CINXE.COM
Odds - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Odds - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"973dd066-e854-44eb-8853-636d6abc9da1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Odds","wgTitle":"Odds","wgCurRevisionId":1256755997,"wgRevisionId":1256755997,"wgArticleId":172069,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from May 2016","Use dmy dates from September 2019","Randomness","Statistical ratios","Wagering"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Odds","wgRelevantArticleId":172069,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q515895","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Odds - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Odds"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Odds&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Odds"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Odds rootpage-Odds skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Odds" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Odds" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Odds" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Odds" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Statistical_usage" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Statistical_usage"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Statistical usage</span> </div> </a> <button aria-controls="toc-Statistical_usage-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Statistical usage subsection</span> </button> <ul id="toc-Statistical_usage-sublist" class="vector-toc-list"> <li id="toc-Mathematical_relations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematical_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Mathematical relations</span> </div> </a> <ul id="toc-Mathematical_relations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Gambling_usage" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Gambling_usage"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Gambling usage</span> </div> </a> <button aria-controls="toc-Gambling_usage-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Gambling usage subsection</span> </button> <ul id="toc-Gambling_usage-sublist" class="vector-toc-list"> <li id="toc-Fractional_odds" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fractional_odds"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Fractional odds</span> </div> </a> <ul id="toc-Fractional_odds-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Decimal_odds" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Decimal_odds"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Decimal odds</span> </div> </a> <ul id="toc-Decimal_odds-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Moneyline_odds" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Moneyline_odds"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Moneyline odds</span> </div> </a> <ul id="toc-Moneyline_odds-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Wholesale_odds" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Wholesale_odds"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Wholesale odds</span> </div> </a> <ul id="toc-Wholesale_odds-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Gambling_odds_vis-à-vis_probabilities" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Gambling_odds_vis-à-vis_probabilities"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Gambling odds vis-à-vis probabilities</span> </div> </a> <ul id="toc-Gambling_odds_vis-à-vis_probabilities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Odds</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 19 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-19" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">19 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A8%D0%B0%D0%BD%D1%86%D1%8B" title="Шанцы – Belarusian" lang="be" hreflang="be" data-title="Шанцы" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Oportunitat" title="Oportunitat – Catalan" lang="ca" hreflang="ca" data-title="Oportunitat" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Pom%C4%9Br_pravd%C4%9Bpodobnost%C3%AD" title="Poměr pravděpodobností – Czech" lang="cs" hreflang="cs" data-title="Poměr pravděpodobností" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Odds" title="Odds – Danish" lang="da" hreflang="da" data-title="Odds" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Chance_(Stochastik)" title="Chance (Stochastik) – German" lang="de" hreflang="de" data-title="Chance (Stochastik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Cuota_(estad%C3%ADstica)" title="Cuota (estadística) – Spanish" lang="es" hreflang="es" data-title="Cuota (estadística)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Momio" title="Momio – Basque" lang="eu" hreflang="eu" data-title="Momio" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Cote_(probabilit%C3%A9s)" title="Cote (probabilités) – French" lang="fr" hreflang="fr" data-title="Cote (probabilités)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%99%95%EB%A5%A0%EB%B9%84" title="확률비 – Korean" lang="ko" hreflang="ko" data-title="확률비" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Odds" title="Odds – Italian" lang="it" hreflang="it" data-title="Odds" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Odds" title="Odds – Dutch" lang="nl" hreflang="nl" data-title="Odds" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AA%E3%83%83%E3%82%BA" title="オッズ – Japanese" lang="ja" hreflang="ja" data-title="オッズ" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Odds" title="Odds – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Odds" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Szansa_(statystyka)" title="Szansa (statystyka) – Polish" lang="pl" hreflang="pl" data-title="Szansa (statystyka)" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Chance" title="Chance – Portuguese" lang="pt" hreflang="pt" data-title="Chance" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Odds" title="Odds – Simple English" lang="en-simple" hreflang="en-simple" data-title="Odds" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Odds" title="Odds – Swedish" lang="sv" hreflang="sv" data-title="Odds" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Olas%C4%B1l%C4%B1klar_oran%C4%B1" title="Olasılıklar oranı – Turkish" lang="tr" hreflang="tr" data-title="Olasılıklar oranı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8F%91%E7%94%9F%E6%AF%94" title="发生比 – Chinese" lang="zh" hreflang="zh" data-title="发生比" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q515895#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Odds" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Odds" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Odds"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Odds&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Odds&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Odds"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Odds&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Odds&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Odds" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Odds" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Odds&oldid=1256755997" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Odds&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Odds&id=1256755997&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOdds"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOdds"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Odds&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Odds&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Odds" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q515895" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Ratio of the probability of an event happening versus not happening</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the gambling and statistical term. For the <a href="/wiki/Alternative_rock" title="Alternative rock">alternative rock</a> band, see <a href="/wiki/Odds_(band)" title="Odds (band)">Odds (band)</a>. For playing chess with odds, i.e. with a handicap on one player, see <a href="/wiki/Chess_handicap" class="mw-redirect" title="Chess handicap">Chess handicap</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Odds against" redirects here. For the 1966 documentary film, see <a href="/wiki/The_Odds_Against" title="The Odds Against">The Odds Against</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/Special:Search/odds" class="extiw" title="wiktionary:Special:Search/odds">odds</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, <b>odds</b> provide a measure of the probability of a particular outcome. Odds are commonly used in <a href="/wiki/Gambling" title="Gambling">gambling</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>. For example for an event that is 40% probable, one could say that the odds are <span class="nowrap">"2 in 5",</span> <span class="nowrap">"2 to 3 in favor",</span> or <span class="nowrap">"3 to 2 against".