities to test the principles of quantum computing but are prone to errors arising from various sources of noise. Fluctuations in the noise itself lead to unstable devices that undermine the reproducibility of NISQ results. Here we characterize the reliability of NISQ devices by quantifying the stability of essential performance metrics. Using the Hellinger distance, we quantify the similarity between experimental characterizations of several NISQ devices by comparing gate fidelities, duty cycles, and register addressability across temporal and spatial scales. Our observations collected over 22 months reveal large fluctuations in each metric that underscore the limited scales on which current NISQ devices may be considered reliable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09472v1-abstract-full').style.display = 'none'; document.getElementById('2105.09472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13996">arXiv:2011.13996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.13996">pdf</a>, <a href="https://arxiv.org/format/2011.13996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TETCI.2021.3074916">10.1109/TETCI.2021.3074916 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Training a quantum annealing based restricted Boltzmann machine on cybersecurity data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dixit%2C+V">Vivek Dixit</a>, <a href="/search/cs?searchtype=author&amp;query=Selvarajan%2C+R">Raja Selvarajan</a>, <a href="/search/cs?searchtype=author&amp;query=Aldwairi%2C+T">Tamer Aldwairi</a>, <a href="/search/cs?searchtype=author&amp;query=Koshka%2C+Y">Yaroslav Koshka</a>, <a href="/search/cs?searchtype=author&amp;query=Novotny%2C+M+A">Mark A. Novotny</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Alam%2C+M+A">Muhammad A. Alam</a>, <a href="/search/cs?searchtype=author&amp;query=Kais%2C+S">Sabre Kais</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13996v4-abstract-short" style="display: inline;"> We present a real-world application that uses a quantum computer. Specifically, we train a RBM using QA for cybersecurity applications. The D-Wave 2000Q has been used to implement QA. RBMs are trained on the ISCX data, which is a benchmark dataset for cybersecurity. For comparison, RBMs are also trained using CD. CD is a commonly used method for RBM training. Our analysis of the ISCX data shows th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13996v4-abstract-full').style.display = 'inline'; document.getElementById('2011.13996v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13996v4-abstract-full" style="display: none;"> We present a real-world application that uses a quantum computer. Specifically, we train a RBM using QA for cybersecurity applications. The D-Wave 2000Q has been used to implement QA. RBMs are trained on the ISCX data, which is a benchmark dataset for cybersecurity. For comparison, RBMs are also trained using CD. CD is a commonly used method for RBM training. Our analysis of the ISCX data shows that the dataset is imbalanced. We present two different schemes to balance the training dataset before feeding it to a classifier. The first scheme is based on the undersampling of benign instances. The imbalanced training dataset is divided into five sub-datasets that are trained separately. A majority voting is then performed to get the result. Our results show the majority vote increases the classification accuracy up from 90.24% to 95.68%, in the case of CD. For the case of QA, the classification accuracy increases from 74.14% to 80.04%. In the second scheme, a RBM is used to generate synthetic data to balance the training dataset. We show that both QA and CD-trained RBM can be used to generate useful synthetic data. Balanced training data is used to evaluate several classifiers. Among the classifiers investigated, K-Nearest Neighbor (KNN) and Neural Network (NN) perform better than other classifiers. They both show an accuracy of 93%. Our results show a proof-of-concept that a QA-based RBM can be trained on a 64-bit binary dataset. The illustrative example suggests the possibility to migrate many practical classification problems to QA-based techniques. Further, we show that synthetic data generated from a RBM can be used to balance the original dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13996v4-abstract-full').style.display = 'none'; document.getElementById('2011.13996v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in IEEE Transactions on Emerging Topics in Computational Intelligence</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> V. Dixit et al., &#34;Training a Quantum Annealing Based Restricted Boltzmann Machine on Cybersecurity Data,&#34; in IEEE Transactions on Emerging Topics in Computational Intelligence, doi: 10.1109/TETCI.2021.3074916 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09612">arXiv:2008.09612</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09612">pdf</a>, <a href="https://arxiv.org/format/2008.09612">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Characterizing the Stability of NISQ Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dasgupta%2C+S">Samudra Dasgupta</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09612v3-abstract-short" style="display: inline;"> In this study, we focus on the question of stability of NISQ devices. The parameters that define the device stability profile are motivated by the work of DiVincenzo where the requirements for physical implementation of quantum computing are discussed. We develop the metrics and theoretical framework to quantify the DiVincenzo requirements and study the stability of those key metrics. The basis of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09612v3-abstract-full').style.display = 'inline'; document.getElementById('2008.09612v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09612v3-abstract-full" style="display: none;"> In this study, we focus on the question of stability of NISQ devices. The parameters that define the device stability profile are motivated by the work of DiVincenzo where the requirements for physical implementation of quantum computing are discussed. We develop the metrics and theoretical framework to quantify the DiVincenzo requirements and study the stability of those key metrics. The basis of our assessment is histogram similarity (in time and space). For