CINXE.COM

Search results for: cell panel

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cell panel</title> <meta name="description" content="Search results for: cell panel"> <meta name="keywords" content="cell panel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cell panel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cell panel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4560</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cell panel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4530</span> Bioactive Molecules Isolated for the First Time from Hyoscyamus albus L. and their Mechanisms Underlying the Anticancer Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benhouda%20%20Afaf">Benhouda Afaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Massinissa"> Yahia Massinissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Grieco"> Paolo Grieco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyoscyamus albus L. is a small genus from Solanaceae family known by its use in old traditional medicine in the east of Algeria. Aim: This study aimed to characterize bioactive molecules from H. albus, evaluate their anticancer activity in several cancer cells and investigate their possible molecular mechanism. Materials and Methods: Different compounds (Peak h of fraction F), (Peak 3 of Fraction F), (Peak 1 of fraction C) were isolated from H.albus L by using high-performance chromatography (HPLC), mass spectrometry (MS) and proton NMR (NMR H1). All isolated compounds were subjected to cytotoxicity and antiproliferative assays against a panel of the four cell lines: DU-145, U-2 OS, U-87 MG and LN-229 cell lines and were determined using MTT assay, Annexin V and propodium iodide were used to evaluate apoptosis. Results: The phytochemical study of H. albus Fractions led to the isolation of quercetin-3-O-β-dglucopyranosyl-( 1 → 6)-β-d-glucopyranosid, N-trans-feruloyltyramine, Hydrocaffeoyl-N8- caffeoylspermidine.The biological results indicated that all cell lines were consistently sensitive to P1 FC in a dose-dependent manner. This difference in cytotoxic sensitivity was more pronounced in osteosarcoma cell line, U-2 OS, when compared to prostate cancer and U-87 MG. Cell viability data also demonstrated that only U-87 MG cells were responsive to treatment with Ph FF. compounds P1 FC and Ph FF have induced necrosis and apoptosis in a large part of LN-229 cells. Conclusion: The overall results of the present study provided evidence that isolated compounds are potential therapeutic entities against cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyoscyamus%20albus" title="hyoscyamus albus">hyoscyamus albus</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cells" title=" cancer cells"> cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=coumpounds" title=" coumpounds"> coumpounds</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/194785/bioactive-molecules-isolated-for-the-first-time-from-hyoscyamus-albus-l-and-their-mechanisms-underlying-the-anticancer-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4529</span> Comparison of Extracellular miRNA from Different Lymphocyte Cell Lines and Isolation Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christelle%20E.%20Chua">Christelle E. Chua</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicia%20L.%20Ho"> Alicia L. Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of a panel of differential gene expression signatures has been of interest in the field of biomarker discovery for radiation exposure. In the absence of the availability of exposed human subjects, lymphocyte cell lines have often been used as a surrogate to human whole blood, when performing ex vivo irradiation studies. The extent of variation between different lymphocyte cell lines is currently unclear, especially with regard to the expression of extracellular miRNA. This study compares the expression profile of extracellular miRNA isolated from different lymphocyte cell lines. It also compares the profile of miRNA obtained when different exosome isolation kits are used. Lymphocyte cell lines were created using lymphocytes isolated from healthy adult males of similar racial descent (Chinese American and Chinese Singaporean) and immortalised with Epstein-Barr virus. The cell lines were cultured in exosome-free cell culture media for 72h and the cell culture supernatant was removed for exosome isolation. Two exosome isolation kits were used. Total exosome isolation reagent (TEIR, ThermoFisher) is a polyethylene glycol (PEG)-based exosome precipitation kit, while ExoSpin (ES, Cell Guidance Systems) is a PEG-based exosome precipitation kit that includes an additional size exclusion chromatography step. miRNA from the isolated exosomes were isolated using miRNEASY minikit (Qiagen) and analysed using nCounter miRNA assay (Nanostring). Principal component analysis (PCA) results suggested that the overall extracellular miRNA expression profile differed between the lymphocyte cell line originating from the Chinese American donor and the cell line originating from the Chinese Singaporean donor. As the gender, age and racial origins of both donors are similar, this may suggest that there are other genetic or epigenetic differences that account for the variation in extracellular miRNA gene expression in lymphocyte cell lines. However, statistical analysis showed that only 3 miRNA genes had a fold difference > 2 at p < 0.05, suggesting that the differences may not be of that great a significance as to impact overall conclusions drawn from different cell lines. Subsequent analysis using cell lines from other donors will give further insight into the reproducibility of results when difference cell lines are used. PCA results also suggested that the method of exosome isolation impacted the expression profile. 107 miRNA had a fold difference > 2 at p < 0.05. This suggests that the inclusion of an additional size exclusion chromatography step altered the subset of the extracellular vesicles that were isolated. In conclusion, these results suggest that extracellular miRNA can be isolated and analysed from exosomes derived from lymphocyte cell lines. However, care must be taken in the choice of cell line and method of exosome isolation used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarker" title="biomarker">biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20miRNA" title=" extracellular miRNA"> extracellular miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation%20methods" title=" isolation methods"> isolation methods</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocyte%20cell%20line" title=" lymphocyte cell line"> lymphocyte cell line</a> </p> <a href="https://publications.waset.org/abstracts/78941/comparison-of-extracellular-mirna-from-different-lymphocyte-cell-lines-and-isolation-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4528</span> The Influence of Meteorological Properties on the Power of Night Radiation Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othmane%20Fahim">Othmane Fahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoual%20Belouaggadia.