CINXE.COM

compact object in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> compact object in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> compact object </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/9641/#Item_7" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="compact_objects">Compact objects</h4> <div class="hide"><div> <p><strong>objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>d</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">d \in C</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo stretchy="false">(</mo><mi>d</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C(d,-)</annotation></semantics></math> commutes with certain <a class="existingWikiWord" href="/nlab/show/colimits">colimits</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/coproduct-preserving+representable">coproduct-preserving representable</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+object">connected object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+object">compact object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+element">compact object in a (0,1)-category</a>, <a class="existingWikiWord" href="/nlab/show/compact+object+in+an+%28%E2%88%9E%2C1%29-category">compact object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+object">finite object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object">small object</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tiny+object">tiny object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+object">atomic object</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/amazing+right+adjoint">amazing right adjoint</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/accessible+category">accessible category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/presentable+category">presentable category</a></li> </ul> </li> </ul> <h2 id="models">Models</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topos">compact topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topological+space">compact topological space</a></p> </li> </ul> <h2 id="relative_version">Relative version</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+geometric+morphism">proper geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+map">proper map</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/compact+object+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#FinitelyPresentableObject'>Definition</a></li> <li><a href='#Properties'>Properties</a></li> <li><a href='#Examples'>Examples</a></li> <li><a href='#SubtletiesAndDifferentMeanings'>Subtleties and different meanings</a></li> <ul> <li><a href='#CompactnessInAdditiveCategories'>Compactness in additive categories</a></li> <li><a href='#CompactObjectsInTop'>Compact objects in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi></mrow><annotation encoding="application/x-tex">Top</annotation></semantics></math></a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>An <a class="existingWikiWord" href="/nlab/show/object">object</a> of a <a class="existingWikiWord" href="/nlab/show/category">category</a> is called <em>compact</em> if it is “finite” or “small” in some precise sense. There are however different formalizations of this idea. Here discussed is the notion, usually going by this term, where an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is called <em>compact</em> if mapping out of it <a class="existingWikiWord" href="/nlab/show/preserved+colimit">preserves</a> <a class="existingWikiWord" href="/nlab/show/filtered+colimits">filtered colimits</a>.</p> <p>This means that if any other object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is given as the <a class="existingWikiWord" href="/nlab/show/colimit">colimit</a> of a “suitably increasing” family of objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>A</mi> <mi>i</mi></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{A_i\}</annotation></semantics></math>, then every morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>⟶</mo><mi>A</mi><mo>=</mo><munder><mi>lim</mi><munder><mo>⟶</mo><mi>i</mi></munder></munder><msub><mi>A</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex"> X \longrightarrow A = \underset{\underset{i}{\longrightarrow}}{\lim} A_i </annotation></semantics></math></div> <p>out of the compact object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> into that colimit factors through one of the <a class="existingWikiWord" href="/nlab/show/coprojections">coprojections</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>A</mi> <mi>i</mi></msub><mo>→</mo><munder><mrow><mi>lim</mi><msub><mi>A</mi> <mi>i</mi></msub></mrow><munder><mo>⟶</mo><mi>i</mi></munder></munder></mrow><annotation encoding="application/x-tex">A_i \to \underset{\underset{i}{\longrightarrow}}{lim A_i}</annotation></semantics></math>.</p> <p>The notion of <em><a class="existingWikiWord" href="/nlab/show/small+object">small object</a></em> is essentially the same, with a bit more flexibility on when the family <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>A</mi> <mi>i</mi></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{A_i\}</annotation></semantics></math> is taken to be “suitably increasing”. An important application of the above factorization property is accordingly named the <em><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></em>. On the other hand, there is also the notion of <em><a class="existingWikiWord" href="/nlab/show/finite+object">finite object</a></em> (in a <a class="existingWikiWord" href="/nlab/show/topos">topos</a>) which, while closely related, is different. See also <em><a href="#SubtletiesAndDifferentMeanings">Subtleties and different meanings</a></em> below.