identical experiments, devices which produce reproducible histograms in time, and similar histograms in space, are considered more reliable. To investigate such reliability concerns robustly, we propose a moment-based distance (MBD) metric. We illustrate our methodology using data collected from IBM&#39;s Yorktown device. Two types of assessments are discussed: spatial stability and temporal stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09612v3-abstract-full').style.display = 'none'; document.getElementById('2008.09612v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Based on work submitted to IEEE Quantum Week 2020. This revision corrects data and plots for Figures 8, 9, and 10 while the remainder is unchanged. The conclusions of the manuscript are unaffected by these changes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.01820">arXiv:2008.01820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.01820">pdf</a>, <a href="https://arxiv.org/format/2008.01820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Lower Bounds on Circuit Depth of the Quantum Approximate Optimization Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ostrowski%2C+J">James Ostrowski</a>, <a href="/search/cs?searchtype=author&amp;query=Herrman%2C+R">Rebekah Herrman</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Siopsis%2C+G">George Siopsis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.01820v2-abstract-short" style="display: inline;"> The quantum approximate optimization algorithm (QAOA) is a method of approximately solving combinatorial optimization problems. While QAOA is developed to solve a broad class of combinatorial optimization problems, it is not clear which classes of problems are best suited for it. One factor in demonstrating quantum advantage is the relationship between a problem instance and the circuit depth requ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.01820v2-abstract-full').style.display = 'inline'; document.getElementById('2008.01820v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.01820v2-abstract-full" style="display: none;"> The quantum approximate optimization algorithm (QAOA) is a method of approximately solving combinatorial optimization problems. While QAOA is developed to solve a broad class of combinatorial optimization problems, it is not clear which classes of problems are best suited for it. One factor in demonstrating quantum advantage is the relationship between a problem instance and the circuit depth required to implement the QAOA method. As errors in NISQ devices increases exponentially with circuit depth, identifying lower bounds on circuit depth can provide insights into when quantum advantage could be feasible. Here, we identify how the structure of problem instances can be used to identify lower bounds for circuit depth for each iteration of QAOA and examine the relationship between problem structure and the circuit depth for a variety of combinatorial optimization problems including MaxCut and MaxIndSet. Specifically, we show how to derive a graph, $G$, that describes a general combinatorial optimization problem and show that the depth of circuit is at least the chromatic index of $G$. By looking at the scaling of circuit depth, we argue that MaxCut, MaxIndSet, and some instances of Vertex Covering and Boolean satisifiability problems are suitable for QAOA approaches while Knapsack and Traveling Sales Person problems are not. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.01820v2-abstract-full').style.display = 'none'; document.getElementById('2008.01820v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.03247">arXiv:2005.03247</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.03247">pdf</a>, <a href="https://arxiv.org/format/2005.03247">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fphy.2021.589626">10.3389/fphy.2021.589626 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Training and Classification using a Restricted Boltzmann Machine on the D-Wave 2000Q </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dixit%2C+V">Vivek Dixit</a>, <a href="/search/cs?searchtype=author&amp;query=Selvarajan%2C+R">Raja Selvarajan</a>, <a href="/search/cs?searchtype=author&amp;query=Alam%2C+M+A">Muhammad A. Alam</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Kais%2C+S">Sabre Kais</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.03247v1-abstract-short" style="display: inline;"> Restricted Boltzmann Machine (RBM) is an energy based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate exact gradient of log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.03247v1-abstract-full').style.display = 'inline'; document.getElementById('2005.03247v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.03247v1-abstract-full" style="display: none;"> Restricted Boltzmann Machine (RBM) is an energy based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate exact gradient of log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), which is much faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results are compared with CD. The classification accuracy results indicate similar performance of both methods. Image reconstruction as well as log-likelihood calculations are used to compare the performance of quantum and classical algorithms for RBM training. It is shown that the samples obtained from quantum annealer can be used to train a RBM on a 64-bit `bars and stripes&#39; data set with classification performance similar to a RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer eliminates computationally expensive MCMC steps of CD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.03247v1-abstract-full').style.display = 'none'; document.getElementById('2005.03247v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Front. Phys., 29 June 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.02452">arXiv:1911.02452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.02452">pdf</a>, <a href="https://arxiv.org/format/1911.02452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> </div> </div> <p class="title is-5 mathjax"> XACC: A System-Level Software Infrastructure for Heterogeneous Quantum-Classical Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=McCaskey%2C+A+J">Alexander J. McCaskey</a>, <a href="/search/cs?searchtype=author&amp;query=Lyakh%2C+D+I">Dmitry I. Lyakh</a>, <a