</span> </p><p>When <a href="/wiki/Gambling" title="Gambling">gambling</a>, odds are often given as the ratio of the possible net profit <i>to</i> the possible net loss. However in many situations, you pay the possible loss ("stake" or "wager") up front and, if you win, you are paid the net win plus you also get your stake returned. So wagering 2 at <span class="nowrap">"3 <i>to</i> 2"</span>, pays out <span class="nowrap">3 + 2 = 5</span>, which is called <span class="nowrap">"5 <i>for</i> 2".</span> When <a href="/wiki/Moneyline_odds" class="mw-redirect" title="Moneyline odds">Moneyline odds</a> are quoted as a positive number <span class="texhtml">+<i>X</i></span>, it means that a wager pays <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">X</span> to 100.</span> When Moneyline odds are quoted as a negative number <span class="texhtml">−<i>X</i></span>, it means that a wager pays <span class="nowrap">100 to <span class="texhtml mvar" style="font-style:italic;">X</span>.</span> </p><p>Odds have a simple relationship with <a href="/wiki/Probability" title="Probability">probability</a>. When probability is expressed as a number between 0 and 1, the relationships between probability <span class="texhtml mvar" style="font-style:italic;">p</span> and odds are as follows. Note that if probability is to be expressed as a percentage these probability values should be multiplied by 100%. </p> <ul><li>"<span class="texhtml mvar" style="font-style:italic;">X</span> in <span class="texhtml mvar" style="font-style:italic;">Y</span>" means that the probability is <span class="texhtml"><i>p</i> = <i>X</i> / <i>Y</i></span>.</li> <li>"<span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">Y</span> in favor" means that the probability is <span class="texhtml"><i>p</i> = <i>X</i> / (<i>X</i> + <i>Y</i>)</span>.</li> <li>"<span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">Y</span> against" means that the probability is <span class="texhtml"><i>p</i> = <i>Y</i> / (<i>X</i> + <i>Y</i>)</span>.</li> <li>"pays <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">Y</span>" means that the bet is a fair bet if the probability is <span class="texhtml"><i>p</i> = <i>Y</i> / (<i>X</i> + <i>Y</i>)</span>.</li> <li>"pays <span class="texhtml mvar" style="font-style:italic;">X</span> for <span class="texhtml mvar" style="font-style:italic;">Y</span>" means that the bet is a fair bet if the probability is <span class="texhtml"><i>p</i> = <i>Y</i> / <i>X</i></span>.</li> <li>"pays <span class="texhtml">+<i>X</i></span>" (<a href="#Moneyline_odds">moneyline odds</a>) means that the bet is fair if the probability is <span class="texhtml"><i>p</i> = 100 / (<i>X</i> + 100)</span>.</li> <li>"pays <span class="texhtml">−<i>X</i></span>" (<a href="#Moneyline_odds">moneyline odds</a>) means that the bet is fair if the probability is <span class="texhtml"><i>p</i> = <i>X</i> / (<i>X</i> + 100)</span>.</li></ul> <p>The numbers for odds can be scaled. If <span class="texhtml mvar" style="font-style:italic;">k</span> is any positive number then <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">Y</span></span> is the same as <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">kX</span> to <span class="texhtml mvar" style="font-style:italic;">kY</span>,</span> and similarly if "to" is replaced with "in" or "for". For example, <span class="nowrap">"3 to 2 against"</span> is the same as both <span class="nowrap">"1.5 to 1 against"</span> and <span class="nowrap">"6 to 4 against".</span> </p><p>When the value of the probability <span class="texhtml mvar" style="font-style:italic;">p</span> (between 0 and 1; not a percentage) can be written as a fraction <span class="texhtml"><i>N</i> / <i>D</i></span> then the odds can be said to be <span class="nowrap">"<span class="texhtml"><i>p</i>/(1−<i>p</i>)</span> to 1 in favor",</span> <span class="nowrap">"<span class="texhtml">(1−<i>p</i>)/<i>p</i></span> to 1 against",</span> <span class="nowrap">"<span class="texhtml mvar" style="font-style:italic;">N</span> in <span class="texhtml mvar" style="font-style:italic;">D</span>",</span> <span class="nowrap">"<span class="texhtml mvar" style="font-style:italic;">N</span> to <span class="texhtml"><i>D</i>−<i>N</i></span> in favor",</span> or <span class="nowrap">"<span class="texhtml"><i>D</i>−<i>N</i></span> to <span class="texhtml mvar" style="font-style:italic;">N</span> against",</span> and these can be scaled to equivalent odds. Similarly, fair betting odds can be expressed as <span class="nowrap">"<span class="texhtml">(1−<i>p</i>)/<i>p</i></span> to 1",</span> <span class="nowrap">"<span class="texhtml">1/<i>p</i></span> for 1",</span> <span class="nowrap">"+<span class="texhtml">100(1−<i>p</i>)/<i>p</i></span>",</span> <span class="nowrap">"<span class="texhtml">−100<i>p</i>/(1−<i>p</i>)</span>",</span> <span class="nowrap">"<span class="texhtml"><i>D</i>−<i>N</i></span> to <span class="texhtml mvar" style="font-style:italic;">N</span>",</span> <span class="nowrap">"<span class="texhtml mvar" style="font-style:italic;">D</span> for <span class="texhtml mvar" style="font-style:italic;">N</span>",</span> <span class="nowrap">"+<span class="texhtml">100(<i>D</i>−<i>N</i>)/<i>N</i></span>",</span> or <span class="nowrap">"<span class="texhtml">−100<i>N</i>/(<i>D</i>−<i>N</i>)</span>".</span> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The language of odds, such as the use of phrases like "ten to one" for <a href="/wiki/Intuitive" class="mw-redirect" title="Intuitive">intuitively</a> estimated risks, is found in the sixteenth century, well before the development of <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>.<sup id="cite_ref-Franklin_1-0" class="reference"><a href="#cite_note-Franklin-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Shakespeare" class="mw-redirect" title="Shakespeare">Shakespeare</a> wrote: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>Knew that we ventured on such dangerous seas<br /> That if we wrought out life 'twas ten to one</p><div class="templatequotecite">— <cite><a href="/wiki/William_Shakespeare" title="William Shakespeare">William Shakespeare</a>, <i><a href="/wiki/Henry_IV,_Part_II" class="mw-redirect" title="Henry IV, Part II">Henry IV, Part II</a></i>, Act I, Scene 1, lines 181–2</cite></div></blockquote> <p>The sixteenth-century <a href="/wiki/Polymath" title="Polymath">polymath</a> <a href="/wiki/Gerolamo_Cardano" title="Gerolamo Cardano">Cardano</a> demonstrated the efficacy of defining odds as the ratio of favourable to unfavourable outcomes. Implied by this definition is the fact that the probability of an event is given by the <a href="/wiki/Ratio" title="Ratio">ratio</a> of favourable outcomes to the total number of possible outcomes.