%20Charifa%20David"> Naoual Belouaggadia. Charifa David</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ezzine"> Mohamed Ezzine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To make better use of cooling resources, systems have been derived on the basis of the use of night radiator systems for heat pumping.&nbsp;Using the TRNSYS tool we determined the influence of the climatic characteristics of the two zones in Morocco on the temperature of the outer surface of a Photovoltaic Thermal Panel &ldquo;PVT&rdquo; made of aluminum.&nbsp;The proposal to improve the performance of the panel allowed us to have little heat absorption during the day and give the same performance of a panel made of aluminum at night. The variation in the granite-based panel temperature recorded a deviation from the other materials of 0.5 &deg;C, 2.5 &deg;C on the first day respectively in Marrakech and Casablanca, and 0.2 &deg;C and 3.2 &deg;C on the second night.&nbsp;Power varied between 110.16 and 32.01 W/m&sup2; marked in Marrakech, to be the most suitable area to practice night cooling by night radiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20buildings" title="smart buildings">smart buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20cooling" title=" radiative cooling"> radiative cooling</a> </p> <a href="https://publications.waset.org/abstracts/109594/the-influence-of-meteorological-properties-on-the-power-of-night-radiation-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4527</span> Up-Regulation of SCUBE2 Expression in Co-Cultures of Human Mesenchymal Stem Cell and Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirowati%20Ali">Hirowati Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisyah%20Ellyanti"> Aisyah Ellyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rusnita"> Dewi Rusnita</a>, <a href="https://publications.waset.org/abstracts/search?q=Septelia%20Inawati%20Wanandi"> Septelia Inawati Wanandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cell has been known for its potency to be differentiated in many cells. Recently stem cell has been used for many treatment of degenerative medicine. It is still controversy whether stem cell can be used for therapy or these cells can activate cancer stem cell. SCUBE2 is a novel secreted and membrane-anchored protein which has been reported to its role in better prognosis and inhibition of cancer cell proliferation. Our study aims to observe whether stem cell can up-regulate SCUBE2 gene in MCF7 breast cancer cell line. We used in vitro study using MCF-7 cell treated with stem cell derived from placenta Wharton's jelly which has been known for its stemness and widely used. Our results showed that MCF-7 cell line grows up rapidly in 6-well culture dish. Stem cell was cultured in 6-well dish. After 50%-60% MCF-7 confluence, we co-cultured these cells with stem cells for 24 hours and 48 hours. We hypothesize SCUBE2 gene which is previously known for its higher expression in better prognosis of breast cancer, is up-regulated after stem cells addition in MCF7 culture dishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cells" title="breast cancer cells">breast cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20cancer%20cells" title=" inhibition of cancer cells"> inhibition of cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SCUBE2" title=" SCUBE2"> SCUBE2</a> </p> <a href="https://publications.waset.org/abstracts/84557/up-regulation-of-scube2-expression-in-co-cultures-of-human-mesenchymal-stem-cell-and-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4526</span> Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viriyavudh%20Sim">Viriyavudh Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Kim"> SeungHyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=JungKyu%20Choi"> JungKyu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=WooYoung%20Jung"> WooYoung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20resistance" title="buckling resistance">buckling resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=GFRP%20infill%20panel" title=" GFRP infill panel"> GFRP infill panel</a>, <a href="https://publications.waset.org/abstracts/search?q=stacking%20sequence" title=" stacking sequence"> stacking sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependent" title=" temperature dependent"> temperature dependent</a> </p> <a href="https://publications.waset.org/abstracts/47887/influence-of-stacking-sequence-and-temperature-on-buckling-resistance-of-gfrp-infill-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4525</span> Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viriyavudh%20Sim">Viriyavudh Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Kyu%20Choi"> Jung Kyu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Ju%20Kwak"> Yong Ju Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Hyeon%20Jeon"> Oh Hyeon Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Young%20Jung"> Woo Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basalt%20Fiber%20Reinforced%20Polymer%20%28BFRP%29" title="Basalt Fiber Reinforced Polymer (BFRP)">Basalt Fiber Reinforced Polymer (BFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling%20performance" title=" buckling performance"> buckling performance</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20infill%20panel" title=" sandwich infill panel"> sandwich infill panel</a> </p> <a href="https://publications.waset.org/abstracts/80018/numerical-study-for-compressive-strength-of-basalt-composite-sandwich-infill-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4524</span> Application of Sorptive Passive Panels for Reducing Indoor Formaldehyde Level: Effect of Environmental Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitra%20Bahri">Mitra Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Leopold%20Kabambi"> Jean Leopold Kabambi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacqueline%20Yakobi-Hancock"> Jacqueline Yakobi-Hancock</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Render"> William Render</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20So"> Stephanie So</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing formaldehyde concentration in residential buildings is an important challenge, especially during the summer. In this study, a ceiling tile was used as a sorptive passive panel for formaldehyde