href="/search/cs?searchtype=author&amp;query=Dumitrescu%2C+E+F">Eugene F. Dumitrescu</a>, <a href="/search/cs?searchtype=author&amp;query=Powers%2C+S+S">Sarah S. Powers</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.02452v1-abstract-short" style="display: inline;"> Quantum programming techniques and software have advanced significantly over the past five years, with a majority focusing on high-level language frameworks targeting remote REST library APIs. As quantum computing architectures advance and become more widely available, lower-level, system software infrastructures will be needed to enable tighter, co-processor programming and access models. Here we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02452v1-abstract-full').style.display = 'inline'; document.getElementById('1911.02452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.02452v1-abstract-full" style="display: none;"> Quantum programming techniques and software have advanced significantly over the past five years, with a majority focusing on high-level language frameworks targeting remote REST library APIs. As quantum computing architectures advance and become more widely available, lower-level, system software infrastructures will be needed to enable tighter, co-processor programming and access models. Here we present XACC, a system-level software infrastructure for quantum-classical computing that promotes a service-oriented architecture to expose interfaces for core quantum programming, compilation, and execution tasks. We detail XACC&#39;s interfaces, their interactions, and its implementation as a hardware-agnostic framework for both near-term and future quantum-classical architectures. We provide concrete examples demonstrating the utility of this framework with paradigmatic tasks. Our approach lays the foundation for the development of compilers, associated runtimes, and low-level system tools tightly integrating quantum and classical workflows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02452v1-abstract-full').style.display = 'none'; document.getElementById('1911.02452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00444">arXiv:1905.00444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.00444">pdf</a>, <a href="https://arxiv.org/format/1905.00444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2058-9565/ab7eeb">10.1088/2058-9565/ab7eeb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Establishing the Quantum Supremacy Frontier with a 281 Pflop/s Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Villalonga%2C+B">Benjamin Villalonga</a>, <a href="/search/cs?searchtype=author&amp;query=Lyakh%2C+D">Dmitry Lyakh</a>, <a href="/search/cs?searchtype=author&amp;query=Boixo%2C+S">Sergio Boixo</a>, <a href="/search/cs?searchtype=author&amp;query=Neven%2C+H">Hartmut Neven</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Biswas%2C+R">Rupak Biswas</a>, <a href="/search/cs?searchtype=author&amp;query=Rieffel%2C+E+G">Eleanor G. Rieffel</a>, <a href="/search/cs?searchtype=author&amp;query=Ho%2C+A">Alan Ho</a>, <a href="/search/cs?searchtype=author&amp;query=Mandr%C3%A0%2C+S">Salvatore Mandr脿</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00444v2-abstract-short" style="display: inline;"> Noisy Intermediate-Scale Quantum (NISQ) computers are entering an era in which they can perform computational tasks beyond the capabilities of the most powerful classical computers, thereby achieving &#34;Quantum Supremacy&#34;, a major milestone in quantum computing. NISQ Supremacy requires comparison with a state-of-the-art classical simulator. We report HPC simulations of hard random quantum circuits (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00444v2-abstract-full').style.display = 'inline'; document.getElementById('1905.00444v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00444v2-abstract-full" style="display: none;"> Noisy Intermediate-Scale Quantum (NISQ) computers are entering an era in which they can perform computational tasks beyond the capabilities of the most powerful classical computers, thereby achieving &#34;Quantum Supremacy&#34;, a major milestone in quantum computing. NISQ Supremacy requires comparison with a state-of-the-art classical simulator. We report HPC simulations of hard random quantum circuits (RQC), which have been recently used as a benchmark for the first experimental demonstration of Quantum Supremacy, sustaining an average performance of 281 Pflop/s (true single precision) on Summit, currently the fastest supercomputer in the World. These simulations were carried out using qFlex, a tensor-network-based classical high-performance simulator of RQCs. Our results show an advantage of many orders of magnitude in energy consumption of NISQ devices over classical supercomputers. In addition, we propose a standard benchmark for NISQ computers based on qFlex. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00444v2-abstract-full').style.display = 'none'; document.getElementById('1905.00444v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The paper has been published in Quantum Science and Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Science and Technology 5, 3 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00445">arXiv:1902.00445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.00445">pdf</a>, <a href="https://arxiv.org/ps/1902.00445">ps</a>, <a href="https://arxiv.org/format/1902.00445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-030-14082-3_8">10.1007/978-3-030-14082-3_8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Function Maximization with Dynamic Quantum Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Moussa%2C+C">Charles Moussa</a>, <a href="/search/cs?searchtype=author&amp;query=Calandra%2C+H">Henri Calandra</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00445v1-abstract-short" style="display: inline;"> Finding the maximum value of a function in a dynamic model plays an important role in many application settings, including discrete optimization in the presence of hard constraints. We present an iterative quantum algorithm for finding the maximum value of a function in which prior search results update the acceptable response. Our approach is based on quantum search and utilizes a dynamic oracle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00445v1-abstract-full').style.display = 