</p> <h2 id="FinitelyPresentableObject">Definition</h2> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/locally+small+category">locally small category</a> that admits <a class="existingWikiWord" href="/nlab/show/filtered+colimits">filtered colimits</a>. Then an <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">X \in C</annotation></semantics></math> is <strong>compact</strong>, or <strong>finitely presented</strong> or <strong>finitely presentable</strong>, or <strong>of finite presentation</strong>, if the <a class="existingWikiWord" href="/nlab/show/corepresentable+functor">corepresentable functor</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace">:</mo><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex"> Hom_C(X,-) \colon C \to Set </annotation></semantics></math></div> <p><a class="existingWikiWord" href="/nlab/show/preserved+limit">preserves</a> these <a class="existingWikiWord" href="/nlab/show/filtered+colimits">filtered colimits</a>. This means that for every <a class="existingWikiWord" href="/nlab/show/filtered+category">filtered category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> and every functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>D</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">F : D \to C</annotation></semantics></math>, the canonical morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><munder><mi>lim</mi><munder><mo>→</mo><mi>d</mi></munder></munder><mi>C</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>F</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mover><mo>→</mo><mo>≃</mo></mover><mi>C</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><munder><mi>lim</mi><munder><mo>→</mo><mi>d</mi></munder></munder><mi>F</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \underset{\underset{d}{\to}}{\lim} C(X,F(d)) \xrightarrow{\simeq} C(X, \underset{\underset{d}{\to}}{\lim} F(d)) </annotation></semantics></math></div> <p>is an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a>.</p> <p>More generally, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/regular+cardinal">regular cardinal</a>, then an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C(X,-)</annotation></semantics></math> commutes with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/filtered+colimits">filtered colimits</a> is called <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-compact</strong>, or <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-presented</strong>, or <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-presentable</strong>. An object which is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-compact for some regular <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math> is called a <a class="existingWikiWord" href="/nlab/show/small+object">small object</a>.</p> </div> <h2 id="Properties">Properties</h2> <p> <div class='num_prop' id='SmoothColimitsOfCompactObjectsAreCompact'> <h6>Proposition</h6> <p><strong>(smooth colimits of compact objects are compact)</strong> <br /> A <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-small <a class="existingWikiWord" href="/nlab/show/colimit">colimit</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-compact objects is again a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-compact object.</p> </div> </p> <p> <div class='proof'> <h6>Proof</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> be a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/small+category">small category</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>:</mo><mi>D</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">X : D \to C</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-compact objects. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> be a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/filtered+category">filtered category</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>:</mo><mi>I</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">A : I \to C</annotation></semantics></math> a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-filtered diagram in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>. Then</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Hom</mi><mo maxsize="1.8em" minsize="1.8em">(</mo><munder><mi>lim</mi><munder><mo>⟶</mo><mi>d</mi></munder></munder><msub><mi>X</mi> <mi>d</mi></msub><mo>,</mo><mspace width="thinmathspace"></mspace><munder><mi>lim</mi><munder><mo>⟶</mo><mi>i</mi></munder></munder><msub><mi>A</mi> <mi>i</mi></msub><mo maxsize="1.8em" minsize="1.8em">)</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><munder><mi>lim</mi><munder><mo>⟵</mo><mi>d</mi></munder></munder><mspace width="thickmathspace"></mspace><mi>Hom</mi><mo maxsize="1.8em" minsize="1.8em">(</mo><msub><mi>X</mi> <mi>d</mi></msub><mo>,</mo><mspace width="thinmathspace"></mspace><munder><mi>lim</mi><munder><mo>⟶</mo><mi>i</mi></munder></munder><msub><mi>A</mi> <mi>i</mi></msub><mo maxsize="1.8em" minsize="1.8em">)</mo></mrow><annotation encoding="application/x-tex"> Hom \Big( \underset{\underset{d}{\longrightarrow}}{\lim} X_d ,\, \underset{\underset{i}{\longrightarrow}}{\lim} A_i \Big) \;\simeq\; \underset{\underset{d}{\longleftarrow}}{\lim} \; Hom \Big( X_d ,\, \underset{\underset{i}{\longrightarrow}}{\lim} A_i \Big) </annotation></semantics></math></div> <p>by <a class="existingWikiWord" href="/nlab/show/hom-functor+preserves+limits">general properties of</a> the <a class="existingWikiWord" href="/nlab/show/hom+functor">hom functor</a>. Now using that every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>d</mi></msub></mrow><annotation encoding="application/x-tex">X_d</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-compact and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-filtered this is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>⋯</mi><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><munder><mi>lim</mi><munder><mo>⟵</mo><mi>d</mi></munder></munder><mspace width="thickmathspace"></mspace><munder><mi>lim</mi><munder><mo>⟶</mo><mi>i</mi></munder></munder><mspace width="thickmathspace"></mspace><mi>Hom</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>X</mi> <mi>d</mi></msub><mo>,</mo><msub><mi>A</mi> <mi>i</mi></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \cdots \;\simeq\; \underset{\underset{d}{\longleftarrow}}{\lim} \; \underset{\underset{i}{\longrightarrow}}{\lim} \; Hom\big(X_d, A_i\big) \,. </annotation></semantics></math></div> <p>Since