<sup id="cite_ref-columbia.edu_2-0" class="reference"><a href="#cite_note-columbia.edu-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Statistical_usage">Statistical usage</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=2" title="Edit section: Statistical usage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Probability_vs_odds.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Probability_vs_odds.svg/220px-Probability_vs_odds.svg.png" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Probability_vs_odds.svg/330px-Probability_vs_odds.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/42/Probability_vs_odds.svg/440px-Probability_vs_odds.svg.png 2x" data-file-width="512" data-file-height="256" /></a><figcaption>Calculation of probability (risk) vs odds</figcaption></figure> <p>In statistics, odds are an expression of relative probabilities, generally quoted as the odds <i>in favor</i>. The odds (in favor) of an <a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">event</a> or a <a href="/wiki/Proposition" title="Proposition">proposition</a> is the ratio of the probability that the event will happen to the probability that the event will not happen. Mathematically, this is a <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a>, as it has exactly two outcomes. In case of a finite <a href="/wiki/Sample_space" title="Sample space">sample space</a> of <a href="/wiki/Equally_likely_outcomes" class="mw-redirect" title="Equally likely outcomes">equally probable outcomes</a>, this is the ratio of the number of <a href="/wiki/Outcome_(probability)" title="Outcome (probability)">outcomes</a> where the event occurs to the number of outcomes where the event does not occur; these can be represented as <i>W</i> and <i>L</i> (for Wins and Losses) or <i>S</i> and <i>F</i> (for Success and Failure). For example, the odds that a <a href="/wiki/Random_variable" title="Random variable">randomly chosen</a> day of the week is during a weekend are two to five (2:5), as days of the week form a sample space of seven outcomes, and the event occurs for two of the outcomes (Saturday and Sunday), and not for the other five.<sup id="cite_ref-Wolfram_3-0" class="reference"><a href="#cite_note-Wolfram-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Gelman_4-0" class="reference"><a href="#cite_note-Gelman-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Conversely, given odds as a ratio of integers, this can be represented by a probability space of a finite number of equally probable outcomes. These definitions are equivalent, since dividing both terms in the ratio by the number of outcomes yields the probabilities: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2:5=(2/7):(5/7).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>:</mo> <mn>5</mn> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>7</mn> <mo stretchy="false">)</mo> <mo>:</mo> <mo stretchy="false">(</mo> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>7</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2:5=(2/7):(5/7).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09b369a8dc69368fb38ab1a0e70c7c651578bb54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.538ex; height:2.843ex;" alt="{\displaystyle 2:5=(2/7):(5/7).}"></span> Conversely, the odds against is the opposite ratio. For example, the odds against a random day of the week being during a weekend are 5:2. </p><p>Odds and probability can be expressed in prose via the prepositions <i>to</i> and <i>in:</i> "odds of so many <i>to</i> so many on (or against) [some event]" refers to <i>odds</i>—the ratio of numbers of (equally probable) outcomes in favor and against (or vice versa); "chances of so many [outcomes], <i>in</i> so many [outcomes]" refers to <i>probability</i>—the number of (equally probable) outcomes in favour relative to the number for and against combined. For example, "odds of a weekend are 2 <i>to</i> 5", while "chances of a weekend are 2 <i>in</i> 7". In casual use, the words <i>odds</i> and <i>chances</i> (or <i>chance</i>) are often used interchangeably to vaguely indicate some measure of odds or probability, though the intended meaning can be deduced by noting whether the preposition between the two numbers is <i>to</i> or <i>in</i>.<sup id="cite_ref-Powerball_5-0" class="reference"><a href="#cite_note-Powerball-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Wired_6-0" class="reference"><a href="#cite_note-Wired-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Wolfram2_7-0" class="reference"><a href="#cite_note-Wolfram2-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Mathematical_relations">Mathematical relations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=3" title="Edit section: Mathematical relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Odds can be expressed as a ratio of two numbers, in which case it is not unique—scaling both terms by the same factor does not change the proportions: 1:1 odds and 100:100 odds are the same (even odds). Odds can also be expressed as a number, by dividing the terms in the ratio—in this case it is unique (different <a href="/wiki/Fraction_(mathematics)" class="mw-redirect" title="Fraction (mathematics)">fractions</a> can represent the same <a href="/wiki/Rational_number" title="Rational number">rational number</a>). Odds as a ratio, odds as a number, and probability (also a number) are related by simple formulas, and similarly odds in favor and odds against, and probability of success and probability of failure have simple relations. Odds range from 0 to infinity, while probabilities range from 0 to 1, and hence are often represented as a percentage between 0% and 100%: reversing the ratio switches odds for with odds against, and similarly probability of success with probability of failure. </p><p>Given odds (in favor) as the ratio W:L (number of outcomes that are wins:number of outcomes that are losses), the odds in favor (as a number) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab8863a66ff56f82b8ffee929dee2d6576a9e1a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.264ex; height:2.343ex;" alt="{\displaystyle o_{f}}"></span> and odds against (as a number) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a35966c6a92f117045187744cdc1412100e74f39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.229ex; height:2.009ex;" alt="{\displaystyle o_{a}}"></span> can be computed by simply dividing, and are <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverses</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}o_{f}&=W/L=1/o_{a}\\o_{a}&=L/W=1/o_{f}\\o_{f}\cdot o_{a}&=1\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>L</mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>W</mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}o_{f}&=W/L=1/o_{a}\\o_{a}&=L/W=1/o_{f}\\o_{f}\cdot o_{a}&=1\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68ab3997d78863f22adf4c054d6a86ed344ebf1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:22.89ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}o_{f}&=W/L=1/o_{a}\\o_{a}&=L/W=1/o_{f}\\o_{f}\cdot o_{a}&=1\end{aligned}}}"></span></dd></dl> <p>Analogously, given odds as a ratio, the probability of success <span class="texhtml mvar" style="font-style:italic;">p</span> or failure <span class="texhtml mvar" style="font-style:italic;">q</span> can be computed by dividing, and the probability of success and probability of failure sum to <a href="/wiki/Unity_(mathematics)" class="mw-redirect" title="Unity (mathematics)">unity</a> (one), as they are the only possible outcomes. In case of a finite number of equally probable outcomes, this can be interpreted as the number of outcomes where the event occurs divided by the total number of