'inline'; document.getElementById('1902.00445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00445v1-abstract-full" style="display: none;"> Finding the maximum value of a function in a dynamic model plays an important role in many application settings, including discrete optimization in the presence of hard constraints. We present an iterative quantum algorithm for finding the maximum value of a function in which prior search results update the acceptable response. Our approach is based on quantum search and utilizes a dynamic oracle function to mark items in a specified input set. As a realization of function optimization, we verify the correctness of the algorithm using numerical simulations of quantum circuits for the Knapsack problem. Our simulations make use of an explicit oracle function based on arithmetic operations and a comparator subroutine, and we verify these implementations using numerical simulations up to 30 qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00445v1-abstract-full').style.display = 'none'; document.getElementById('1902.00445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures, submitted to Workshop on Quantum technology and Optimization Problems; You don&#39;t have to see the whole staircase, just take the first step. Martin Luther King, Jr</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.09732">arXiv:1809.09732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.09732">pdf</a>, <a href="https://arxiv.org/ps/1809.09732">ps</a>, <a href="https://arxiv.org/format/1809.09732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Quantum Circuit Designs of Integer Division Optimizing T-count and T-depth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Thapliyal%2C+H">Himanshu Thapliyal</a>, <a href="/search/cs?searchtype=author&amp;query=Mu%C3%B1oz-Coreas%2C+E">Edgard Mu帽oz-Coreas</a>, <a href="/search/cs?searchtype=author&amp;query=Varun%2C+T+S+S">T. S. S. Varun</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.09732v1-abstract-short" style="display: inline;"> Quantum circuits for mathematical functions such as division are necessary to use quantum computers for scientific computing. Quantum circuits based on Clifford+T gates can easily be made fault-tolerant but the T gate is very costly to implement. The small number of qubits available in existing quantum computers adds another constraint on quantum circuits. As a result, reducing T-count and qubit c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09732v1-abstract-full').style.display = 'inline'; document.getElementById('1809.09732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.09732v1-abstract-full" style="display: none;"> Quantum circuits for mathematical functions such as division are necessary to use quantum computers for scientific computing. Quantum circuits based on Clifford+T gates can easily be made fault-tolerant but the T gate is very costly to implement. The small number of qubits available in existing quantum computers adds another constraint on quantum circuits. As a result, reducing T-count and qubit cost have become important optimization goals. The design of quantum circuits for integer division has caught the attention of researchers and designs have been proposed in the literature. However, these designs suffer from excessive T gate and qubit costs. Many of these designs also produce significant garbage output resulting in additional qubit and T gate costs to eliminate these outputs. In this work, we propose two quantum integer division circuits. The first proposed quantum integer division circuit is based on the restoring division algorithm and the second proposed design implements the non-restoring division algorithm. Both proposed designs are optimized in terms of T-count, T-depth and qubits. Both proposed quantum circuit designs are based on (i) a quantum subtractor, (ii) a quantum adder-subtractor circuit, and (iii) a novel quantum conditional addition circuit. Our proposed restoring division circuit achieves average T-count savings from $79.03 \%$ to $91.69 \%$ compared to the existing works. Our proposed non-restoring division circuit achieves average T-count savings from $49.75 \%$ to $90.37 \%$ compared to the existing works. Further, both our proposed designs have linear T-depth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09732v1-abstract-full').style.display = 'none'; document.getElementById('1809.09732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.06926">arXiv:1808.06926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.06926">pdf</a>, <a href="https://arxiv.org/ps/1808.06926">ps</a>, <a href="https://arxiv.org/format/1808.06926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Compiling Adiabatic Quantum Programs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Khan%2C+F+S">Faisal Shah Khan</a>, <a href="/search/cs?searchtype=author&amp;query=Elsokkary%2C+N">Nada Elsokkary</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.06926v2-abstract-short" style="display: inline;"> We develop a non-cooperative game-theoretic model for the problem of graph minor-embedding to show that optimal compiling of adiabatic quantum programs in the sense of Nash equilibrium is possible. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.06926v2-abstract-full" style="display: none;"> We develop a non-cooperative game-theoretic model for the problem of graph minor-embedding to show that optimal compiling of adiabatic quantum programs in the sense of Nash equilibrium is possible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.06926v2-abstract-full').style.display = 'none'; document.getElementById('1808.06926v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:1801.02053, arXiv:1609.08360, arXiv:1803.07919</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the Workshop on Quantum Communication and Information Technology, IEEE Globecom, 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.04599">arXiv:1807.04599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.04599">pdf</a>, <a href="https://arxiv.org/format/1807.04599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1371/journal.pone.0207827">10.1371/journal.pone.0207827 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Benchmarking treewidth as a practical component of tensor-network--based quantum simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dumitrescu%2C+E+F">Eugene F. Dumitrescu</a>, <a href="/search/cs?searchtype=author&amp;query=Fisher%2C+A+L">Allison L. Fisher</a>, <a href="/search/cs?searchtype=author&amp;query=Goodrich%2C+T+D">Timothy D. Goodrich</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Sullivan%2C+B+D">Blair D. Sullivan</a>, <a href="/search/cs?searchtype=author&amp;query=Wright%2C+A+L">Andrew L. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.04599v1-abstract-short" style="display: inline;"> Tensor networks are powerful factorization techniques which reduce resource requirements for numerically simulating principal quantum many-body systems and algorithms. The computational complexity of a tensor network simulation depends on the tensor ranks and the order in which they are contracted. Unfortunately, computing optimal contraction sequences (orderings) in general is known to be a compu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.04599v1-abstract-full').style.display = 'inline'; document.getElementById('1807.04599v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.04599v1-abstract-full" style="display: none;"> Tensor networks are powerful factorization techniques which reduce resource requirements for numerically simulating principal quantum many-body systems and algorithms. The computational complexity of a tensor network simulation depends on the tensor ranks and the order in which they are contracted. Unfortunately, computing optimal contraction sequences (orderings) in general is known to be a computationally difficult (NP-complete) task. In 2005, Markov and Shi showed that optimal contraction sequences correspond to optimal (minimum width) tree decompositions of a tensor network&#39;s line graph, relating the contraction sequence problem to a rich literature in structural graph theory. While treewidth-based methods have largely been ignored in favor of dataset-specific algorithms in the prior tensor networks literature, we demonstrate their practical relevance for problems arising from two distinct methods used in quantum simulation: multi-scale entanglement renormalization ansatz (MERA) datasets and quantum circuits generated by the quantum approximate optimization algorithm (QAOA). We exhibit multiple regimes where treewidth-based algorithms outperform domain-specific algorithms, while demonstrating that the optimal choice of algorithm has a complex dependence on the network density, expected contraction complexity, and user run time requirements. We further provide an open source software framework designed with an emphasis on accessibility and extendability, enabling replicable experimental evaluations and future exploration of competing methods by practitioners. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.04599v1-abstract-full').style.display = 'none'; document.getElementById('1807.04599v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Open source code available</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.01423">arXiv:1712.01423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.01423">pdf</a>, <a href="https://arxiv.org/format/1712.01423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICRC.2017.8123664">10.1109/ICRC.2017.8123664 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Accelerators for High-Performance Computing Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Britt%2C+K+A">Keith A. Britt</a>, <a href="/search/cs?searchtype=author&amp;query=Mohiyaddin%2C+F+A">Fahd A. Mohiyaddin</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.01423v1-abstract-short" style="display: inline;"> We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01423v1-abstract-full').style.display = 'inline'; document.getElementById('1712.01423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.01423v1-abstract-full" style="display: none;"> We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.01423v1-abstract-full').style.display = 'none'; document.getElementById('1712.01423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">&#34;If you want to go quickly, go alone. If you want to go far, go together.&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2017 IEEE International Conference on Rebooting Computing (ICRC), Washington, DC, USA, 2017, pp. 1-7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.07361">arXiv:1711.07361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.07361">pdf</a>, <a href="https://arxiv.org/format/1711.07361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Community detection with spiking neural networks for neuromorphic hardware </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hamilton%2C+K+E">Kathleen E. Hamilton</a>, <a href="/search/cs?searchtype=author&amp;query=Imam%2C+N">Neena Imam</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.07361v1-abstract-short" style="display: inline;"> We present results related to the performance of an algorithm for community detection which incorporates event-driven computation. We define a mapping which takes a graph G to a system of spiking neurons. Using a fully connected spiking neuron system, with both inhibitory and excitatory synaptic connections, the firing patterns of neurons within the same community can be distinguished from firing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07361v1-abstract-full').style.display = 'inline'; document.getElementById('1711.07361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.07361v1-abstract-full" style="display: none;"> We present results related to the performance of an algorithm for community detection which incorporates event-driven computation. We define a mapping which takes a graph G to a system of spiking neurons. Using a fully connected spiking neuron system, with both inhibitory and excitatory synaptic connections, the firing patterns of neurons within the same community can be distinguished from firing patterns of neurons in different communities. On a random graph with 128 vertices and known community structure we show that by using binary decoding and a Hamming-distance based metric, individual communities can be identified from spike train similarities. Using bipolar decoding and finite rate thresholding, we verify that inhibitory connections prevent the spread of spiking patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07361v1-abstract-full').style.display = 