this (co)limit is taken in <a class="existingWikiWord" href="/nlab/show/Set">Set</a>, the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-small limit over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/limits+commuting+with+colimits">commutes</a> with the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-filtered colimit</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>⋯</mi><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><munder><mi>lim</mi><munder><mo>⟶</mo><mi>i</mi></munder></munder><mspace width="thickmathspace"></mspace><munder><mi>lim</mi><munder><mo>⟵</mo><mi>d</mi></munder></munder><mspace width="thinmathspace"></mspace><mi>Hom</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>X</mi> <mi>d</mi></msub><mo>,</mo><msub><mi>A</mi> <mi>i</mi></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \cdots \;\simeq\; \underset{\underset{i}{\longrightarrow}}{\lim} \; \underset{\underset{d}{\longleftarrow}}{\lim} \, Hom\big(X_d, A_i\big) \,. </annotation></semantics></math></div> <p>Finally we make take the limit again to a colimit in the first argument</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>⋯</mi><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><munder><mi>lim</mi><munder><mo>⟶</mo><mi>i</mi></munder></munder><mspace width="thickmathspace"></mspace><mi>Hom</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><munder><mi>lim</mi><munder><mo>⟶</mo><mi>d</mi></munder></munder><msub><mi>X</mi> <mi>d</mi></msub><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>A</mi> <mi>i</mi></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \cdots \;\simeq\; \underset{\underset{i}{\longrightarrow}}{\lim} \; Hom \big( \underset{\underset{d}{\longrightarrow}}{\lim} X_d ,\, A_i \big) \,, </annotation></semantics></math></div> <p>which yields the claim.</p> </div> </p> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>In a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/accessible+category">accessible category</a>, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/sharply+smaller+cardinal">sharply smaller</a> than <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>, then every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-compact object is a <a class="existingWikiWord" href="/nlab/show/retract">retract</a> of a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-small <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>-filtered colimit of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>-compact objects.</p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>See <a href="#AdamekRosicky94">Adamek-Rosicky, Remark 2.15</a>. It is noted there that with the more technical proof of <a href="#MakkaiPare89">Makkai-Pare, Proposition 2.3.11</a> the words “a retract of” can be omitted.</p> </div> <p>If we weaken the hypothesis to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi><mo>≤</mo><mi>κ</mi></mrow><annotation encoding="application/x-tex">\lambda\le \kappa</annotation></semantics></math>, then we retain all of the result except for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>-filteredness of the colimit.</p> <div class="num_prop"> <h6 id="proposition_2">Proposition</h6> <p>In a locally <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/locally+presentable+category">presentable category</a>, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi><mo>≤</mo><mi>κ</mi></mrow><annotation encoding="application/x-tex">\lambda\le \kappa</annotation></semantics></math>, then every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-compact object is a <a class="existingWikiWord" href="/nlab/show/retract">retract</a> of a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>-small colimit of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>-compact objects.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>See <a href="#AdamekRosicky94">Adamek-Rosicky, Remark 1.30</a>. It is claimed there that the words “a retract of” can be omitted by reference to an argument in Makkai-Pare, but it seems unclear how this argument is intended to be used. An alternative proof of this improvement is proposed <a href="https://mathoverflow.net/q/325278">at this mathoverflow question</a>.</p> </div> <h2 id="Examples">Examples</h2> <ul> <li> <p>In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">C = </annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Set">Set</a> an object is compact precisely if it is a <a class="existingWikiWord" href="/nlab/show/finite+set">finite set</a>. For this to hold constructively, <a class="existingWikiWord" href="/nlab/show/filtered+categories">filtered categories</a> (appearing in the definition of <em><a class="existingWikiWord" href="/nlab/show/filtered+colimit">filtered colimit</a></em>) have to be understood as categories admitting cocones of every <em>Bishop-finite</em> diagram. (An object of Set is a <a class="existingWikiWord" href="/nlab/show/finite+set">Kuratowski-finite</a> precisely if it is a <a class="existingWikiWord" href="/nlab/show/finitely+generated+object">finitely generated object</a>, or equivalently if it is <a class="existingWikiWord" href="/nlab/show/compact+space">compact</a> when regarded as a <a class="existingWikiWord" href="/nlab/show/discrete+object">discrete</a> topological space.)</p> </li> <li> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/topos">topos</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is compact if:</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/Grothendieck+topos"> sheaf topos</a> on a site whose topology is generated by finite covering families and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is a representable sheaf;</p> </li> <li> <p>in particular if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/coherent+topos">coherent topos</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/coherent+object">coherent object</a>.