events: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}p&=W/(W+L)=1-q\\q&=L/(W+L)=1-p\\p+q&=1\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>W</mi> <mo>+</mo> <mi>L</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>W</mi> <mo>+</mo> <mi>L</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> <mo>+</mo> <mi>q</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}p&=W/(W+L)=1-q\\q&=L/(W+L)=1-p\\p+q&=1\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec3df6abd835b08c94ea75433467f3a3ddecbe6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:29.366ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}p&=W/(W+L)=1-q\\q&=L/(W+L)=1-p\\p+q&=1\end{aligned}}}"></span></dd></dl> <p>Given a probability <i>p,</i> the odds as a ratio is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p:q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>:</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p:q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db71c7b8bd28932bafd661e4d4f1bad9107b97cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:4.266ex; height:2.009ex;" alt="{\displaystyle p:q}"></span> (probability of success to probability of failure), and the odds as numbers can be computed by dividing: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}o_{f}&=p/q=p/(1-p)=(1-q)/q\\o_{a}&=q/p=(1-p)/p=q/(1-q)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>q</mi> <mo>=</mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}o_{f}&=p/q=p/(1-p)=(1-q)/q\\o_{a}&=q/p=(1-p)/p=q/(1-q)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3afa84447ee60802028a4320e3cc91b2e70f1822" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.139ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}o_{f}&=p/q=p/(1-p)=(1-q)/q\\o_{a}&=q/p=(1-p)/p=q/(1-q)\end{aligned}}}"></span></dd></dl> <p>Conversely, given the odds as a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o_{f},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o_{f},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b991461c39ae535779eea51626ff5e43e444a49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.911ex; height:2.343ex;" alt="{\displaystyle o_{f},}"></span> this can be represented as the ratio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o_{f}:1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>:</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o_{f}:1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a5f2568e9a087ceb59daea5c10678544fbb3673" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.01ex; height:2.843ex;" alt="{\displaystyle o_{f}:1,}"></span> or conversely <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1:(1/o_{f})=1:o_{a},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>:</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>:</mo> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1:(1/o_{f})=1:o_{a},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b1513486ce54f37d4ee4e0cf4f9238f9c730f93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.572ex; height:3.009ex;" alt="{\displaystyle 1:(1/o_{f})=1:o_{a},}"></span> from which the probability of success or failure can be computed: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}p&=o_{f}/(o_{f}+1)=1/(o_{a}+1)\\q&=o_{a}/(o_{a}+1)=1/(o_{f}+1)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}p&=o_{f}/(o_{f}+1)=1/(o_{a}+1)\\q&=o_{a}/(o_{a}+1)=1/(o_{f}+1)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a5426fda973733840dc0c88a6e360667ce44901" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.987ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}p&=o_{f}/(o_{f}+1)=1/(o_{a}+1)\\q&=o_{a}/(o_{a}+1)=1/(o_{f}+1)\end{aligned}}}"></span></dd></dl> <p>Thus if expressed as a fraction with a numerator of 1, probability and odds differ by exactly 1 in the denominator: a probability of 1 <i>in</i> 100 (1/100 = 1%) is the same as odds of 1 <i>to</i> 99 (1/99 = 0.0101... = 0.<span style="text-decoration:overline;">01</span>), while odds of 1 <i>to</i> 100 (1/100 = 0.01) is the same as a probability of 1 <i>in</i> 101 (1/101 = 0.00990099... = 0.<span style="text-decoration:overline;">0099</span>). This is a minor difference if the probability is small (close to zero, or "long odds"), but is a major difference if the probability is large (close to one). </p><p>These are worked out for some simple odds: </p> <table class="wikitable"> <tbody><tr> <th>odds (ratio)</th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab8863a66ff56f82b8ffee929dee2d6576a9e1a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.264ex; height:2.343ex;" alt="{\displaystyle o_{f}}"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle o_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>o</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle o_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a35966c6a92f117045187744cdc1412100e74f39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.229ex; height:2.009ex;" alt="{\displaystyle o_{a}}"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> </th></tr> <tr> <td>1:1</td> <td>1</td> <td>1</td> <td>50%</td> <td>50% </td></tr> <tr> <td>0:1</td> <td>0</td> <td><i>∞</i></td> <td>0%</td> <td>100% </td></tr> <tr> <td>1:0</td> <td><i>∞</i></td> <td>0</td> <td>100%</td> <td>0% </td></tr> <tr> <td>2:1</td> <td>2</td> <td>0.5</td> <td>66.<span style="text-decoration:overline;">66</span>%</td> <td>33.<span style="text-decoration:overline;">33</span>% </td></tr> <tr> <td>1:2</td> <td>0.5</td> <td>2</td> <td>33.<span style="text-decoration:overline;">33</span>%</td> <td>66.<span style="text-decoration:overline;">66</span>% </td></tr> <tr> <td>4:1</td> <td>4</td> <td>0.25</td> <td>80%</td> <td>20% </td></tr> <tr> <td>1:4</td> <td>0.25</td> <td>4</td> <td>20%</td> <td>80% </td></tr> <tr> <td colspan="5"> </td></tr> <tr> <td>9:1</td> <td>9</td> <td>0.<span style="text-decoration:overline;">1</span></td> <td>90%</td> <td>10% </td></tr> <tr> <td>10:1</td> <td>10</td> <td>0.1</td> <td>90.<span style="text-decoration:overline;">90</span>%</td> <td>9.<span style="text-decoration:overline;">09</span>% </td></tr> <tr> <td>99:1</td> <td>99</td> <td>0.<span style="text-decoration:overline;">01</span></td> <td>99%</td> <td>1% </td></tr> <tr> <td>100:1</td> <td>100</td> <td>0.01</td> <td>99.<span style="text-decoration:overline;">0099</span>%</td> <td>0.<span style="text-decoration:overline;">9900</span>% </td></tr></tbody></table> <p>These transforms have certain special geometric properties: the conversions between odds for and odds against (resp. probability of success with probability of failure) and between odds and probability are all <a href="/wiki/M%C3%B6bius_transformation" title="Möbius transformation">Möbius transformations</a> (fractional linear transformations). They are thus <a href="/wiki/M%C3%B6bius_transformation#Specifying_a_transformation_by_three_points" title="Möbius transformation">specified by three points</a> (<a href="/wiki/Sharply_multiply_transitive" class="mw-redirect" title="Sharply multiply transitive">sharply 3-transitive</a>). Swapping odds for and odds against swaps 0 and infinity, fixing 1, while swapping probability of success with probability of failure swaps 0 and 1, fixing .5; these are both order 2, hence <a href="/wiki/Circular_transform" class="mw-redirect" title="Circular transform">circular transforms</a>. Converting odds to probability fixes 0, sends infinity to 1, and sends 1 to .5 (even odds are 50% probable), and conversely; this is a <a href="/wiki/Parabolic_transform" class="mw-redirect" title="Parabolic transform">parabolic transform</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Applications">Applications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=4" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and statistics, odds and similar ratios may be more natural or more convenient than probabilities. In some cases the <a href="/wiki/Log-odds" class="mw-redirect" title="Log-odds">log-odds</a> are used, which is the <a href="/wiki/Logit" title="Logit">logit</a> of the probability. Most simply, odds are frequently multiplied or divided, and log converts