removal. The performance of this passive panel was evaluated under different environmental conditions. The results demonstrated that the removal efficiency is comprised between 40% and 71%. Change in the level of relative humidity (30%, 50%, and 75%) had a slight positive effect on the sorption capacity. However, increase in temperature from 21 &deg;C to 26 &deg;C led to approximately 7% decrease in the average formaldehyde removal performance. GC/MS and HPLC analysis revealed the formation of different by-products at low concentrations under extreme environmental conditions. These findings suggest that the passive panel selected for this study holds the potential to be used for formaldehyde removal under various conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formaldehyde" title="formaldehyde">formaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20panel" title=" passive panel"> passive panel</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a> </p> <a href="https://publications.waset.org/abstracts/95496/application-of-sorptive-passive-panels-for-reducing-indoor-formaldehyde-level-effect-of-environmental-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4523</span> Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fan%20Gao">Fan Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lior%20Pachter"> Lior Pachter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-cell" title="single-cell">single-cell</a>, <a href="https://publications.waset.org/abstracts/search?q=ATAC-seq" title=" ATAC-seq"> ATAC-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20chromatin%20landscape" title=" open chromatin landscape"> open chromatin landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatin%20interactome" title=" chromatin interactome"> chromatin interactome</a> </p> <a href="https://publications.waset.org/abstracts/137695/efficient-pre-processing-of-single-cell-assay-for-transposase-accessible-chromatin-with-high-throughput-sequencing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4522</span> A Comprehensive Procedure of Spatial Panel Modelling with R, A Study of Agricultural Productivity Growth of the 38 East Java’s Regencies/Municipalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahma%20Fitriani">Rahma Fitriani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zerlita%20Fahdha%20Pusdiktasari"> Zerlita Fahdha Pusdiktasari</a>, <a href="https://publications.waset.org/abstracts/search?q=Herman%20Cahyo%20Diartho"> Herman Cahyo Diartho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spatial panel model is commonly used to specify more complicated behavior of economic agent distributed in space at an individual-spatial unit level. There are several spatial panel models which can be adapted based on certain assumptions. A package called splm in R has several functions, ranging from the estimation procedure, specification tests, and model selection tests. In the absence of prior assumptions, a comprehensive procedure which utilizes the available functions in splm must be formed, which is the objective of this study. In this way, the best specification and model can be fitted based on data. The implementation of the procedure works well. It specifies SARAR-FE as the best model for agricultural productivity growth of the 38 East Java’s Regencies/Municipalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20panel" title="spatial panel">spatial panel</a>, <a href="https://publications.waset.org/abstracts/search?q=specification" title=" specification"> specification</a>, <a href="https://publications.waset.org/abstracts/search?q=splm" title=" splm"> splm</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20productivity%20growth" title=" agricultural productivity growth"> agricultural productivity growth</a> </p> <a href="https://publications.waset.org/abstracts/143954/a-comprehensive-procedure-of-spatial-panel-modelling-with-r-a-study-of-agricultural-productivity-growth-of-the-38-east-javas-regenciesmunicipalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4521</span> Optimal Designof Brush Roll for Semiconductor Wafer Using CFD Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byeong-Sam%20Kim">Byeong-Sam Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoungwoo%20Park"> Kyoungwoo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research analyzes structure of flat panel display (FPD) such as LCD as quantitative through CFD analysis and modeling change to minimize the badness rate and rate of production decrease by damage of large scale plater at wafer heating chamber at semi-conductor manufacturing process. This glass panel and wafer device with atmospheric pressure or chemical vapor deposition equipment for transporting and transferring wafers, robot hands carry these longer and wider wafers can also be easily handled. As a contact handling system composed of several problems in increased potential for fracture or warping. A non-contact handling system is required to solve this problem. The panel and wafer warping makes it difficult to carry out conventional contact to analysis. We propose a new non-contact transportation system with combining air suction and blowout. The numerical analysis and experimental is, therefore, should be performed to obtain compared to results achieved with non-contact solutions. This wafer panel noncontact handler shows its strength in maintaining high cleanliness levels for semiconductor production processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flat%20panel%20display" title="flat panel display">flat panel display</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20contact%20transportation" title=" non contact transportation"> non contact transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment%20process" title=" heat treatment process"> heat treatment process</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a> </p> <a href="https://publications.waset.org/abstracts/23844/optimal-designof-brush-roll-for-semiconductor-wafer-using-cfd-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4520</span> A Panel Cointegration Analysis for Macroeconomic Determinants of International Housing Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei-Se%20Chien">Mei-Se Chien</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chiang%20Lee"> Chien-Chiang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sin-Jie%20Cai"> Sin-Jie Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to investigate the long-run equilibrium and short-run dynamics of international housing prices when macroeconomic variables change. We apply the Pedroni’s, panel cointegration, using the unbalanced panel data analysis of 33 countries over the period from 1980Q1 to 2013Q1, to examine the relationships