</p> </li> </ul> </li> </ul> <p>However, there exist compact objects which are not coherent, c.f. the <a class="existingWikiWord" href="/nlab/show/Elephant">Elephant</a>, D3.3.12.</p> <ul> <li> <p>In <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">C = </annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> an object is compact precisely if it is <a class="existingWikiWord" href="/nlab/show/finitely+presented+group">finitely presented</a> as a group.</p> </li> <li> <p>More generally, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is any <a class="existingWikiWord" href="/nlab/show/variety+of+algebras">variety of algebras</a>, then an object is compact precisely if it is <a class="existingWikiWord" href="/nlab/show/finitely+presented+algebra">finitely presented</a> as an algebra. A proof may be found in <a href="#AdamekRosicky94">Adámek-Rosický 94, Corollary 3.13</a>.</p> </li> <li> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo><mi>Op</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C = Op(X)</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/category+of+open+subsets">category of open subsets</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>. Then an <a class="existingWikiWord" href="/nlab/show/open+subset">open subset</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">U \in C</annotation></semantics></math> is a compact object in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> precisely if it is a <a class="existingWikiWord" href="/nlab/show/compact+space">compact topological space</a>. (It is <em>not</em> true that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is a compact object of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi></mrow><annotation encoding="application/x-tex">Top</annotation></semantics></math> iff it is a compact topological space; see below.)</p> </li> <li> <p>A <a class="existingWikiWord" href="/nlab/show/finite-dimensional+vector+space">finite-dimensional vector space</a> is compact in <a class="existingWikiWord" href="/nlab/show/Vect">Vect</a>, see <a href="finite-dimensional+vector+space#CompactClosure">here</a>.</p> </li> </ul> <h2 id="SubtletiesAndDifferentMeanings">Subtleties and different meanings</h2> <p>One has to be careful about the following variations of the theme of compactness.</p> <p>(Some of these subtleties are resolved by noticing that there is a hierarchy of notions of compact objects that are secretly different but partly go by the same name. Some discussion of this is currently at <em><a class="existingWikiWord" href="/nlab/show/compact+topos">compact topos</a></em>, but more detailed discussion should eventually be somewhere…)</p> <p>In the <a class="existingWikiWord" href="/nlab/show/Elephant">Elephant</a>, what Johnstone calls <em>compact objects</em> are those objects such that the <a class="existingWikiWord" href="/nlab/show/top">top</a> element of the <a class="existingWikiWord" href="/nlab/show/poset+of+subobjects">poset of subobjects</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Sub</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\operatorname{Sub}(C)</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/compact+element">compact element</a>; he reserves the term <em>finitely-presented</em> for the notion of compact on this page.</p> <h3 id="CompactnessInAdditiveCategories">Compactness in additive categories</h3> <p>When <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a> (often a <a class="existingWikiWord" href="/nlab/show/triangulated+category">triangulated category</a>), an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is called <strong>compact</strong> if for every set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> of objects of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> such that the coproduct <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>s</mi><mo>∈</mo><mi>S</mi></mrow></msub><mi>s</mi></mrow><annotation encoding="application/x-tex">\coprod_{s\in S} s</annotation></semantics></math> exists, the canonical map</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>s</mi><mo>∈</mo><mi>S</mi></mrow></munder><mi>C</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo><mo>→</mo><mi>C</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><munder><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>s</mi><mo>∈</mo><mi>S</mi></mrow></munder><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \coprod_{s\in S} C(x,s)\to C(x,\coprod_{s\in S}s) </annotation></semantics></math></div> <p>is an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> of <a class="existingWikiWord" href="/nlab/show/commutative+monoid">commutative monoids</a>.</p> <p>Here is an application of this concept to characterize which abelian categories are categories of modules of some ring:</p> <div class="un_theorem"> <h6 id="theorem">Theorem</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> be an abelian category. If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> has all <a class="existingWikiWord" href="/nlab/show/small+category">small</a> <a class="existingWikiWord" href="/nlab/show/coproducts">coproducts</a> and has a compact <a class="existingWikiWord" href="/nlab/show/projective+object"> projective</a> <a class="existingWikiWord" href="/nlab/show/generator">generator</a>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>≃</mo><mi>R</mi><mi>Mod</mi></mrow><annotation encoding="application/x-tex">C \simeq R Mod</annotation></semantics></math> for some ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>. In fact, in this situation we can take <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>=</mo><mi>C</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msup><mo stretchy="false">)</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">R = C(x,x)^{op}</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> is any <a class="existingWikiWord" href="/nlab/show/compact+projective+object">compact projective</a> generator. Conversely, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>≃</mo><mi>R</mi><mi>Mod</mi></mrow><annotation encoding="application/x-tex">C \simeq R Mod</annotation></semantics></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> has all small coproducts and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>=</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">x = R</annotation></semantics></math> is a compact projective generator.