multiplication to addition and division to subtractions. This is particularly important in the <a href="/wiki/Logistic_regression" title="Logistic regression">logistic model</a>, in which the log-odds of the target variable are a <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of the observed variables. </p><p>Similar ratios are used elsewhere in statistics; of central importance is the <a href="/wiki/Likelihood_ratio" class="mw-redirect" title="Likelihood ratio">likelihood ratio</a> in <a href="/wiki/Likelihoodist_statistics" title="Likelihoodist statistics">likelihoodist statistics</a>, which is used in <a href="/wiki/Bayesian_statistics" title="Bayesian statistics">Bayesian statistics</a> as the <a href="/wiki/Bayes_factor" title="Bayes factor">Bayes factor</a>. </p><p>Odds are particularly useful in problems of sequential decision making, as for instance in problems of how to stop (online) on a <b>last specific event</b> which is solved by the <a href="/wiki/Odds_algorithm" title="Odds algorithm">odds algorithm</a>. </p><p>The odds are a <a href="/wiki/Ratio" title="Ratio">ratio</a> of probabilities; an <a href="/wiki/Odds_ratio" title="Odds ratio">odds ratio</a> is a ratio of odds, that is, a ratio of ratios of probabilities. Odds-ratios are often used in analysis of <a href="/wiki/Clinical_trial" title="Clinical trial">clinical trials</a>. While they have useful mathematical properties, they can produce counter-<a href="/wiki/Intuition_(knowledge)" class="mw-redirect" title="Intuition (knowledge)">intuitive</a> results: an event with an 80% probability of occurring is four times <i>more probable</i> to happen than an event with a 20% probability, but the <i>odds</i> are 16 times higher on the less probable event (4–1 <i>against</i>, or 4) than on the more probable one (1–4, or 4–1 <i>on</i>, or 0.25). </p> <dl><dt>Example #1</dt> <dd>There are 5 pink marbles, 2 blue marbles, and 8 purple marbles. What are the odds in favor of picking a blue marble?</dd></dl> <p>Answer: The odds in favour of a blue marble are 2:13. One can equivalently say that the odds are 13:2 <i>against</i>. There are 2 out of 15 chances in favour of blue, 13 out of 15 against blue. </p><p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, where the variable <i>p</i> is the <a href="/wiki/Probability" title="Probability">probability</a> in favor of a binary event, and the probability against the event is therefore 1-<i>p</i>, "the odds" of the event are the quotient of the two, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {p}{1-p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {p}{1-p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e443e799dc4674631696ea930a2fc037f35e71e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:6.008ex; height:5.343ex;" alt="{\displaystyle {\frac {p}{1-p}}}"></span>. That value may be regarded as the relative probability the event will happen, expressed as a fraction (if it is less than 1), or a multiple (if it is equal to or greater than one) of the likelihood that the event will not happen. </p> <dl><dt>Example #2</dt> <dd></dd></dl> <p>In the first example at top, saying the odds of a Sunday are "one to six" or, less commonly, "one-sixth" means the probability of picking a Sunday randomly is one-sixth the probability of not picking a Sunday. While the mathematical probability of an event has a value in the range from zero to one, "the odds" in favor of that same event lie between zero and infinity. The odds against the event with probability given as <i>p</i> are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1-p}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1-p}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4df1ce4dde6cecdcd57fa1ccabd58e9fee92b1a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:6.008ex; height:5.843ex;" alt="{\displaystyle {\frac {1-p}{p}}}"></span>. The odds against Sunday are 6:1 or 6/1 = 6. It is 6 times as probable that a random day is not a Sunday. </p> <div class="mw-heading mw-heading2"><h2 id="Gambling_usage">Gambling usage</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=5" title="Edit section: Gambling usage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Fixed-odds_betting" title="Fixed-odds betting">Fixed-odds betting</a> and <a href="/wiki/Parimutuel_betting" title="Parimutuel betting">Parimutuel betting</a></div> <p>On a <a href="/wiki/Coin_toss" class="mw-redirect" title="Coin toss">coin toss</a> or a <a href="/wiki/Match_race" class="mw-redirect" title="Match race">match race</a> between two evenly matched horses, it is reasonable for two people to wager level stakes. However, in more variable situations, such as a multi-runner horse race or a football match between two unequally matched teams, betting "at odds" provides the possibility to take the respective likelihoods of the possible outcomes into account. The use of odds in gambling facilitates betting on events where the probabilities of different outcomes vary. </p><p>In the modern era, most fixed-odd betting takes place between a betting organisation, such as a <a href="/wiki/Bookmaker" title="Bookmaker">bookmaker</a>, and an individual, rather than between individuals. Different traditions have grown up in how to express odds to customers. </p> <div class="mw-heading mw-heading3"><h3 id="Fractional_odds">Fractional odds</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=6" title="Edit section: Fractional odds"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Favoured by <a href="/wiki/Bookmaker" title="Bookmaker">bookmakers</a> in the <a href="/wiki/United_Kingdom" title="United Kingdom">United Kingdom</a> and <a href="/wiki/Ireland" title="Ireland">Ireland</a>, and also common in <a href="/wiki/Horse_racing" title="Horse racing">horse racing</a>, fractional odds quote the net total that will be paid out to the bettor, should they win, relative to the stake.<sup id="cite_ref-Goal_8-0" class="reference"><a href="#cite_note-Goal-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Odds of 4/1 would imply that the bettor stands to make a £400 profit on a £100 stake. If the odds are 1/4, the bettor will make £25 on a £100 stake. In either case, having won, the bettor always receives the original stake back; so if the odds are 4/1 the bettor receives a total of £500 (£400 plus the original £100). Odds of 1/1 are known as <i>evens</i> or <i>even money</i>. </p><p>The <a href="/wiki/Numerator" class="mw-redirect" title="Numerator">numerator</a> and <a href="/wiki/Denominator" class="mw-redirect" title="Denominator">denominator</a> of fractional odds are often <a href="/wiki/Integer" title="Integer">integers</a>, thus if the bookmaker's payout was to be £1.25 for every £1 stake, this would be equivalent to £5 for every £4 staked, and the odds would therefore be expressed as 5/4. However, not all fractional odds are traditionally read using the <a href="/wiki/Lowest_common_denominator" title="Lowest common denominator">lowest common denominator</a>. For example, given that there is a pattern of odds of 5/4, 7/4, 9/4 and so on, odds which are mathematically 3/2 are more easily compared if expressed in the equivalent form 6/4. </p><p>Fractional odds are also known as <i>British odds,</i> <i>UK odds,</i><sup id="cite_ref-wbx_9-0" class="reference"><a href="#cite_note-wbx-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> or, in that country, <i>traditional odds</i>. They are typically represented with a "/" but can also be represented with a "-", e.g. 4/1 or 4–1. Odds with a denominator of 1 are often presented in listings as the numerator only.