among house prices and macroeconomic variables. Our empirical results of panel data cointegration tests support the existence of a cointegration among these macroeconomic variables and house prices. Besides, the empirical results of panel DOLS further present that a 1% increase in economic activity, long-term interest rates, and construction costs cause house prices to respectively change 2.16%, -0.04%, and 0.22% in the long run. Furthermore, the increasing economic activity and the construction cost would cause stronger impacts on the house prices for lower income countries than higher income countries. The results lead to the conclusion that policy of house prices growth can be regarded as economic growth for lower income countries. Finally, in America region, the coefficient of economic activity is the highest, which displays that increasing economic activity causes a faster rise in house prices there than in other regions. There are some special cases whereby the coefficients of interest rates are significantly positive in America and Asia regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=house%20prices" title="house prices">house prices</a>, <a href="https://publications.waset.org/abstracts/search?q=macroeconomic%20variables" title=" macroeconomic variables"> macroeconomic variables</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20cointegration" title=" panel cointegration"> panel cointegration</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20OLS" title=" dynamic OLS"> dynamic OLS</a> </p> <a href="https://publications.waset.org/abstracts/7549/a-panel-cointegration-analysis-for-macroeconomic-determinants-of-international-housing-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4519</span> Establishing a Drug Discovery Platform to Progress Compounds into the Clinic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheraz%20Gul">Sheraz Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The requirements for progressing a compound to clinical trials is well established and relies on the results from in-vitro and in-vivo animal tests to indicate that it is likely to be safe and efficacious when testing in humans. The typical data package required will include demonstrating compound safety, toxicity, bioavailability, pharmacodynamics (potential effects of the compound on body systems) and pharmacokinetics (how the compound is potentially absorbed, distributed, metabolised and eliminated after dosing in humans). If the desired criteria are met and the compound meets the clinical Candidate criteria and is deemed worthy of further development, a submission to regulatory bodies such as the US Food & Drug Administration for an exploratory Investigational New Drug Study can be made. The purpose of this study is to collect data to establish that the compound will not expose humans to unreasonable risks when used in limited, early-stage clinical studies in patients or normal volunteer subjects (Phase I). These studies are also designed to determine the metabolism and pharmacologic actions of the drug in humans, the side effects associated with increasing doses, and, if possible, to gain early evidence on their effectiveness. In order to reach the above goals, we have developed a pre-clinical high throughput Absorption, Distribution, Metabolism and Excretion–Toxicity (ADME–Toxicity) panel of assays to identify compounds that are likely to meet the Lead and Candidate compound acceptance criteria. This panel includes solubility studies in a range of biological fluids, cell viability studies in cancer and primary cell-lines, mitochondrial toxicity, off-target effects (across the kinase, protease, histone deacetylase, phosphodiesterase and GPCR protein families), CYP450 inhibition (5 different CYP450 enzymes), CYP450 induction, cardio-toxicity (hERG) and gene-toxicity. This panel of assays has been applied to multiple compound series developed in a number of projects delivering Lead and clinical Candidates and examples from these will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism%20and%20excretion%E2%80%93toxicity" title=" metabolism and excretion–toxicity "> metabolism and excretion–toxicity </a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title=" drug discovery"> drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20and%20drug%20administration" title=" food and drug administration "> food and drug administration </a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacodynamics" title=" pharmacodynamics"> pharmacodynamics</a> </p> <a href="https://publications.waset.org/abstracts/78862/establishing-a-drug-discovery-platform-to-progress-compounds-into-the-clinic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4518</span> Preparation of Gramine Nanosuspension and Protective Effect of Gramine on Human Oral Cell Lines by Induction of Apoptosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Suresh">K. Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Arunkumar"> R. Arunkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the preparation of gramine nano suspension and protective effect of Gramine on the apoptosis of laryngeal cancer cells cell line (HEp-2 and KB). The growth inhibition rate of Hep-2 and KB cells in vitro were measured by MTT assay and apoptosis by, levels of reactive oxygen species, mitochondrial membrane potential, morphological changes and flowcytometry. Based on the results, we determined the effective doses of gramine as 127.23µm/ml for 24 hr and 119.81 µm/ml for 48hr in hep-2 cell line and 147.58 µm ml for 24 hr and 123.74µm µm/ml for 48hr in KB cell line. cytotoxicity effects of gramine were confirmed by treatment of HEp-2 cell and KB cell with IC50 concentration of gramine resulted in sequences of events marked by the enhance the apoptosis accompanied by loss of cell viability, modulation of reactive oxygen species and cell cycle arrest through the induction of G0/G1 phase arrest on HEp-2 cells. Our study suggests that the nanosuspension of gramine possesses the more cytotoxic effect of cancer cells and a novel candidate for cancer chemoprevention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=HEp-2%20cell%20line" title=" HEp-2 cell line"> HEp-2 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=KB%20cell%20line%20mitochondria" title=" KB cell line mitochondria"> KB cell line mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=gramine" title=" gramine"> gramine</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosuspension" title=" nanosuspension"> nanosuspension</a> </p> <a href="https://publications.waset.org/abstracts/21324/preparation-of-gramine-nanosuspension-and-protective-effect-of-gramine-on-human-oral-cell-lines-by-induction-of-apoptosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4517</span> Foreign