'none'; document.getElementById('1711.07361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference paper presented at ORNL Neuromorphic Workshop 2017, 7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.06202">arXiv:1707.06202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.06202">pdf</a>, <a href="https://arxiv.org/format/1707.06202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Instruction Set Architectures for Quantum Processing Units </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Britt%2C+K+A">Keith A. Britt</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.06202v1-abstract-short" style="display: inline;"> Progress in quantum computing hardware raises questions about how these devices can be controlled, programmed, and integrated with existing computational workflows. We briefly describe several prominent quantum computational models, their associated quantum processing units (QPUs), and the adoption of these devices as accelerators within high-performance computing systems. Emphasizing the interfac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06202v1-abstract-full').style.display = 'inline'; document.getElementById('1707.06202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.06202v1-abstract-full" style="display: none;"> Progress in quantum computing hardware raises questions about how these devices can be controlled, programmed, and integrated with existing computational workflows. We briefly describe several prominent quantum computational models, their associated quantum processing units (QPUs), and the adoption of these devices as accelerators within high-performance computing systems. Emphasizing the interface to the QPU, we analyze instruction set architectures based on reduced and complex instruction sets, i.e., RISC and CISC architectures. We clarify the role of conventional constraints on memory addressing and instruction widths within the quantum computing context. Finally, we examine existing quantum computing platforms, including the D-Wave 2000Q and IBM Quantum Experience, within the context of future ISA development and HPC needs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06202v1-abstract-full').style.display = 'none'; document.getElementById('1707.06202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in the proceedings in the International Super Computing Conference 2017 publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.01996">arXiv:1704.01996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.01996">pdf</a>, <a href="https://arxiv.org/format/1704.01996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Optimizing Adiabatic Quantum Program Compilation using a Graph-Theoretic Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Goodrich%2C+T+D">Timothy D. Goodrich</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Sullivan%2C+B+D">Blair D. Sullivan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.01996v2-abstract-short" style="display: inline;"> Adiabatic quantum computing has evolved in recent years from a theoretical field into an immensely practical area, a change partially sparked by D-Wave System&#39;s quantum annealing hardware. These multimillion-dollar quantum annealers offer the potential to solve optimization problems millions of times faster than classical heuristics, prompting researchers at Google, NASA and Lockheed Martin to stu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01996v2-abstract-full').style.display = 'inline'; document.getElementById('1704.01996v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.01996v2-abstract-full" style="display: none;"> Adiabatic quantum computing has evolved in recent years from a theoretical field into an immensely practical area, a change partially sparked by D-Wave System&#39;s quantum annealing hardware. These multimillion-dollar quantum annealers offer the potential to solve optimization problems millions of times faster than classical heuristics, prompting researchers at Google, NASA and Lockheed Martin to study how these computers can be applied to complex real-world problems such as NASA rover missions. Unfortunately, compiling (embedding) an optimization problem into the annealing hardware is itself a difficult optimization problem and a major bottleneck currently preventing widespread adoption. Additionally, while finding a single embedding is difficult, no generalized method is known for tuning embeddings to use minimal hardware resources. To address these barriers, we introduce a graph-theoretic framework for developing structured embedding algorithms. Using this framework, we introduce a biclique virtual hardware layer to provide a simplified interface to the physical hardware. Additionally, we exploit bipartite structure in quantum programs using odd cycle transversal (OCT) decompositions. By coupling an OCT-based embedding algorithm with new, generalized reduction methods, we develop a new baseline for embedding a wide range of optimization problems into fault-free D-Wave annealing hardware. To encourage the reuse and extension of these techniques, we provide an implementation of the framework and embedding algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01996v2-abstract-full').style.display = 'none'; document.getElementById('1704.01996v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.08360">arXiv:1609.08360</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> No fixed-point guarantee of Nash equilibrium in quantum games </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Khan%2C+F+S">Faisal Shah Khan</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.08360v3-abstract-short" style="display: inline;"> The theory of quantum games permits players to choose strategies that prepare and measure quantum states. Whereas conventional game theory provides guarantees for fixed-point stability in non-cooperative games, so-called Nash equilibria, we find this guarantee is not provided for quantum games. In particular, we show the conditions for Glickberg&#39;s fixed-point theorem do not apply to pure quantum g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08360v3-abstract-full').style.display = 'inline'; document.getElementById('1609.08360v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.08360v3-abstract-full" style="display: none;"> The theory of quantum games permits players to choose strategies that prepare