CINXE.COM

Search results for: metal vapor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: metal vapor</title> <meta name="description" content="Search results for: metal vapor"> <meta name="keywords" content="metal vapor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="metal vapor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="metal vapor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2837</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: metal vapor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2837</span> The shaping of Metal-Organic Frameworks for Water Vapor Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsung-Lin%20Hsieh">Tsung-Lin Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Jen%20Chen"> Jiun-Jen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhao%20Kang"> Yuhao Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) have drawn scientists’ attention for decades due to its high specific surface area, tunable pore size, and relatively low temperature for regeneration. Bearing with those mentioned properties, MOFs has been widely used in various applications, such as adsorption/separation and catalysis. However, the current challenge for practical use of MOFs is to effectively shape these crystalline powder material into controllable forms such as pellets, granules, and monoliths with sufficient mechanical and chemical stability, while maintaining the excellent properties of MOFs powders. Herein, we have successfully synthesized an Al-based MOF powder which exhibits a high water capacity at relatively low humidity conditions and relatively low temperature for regeneration. Then the synthesized Al-MOF was shaped into granules with particle size of 2-4 mm by (1) tumbling granulation, (2) High shear mixing granulation, and (3) Extrusion techniques. Finally, the water vapor adsorption rate and crush strength of Al-MOF granules by different shaping techniques were measured and compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granulation" title="granulation">granulation</a>, <a href="https://publications.waset.org/abstracts/search?q=granules" title=" granules"> granules</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title=" metal-organic frameworks"> metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapor%20adsorption" title=" water vapor adsorption"> water vapor adsorption</a> </p> <a href="https://publications.waset.org/abstracts/127112/the-shaping-of-metal-organic-frameworks-for-water-vapor-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2836</span> Single-Walled Carbon Nanotube Synthesis by Chemical Vapor Deposition Using Platinum-Group Metal Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Maruyama">T. Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Saida"> T. Saida</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Naritsuka"> S. Naritsuka</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iijima"> S. Iijima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (&gt;2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 &deg;C and 600 &deg;C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 &deg;C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodium" title=" rhodium"> rhodium</a>, <a href="https://publications.waset.org/abstracts/search?q=palladium" title=" palladium"> palladium</a> </p> <a href="https://publications.waset.org/abstracts/90219/single-walled-carbon-nanotube-synthesis-by-chemical-vapor-deposition-using-platinum-group-metal-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2835</span> Metal-Organic Chemical Vapor Deposition (MOCVD) Process Investigation for Co Thin Film as a TSV Alternative Seed Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Esmaeili">Sajjad Esmaeili</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Krause"> Robert Krause</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Gerlich"> Lukas Gerlich</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mohammadian%20Kia"> Alireza Mohammadian Kia</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Uhlig"> Benjamin Uhlig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation aims to develop the feasible and qualitative process parameters for the thin films fabrication into ultra-large through-silicon-vias (TSVs) as vertical interconnections. The focus of the study is on TSV metallization and its challenges employing new materials for the purpose of rapid signal propagation in the microsystems technology. Cobalt metal-organic chemical vapor deposition (Co-MOCVD) process enables manufacturing an adhesive and excellent conformal ultra-thin film all the way through TSVs in comparison with the conventional non-conformal physical vapor deposition (PVD) process of copper (Cu) seed layer. Therefore, this process provides a Cu seed-free layer which is capable of direct Cu electrochemical deposition (Cu-ECD) on top of it. The main challenge of this metallization module is to achieve the proper alternative seed layer with less roughness, sheet resistance and granular organic contamination (e.g. carbon) which intensify the Co corrosion under the influence of Cu electrolyte. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cobalt%20MOCVD" title="Cobalt MOCVD">Cobalt MOCVD</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20Cu%20electrochemical%20deposition%20%28ECD%29" title=" direct Cu electrochemical deposition (ECD)"> direct Cu electrochemical deposition (ECD)</a>, <a href="https://publications.waset.org/abstracts/search?q=metallization%20technology" title=" metallization technology"> metallization technology</a>, <a href="https://publications.waset.org/abstracts/search?q=through-silicon-via%20%28TSV%29" title=" through-silicon-via (TSV)"> through-silicon-via (TSV)</a> </p> <a href="https://publications.waset.org/abstracts/96811/metal-organic-chemical-vapor-deposition-mocvd-process-investigation-for-co-thin-film-as-a-tsv-alternative-seed-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2834</span> A Feasibility Study of Replacing High Pressure Mercury Vapor and Sodium Vapor Lamp Street Lighting Bulbs with LEDs in Turkish Republic of Northern Cyprus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Olorunfemi%20Bamisile">Olusola Olorunfemi Bamisile</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dagbasi"> Mustafa Dagbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Abbasoglu"> Serkan Abbasoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feasibility of an Energy Audit program is the main aim of this paper. LEDs are used to replace Sodium Vapor lamps and High Pressured Mercury Vapor lamps that are currently used for the street lighting system in Turkish Republic of Northern Cyprus. 44% of the fossil fuels imported into Turkish Republic of Northern Cyprus are used for electricity generation which makes the reduction in the consumption of electricity very important. This project will save as much as 40,206,210 kWh on site annually and 121,837,000 kWh can be saved from source. The economic environmental and fossil fuels saving of this project is also evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20management" title="energy conservation management">energy conservation management</a>, <a href="https://publications.waset.org/abstracts/search?q=LEDs" title=" LEDs"> LEDs</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20vapor" title=" sodium vapor"> sodium vapor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20mercury%20vapor" title=" high pressure mercury vapor"> high pressure mercury vapor</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20costing" title=" life cycle costing"> life cycle costing</a> </p> <a href="https://publications.waset.org/abstracts/35706/a-feasibility-study-of-replacing-high-pressure-mercury-vapor-and-sodium-vapor-lamp-street-lighting-bulbs-with-leds-in-turkish-republic-of-northern-cyprus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2833</span> A Method for Calculating Dew Point Temperature in the Humidity Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Sa">Wu Sa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Qian"> Zhang Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Qi"> Li Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Ye"> Wang Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently in humidity tests having not put the Dew point temperature as a control parameter, this paper selects wet and dry bulb thermometer to measure the vapor pressure, and introduces several the saturation vapor pressure formulas easily calculated on the controller. Then establish the Dew point temperature calculation model to obtain the relationship between the Dew point temperature and vapor pressure. Finally check through the 100 groups of sample in the range of 0-100 ℃ from "Psychrometric handbook", find that the average error is small. This formula can be applied to calculate the Dew point temperature in the humidity test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dew%20point%20temperature" title="dew point temperature">dew point temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=psychrometric%20handbook" title=" psychrometric handbook"> psychrometric handbook</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20vapor%20pressure" title=" saturation vapor pressure"> saturation vapor pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20and%20dry%20bulb%20thermometer" title=" wet and dry bulb thermometer"> wet and dry bulb thermometer</a> </p> <a href="https://publications.waset.org/abstracts/30022/a-method-for-calculating-dew-point-temperature-in-the-humidity-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2832</span> Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Woo%20Park">Jin-Woo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Soo%20Lee"> Sung-Soo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nong-Moon%20Hwang"> Nong-Moon Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapour%20deposition" title="chemical vapour deposition">chemical vapour deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=charged%20cluster%20model" title=" charged cluster model"> charged cluster model</a>, <a href="https://publications.waset.org/abstracts/search?q=generation%20of%20charged%20nanoparticles" title=" generation of charged nanoparticles"> generation of charged nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition%20behaviour" title=" deposition behaviour"> deposition behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=gan" title=" gan"> gan</a>, <a href="https://publications.waset.org/abstracts/search?q=charged%20transfer%20rate" title=" charged transfer rate"> charged transfer rate</a> </p> <a href="https://publications.waset.org/abstracts/2530/generation-of-charged-nanoparticles-in-the-gas-phase-and-their-contribution-to-deposition-of-gan-films-and-nanostructures-during-atmospheric-pressure-chemical-vapor-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2831</span> The Effect of Nanofiber Web on Thermal Conductivity, Air and Water Vapor Permeability </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Ozsev%20Yuksek">Ilkay Ozsev Yuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Ucar"> Nuray Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Esma%20Soygur"> Zeynep Esma Soygur</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Kucuk"> Yasemin Kucuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, composite fabrics with polyacrylonitrile electrospun nanofiber deposited onto quilted polyester fabric have been produced in order to control the isolation properties such as water vapor permeability, air permeability and thermal conductivity. Different nanofiber webs were manufactured by changing polymer concentration