Direct Investment, Economic Growth and CO2 Emissions: Evidence from WAIFEM Member Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasiru%20Inuwa">Nasiru Inuwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Usman%20Modibbo"> Haruna Usman Modibbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Zakari%20Abdullahi"> Yahya Zakari Abdullahi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to investigate the effects of foreign direct investment (FDI), economic growth on carbon emissions in context of WAIFEM member countries. The Im-Pesaran-Shin panel unit root test, Kao residual based test panel cointegration technique and panel Granger causality tests over the period 1980-2012 within a multivariate framework were applied. The results of cointegration test revealed a long run equilibrium relationship among CO2 emissions, economic growth and foreign direct investment. The results of Granger causality tests revealed a unidirectional causality running from economic growth to CO2 emissions for the panel of WAIFEM countries at the 5% level. Also, Granger causality runs from economic growth to foreign direct investment without feedback. However, no causality relationship between foreign direct investment and CO2 emissions for the panel of WAIFEM countries was observed. The study therefore, suggest that policy makers from WAIFEM member countries should design policies aim at attracting more foreign direct investments inflow as well the adoption of cleaner production technologies in order to reduce CO2 emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title="economic growth">economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title=" CO2 emissions"> CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=causality" title="causality">causality</a>, <a href="https://publications.waset.org/abstracts/search?q=WAIFEM" title=" WAIFEM"> WAIFEM</a> </p> <a href="https://publications.waset.org/abstracts/26866/foreign-direct-investment-economic-growth-and-co2-emissions-evidence-from-waifem-member-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4516</span> Cell Line Screens Identify Biomarkers of Drug Sensitivity in GLIOMA Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noora%20Al%20Muftah">Noora Al Muftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Rawi"> Reda Rawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Thompson"> Richard Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Halima%20Bensmail"> Halima Bensmail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. There is an urgent need to identify biomarkers that predict which patients with are most likely to respond to treatment. Systematic efforts to correlate tumor mutational data with biologic dependencies may facilitate the translation of somatic mutation catalogs into meaningful biomarkers for patient stratification. To identify genomic features associated with drug sensitivity and uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we have screened and integrated a panel of several hundred cancer cell lines from different databases, mutation, DNA copy number, and gene expression data for hundreds of cell lines with their responses to targeted and cytotoxic therapies with drugs under clinical and preclinical investigation. We found mutated cancer genes were associated with cellular response to most currently available Glioma cancer drugs and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20network" title=" gene network"> gene network</a>, <a href="https://publications.waset.org/abstracts/search?q=Lasso" title=" Lasso"> Lasso</a>, <a href="https://publications.waset.org/abstracts/search?q=penalized%20regression" title=" penalized regression"> penalized regression</a>, <a href="https://publications.waset.org/abstracts/search?q=P-values" title=" P-values"> P-values</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20estimator" title=" unbiased estimator"> unbiased estimator</a> </p> <a href="https://publications.waset.org/abstracts/39172/cell-line-screens-identify-biomarkers-of-drug-sensitivity-in-glioma-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4515</span> Increment of Panel Flutter Margin Using Adaptive Stiffeners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Raja">S. Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Parammasivam"> K. M. Parammasivam</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Aghilesh"> V. Aghilesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid-structure interaction is a crucial consideration in the design of many engineering systems such as flight vehicles and bridges. Aircraft lifting surfaces and turbine blades can fail due to oscillations caused by fluid-structure interaction. Hence, it is focussed to study the fluid-structure interaction in the present research. First, the effect of free vibration over the panel is studied. It is well known that the deformation of a panel and flow induced forces affects one another. The selected panel has a span 300mm, chord 300mm and thickness 2 mm. The project is to study, the effect of cross-sectional area and the stiffener location is carried out for the same panel. The stiffener spacing is varied along both the chordwise and span-wise direction. Then for that optimal location the ideal stiffener length is identified. The effect of stiffener cross-section shapes (T, I, Hat, Z) over flutter velocity has been conducted. The flutter velocities of the selected panel with two rectangular stiffeners of cantilever configuration are estimated using MSC NASTRAN software package. As the flow passes over the panel, deformation takes place which further changes the flow structure over it. With increasing velocity, the deformation goes on increasing, but the stiffness of the system tries to dampen the excitation and maintain equilibrium. But beyond a critical velocity, the system damping suddenly becomes ineffective, so it loses its equilibrium. This estimated in NASTRAN using PK method. The first 10 modal frequencies of a simple panel and stiffened panel are estimated numerically and are validated with open literature. A grid independence study is also carried out and the modal frequency values remain the same for element lengths less than 20 mm. The current investigation concludes that the span-wise stiffener placement is more effective than the chord-wise placement. The maximum flutter velocity achieved for chord-wise placement is 204 m/s while for a span-wise arrangement it is augmented to 963 m/s for the stiffeners location of ¼ and ¾ of the chord from the panel edge (50% of chord from either side of the mid-chord line). The flutter velocity is directly proportional to the stiffener cross-sectional area. A significant increment in flutter