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2016)">citation needed</span></a></i>]</sup> </p><p>A variation of fractional odds is known as <i>Hong Kong</i> odds. Fractional and Hong Kong odds are actually exchangeable. The only difference is that the UK odds are presented as a fractional notation (e.g. 6/5) whilst the Hong Kong odds are decimal (e.g. 1.2). Both exhibit the net return. </p> <div class="mw-heading mw-heading3"><h3 id="Decimal_odds">Decimal odds</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=7" title="Edit section: Decimal odds"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The European odds also represent the potential winnings (net returns), but in addition they factor in the stake (e.g. 6/5 or 1.2 plus 1 = 2.2).<sup id="cite_ref-SW1_10-0" class="reference"><a href="#cite_note-SW1-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>Favoured in continental <a href="/wiki/Europe" title="Europe">Europe</a>, <a href="/wiki/Australia" title="Australia">Australia</a>, <a href="/wiki/New_Zealand" title="New Zealand">New Zealand</a>, <a href="/wiki/Canada" title="Canada">Canada</a>, and <a href="/wiki/Singapore" title="Singapore">Singapore</a>, decimal odds quote the ratio of the payout amount, <i>including</i> the original stake, to the stake itself. Therefore, the decimal odds of an outcome are equivalent to the decimal value of the fractional odds plus one.<sup id="cite_ref-Betstarter_11-0" class="reference"><a href="#cite_note-Betstarter-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> Thus even odds 1/1 are quoted in decimal odds as 2.00. The 4/1 fractional odds discussed above are quoted as 5.00, while the 1/4 odds are quoted as 1.25. This is considered to be ideal for <a href="/wiki/Parlay_(gambling)" class="mw-redirect" title="Parlay (gambling)">parlay</a> betting, because the odds to be paid out are simply the product of the odds for each outcome wagered on. When looking at decimal odds in betting terms, the underdog has the higher of the two decimals, while the favorite has the lower of the two. To calculate decimal odds, you can use the equation <i>Payout = Initial Wager × Decimal Value</i><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><i>.</i> For example, if you bet €100 on Liverpool to beat Manchester City at 2.00 odds the payout, including your stake, would be €200 (€100 × 2.00). Decimal odds are favoured by <a href="/wiki/Betting_exchanges" class="mw-redirect" title="Betting exchanges">betting exchanges</a> because they are the easiest to work with for trading, as they reflect the inverse of the probability of an outcome.<sup id="cite_ref-Cortis_13-0" class="reference"><a href="#cite_note-Cortis-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> For example, a quoted odds of 5.00 equals to a probability of 1 / 5.00, that is 0.20 or 20%. </p><p>Decimal odds are also known as <i>European odds</i>, <i>digital odds</i> or <i>continental odds.</i><sup id="cite_ref-wbx_9-1" class="reference"><a href="#cite_note-wbx-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Moneyline_odds">Moneyline odds</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=8" title="Edit section: Moneyline odds"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Moneyline_odds" class="mw-redirect" title="Moneyline odds">Moneyline odds</a></div> <p>Moneyline odds are favoured by American bookmakers. The figure quoted is either positive or negative. </p> <ul><li>When moneyline odds are positive, the figure indicates the net winnings for a $100 wager (this is done for an outcome that is considered less probable to happen than not). For example, net winnings of 4/1 would be quoted as +400.</li> <li>When moneyline odds are negative, the figure indicates how much money must be wagered to for a net winning of $100 (this is done for an outcome that is considered more probable to happen than not). For example, net winnings of 1/4 would be quoted as −400.</li></ul> <p>Moneyline odds are often referred to as <i>American odds</i>. A "moneyline" wager refers to odds on the straight-up outcome of a game with no consideration to a <a href="/wiki/Spread_betting" title="Spread betting">point spread</a>. In most cases, the favorite will have negative moneyline odds (less payoff for a safer bet) and the underdog will have positive moneyline odds (more payoff for a risky bet). However, if the teams are evenly matched, <i>both</i> teams can have a negative line at the same time (e.g. −110 −110 or −105 −115), due to house take. </p> <div class="mw-heading mw-heading3"><h3 id="Wholesale_odds">Wholesale odds</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=9" title="Edit section: Wholesale odds"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Wholesale odds are the "real odds" or 100% probability of an event occurring. This 100% book is displayed without any <a href="/wiki/Bookmaker" title="Bookmaker">bookmaker</a>'s <a href="/wiki/Profit_margin" title="Profit margin">profit margin</a>, often referred to as a bookmaker's "<a href="/wiki/Overround" class="mw-redirect" title="Overround">overround</a>" built in. </p><p>A "wholesale odds" <a href="/wiki/Index_(economics)" title="Index (economics)">index</a> is an index of all the prices in a probabilistic market operating at 100% competitiveness and displayed without any profit margin factored for market participants. </p> <div class="mw-heading mw-heading2"><h2 id="Gambling_odds_vis-à-vis_probabilities"><span id="Gambling_odds_vis-.C3.A0-vis_probabilities"></span>Gambling odds vis-à-vis probabilities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=10" title="Edit section: Gambling odds vis-à-vis probabilities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mathematics_of_bookmaking" title="Mathematics of bookmaking">Mathematics of bookmaking</a></div> <p>In gambling, the odds on display do not represent the true chances (as imagined by the bookmaker) that the event will or will not occur, but are the amount that the <a href="/wiki/Bookmaker" title="Bookmaker">bookmaker</a> will pay out on a winning bet, together with the required stake. In formulating the odds to display the bookmaker will have included a profit margin which effectively means that the payout to a successful <a href="/wiki/Gambler" class="mw-redirect" title="Gambler">bettor</a> is less than that represented by the true chance of the event occurring. This profit is known as the 'overround' on the 'book' (the 'book' refers to the old-fashioned ledger in which wagers were recorded, and is the derivation of the term 'bookmaker') and relates to the sum of the 'odds' in the following way: </p><p>In a 3-horse race, for example, the true probabilities of each of the horses winning based on their relative abilities may be 50%, 40% and 10%. The total of these three percentages is 100%, thus representing a fair 'book'. The true odds against winning for each of the three horses are 1–1, 3–2 and 9–1, respectively. </p><p>In order to generate a profit on the wagers accepted, the bookmaker may decide to increase the values to 60%, 50% and 20% for the three horses, respectively. This represents the odds against each, which are 4–6, 1–1 and 4–1, in order. These values now total 130%, meaning that the book has an <a href="/wiki/Mathematics_of_bookmaking" title="Mathematics of bookmaking">overround</a> of 30 (130−100). This value of 30 represents the amount of profit for the bookmaker if he gets bets in good proportions on each of the horses. For example, if he takes £60, £50, and £20 of stakes, respectively, for the three horses, he receives £130 in wagers but only pays £100 back (including stakes), whichever horse wins. And the <a href="/wiki/Expected_value" title="Expected value">expected value</a> of his profit is positive even if everybody bets on the same horse. The art of bookmaking is in setting the odds low enough so as to have a positive expected value of profit while keeping the odds high enough to attract customers, and at the same time attracting enough bets for each outcome to reduce his risk exposure. </p><p>A study on soccer betting found that the probability for the home team to win was generally about 3.4% less than the value calculated from the odds (for example, 46.6% for even odds). It was about 3.7% less for wins by the visitors, and 5.7% less for draws.