from 10% to 16% and by changing the deposition time from 1 to 3 hours. Presence of nanofiber layer on the quilted fabric results to an increase of an isolation, i.e., a decrease of the moisture vapor transport rates at 20%, decrease of thermal conductivity at 15% and a decrease of air permeability values at 50%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiber%2Ffabric%20composites" title="nanofiber/fabric composites">nanofiber/fabric composites</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20vapor%20transport" title=" moisture vapor transport"> moisture vapor transport</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20permeability" title=" air permeability"> air permeability</a> </p> <a href="https://publications.waset.org/abstracts/56070/the-effect-of-nanofiber-web-on-thermal-conductivity-air-and-water-vapor-permeability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2830</span> Use of Vapor Corrosion Inhibitor for Tank Bottom Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arsalan%20Khan%20Sherwani">Muhammad Arsalan Khan Sherwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Volatile Corrosion Inhibitors (VCI) to protect Aboveground Storage Tank (AST) bottom plates against soil-side corrosion is one of the emerging corrosion prevention methods, specifically for tanks constructed on oily sand pad. Oily sand pad and the presence of air gaps underneath the bottom plates lead to severe corrosion and high metal thickness loss. In such cases, the cathodic protection cannot be fully considered as effective due to Cathodic Protection (CP) current shielding. These situations sometimes result in serious failures on multiple fronts, such as; containment losses, system shutdowns, extensive repairs, environmental impact and safety concerns in case of flammable fluids. Recently, East West Pipeline Department (EWPD) of Saudi Aramco has deployed this technology to one of the crude oil storage tanks, which showed high metal thickness loss during its out of service inspection. Soil-side corrosion rustled in major repairs of bottom plates and ultimately caused enormous unplanned activities in term of time as well as cost. This paper mainly focuses on the methodology of VCI installation, corrosion monitoring system and the expected results of protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vapor%20Corrosion%20Inhibitor" title="Vapor Corrosion Inhibitor">Vapor Corrosion Inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Soil%20Side%20Corrosion" title=" Soil Side Corrosion"> Soil Side Corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=External%20Corrosion" title=" External Corrosion"> External Corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=Above%20Grade%20Storage%20Tank" title=" Above Grade Storage Tank"> Above Grade Storage Tank</a> </p> <a href="https://publications.waset.org/abstracts/167617/use-of-vapor-corrosion-inhibitor-for-tank-bottom-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2829</span> Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Premrudee%20Promdet">Premrudee Promdet</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Cui"> Fan Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi%20Byoung%20%20Hwang"> Gi Byoung Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka%20Chuen%20To"> Ka Chuen To</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjayan%20Sathasivam"> Sanjayan Sathasivam</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20J.%20%20Carmalt"> Claire J. Carmalt</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20P.%20Parkin"> Ivan P. Parkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical%20cell%20%28PEC%29" title=" photoelectrochemical cell (PEC)"> photoelectrochemical cell (PEC)</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol-assisted%20chemical%20vapor%20deposition%20%28AACVD%29" title=" aerosol-assisted chemical vapor deposition (AACVD)"> aerosol-assisted chemical vapor deposition (AACVD)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance%20%28SPR%29" title=" surface plasmon resonance (SPR)"> surface plasmon resonance (SPR)</a> </p> <a href="https://publications.waset.org/abstracts/138288/cu-nanoparticle-embedded-zno-nanoplate-thin-films-for-highly-efficient-photocatalytic-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2828</span> Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juree%20Hong">Juree Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggeun%20Lee"> Sanggeun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungmok%20Seo"> Jungmok Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Taeyoon%20Lee"> Taeyoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanic%20displacement%20reaction" title=" galvanic displacement reaction"> galvanic displacement reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sensor" title=" hydrogen sensor"> hydrogen sensor</a> </p> <a href="https://publications.waset.org/abstracts/18400/facile-synthesis-of-metal-nanoparticles-on-graphene-via-galvanic-displacement-reaction-for-sensing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2827</span> Analysis of Vapor-Phase Diffusion of Benzene from Contaminated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20A.%20Parlin">Asma A. Parlin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Nakamura"> K. Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Watanabe"> N. Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Komai"> T. Komai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the effective diffusion of benzene vapor in the soil-atmosphere interface is important as an intrusion of benzene into the atmosphere from the soil is largely driven by diffusion. To analyze the vertical one dimensional effective diffusion of benzene vapor in porous medium with high water content, diffusion experiments were conducted in soil columns using Andosol soil and Toyoura silica sand with different water content; for soil water content was from 0 to 30 wt.