velocity from 218m/s to 1024m/s is observed for the stiffener lengths varying from 50% to 60% of the span. The maximum flutter velocity above Mach 3 is achieved. It is also observed that for a stiffened panel, the full effect of stiffener can be achieved only when the stiffener end is clamped. Stiffeners with Z cross section incremented the flutter velocity from 142m/s (Panel with no stiffener) to 328 m/s, which is 2.3 times that of simple panel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stiffener%20placement" title="stiffener placement">stiffener placement</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffener%20cross-sectional%20area" title=" stiffener cross-sectional area"> stiffener cross-sectional area</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffener%20length" title=" stiffener length"> stiffener length</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffener%20cross%20sectional%20area%20shape" title=" stiffener cross sectional area shape"> stiffener cross sectional area shape</a> </p> <a href="https://publications.waset.org/abstracts/52356/increment-of-panel-flutter-margin-using-adaptive-stiffeners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4514</span> Study of Magnetic Nanoparticles’ Endocytosis in a Single Cell Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jefunnie%20Matahum">Jefunnie Matahum</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Kuo"> Yu-Chi Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Ming%20Su"> Chao-Ming Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzong-Rong%20Ger"> Tzong-Rong Ger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic cell labeling is of great importance in various applications in biomedical fields such as cell separation and cell sorting. Since analytical methods for quantification of cell uptake of magnetic nanoparticles (MNPs) are already well established, image analysis on single cell level still needs more characterization. This study reports an alternative non-destructive quantification methods of single-cell uptake of positively charged MNPs. Magnetophoresis experiments were performed to calculate the number of MNPs in a single cell. Mobility of magnetic cells and the area of intracellular MNP stained by Prussian blue were quantified by image processing software. ICP-MS experiments were also performed to confirm the internalization of MNPs to cells. Initial results showed that the magnetic cells incubated at 100 µg and 50 µg MNPs/mL concentration move at 18.3 and 16.7 µm/sec, respectively. There is also an increasing trend in the number and area of intracellular MNP with increasing concentration. These results could be useful in assessing the nanoparticle uptake in a single cell level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20cell" title=" single cell"> single cell</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetophoresis" title=" magnetophoresis"> magnetophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title=" image analysis"> image analysis</a> </p> <a href="https://publications.waset.org/abstracts/66948/study-of-magnetic-nanoparticles-endocytosis-in-a-single-cell-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4513</span> Panel Application for Determining Impact of Real Exchange Rate and Security on Tourism Revenues: Countries with Middle and High Level Tourism Income</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Koray%20Cetin">M. Koray Cetin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Mert"> Mehmet Mert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study is to examine impacts on tourism revenues of the exchange rate and country overall security level. There are numerous studies that examine the bidirectional relation between macroeconomic factors and tourism revenues and tourism demand. Most of the studies support the existence of impact of tourism revenues on growth rate but not vice versa. Few studies examine the impact of factors like real exchange rate or purchasing power parity on the tourism revenues. In this context, firstly impact of real exchange rate on tourism revenues examination is aimed. Because exchange rate is one of the main determinants of international tourism services price in guests currency unit. Another determinant of tourism demand for a country is country’s overall security level. This issue can be handled in the context of the relationship between tourism revenues and overall security including turmoil, terrorism, border problem, political violence. In this study, factors are handled for several countries which have tourism revenues on a certain level. With this structure, it is a panel data, and it is evaluated with panel data analysis techniques. Panel data have at least two dimensions, and one of them is time dimensions. The panel data analysis techniques are applied to data gathered from Worldbank data web page. In this study, it is expected to find impacts of real exchange rate and security factors on tourism revenues for the countries that have noteworthy tourism revenues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exchange%20rate" title="exchange rate">exchange rate</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20data%20analysis" title=" panel data analysis"> panel data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism%20revenues" title=" tourism revenues"> tourism revenues</a> </p> <a href="https://publications.waset.org/abstracts/75088/panel-application-for-determining-impact-of-real-exchange-rate-and-security-on-tourism-revenues-countries-with-middle-and-high-level-tourism-income" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4512</span> In-Situ Quasistatic Compression and Microstructural Characterization of Aluminium Foams of Different Cell Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Islam">M. A. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20Hazell"> P. J. Hazell</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Escobedo"> J. P. Escobedo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saadatfar"> M. Saadatfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quasistatic compression and micro structural characterization of closed cell aluminium foams of different pore size and cell distributions has been carried out. Metallic foams have good potential for lightweight structures for impact and blast mitigation and therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximize energy absorption. In this paper, we present results for two different aluminium metal foams of density 0.5 g/cc and 0.7 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behavior has been investigated using computed tomography (micro-CT) analysis. The compression behavior and micro structural characterization will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20foams" title="metal foams">metal foams</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-CT" title=" micro-CT"> micro-CT</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20topology" title=" cell topology"> cell topology</a>, <a href="https://publications.waset.org/abstracts/search?q=quasistatic%20compression" title=" quasistatic compression"> quasistatic compression</a> </p> <a href="https://publications.waset.org/abstracts/11025/in-situ-quasistatic-compression-and-microstructural-characterization-of-aluminium-foams-of-different-cell-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4511</span> Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudra%20P.