</p> </div> <div class="proof"> <h6 id="proof_3">Proof</h6> <p>This theorem, minus the explicit description of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, can be found as Exercise F on page 103 of Peter Freyd’s book <a href="http://www.emis.de/journals/TAC/reprints/articles/3/tr3.pdf#page=132">Abelian Categories</a>. The first part of this theorem can also be found as Prop. 2.1.7. of Victor Ginzburg’s <a href="http://arxiv.org/PS_cache/math/pdf/0506/0506603v1.pdf#page=4">Lectures on noncommutative geometry</a>. Conversely, it is easy to see that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a compact projective generator of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mi>Mod</mi></mrow><annotation encoding="application/x-tex">R Mod</annotation></semantics></math>.</p> </div> <div class="query"> <p>Zoran: While Ginzburg’s reference is surely a worthy to look at, it would be better not to give false impression that this <a class="existingWikiWord" href="/nlab/show/reconstruction+theorem">reconstruction theorem</a> is due Ginzburg or at all new. It is rather a classical and well know fact probably from early 1960s, essentially small strengthening of a variant of a circle of abelian reconstruction theorems including the <a href="http://myyn.org/m/article/gabriel-popescu-theorem-for-ab5-categories">Gabriel-Popescu theorem</a>(probably our variant could be read off from classical algera book by Faith for example, or Popescu’s book on abelian categories, in any case it is well known in <a class="existingWikiWord" href="/nlab/show/noncommutative+algebraic+geometry">noncommutative algebraic geometry</a>). In fact for this fact, if I think better, the reconstruction belongs usually to expositions which treat classical Morita theory for rings.</p> </div> <p>A triangulated category is <strong>compactly generated</strong> if it is generated (see <a class="existingWikiWord" href="/nlab/show/generator">generator</a>) by a <em>set</em> of compact objects.</p> <p>The notion can be modified for categories <a class="existingWikiWord" href="/nlab/show/enriched+category">enriched</a> over a <a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed monoidal category</a> (compare to the notions of finite and/or rigid objects in various contexts).</p> <p>Compact objects in the derived categories of quasicoherent sheaves over a scheme are called <a class="existingWikiWord" href="/nlab/show/perfect+complexes">perfect complexes</a>. Any <a class="existingWikiWord" href="/nlab/show/compact+object">compact object</a> in the <a class="existingWikiWord" href="/nlab/show/category+of+modules">category of modules</a> over a perfect ring is finitely generated as a module.</p> <p>In non-additive contexts, the above definition is not right. For instance, with this definition a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> would be compact iff it is <a class="existingWikiWord" href="/nlab/show/connected+space">connected</a>. In general one should expect to instead preserve filtered colimits, as above.</p> <h3 id="CompactObjectsInTop">Compact objects in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi></mrow><annotation encoding="application/x-tex">Top</annotation></semantics></math></h3> <p>Recall the above example of <a class="existingWikiWord" href="/nlab/show/compact+space">compact topological spaces</a>. Notice that the statement which one might expect, that a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/compact+space">compact</a> if it is a compact object in <a class="existingWikiWord" href="/nlab/show/Top">Top</a>, is not quite right in general.</p> <p>A <a class="existingWikiWord" href="/nlab/show/counterexample">counterexample</a> is given for instance in <a href="#Hovey99">Hovey (1999), page 49</a>, which itself was corrected by Don Stanley (see the <a href="http://hopf.math.purdue.edu/Hovey/model-err.pdf">errata</a> of that book). See also the blog discussion <a href="http://golem.ph.utexas.edu/category/2009/05/journal_club_geometric_infinit_3.html#c023790">here</a>.</p> <p>Namely, the two-element set with the <a class="existingWikiWord" href="/nlab/show/indiscrete+topology">indiscrete topology</a> is a compact space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> for which</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Hom</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mi>M</mi><mo lspace="verythinmathspace">:</mo><mi>Top</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex"> Hom(X, -) M\colon Top \rightarrow Top </annotation></semantics></math></div> <p>doesn’t preserve filtered colimits, in fact not even <a class="existingWikiWord" href="/nlab/show/sequential+colimit">colimits of sequences</a> (functors out of the <a class="existingWikiWord" href="/nlab/show/poset">ordered set</a> of <a class="existingWikiWord" href="/nlab/show/natural+numbers">natural numbers</a>).