% and for sand it was from 0.06 to 10 wt.%. In soil, a linear relation was found between water content and effective diffusion coefficient while the effective diffusion coefficient didn’t change in the sand with increasing water. A numerical transport model following unsteady-state approaches based on Fick’s second law was used to match the required time for a steady state of the gas phase concentration profile of benzene to the experimentally measured concentration profile gas phase in the column. The result highlighted that both the water content and porosity might increase vertical diffusion of benzene vapor in soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzene%20vapor-phase" title="benzene vapor-phase">benzene vapor-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20diffusion" title=" effective diffusion"> effective diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20soil%20medium" title=" subsurface soil medium"> subsurface soil medium</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20state" title=" unsteady state"> unsteady state</a> </p> <a href="https://publications.waset.org/abstracts/111757/analysis-of-vapor-phase-diffusion-of-benzene-from-contaminated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2826</span> Fiber-Optic Sensors for Hydrogen Peroxide Vapor Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Akbari%20Khorami">H. Akbari Khorami</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Wild"> P. Wild</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Djilali"> N. Djilali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the response of a fiber-optic sensing probe to small concentrations of hydrogen peroxide (H2O2) vapor at room temperature. H2O2 has extensive applications in industrial and medical environments. Conversely, H2O2 can be a health hazard by itself. For example, H2O2 induces cellular damage in human cells and its presence can be used to diagnose illnesses such as asthma and human breast cancer. Hence, development of reliable H2O2 sensor is of vital importance to detect and measure this species. Ferric ferrocyanide, referred to as Prussian blue (PB), was deposited on the tip of a multimode optical fiber through the single source precursor technique and served as an indicator of H2O2 in a spectroscopic manner. Sensing tests were performed in H2O2-H2O vapor mixtures with different concentrations of H2O2. The results of sensing tests show the sensor is able to detect H2O2 concentrations in the range of 50.6 ppm to 229.5 ppm. Furthermore, the sensor response to H2O2 concentrations is linear in a log-log scale with the adjacent R-square of 0.93. This sensing behavior allows us to detect and quantify the concentration of H2O2 in the vapor phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20deposition" title="chemical deposition">chemical deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-optic%20sensor" title=" fiber-optic sensor"> fiber-optic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide%20vapor" title=" hydrogen peroxide vapor"> hydrogen peroxide vapor</a>, <a href="https://publications.waset.org/abstracts/search?q=prussian%20blue" title=" prussian blue"> prussian blue</a> </p> <a href="https://publications.waset.org/abstracts/35449/fiber-optic-sensors-for-hydrogen-peroxide-vapor-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2825</span> Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Geringswald">D. Geringswald</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hintze"> B. Hintze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H<sub>2</sub>:N<sub>2</sub>). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALD" title="ALD">ALD</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20aspect%20ratio" title=" high aspect ratio"> high aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=PE-MOCVD" title=" PE-MOCVD"> PE-MOCVD</a>, <a href="https://publications.waset.org/abstracts/search?q=TiN" title=" TiN"> TiN</a> </p> <a href="https://publications.waset.org/abstracts/50360/approximation-of-pe-mocvd-to-ald-for-tin-concerning-resistivity-and-chemical-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2824</span> Enhancing Vehicle Efficiency Through Vapor Absorption Refrigeration Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoftahe%20Nigussie%20Worku">Yoftahe Nigussie Worku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the utilization of vapor absorption refrigeration systems (VARS) as an alternative to the conventional vapor compression refrigerant systems (VCRS) in vehicle air conditioning (AC) systems. Currently, most vehicles employ VCRS, which relies on engine power to drive the compressor, leading to additional fuel consumption. In contrast, VARS harnesses low-grade heat, specifically from the exhaust of high-power internal combustion engines, reducing the burden on the vehicle's engine. The historical development of vapor absorption technology is outlined, dating back to Michael Faraday's discovery in 1824 and the subsequent creation of the first vapor absorption refrigeration machine by Ferdinand Carre in 1860. The paper delves into the fundamental principles of VARS, emphasizing the replacement of mechanical processes with physicochemical interactions, utilizing heat rather than mechanical work. The study compares the basic concepts of the current vapor compression systems with the proposed vapor absorption systems, highlighting the efficiency gains achieved by eliminating the need for engine-driven compressors. The vapor absorption refrigeration cycle (VARC) is detailed, focusing on the generator's role in separating and vaporizing ammonia, chosen for its low-temperature evaporation characteristics. The project's statement underscores the need for increased efficiency in vehicle AC systems beyond the limitations of VCRS. By introducing VARS, driven by low-grade heat, the paper advocates for a reduction in engine power consumption and, consequently, a decrease in fuel usage. This research contributes to the ongoing efforts to enhance sustainability and efficiency in automotive climate control systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VCRS" title="VCRS">VCRS</a>, <a href="https://publications.waset.org/abstracts/search?q=VARS" title=" VARS"> VARS</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/179158/enhancing-vehicle-efficiency-through-vapor-absorption-refrigeration-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2823</span> Effect of O2 Pressure of Fe-Doped TiO2 Nanostructure on Morphology Properties for Gas Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samar%20Y.