%20Pradhan">Rudra P. Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20development" title=" financial development"> financial development</a>, <a href="https://publications.waset.org/abstracts/search?q=FATF%20countries" title=" FATF countries"> FATF countries</a>, <a href="https://publications.waset.org/abstracts/search?q=Panel%20VECM" title=" Panel VECM"> Panel VECM</a> </p> <a href="https://publications.waset.org/abstracts/54629/granger-causal-nexus-between-financial-development-and-energy-consumption-evidence-from-cross-country-panel-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4510</span> Air Conditioning Variation of 1kW Open-Cathode Proton Exchange Membrane (PEM) Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Syahirin%20Aisha">Mohammad Syahirin Aisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Imran%20Sainan"> Khairul Imran Sainan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The PEM fuel cell is a device that generate electric by electrochemical reaction between hydrogen fuel and oxygen in the fuel cell stack. PEM fuel cell consists of an anode (hydrogen supply), a cathode (oxygen supply) and an electrolyte that allow charges move between the two positions of the fuel cell. The only product being developed after the reaction is water (H2O) and heat as the waste which does not emit greenhouse gasses. The performance of fuel cell affected by numerous parameters. This study is restricted to cathode parameters that affect fuel cell performance. At the anode side, the reactant is not going through any changes. Experiments with variation in air velocity (3m/s, 6m/s and 9m/s), temperature (10oC, 20oC, 35oC) and relative humidity (50%, 60%, and 70%) have been carried out. The experiments results are presented in the form of fuel cell stack power output over time, which demonstrate the impacts of the various air condition on the execution of the PEM fuel cell. In this study, the experimental analysis shows that with variation of air conditions, it gives different fuel cell performance behavior. The maximum power output of the experiment was measured at an ambient temperature of 25oC with relative humidity and 9m/s velocity of air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-breathing%20PEM%20fuel%20cell" title="air-breathing PEM fuel cell">air-breathing PEM fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=cathode%20side" title=" cathode side"> cathode side</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=variation%20in%20air%20condition" title=" variation in air condition"> variation in air condition</a> </p> <a href="https://publications.waset.org/abstracts/24926/air-conditioning-variation-of-1kw-open-cathode-proton-exchange-membrane-pem-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4509</span> Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisam%20K.%20Hussam">Wisam K. Hussam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alfeeli"> Ali Alfeeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gergory%20J.%20Sheard"> Gergory J. Sheard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20cell" title="photovoltaic cell">photovoltaic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title=" heat sink"> heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/114166/efficiency-enhancement-of-photovoltaic-panels-using-an-optimised-air-cooled-heat-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4508</span> Large Panel Technology Apartments of Yesterday and Today: Quality Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Gronostajska">Barbara Gronostajska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, housing conditions of buildings executed in large panel technology are deteriorating. The article presents modernization solutions implemented throughout the variety of architectural activities (adding of balconies and staircases, connecting apartments) which guarantee very intriguing results that meet the needs and expectations of the modern society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=housing%20estate" title="housing estate">housing estate</a>, <a href="https://publications.waset.org/abstracts/search?q=apartments" title=" apartments"> apartments</a>, <a href="https://publications.waset.org/abstracts/search?q=flats" title=" flats"> flats</a>, <a href="https://publications.waset.org/abstracts/search?q=modernization" title=" modernization"> modernization</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20blocks" title=" plate blocks"> plate blocks</a> </p> <a href="https://publications.waset.org/abstracts/17754/large-panel-technology-apartments-of-yesterday-and-today-quality-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4507</span> Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahfuzur%20Rahman">Mahfuzur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interdigitated" title="interdigitated">interdigitated</a>, <a href="https://publications.waset.org/abstracts/search?q=shading" title=" shading"> shading</a>, <a href="https://publications.waset.org/abstracts/search?q=recombination%20loss" title=" recombination loss"> recombination loss</a>, <a href="https://publications.waset.org/abstracts/search?q=incident-plane" title=" incident-plane"> incident-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=drift-diffusion" title=" drift-diffusion"> drift-diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=luminous" title=" luminous"> luminous</a>, <a href="https://publications.waset.org/abstracts/search?q=SILVACO" title=" SILVACO"> SILVACO</a> </p> <a href="https://publications.waset.org/abstracts/146112/modelling-and-simulation-of-light-and-temperature-efficient-interdigitated-back-surface-contact-solar-cell-with-2881-efficiency-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4506</span> Cell Elevator: A Novel Technique for Cell Sorting and Circulating Tumor Cell Detection and Discrimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Zhao">Kevin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20J.