</p> <p>For example, consider the sequence of spaces</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>n</mi></msub><mo>=</mo><mo stretchy="false">[</mo><mi>n</mi><mo>,</mo><mn>∞</mn><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex"> X_n=[n,\infty) \times \{0,1\} </annotation></semantics></math></div> <p>where the <a class="existingWikiWord" href="/nlab/show/open+sets">open sets</a> are of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>n</mi><mo>,</mo><mn>∞</mn><mo stretchy="false">]</mo><mo>×</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo><mo>∪</mo><mo stretchy="false">[</mo><mi>m</mi><mo>,</mo><mn>∞</mn><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">{</mo><mn>1</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex"> [n, \infty] \times \{0\} \cup [m,\infty) \times \{1\} </annotation></semantics></math></div> <p>(where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>≥</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m \geq n</annotation></semantics></math>), plus the empty set. Define <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>n</mi></msub><mo>→</mo><msub><mi>X</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">X_n \rightarrow X_{n+1}</annotation></semantics></math> so that it sends a pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>k</mi><mo>,</mo><mi>ϵ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(k, \epsilon)</annotation></semantics></math> to itself if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>&gt;</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">k \gt n</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>,</mo><mi>ϵ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n,\epsilon)</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>ϵ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+1,\epsilon)</annotation></semantics></math>. This defines a functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>ℕ</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex"> F: \mathbb{N} \rightarrow Top </annotation></semantics></math></div> <p>The colimit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">X_\infty</annotation></semantics></math> of this sequence is the two-element set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{0,1\}</annotation></semantics></math> with the indiscrete topology. However, the identity map on this space does not factor through any of the canonical maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>n</mi></msub><mo>→</mo><msub><mi>X</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">X_n \rightarrow X_\infty</annotation></semantics></math>. It follows that the comparison map</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><munder><mi>colim</mi><mi>n</mi></munder><mspace width="thickmathspace"></mspace><mi>Hom</mi><mo stretchy="false">(</mo><msub><mi>X</mi> <mn>∞</mn></msub><mo>,</mo><msub><mi>X</mi> <mi>n</mi></msub><mo stretchy="false">)</mo><mo>→</mo><mi>Hom</mi><mo stretchy="false">(</mo><msub><mi>X</mi> <mn>∞</mn></msub><mo>,</mo><msub><mi>X</mi> <mn>∞</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \underset{n}{colim}\ Hom(X_\infty, X_n) \rightarrow Hom(X_\infty, X_\infty) </annotation></semantics></math></div> <p>is not surjective, and therefore not an isomorphism.</p> <div class="query"> <p><em><a class="existingWikiWord" href="/nlab/show/Todd+Trimble">Todd</a></em> (posted from n-category cafe): I don’t know if the story is any different for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> compact <em>Hausdorff</em>, but it could be worth considering.</p> </div> <p>But with a bit of care on the assumptions, similar results do hold:</p> <p> <div class='num_prop'> <h6>Proposition</h6> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo>∈</mo><mi>Top</mi></mrow><annotation encoding="application/x-tex">Y \in Top</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/compact+topological+space">compact topological space</a>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>hom</mi><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">hom(Y,-)</annotation></semantics></math> preserves colimits of functors mapping out of <a class="existingWikiWord" href="/nlab/show/limit+ordinals">limit ordinals</a>, provided that the arrows of the cocone diagram,</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>α</mi></msub><mo>→</mo><msub><mi>X</mi> <mi>β</mi></msub><mo>,</mo></mrow><annotation encoding="application/x-tex"> X_\alpha \rightarrow X_\beta, </annotation></semantics></math></div> <p>are <a class="existingWikiWord" href="/nlab/show/closed+map">closed</a> inclusions of <a class="existingWikiWord" href="/nlab/show/separation+axiom"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msub><mi>T</mi> <mn>1</mn></msub> </mrow> <annotation encoding="application/x-tex">T_1</annotation> </semantics> </math>-spaces</a>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>β</mi></msub></mrow><annotation encoding="application/x-tex">X_\beta</annotation></semantics></math> is the colimit of earlier <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>α</mi></msub></mrow><annotation encoding="application/x-tex">X_\alpha</annotation></semantics></math> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi></mrow><annotation encoding="application/x-tex">\beta</annotation></semantics></math> is itself a limit ordinal.</p> </div> </p> <p>This applies for example to the sequence of inclusions of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-skeleta in a <a class="existingWikiWord" href="/nlab/show/CW-complex">CW-complex</a>. By considering the cases <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo>=</mo><msup><mi>S</mi> <mi>k</mi></msup></mrow><annotation encoding="application/x-tex">Y=S^k</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><mo>=</mo><msup><mi>S</mi> <mi>k</mi></msup><mo>×</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">Y = S^k \times I</annotation></semantics></math>, this implies that the functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\pi_k</annotation></semantics></math> also preserves colimits of such sequences. Applications also occur in the theory of <a class="existingWikiWord" href="/nlab/show/classifying+space">classifying bundles</a>. For example, the total space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>EO</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">EO(n)</annotation></semantics></math> of the <a class="existingWikiWord" href="/nlab/show/orthogonal+group"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">O(n)</annotation> </semantics> </math></a>-<a class="existingWikiWord" href="/nlab/show/universal+principal+bundle">universal principal bundle</a> can be constructed as the colimit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><munder><mi>colim</mi><mrow><mi>k</mi><mo>→</mo><mn>∞</mn></mrow></munder><mspace width="thickmathspace"></mspace><msub><mi>V</mi> <mi>n</mi></msub><mo