%20Al-Dabagh">Samar Y. Al-Dabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adawiya%20J.%20Haider"> Adawiya J. Haider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirvat%20D.%20Majed"> Mirvat D. Majed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pure nanostructure TiO2 and thin films doped with transition metal Fe were prepared by pulsed laser deposition (PLD) on Si (111) substrate. The thin films structures were determined by X-ray diffraction (XRD). The morphology properties were determined from atomic force microscopy (AFM), which shows that the roughness increases when TiO2 is doped with Fe. Results show TiO2 doped with Fe metal thin films deposited on Si (111) substrate has maximum sensitivity to ethanol vapor at 10 mbar oxygen pressure than at 0.01 and 0.1 mbar with optimum operation temperature of 250°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition%20%28PLD%29" title="pulsed laser deposition (PLD)">pulsed laser deposition (PLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20doped%20thin%20films" title=" TiO2 doped thin films"> TiO2 doped thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/12159/effect-of-o2-pressure-of-fe-doped-tio2-nanostructure-on-morphology-properties-for-gas-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2822</span> Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napat%20Hataivichian">Napat Hataivichian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydrogenation" title=" dehydrogenation"> dehydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a> </p> <a href="https://publications.waset.org/abstracts/25499/propane-dehydrogenation-with-better-stability-by-a-modified-pt-based-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2821</span> Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaibir%20Sharma">Jaibir Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20JaeWung"> Lee JaeWung</a>, <a href="https://publications.waset.org/abstracts/search?q=Merugu%20Srinivas"> Merugu Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Navab%20Singh"> Navab Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewetting" title="dewetting">dewetting</a>, <a href="https://publications.waset.org/abstracts/search?q=themal%20annealing" title=" themal annealing"> themal annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/abstracts/search?q=porous" title=" porous"> porous</a> </p> <a href="https://publications.waset.org/abstracts/31602/preparation-of-porous-metal-membrane-by-thermal-annealing-for-thin-film-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2820</span> Surface Functionalization of Chemical Vapor Deposition Grown Graphene Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashanta%20Dhoj%20Adhikari">Prashanta Dhoj Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the introduction of the active surface functionalization group on chemical vapor deposition (CVD) grown graphene film by wet deposition method. The activity of surface functionalized group was tested with surface modified carbon nanotubes (CNTs) and found that both materials were amalgamated by chemical bonding. The introduction of functional group on the graphene film surface and its vigorous role to bind CNTs with the present technique could provide an efficient, novel route to device fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title="chemical vapor deposition">chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20film" title=" graphene film"> graphene film</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20functionalization" title=" surface functionalization"> surface functionalization</a> </p> <a href="https://publications.waset.org/abstracts/23138/surface-functionalization-of-chemical-vapor-deposition-grown-graphene-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2819</span> Optimization of a Combined Ejector-Vapor Compression Refrigeration Systems with R134a</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilhem%20Ouelhazi">Ilhem Ouelhazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Elakhdar"> Mouna Elakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakdar%20Kairouani"> Lakdar Kairouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computer simulation model for a combined ejector-vapor compression cycle that uses working fluid R134a. A refrigeration system was developed which combines a basic vapor compression refrigeration cycle with an ejector cooling cycle. A one-dimensional mathematical model was developed using the equations governing the flow and thermodynamics based on the constant area ejector flow model. The effects of the operating parameters on the cooling capacity, the performance coefficient, and the entrainment ratio are studied. The current model is based on the NIST-REFPROP database for refrigerants properties calculations. The simulated performance is compared with the available experimental data from the literature for validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20refrigeration%20cycle" title="combined