and measure quantum states. Whereas conventional game theory provides guarantees for fixed-point stability in non-cooperative games, so-called Nash equilibria, we find this guarantee is not provided for quantum games. In particular, we show the conditions for Glickberg&#39;s fixed-point theorem do not apply to pure quantum games when the payoff is a physical observable. We further show that Nash equilibrium can be guaranteed when the payoff is defined with respect to state preparation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08360v3-abstract-full').style.display = 'none'; document.getElementById('1609.08360v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The results pertaining to fixed point theorems for quantum games were mathematically erroneous</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01416">arXiv:1608.01416</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01416">pdf</a>, <a href="https://arxiv.org/format/1608.01416">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0957-4484/27/42/424002">10.1088/0957-4484/27/42/424002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Computational Workflow for Designing Silicon Donor Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=Ericson%2C+M+N">M. Nance Ericson</a>, <a href="/search/cs?searchtype=author&amp;query=Jakowski%2C+J">Jacek Jakowski</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+J">Jingsong Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Britton%2C+C">Charles Britton</a>, <a href="/search/cs?searchtype=author&amp;query=Curtis%2C+F+G">Franklin G. Curtis</a>, <a href="/search/cs?searchtype=author&amp;query=Dumitrescu%2C+E+F">Eugene F. Dumitrescu</a>, <a href="/search/cs?searchtype=author&amp;query=Mohiyaddin%2C+F+A">Fahd A. Mohiyaddin</a>, <a href="/search/cs?searchtype=author&amp;query=Sumpter%2C+B+G">Bobby G. Sumpter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01416v1-abstract-short" style="display: inline;"> Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01416v1-abstract-full').style.display = 'inline'; document.getElementById('1608.01416v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01416v1-abstract-full" style="display: none;"> Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum computational chemistry calculations with electrostatic field solvers to perform detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. The resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01416v1-abstract-full').style.display = 'none'; document.getElementById('1608.01416v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures; A smart model is a good model</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanotechnology 27, 424002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.01084">arXiv:1607.01084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.01084">pdf</a>, <a href="https://arxiv.org/format/1607.01084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/IPDPSW.2016.113">10.1109/IPDPSW.2016.113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance Models for Split-execution Computing Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a>, <a href="/search/cs?searchtype=author&amp;query=McCaskey%2C+A+J">Alexander J. McCaskey</a>, <a href="/search/cs?searchtype=author&amp;query=Schrock%2C+J">Jonathan Schrock</a>, <a href="/search/cs?searchtype=author&amp;query=Seddiqi%2C+H">Hadayat Seddiqi</a>, <a href="/search/cs?searchtype=author&amp;query=Britt%2C+K+A">Keith A. Britt</a>, <a href="/search/cs?searchtype=author&amp;query=Imam%2C+N">Neena Imam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.01084v1-abstract-short" style="display: inline;"> Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.01084v1-abstract-full').style.display = 'inline'; document.getElementById('1607.01084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.01084v1-abstract-full" style="display: none;"> Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardware limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.01084v1-abstract-full').style.display = 'none'; document.getElementById('1607.01084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at 18th Workshop on Advances in Parallel and Distributed Computational Models [APDCM2016] on 23 May 2016; 10 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2016 IEEE International Parallel and Distributed Processing Symposium Workshops, pp. 545-554 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.01276">arXiv:1604.01276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.01276">pdf</a>, <a href="https://arxiv.org/format/1604.01276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2234697">10.1117/12.2234697 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Programmable Multi-Node Quantum Network Design and Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dasari%2C+V+R">Venkat R. Dasari</a>, <a href="/search/cs?searchtype=author&amp;query=Sadlier%2C+R+J">Ronald J. Sadlier</a>, <a href="/search/cs?searchtype=author&amp;query=Prout%2C+R">Ryan Prout</a>, <a href="/search/cs?searchtype=author&amp;query=Williams%2C+B+P">Brian P. Williams</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.01276v1-abstract-short" style="display: inline;"> Software-defined networking offers a device-agnostic programmable framework to encode new network functions. Externally centralized control plane intelligence allows programmers to write network applications and to build functional network designs. OpenFlow is a key protocol widely adopted to build programmable networks because of its programmability, flexibility and ability to interconnect hetero&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01276v1-abstract-full').style.display = 'inline'; document.getElementById('1604.01276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.01276v1-abstract-full" style="display: none;"> Software-defined networking offers a device-agnostic programmable framework to encode new network functions. Externally centralized control plane intelligence allows programmers to write network applications and to build functional network designs. OpenFlow is a key protocol widely adopted to build programmable networks because of its programmability, flexibility and ability to interconnect heterogeneous network devices. We simulate the functional topology of a multi-node quantum network that uses programmable network principles to manage