%20Horing"> Norman J. Horing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A methodology for cells sorting and circulating tumor cell detection and discrimination is presented in this paper. The technique is based on Dielectrophoresis and microfluidic device theory. Specifically, the sorting of the cells is realized by adjusting the relation among the sedimentation forces, the drag force provided by the fluid, and the Dielectrophortic force that is relevant to the bias voltage applied on the device. The relation leads to manipulation of the elevation of the cells of the same kind to a height by controlling the bias voltage. Once the cells have been lifted to a position next to the bottom of the cell collection channel, the buffer fluid flashes them into the cell collection channel. Repeated elevation of the cells leads to a complete sorting of the cells in the sample chamber. A proof-of-principle example is presented which verifies the feasibility of the methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20sorter" title="cell sorter">cell sorter</a>, <a href="https://publications.waset.org/abstracts/search?q=CTC%20cell" title=" CTC cell"> CTC cell</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20and%20discrimination" title=" detection and discrimination"> detection and discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectrophoresisords" title=" dielectrophoresisords"> dielectrophoresisords</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/40753/cell-elevator-a-novel-technique-for-cell-sorting-and-circulating-tumor-cell-detection-and-discrimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4505</span> Adaptive Discharge Time Control for Battery Operation Time Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Bae%20Lee">Jong-Bae Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongsoo%20Lee"> Seongsoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery" title="battery">battery</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20effect" title=" recovery effect"> recovery effect</a>, <a href="https://publications.waset.org/abstracts/search?q=low-power" title=" low-power"> low-power</a>, <a href="https://publications.waset.org/abstracts/search?q=alternating%20battery%20cell%20discharging" title=" alternating battery cell discharging"> alternating battery cell discharging</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20discharge%20time%20control" title=" adaptive discharge time control"> adaptive discharge time control</a> </p> <a href="https://publications.waset.org/abstracts/2374/adaptive-discharge-time-control-for-battery-operation-time-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4504</span> Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Meddah">H. Meddah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Berediaf-Bourahla"> M. Berediaf-Bourahla</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20El-Djouzi"> B. El-Djouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bourahla"> N. Bourahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title="cold-formed steel">cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20technique" title=" modeling technique"> modeling technique</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall%20panel" title=" shear wall panel"> shear wall panel</a> </p> <a href="https://publications.waset.org/abstracts/55753/numerical-analysis-of-cold-formed-steel-shear-wall-panels-subjected-to-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4503</span> An Approach on the Design of a Solar Cell Characterization Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Mayer">Christoph Mayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Holzmann"> Dominik Holzmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=PV" title=" PV"> PV</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/39321/an-approach-on-the-design-of-a-solar-cell-characterization-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4502</span> Development of a Testing Rig for a Cold Formed-Hot Rolled Steel Hybrid Wall Panel System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Mortazavi">Mina Mortazavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ronagh"> Hamid Ronagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pezhman%20Sharafi"> Pezhman Sharafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new concept of a cold formed-hot rolled hybrid steel wall panel system is introduced to overcome the deficiency in lateral load resisting capacity of cold-formed steel structures. The hybrid system is composed of a cold-formed steel part laterally connected to hot rolled part. The hot rolled steel part is responsible for carrying the whole lateral load; while the cold formed steel part is only required to transfer the lateral load to the hot rolled part without any local failure. The vertical load is beared by both hot rolled, and cold formed steel part, proportionally. In order to investigate the lateral performance of the proposed system, it should be tested under simultaneous lateral and vertical load. The main concern is to deliver the loads to each part during the test to simulate the real load distribution in the structure. In this paper, a detailed description of the proposed wall panel system and the designed testing rig is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title="cold-formed steel">cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title=" hybrid system"> hybrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20panel%20system" title=" wall panel system"> wall panel system</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20rig%20design" title=" testing rig design"> testing rig design</a> </p> <a href="https://publications.waset.org/abstracts/67064/development-of-a-testing-rig-for-a-cold-formed-hot-rolled-steel-hybrid-wall-panel-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4501</span> Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCrol%20%C3%96nal">Gürol Önal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Din%C3%A7er"> Kevser Dinçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Yayla"> Salih Yayla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Polymer%20Electrolyte%20Membrane%20%28PEM%29" title=" Polymer Electrolyte Membrane (PEM)"> Polymer Electrolyte Membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20method" title=" spin method"> spin method</a> </p> <a href="https://publications.waset.org/abstracts/8063/experimental-investigation-of-performance-anode-side-of-pem-fuel-cell-with-spin-method-coated-with-yszsdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=151">151</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=152">152</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20panel&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10