refrigeration cycle">combined refrigeration cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20area%20ejector" title=" constant area ejector"> constant area ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=R134a" title=" R134a"> R134a</a>, <a href="https://publications.waset.org/abstracts/search?q=ejector-cooling%20cycle" title=" ejector-cooling cycle"> ejector-cooling cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20simulation" title=" mathematical simulation"> mathematical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor%20compression%20cycle" title=" vapor compression cycle"> vapor compression cycle</a> </p> <a href="https://publications.waset.org/abstracts/87803/optimization-of-a-combined-ejector-vapor-compression-refrigeration-systems-with-r134a" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2818</span> Controlled Growth of Charge Transfer Complex Nanowire by Physical Vapor Deposition Method Using Dielectrophoretic Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabaya%20Basori">Rabaya Basori</a>, <a href="https://publications.waset.org/abstracts/search?q=Arup%20K.%20Raychaudhuri"> Arup K. Raychaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, a variety of semiconductor nanowires (NWs) has been synthesized and used as basic building blocks for the development of electronic and optoelectronic nanodevices. Dielectrophoresis (DEP) has been widely investigated as a scalable technique to trap and manipulate polarizable objects. This includes biological cells, nanoparticles, DNA molecules, organic or inorganic NWs and proteins using electric field gradients. In this article, we have used DEP force to localize nanowire growth by physical vapor deposition (PVD) method as well as control of NW diameter on field assisted growth of the NWs of CuTCNQ (Cu-tetracyanoquinodimethane); a metal-organic charge transfer complex material which is well known of resistive switching. We report a versatile analysis platform, based on a set of nanogap electrodes, for the controlled growth of nanowire. Non-uniform electric field and dielectrophoretic force is created in between two metal electrodes, patterned by electron beam lithography process. Suspended CuTCNQ nanowires have been grown laterally between two electrodes in the vicinity of electric field and dielectric force by applying external bias. Growth and diameter dependence of the nanowires on external bias has been investigated in the framework of these two forces by COMSOL Multiphysics simulation. This report will help successful in-situ nanodevice fabrication with constrained number of NW and diameter without any post treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanowire" title="nanowire">nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectrophoretic%20force" title=" dielectrophoretic force"> dielectrophoretic force</a>, <a href="https://publications.waset.org/abstracts/search?q=confined%20growth" title=" confined growth"> confined growth</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20diameter" title=" controlled diameter"> controlled diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=comsol%20multiphysics%20simulation" title=" comsol multiphysics simulation"> comsol multiphysics simulation</a> </p> <a href="https://publications.waset.org/abstracts/70925/controlled-growth-of-charge-transfer-complex-nanowire-by-physical-vapor-deposition-method-using-dielectrophoretic-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2817</span> Exergetic Comparison between Three Configurations of Two Stage Vapor Compression Refrigeration Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Halfaoui%20Mbarek">Wafa Halfaoui Mbarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Khir%20Tahar"> Khir Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Brahim%20Ammar"> Ben Brahim Ammar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports a comparison from an exergetic point of view between three configurations of vapor compression industrial refrigeration systems operating with R134a as working fluid. The performances of the different cycles are analyzed as function of several operating parameters such as condensing temperature and inter stage pressure. In addition, the contributions of component exergy destruction to the total exergy destruction are obtained for each system. The results are estimated to be used in the selection of the most advantageous configuration from an exergetic view point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vapor%20compression" title="vapor compression">vapor compression</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=destruction" title=" destruction"> destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=R134a" title=" R134a"> R134a</a> </p> <a href="https://publications.waset.org/abstracts/39655/exergetic-comparison-between-three-configurations-of-two-stage-vapor-compression-refrigeration-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2816</span> Water Vapor Oxidization of NiO for a Hole Transport Layer in All Inorganic QD-LED</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaeun%20Park">Jaeun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Daekyoung%20Kim"> Daekyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20Kyoon%20Chung"> Ho Kyoon Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Heeyeop%20Chae"> Heeyeop Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum dots light-emitting diodes (QD-LEDs) have been considered as the next generation display and lighting devices due to their excellent color purity, photo-stability solution process possibility and good device stability. Currently typical quantum dot light emitting diodes contain organic layers such as PEDOT:PSS and PVK for charge transport layers. To make quantum dot light emitting diodes (QD-LED) more stable, it is