stretchy="false">(</mo><msup><mi>ℝ</mi> <mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\underset{k \to \infty}{colim} \; V_n(\mathbb{R}^{n+k})</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/Stiefel+manifolds">Stiefel manifolds</a> of orthonormal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-frames in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^{n+k}</annotation></semantics></math>. To show <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>EO</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">EO(n)</annotation></semantics></math> is weakly contractible, it suffices, by this result, to show that for each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math>, the <a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mi>j</mi></msub><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>n</mi></msub><mo stretchy="false">(</mo><msup><mi>ℝ</mi> <mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msup><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\pi_j(V_n(\mathbb{R}^{n+k}))</annotation></semantics></math> vanishes for sufficiently large <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>.</p> <p> <div class='proof'> <h6>Proof</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> denote the colimit of the diagram mapping out of the limit ordinal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>κ</mi></mrow><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>. We must show that every map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>Y</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">f \colon Y \to X</annotation></semantics></math> factors through one of the universal cocone components <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>i</mi> <mi>α</mi></msub><mo lspace="verythinmathspace">:</mo><msub><mi>X</mi> <mi>α</mi></msub><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">i_\alpha \colon X_\alpha \to X</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>&lt;</mo><mi>κ</mi></mrow><annotation encoding="application/x-tex">\alpha \lt \kappa</annotation></semantics></math>. Suppose not. Starting from any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>&lt;</mo><mi>κ</mi></mrow><annotation encoding="application/x-tex">\alpha \lt \kappa</annotation></semantics></math>, pick a point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>0</mn></msub><mo>∈</mo><mi>f</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_0 \in f(Y)</annotation></semantics></math> not in the image <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>i</mi> <mi>α</mi></msub><mo stretchy="false">(</mo><msub><mi>X</mi> <mi>α</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">i_\alpha(X_\alpha)</annotation></semantics></math>. There is a minimal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mn>1</mn></msub><mo>&lt;</mo><mi>κ</mi></mrow><annotation encoding="application/x-tex">\alpha_1 \lt \kappa</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>0</mn></msub><mo>∈</mo><msub><mi>i</mi> <mrow><msub><mi>α</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mi>X</mi> <mrow><msub><mi>α</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_0 \in i_{\alpha_1}(X_{\alpha_1})</annotation></semantics></math>. Proceeding inductively, choose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mi>n</mi></msub><mo>∈</mo><mi>f</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_n \in f(Y)</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mi>n</mi></msub><mo>∉</mo><msub><mi>i</mi> <mrow><msub><mi>α</mi> <mi>n</mi></msub></mrow></msub><mo stretchy="false">(</mo><msub><mi>X</mi> <mrow><msub><mi>α</mi> <mi>n</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_n \notin i_{\alpha_n}(X_{\alpha_n})</annotation></semantics></math>, and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">\alpha_{n+1}</annotation></semantics></math> be the minimal ordinal such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mi>n</mi></msub><mo>∈</mo><msub><mi>i</mi> <mrow><msub><mi>α</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><msub><mi>X</mi> <mrow><msub><mi>α</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_n \in i_{\alpha_{n+1}}(X_{\alpha_{n+1}})</annotation></semantics></math>. Then let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi></mrow><annotation encoding="application/x-tex">\beta</annotation></semantics></math> be the limit of the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">\alpha_n</annotation></semantics></math>, and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> be the set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>:</mo><mi>n</mi><mo>∈</mo><mi>ℕ</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{x_n: n \in \mathbb{N}\}</annotation></semantics></math>, so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>⊆</mo><msub><mi>i</mi> <mi>β</mi></msub><mo stretchy="false">(</mo><msub><mi>X</mi> <mi>β</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">S \subseteq i_\beta(X_\beta)</annotation></semantics></math>. Any subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> is closed, because closure of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi><mo>⊆</mo><msub><mi>i</mi> <mi>β</mi></msub><mo stretchy="false">(</mo><msub><mi>X</mi> <mi>β</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K \subseteq i_\beta(X_\beta)</annotation></semantics></math> is equivalent to closure of of each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi><mo>∩</mo><msub><mi>i</mi> <mrow><msub><mi>α</mi> <mi>n</mi></msub></mrow></msub><mo stretchy="false">(</mo><msub><mi>X</mi> <mrow><msub><mi>α</mi> <mi>n</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K \cap i_{\alpha_n}(X_{\alpha_n})</annotation></semantics></math> (since that is how the colimit topology on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>β</mi></msub></mrow><annotation encoding="application/x-tex">X_\beta</annotation></semantics></math> is defined), and all these intersections are finite and therefore closed by the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">T_1</annotation></semantics></math> condition. It follows that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f^{-1}(S)</annotation></semantics></math> is an infinite discrete subspace of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>, but this contradicts compactness.