quantum metadata for protocols such as teleportation, superdense coding, and quantum key distribution. We first show how the OpenFlow protocol can manage the quantum metadata needed to control the quantum channel. We then use numerical simulation to demonstrate robust programmability of a quantum switch via the OpenFlow network controller while executing an application of superdense coding. We describe the software framework implemented to carry out these simulations and we discuss near-term efforts to realize these applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01276v1-abstract-full').style.display = 'none'; document.getElementById('1604.01276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, scheduled for presentation at SPIE Quantum Information and Computation IX</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 9873, Quantum Information and Computation IX, 98730B (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.06321">arXiv:1601.06321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.06321">pdf</a>, <a href="https://arxiv.org/format/1601.06321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1515/qmetro-2016-0001">10.1515/qmetro-2016-0001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superdense Coding Interleaved with Forward Error Correction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sadlier%2C+R+J">Ronald J. Sadlier</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.06321v2-abstract-short" style="display: inline;"> Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique rol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.06321v2-abstract-full').style.display = 'inline'; document.getElementById('1601.06321v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.06321v2-abstract-full" style="display: none;"> Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique role that burst errors play in superdense coding, and we show how these can be mitigated against by interleaving the FEC codewords prior to transmission. We conclude that classical FEC with interleaving is a useful method to improve the performance in near-term demonstrations of superdense coding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.06321v2-abstract-full').style.display = 'none'; document.getElementById('1601.06321v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages; contributed to special issue of Quantum Measurements and Quantum Metrology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Measurements and Quantum Metrology, 3, 1-8 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.08545">arXiv:1512.08545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.08545">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1177/1548512916661781">10.1177/1548512916661781 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> OpenFlow Arbitrated Programmable Network Channels for Managing Quantum Metadata </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Dasari%2C+V+R">Venkat R. Dasari</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.08545v2-abstract-short" style="display: inline;"> Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) off&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08545v2-abstract-full').style.display = 'inline'; document.getElementById('1512.08545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.08545v2-abstract-full" style="display: none;"> Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-defined network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control QPHY behavior and we extend the OpenFlow interface to accommodate this quantum metadata. We conclude by discussing near-term experimental efforts that can realize SDN&#39;s principles for quantum communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08545v2-abstract-full').style.display = 'none'; document.getElementById('1512.08545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 14, 1-11 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.04386">arXiv:1511.04386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.04386">pdf</a>, <a href="https://arxiv.org/format/1511.04386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-Performance Computing with Quantum Processing Units </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Britt%2C+K+A">Keith A. Britt</a>, <a href="/search/cs?searchtype=author&amp;query=Humble%2C+T+S">Travis S. Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.04386v1-abstract-short" style="display: inline;"> The prospects of quantum computing have driven efforts to realize fully functional quantum processing units (QPUs). Recent success in developing proof-of-principle QPUs has prompted the question of how to integrate these emerging processors into modern high-performance computing (HPC) systems. We examine how QPUs can be integrated into current and future HPC system architectures by accounting for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04386v1-abstract-full').style.display = 'inline'; document.getElementById('1511.04386v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.04386v1-abstract-full" style="display: none;"> The prospects of quantum computing have driven efforts to realize fully functional quantum processing units (QPUs). Recent success in developing proof-of-principle QPUs has prompted the question of how to integrate these emerging processors into modern high-performance computing (HPC) systems. We examine how QPUs can be integrated into current and future HPC system architectures by accounting for functional and physical design requirements. We identify two integration pathways that are differentiated by infrastructure constraints on the QPU and the use cases expected for the HPC system. This includes a tight integration that assumes infrastructure bottlenecks can be overcome as well as a loose integration that assumes they cannot. We find that the performance of both approaches is likely to depend on the quantum interconnect that serves to entangle multiple QPUs. We also identify several challenges in assessing QPU performance for HPC, and we consider new metrics that capture the interplay between system architecture and the quantum parallelism underlying computational performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04386v1-abstract-full').style.display = 'none'; document.getElementById('1511.04386v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10