required to replace those acidic and relatively unstable organic charge transport layers with inorganic materials. Therefore all inorganic and solution processed quantum dot light emitting diodes can potentially be a solution to stable and cost-effective display devices. We studied solution processed NiO films to replace organic charge transport layers that are required for stable all-inorganic based light emitting diodes. The transition metal oxides can be made by various vacuum and solution processes, but the solution processes are considered more cost-effective than vacuum processes. In this work we investigated solution processed NiOx for a hole transport layer (HTL). NiOx, has valence band energy levels of 5.3eV and they are easy to make sol-gel solutions. Water vapor oxidation process was developed and applied to solution processed all-inorganic QD-LED. Turn-on voltage, luminance and current efficiency of QD in this work were 5V, 1800Cd/m2 and 0.5Cd/A, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QD-LED" title="QD-LED">QD-LED</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20solution" title=" metal oxide solution"> metal oxide solution</a>, <a href="https://publications.waset.org/abstracts/search?q=NiO" title=" NiO"> NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=all-inorganic%20QD-LED%20device" title=" all-inorganic QD-LED device"> all-inorganic QD-LED device</a> </p> <a href="https://publications.waset.org/abstracts/17283/water-vapor-oxidization-of-nio-for-a-hole-transport-layer-in-all-inorganic-qd-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">750</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2815</span> A Model of Condensation and Solidification of Metallurgical Vapor in a Supersonic Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thien%20X.%20Dinh">Thien X. Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Witt"> Peter Witt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A one-dimensional model for the simulation of condensation and solidification of a metallurgical vapor in the mixture of gas during supersonic expansion is presented. In the model, condensation is based on critical nucleation and drop-growth theory. When the temperature falls below the supercooling point, all the formed liquid droplets in the condensation phase are assumed to solidify at an infinite rate. The model was verified with a Computational Fluid Dynamics simulation of magnesium vapor condensation and solidification. The obtained results are in reasonable agreement with CFD data. Therefore, the model is a promising, efficient tool for use in the design process for supersonic nozzles applied in mineral processes since it is faster than the CFD counterpart by an order of magnitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20flow" title=" metallurgical flow"> metallurgical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20expansion" title=" supersonic expansion"> supersonic expansion</a> </p> <a href="https://publications.waset.org/abstracts/175697/a-model-of-condensation-and-solidification-of-metallurgical-vapor-in-a-supersonic-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2814</span> Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonard%20D.%20Agana">Leonard D. Agana</a>, <a href="https://publications.waset.org/abstracts/search?q=Wendell%20Ace%20Dela%20Cruz"> Wendell Ace Dela Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjan%20C.%20Lingaya"> Arjan C. Lingaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bonifacio%20T.%20Doma%20Jr."> Bonifacio T. Doma Jr.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, Philippines <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20alcohol-gasoline%20blends" title="dual alcohol-gasoline blends">dual alcohol-gasoline blends</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation%20curve" title=" distillation curve"> distillation curve</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=reid%20vapor%20pressure" title=" reid vapor pressure"> reid vapor pressure</a> </p> <a href="https://publications.waset.org/abstracts/158823/prediction-of-distillation-curve-and-reid-vapor-pressure-of-dual-alcohol-gasoline-blends-using-artificial-neural-network-for-the-determination-of-fuel-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2813</span> High Frequency Nanomechanical Oscillators Based on Synthetic Nanowires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minjin%20Kim">Minjin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihwan%20Kim"> Jihwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Bongsoo%20Kim"> Bongsoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Junho%20Suh"> Junho Suh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We demonstrate nanomechanical resonators constructed with synthetic nanowires (NWs) and study their electro-mechanical properties at millikelvin temperatures. Nanomechanical resonators are fabricated using single-crystalline Au NWs and InAs NWs. The mechanical resonance signals are acquired by either magnetomotive or capacitive detection methods. The Au NWs are synthesized by chemical vapor transport method at 1100 °C, and they exhibit clean surface and single-crystallinity with little defects. Due to pristine surface quality, these Au NW mechanical resonators could provide an ideal model system for studying surface-related effects on the mechanical systems. The InAs NWs are synthesized by molecular beam epitaxy or metal organic chemical vapor deposition method. The InAs NWs show electronic conductance modulation resembling Coulomb blockade, which also manifests in the mechanical resonance signals in the form of damping and resonance frequency shift. Our result provides an evidence of strong electro-mechanical coupling in synthetic NW nanomechanical resonators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Au%20nanowire" title="Au