<sup id="cite_ref-Lisandro_Kaunitz_14-0" class="reference"><a href="#cite_note-Lisandro_Kaunitz-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>To understand roulette probabilities and calculate them, you need to know the formula. You take the numbers your bet is on and divide them by the total number of numbers in roulette (depending on your version of the game). Then you multiply by 100.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>Making a profit in <a href="/wiki/Gambling" title="Gambling">gambling</a> involves predicting the relationship of the true probabilities to the payout odds. <a href="/wiki/Sports_information_service" class="mw-redirect" title="Sports information service">Sports information services</a> are often used by professional and semi-professional sports bettors to help achieve this goal. </p><p>The odds or amounts the bookmaker will pay are determined by the total amount that has been bet on all of the possible events. They reflect the balance of wagers on either side of the event, and include the deduction of a bookmaker's brokerage fee ("vig" or <a href="/wiki/Vigorish" title="Vigorish">vigorish</a>). </p><p>Also, depending on how the betting is affected by jurisdiction, taxes may be involved for the bookmaker and/or the winning player. This may be taken into account when offering the odds and/or may reduce the amount won by a player. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=11" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Odds_ratio" title="Odds ratio">Odds ratio</a></li> <li><a href="/wiki/Odds_algorithm" title="Odds algorithm">Odds algorithm</a></li> <li><a href="/wiki/Galton_board" title="Galton board">Galton board</a></li> <li><a href="/wiki/Gambling_mathematics" title="Gambling mathematics">Gambling mathematics</a></li> <li><a href="/wiki/Logistic_regression#Formal_mathematical_specification" title="Logistic regression">Formal mathematical specification of logistic regression</a></li> <li><a href="/wiki/Optimal_stopping" title="Optimal stopping">Optimal stopping</a></li> <li><a href="/wiki/Parimutuel_betting" title="Parimutuel betting">Parimutuel betting</a></li> <li><a href="/wiki/Statistical_association_football_predictions" title="Statistical association football predictions">Statistical association football predictions</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Odds&action=edit&section=12" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Franklin-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Franklin_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFJames2001" class="citation book cs1">James, Franklin (2001). <i>The Science of Conjecture: Evidence and Probability Before Pascal</i>. Baltimore: The Johns Hopkins University Press. pp. 280–281.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Science+of+Conjecture%3A+Evidence+and+Probability+Before+Pascal&rft.place=Baltimore&rft.pages=280-281&rft.pub=The+Johns+Hopkins+University+Press&rft.date=2001&rft.aulast=James&rft.aufirst=Franklin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-columbia.edu-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-columbia.edu_2-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.columbia.edu/~pg2113/index_files/Gorroochurn-Some%20Laws.pdf"><i>Some laws and problems in classical probability and how Cardano anticipated them</i> Gorrochum, P. <i>Chance</i> magazine 2012</a></span> </li> <li id="cite_note-Wolfram-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wolfram_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolfram_MathWorld" class="citation web cs1">Wolfram MathWorld. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Odds.html">"Wolfram MathWorld (Odds)"</a>. Wolfram Research Inc<span class="reference-accessdate">. Retrieved <span class="nowrap">16 May</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Wolfram+MathWorld+%28Odds%29&rft.pub=Wolfram+Research+Inc.&rft.au=Wolfram+MathWorld&rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FOdds.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-Gelman-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gelman_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGelmanCarlinSternRubin2003" class="citation book cs1">Gelman, Andrew; Carlin, John B.; Stern, Hal S.; Rubin, Donald B. (2003). "1.5". <i>Bayesian Data Analysis</i> (2nd ed.). CRC Press.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=1.5&rft.btitle=Bayesian+Data+Analysis&rft.edition=2nd&rft.pub=CRC+Press&rft.date=2003&rft.aulast=Gelman&rft.aufirst=Andrew&rft.au=Carlin%2C+John+B.&rft.au=Stern%2C+Hal+S.&rft.au=Rubin%2C+Donald+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-Powerball-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-Powerball_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMulti-State_Lottery_Association" class="citation web cs1">Multi-State Lottery Association. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151019190822/http://www.powerball.com/powerball/pb_prizes.asp">"Welcome to Powerball - Prizes"</a>. Multi-State Lottery Association. Archived from <a rel="nofollow" class="external text" href="http://www.powerball.com/powerball/pb_prizes.asp">the original</a> on 19 October 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">16 May</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Welcome+to+Powerball+-+Prizes&rft.pub=Multi-State+Lottery+Association&rft.au=Multi-State+Lottery+Association&rft_id=http%3A%2F%2Fwww.powerball.com%2Fpowerball%2Fpb_prizes.asp&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-Wired-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wired_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLisa_Grossman2010" class="citation news cs1">Lisa Grossman (28 October 2010). <a rel="nofollow" class="external text" href="https://www.wired.com/wiredscience/2010/10/exoplanet-stats/">"Odds of Finding Earth-Size Exoplanets Are 1-in-4"</a>. <i>Wired</i><span class="reference-accessdate">. Retrieved <span class="nowrap">16 May</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wired&rft.atitle=Odds+of+Finding+Earth-Size+Exoplanets+Are+1-in-4&rft.date=2010-10-28&rft.au=Lisa+Grossman&rft_id=https%3A%2F%2Fwww.wired.com%2Fwiredscience%2F2010%2F10%2Fexoplanet-stats%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-Wolfram2-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wolfram2_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolfram_Alpha" class="citation web cs1">Wolfram Alpha. <a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=Poker+Probabilities">"Wolfram Alpha (Poker Probabilities)"</a>. Wolfram Alpha<span class="reference-accessdate">. Retrieved <span class="nowrap">16 May</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Wolfram+Alpha+%28Poker+Probabilities%29&rft.pub=Wolfram+Alpha&rft.au=Wolfram+Alpha&rft_id=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3DPoker%2BProbabilities&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-Goal-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Goal_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.goal.com/en/news/2994/betting/2011/01/10/2101368/betting-school-understanding-fractional-decimal-betting-odds">"Betting School: Understanding Fractional & Decimal Betting Odds"</a>. Goal. 10 January 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">27 March</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Betting+School%3A+Understanding+Fractional+%26+Decimal+Betting+Odds&rft.pub=Goal&rft.date=2011-01-10&rft_id=http%3A%2F%2Fwww.goal.com%2Fen%2Fnews%2F2994%2Fbetting%2F2011%2F01%2F10%2F2101368%2Fbetting-school-understanding-fractional-decimal-betting-odds&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-wbx-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-wbx_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-wbx_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140502002250/https://m.wbx.com/Help.aspx?IC=50176&S=&ID=20012">"Betting