</p> </div> </p> <p>This proof is essentially that given in <a href="#Hovey99">Hovey (1999), page 50</a>, where this result is needed towards the <a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a> on the way to establishing the <a class="existingWikiWord" href="/nlab/show/classical+model+structure+on+topological+spaces">classical model structure on topological spaces</a>, see <a href="classical+model+structure+on+topological+spaces#CompactSubsetsAreSmallInCellComplexes">this lemma</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+element">compact element</a> (in a <a class="existingWikiWord" href="/nlab/show/%280%2C1%29-category">(0,1)-category</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+projective+object">compact projective object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topos">compact topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+object+in+an+%28%E2%88%9E%2C1%29-category">compact object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object">small object</a>, <a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finitely+generated+object">finitely generated object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+presentable+category">locally presentable category</a>, <a class="existingWikiWord" href="/nlab/show/accessible+category">accessible category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compactly+generated+%28%E2%88%9E%2C1%29-category">compactly generated (∞,1)-category</a></p> </li> </ul> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/finite+objects">finite objects</a>:</strong></p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a></th><th><a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category theory</a></th><th><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/perfect+module">perfect module</a></td><td style="text-align: left;">(<a class="existingWikiWord" href="/nlab/show/fully+dualizable+object">fully</a>-)<a class="existingWikiWord" href="/nlab/show/dualizable+object">dualizable object</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/compact+object">compact object</a></td></tr> </tbody></table> </div> <h2 id="references">References</h2> <p>Compact objects are discussed under the term “finitely presentable” or “finitely-presentable” objects for instance in</p> <ul> <li id="AdamekRosicky94"> <p><a class="existingWikiWord" href="/nlab/show/Ji%C5%99%C3%AD+Ad%C3%A1mek">Jiří Adámek</a>, <a class="existingWikiWord" href="/nlab/show/Ji%C5%99%C3%AD+Rosick%C3%BD">Jiří Rosický</a>, <em><a class="existingWikiWord" href="/nlab/show/Locally+Presentable+and+Accessible+Categories">Locally Presentable and Accessible Categories</a></em>, Cambridge University Press in the London Mathematical Society Lecture Note Series, number 189, (1994)</p> </li> <li id="MakkaiPare89"> <p><a class="existingWikiWord" href="/nlab/show/Michael+Makkai">Michael Makkai</a>, <a class="existingWikiWord" href="/nlab/show/Robert+Par%C3%A9">Robert Paré</a>, <em>Accessible categories: The foundations of categorical model theory</em> Contemporary Mathematics 104. American Mathematical Society, Rhode Island, 1989.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Masaki+Kashiwara">Masaki Kashiwara</a>, <a class="existingWikiWord" href="/nlab/show/Pierre+Schapira">Pierre Schapira</a>, around Definition 6.3.3 of <em><a class="existingWikiWord" href="/nlab/show/Categories+and+Sheaves">Categories and Sheaves</a></em>;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Peter+Johnstone">Peter Johnstone</a>, <em><a class="existingWikiWord" href="/nlab/show/Stone+Spaces">Stone Spaces</a></em>, Definition VI.1.8;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Peter+Johnstone">Peter Johnstone</a>, the <em><a class="existingWikiWord" href="/nlab/show/Elephant">Elephant</a></em>, D2.3.1.</p> </li> </ul> <p>For the pages quoted in the context of the discussion of compact objects in <a class="existingWikiWord" href="/nlab/show/Top">Top</a> see</p> <ul> <li id="Hovey99"><a class="existingWikiWord" href="/nlab/show/Mark+Hovey">Mark Hovey</a>, <em><a class="existingWikiWord" href="/nlab/show/Model+Categories">Model Categories</a></em>, Mathematical Surveys and Monographs, Volume 63, AMS (1999). <a href="https://bookstore.ams.org/surv-63-s">ISBN:978-0-8218-4361-1</a> <a href="https://doi.org/http://dx.doi.org/10.1090/surv/063">doi:10.1090/surv/063</a> <a href="https://www.math.rochester.edu/people/faculty/doug/otherpapers/hovey-model-cats.pdf">pdf</a>, (errata: <a href="https://people.math.rochester.edu/faculty/doug/otherpapers/hovey-model-cats-errata.pdf">pdf</a>) <p>.</p> </li> </ul> <p>For the general definition with an eye towards the definition of <a class="existingWikiWord" href="/nlab/show/compact+object+in+an+%28infinity%2C1%29-category">compact object in an (infinity,1)-category</a> see section A.1.1 section 5.3.4 of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, <em><a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">Higher Topos Theory</a></em></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on June 29, 2024 at 09:23:54. See the <a href="/nlab/history/compact+object" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/compact+object" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/9641/#Item_7">Discuss</a><span class="backintime"><a href="/nlab/revision/compact+object/71" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/compact+object" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/compact+object" accesskey="S" class="navlink" id="history" rel="nofollow">History (71 revisions)</a> <a href="/nlab/show/compact+object/cite" style="color: black">Cite</a> <a href="/nlab/print/compact+object" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/compact+object" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10