nanowire">Au nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=InAs%20nanowire" title=" InAs nanowire"> InAs nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomechanical%20resonator" title=" nanomechanical resonator"> nanomechanical resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20nanowires" title=" synthetic nanowires"> synthetic nanowires</a> </p> <a href="https://publications.waset.org/abstracts/66256/high-frequency-nanomechanical-oscillators-based-on-synthetic-nanowires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2812</span> Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sisuwan%20Kaseamsawat">Sisuwan Kaseamsawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivapan%20Choo-In"> Sivapan Choo-In</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=orchard" title=" orchard"> orchard</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20and%20monitoring" title=" pollution and monitoring"> pollution and monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/8591/heavy-metal-concentration-in-orchard-area-amphawa-district-samut-songkram-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2811</span> Use of Microbial Fuel Cell for Metal Recovery from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajbhan%20Sevda">Surajbhan Sevda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title="metal recovery">metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a> </p> <a href="https://publications.waset.org/abstracts/78731/use-of-microbial-fuel-cell-for-metal-recovery-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2810</span> Cavitating Flow through a Venturi Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imane%20Benghalia">Imane Benghalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Zamoum"> Mohammed Zamoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Boucetta"> Rachid Boucetta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrodynamic cavitation is a complex physical phenomenon that appears in hydraulic systems (pumps, turbines, valves, Venturi tubes, etc.) when the fluid pressure decreases below the saturated vapor pressure. The works carried out in this study aimed to get a better understanding of the cavitating flow phenomena. For this, we have numerically studied a cavitating bubbly flow through a Venturi nozzle. The cavitation model is selected and solved using a commercial computational fluid dynamics (CFD) code. The obtained results show the effect of the inlet pressure (10, 7, 5, and 2 bars) of the Venturi on pressure, the velocity of the fluid flow, and the vapor fraction. We found that the inlet pressure of the Venturi strongly affects the evolution of the pressure, velocity, and vapor fraction formation in the cavitating flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitating%20flow" title="cavitating flow">cavitating flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change" title=" phase change"> phase change</a>, <a href="https://publications.waset.org/abstracts/search?q=venturi" title=" venturi"> venturi</a> </p> <a href="https://publications.waset.org/abstracts/166565/cavitating-flow-through-a-venturi-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2809</span> Barrier Properties of Starch-Ethylene Vinyl Alcohol Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Amidi%20Fazli">Farid Amidi Fazli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1 -15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also, the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starch" title="starch">starch</a>, <a href="https://publications.waset.org/abstracts/search?q=EVOH" title=" EVOH"> EVOH</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20cellulose" title=" nanocrystalline cellulose"> nanocrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity "> hydrophilicity </a> </p> <a href="https://publications.waset.org/abstracts/20201/barrier-properties-of-starch-ethylene-vinyl-alcohol-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2808</span> Investigation of Cylindrical Multi-Layer Hybrid Plasmonic Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateeksha%20Sharma">Prateeksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Dinesh%20Kumar"> V. Dinesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of cylindrical multilayer hybrid plasmonic waveguides have been investigated in detail considering their structural and material aspects. Characteristics of hybrid metal insulator metal (HMIM) and hybrid insulator metal insulator (HIMI) waveguides have been compared on the basis of propagation length and confinement factor. Necessity of this study is to understand newer kind of waveguides that overcome the limitations of conventional waveguides. Investigation reveals that sub wavelength confinement can be obtained in two low dielectric spacer layers. This study provides gateway for many applications such as nano lasers, interconnects, bio sensors and optical trapping etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20insulator%20metal%20insulator" title="hybrid insulator metal insulator">hybrid insulator metal insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20metal%20insulator%20metal" title=" hybrid metal insulator metal"> hybrid metal insulator metal</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20laser" title=" nano laser"> nano laser</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20polariton" title=" surface plasmon polariton"> surface plasmon polariton</a> </p> <a href="https://publications.waset.org/abstracts/33732/investigation-of-cylindrical-multi-layer-hybrid-plasmonic-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=94">94</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=95">95</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20vapor&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10