Odds Format"</a>. World Bet Exchange. Archived from <a rel="nofollow" class="external text" href="https://m.wbx.com/Help.aspx?IC=50176&S=&ID=20012">the original</a> on 2 May 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">27 March</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Betting+Odds+Format&rft.pub=World+Bet+Exchange&rft_id=https%3A%2F%2Fm.wbx.com%2FHelp.aspx%3FIC%3D50176%26S%3D%26ID%3D20012&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-SW1-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-SW1_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.soccerwidow.com/betting-advice/betting-terminology/understanding-betting-odds-moneyline-fractional-decimal/">"Understanding Betting Odds – Moneyline, Fractional Odds, Decimal Odds, Hong Kong Odds, IN Odds, MA Odds"</a>. Soccerwidow<span class="reference-accessdate">. Retrieved <span class="nowrap">10 December</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Understanding+Betting+Odds+%E2%80%93+Moneyline%2C+Fractional+Odds%2C+Decimal+Odds%2C+Hong+Kong+Odds%2C+IN+Odds%2C+MA+Odds&rft.pub=Soccerwidow&rft_id=http%3A%2F%2Fwww.soccerwidow.com%2Fbetting-advice%2Fbetting-terminology%2Funderstanding-betting-odds-moneyline-fractional-decimal%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-Betstarter-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Betstarter_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140402082613/http://betstarter.com/SportsBetting/FractionalOdds.asp/">"Fractional Odds"</a>. Archived from <a rel="nofollow" class="external text" href="http://betstarter.com/sportsbetting/Fractionalodds.asp#3">the original</a> on 2 April 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">27 March</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Fractional+Odds&rft_id=http%3A%2F%2Fbetstarter.com%2Fsportsbetting%2FFractionalodds.asp%233&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://theathletic.com/2497657/2022/01/25/understanding-sports-betting-odds-and-how-to-read-them/">"Understanding Sports betting odds and how to read them"</a>. <i>The Athletic</i>. 25 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">25 September</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Athletic&rft.atitle=Understanding+Sports+betting+odds+and+how+to+read+them&rft.date=2022-01-25&rft_id=https%3A%2F%2Ftheathletic.com%2F2497657%2F2022%2F01%2F25%2Funderstanding-sports-betting-odds-and-how-to-read-them%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-Cortis-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cortis_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCortis2015" class="citation journal cs1">Cortis, Dominic (2015). <a rel="nofollow" class="external text" href="http://ubplj.org/index.php/jpm/article/view/987/968">"Expected Values and variance in bookmaker payouts: A Theoretical Approach towards setting limits on odds"</a>. <i>Journal of Prediction Markets</i>. 1. <b>9</b>: 1–14. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5750%2Fjpm.v9i1.987">10.5750/jpm.v9i1.987</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Prediction+Markets&rft.atitle=Expected+Values+and+variance+in+bookmaker+payouts%3A+A+Theoretical+Approach+towards+setting+limits+on+odds&rft.volume=9&rft.pages=1-14&rft.date=2015&rft_id=info%3Adoi%2F10.5750%2Fjpm.v9i1.987&rft.aulast=Cortis&rft.aufirst=Dominic&rft_id=http%3A%2F%2Fubplj.org%2Findex.php%2Fjpm%2Farticle%2Fview%2F987%2F968&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-Lisandro_Kaunitz-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lisandro_Kaunitz_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLisandro_Kaunitz2017" class="citation arxiv cs1">Lisandro Kaunitz; et al. (October 2017). "Beating the bookies with their own numbers – and how the sports betting market is rigged". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1710.02824">1710.02824</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/stat.AP">stat.AP</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Beating+the+bookies+with+their+own+numbers+%E2%80%93+and+how+the+sports+betting+market+is+rigged&rft.date=2017-10&rft_id=info%3Aarxiv%2F1710.02824&rft.au=Lisandro+Kaunitz&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://roulette77australia.com/odds">"Odds"</a>. 21 November 2023.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Odds&rft.date=2023-11-21&rft_id=https%3A%2F%2Froulette77australia.com%2Fodds&rfr_id=info%3Asid%2Fen.wikipedia.org%3AOdds" class="Z3988"></span></span> </li> </ol></div></div> <p class="mw-empty-elt"> </p> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐w8xh7 Cached time: 20241122140620 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.361 seconds Real time usage: 0.536 seconds Preprocessor visited node count: 3228/1000000 Post‐expand include size: 39079/2097152 bytes Template argument size: 5950/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 53333/5000000 bytes Lua time usage: 0.183/10.000 seconds Lua memory usage: 6251798/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 409.072 1 -total 43.80% 179.155 1 Template:Reflist 23.42% 95.796 2 Template:Cite_book 15.11% 61.812 1 Template:Short_description 9.49% 38.832 2 Template:Pagetype 8.81% 36.042 9 Template:Cite_web 8.01% 32.760 1 Template:Citation_needed 6.93% 28.350 1 Template:Fix 5.61% 22.935 1 Template:Wiktionary 5.30% 21.697 1 Template:About --> <!-- Saved in parser cache with key enwiki:pcache:idhash:172069-0!canonical and timestamp 20241122140620 and revision id 1256755997. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Odds&oldid=1256755997">https://en.wikipedia.org/w/index.php?title=Odds&oldid=1256755997</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Randomness" title="Category:Randomness">Randomness</a></li><li><a href="/wiki/Category:Statistical_ratios" title="Category:Statistical ratios">Statistical ratios</a></li><li><a href="/wiki/Category:Wagering" title="Category:Wagering">Wagering</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2016" title="Category:Articles with unsourced statements from May 2016">Articles with unsourced statements from May 2016</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_September_2019" title="Category:Use dmy dates from September 2019">Use dmy dates from September 2019</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 12:01<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Odds&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-dg26b","wgBackendResponseTime":147,"wgPageParseReport":{"limitreport":{"cputime":"0.361","walltime":"0.536","ppvisitednodes":{"value":3228,"limit":1000000},"postexpandincludesize":{"value":39079,"limit":2097152},"templateargumentsize":{"value":5950,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":53333,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 409.072 1 -total"," 43.80% 179.155 1 Template:Reflist"," 23.42% 95.796 2 Template:Cite_book"," 15.11% 61.812 1 Template:Short_description"," 9.49% 38.832 2 Template:Pagetype"," 8.81% 36.042 9 Template:Cite_web"," 8.01% 32.760 1 Template:Citation_needed"," 6.93% 28.350 1 Template:Fix"," 5.61% 22.935 1 Template:Wiktionary"," 5.30% 21.697 1 Template:About"]},"scribunto":{"limitreport-timeusage":{"value":"0.183","limit":"10.000"},"limitreport-memusage":{"value":6251798,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-w8xh7","timestamp":"20241122140620","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Odds","url":"https:\/\/en.wikipedia.org\/wiki\/Odds","sameAs":"http:\/\/www.wikidata.org\/entity\/Q515895","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q515895","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-01-21T04:45:25Z","dateModified":"2024-11-11T12:01:38Z","headline":"ratio of the probability that an event will happen to the probability that it will not happen"}</script> </body> </html>