CINXE.COM

About: Pseudovector

<!DOCTYPE html> <html prefix=" dbp: http://dbpedia.org/property/ dbo: http://dbedia.org/ontology/ dct: http://purl.org/dc/terms/ dbd: http://dbpedia.org/datatype/ og: https://ogp.me/ns# " > <!-- header --> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>About: Pseudovector</title> <!-- Links --> <link rel="alternate" type="application/rdf+xml" href="http://dbpedia.org/data/Pseudovector.rdf" title="Structured Descriptor Document (RDF/XML format)" /> <link rel="alternate" type="text/n3" href="http://dbpedia.org/data/Pseudovector.n3" title="Structured Descriptor Document (N3 format)" /> <link rel="alternate" type="text/turtle" href="http://dbpedia.org/data/Pseudovector.ttl" title="Structured Descriptor Document (Turtle format)" /> <link rel="alternate" type="application/json+rdf" href="http://dbpedia.org/data/Pseudovector.jrdf" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/json" href="http://dbpedia.org/data/Pseudovector.json" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/atom+xml" href="http://dbpedia.org/data/Pseudovector.atom" title="OData (Atom+Feed format)" /> <link rel="alternate" type="text/plain" href="http://dbpedia.org/data/Pseudovector.ntriples" title="Structured Descriptor Document (N-Triples format)" /> <link rel="alternate" type="text/csv" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=text%2Fcsv" title="Structured Descriptor Document (CSV format)" /> <link rel="alternate" type="application/microdata+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=application%2Fmicrodata%2Bjson" title="Structured Descriptor Document (Microdata/JSON format)" /> <link rel="alternate" type="text/html" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=text%2Fhtml" title="Structured Descriptor Document (Microdata/HTML format)" /> <link rel="alternate" type="application/ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=application%2Fld%2Bjson" title="Structured Descriptor Document (JSON-LD format)" /> <link rel="alternate" type="text/x-html-script-ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=text%2Fx-html-script-ld%2Bjson" title="Structured Descriptor Document (HTML with embedded JSON-LD)" /> <link rel="alternate" type="text/x-html-script-turtle" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=text%2Fx-html-script-turtle" title="Structured Descriptor Document (HTML with embedded Turtle)" /> <link rel="timegate" type="text/html" href="http://dbpedia.mementodepot.org/timegate/http://dbpedia.org/page/Pseudovector" title="Time Machine" /> <link rel="foaf:primarytopic" href="http://dbpedia.org/resource/Pseudovector"/> <link rev="describedby" href="http://dbpedia.org/resource/Pseudovector"/> <!-- /Links --> <!-- Stylesheets --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/css/bootstrap.min.css" integrity="sha512-siwe/oXMhSjGCwLn+scraPOWrJxHlUgMBMZXdPe2Tnk3I0x3ESCoLz7WZ5NTH6SZrywMY+PB1cjyqJ5jAluCOg==" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-icons/1.9.1/font/bootstrap-icons.min.css" integrity="sha512-5PV92qsds/16vyYIJo3T/As4m2d8b6oWYfoqV+vtizRB6KhF1F9kYzWzQmsO6T3z3QG2Xdhrx7FQ+5R1LiQdUA==" crossorigin="anonymous" /> <!-- link rel="stylesheet" href="/statics/css/dbpedia.css" --> <!-- /Stylesheets--> <!-- OpenGraph --> <meta property="og:title" content="Pseudovector" /> <meta property="og:type" content="article" /> <meta property="og:url" content="http://dbpedia.org/resource/Pseudovector" /> <meta property="og:image" content="http://commons.wikimedia.org/wiki/Special:FilePath/BIsAPseudovector.svg?width=300" /> <meta property="og:description" content="In physics and mathematics, a pseudovector (or axial vector) is a quantity that is defined as a function of some vectors or other geometric shapes, that resembles a vector, and behaves like a vector in many situations, but is changed into its opposite if the orientation of the space is changed, or an improper rigid transformation such as a reflection is applied to the whole figure. Geometrically, the direction of a reflected pseudovector is opposite to its mirror image, but with equal magnitude. In contrast, the reflection of a true (or polar) vector is exactly the same as its mirror image." /> <meta property="og:site_name" content="DBpedia" /> <!-- /OpenGraph--> </head> <body about="http://dbpedia.org/resource/Pseudovector"> <!-- navbar --> <nav class="navbar navbar-expand-md navbar-light bg-light fixed-top align-items-center"> <div class="container-xl"> <a class="navbar-brand" href="http://wiki.dbpedia.org/about" title="About DBpedia" style="color: #2c5078"> <img class="img-fluid" src="/statics/images/dbpedia_logo_land_120.png" alt="About DBpedia" /> </a> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#dbp-navbar" aria-controls="dbp-navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="dbp-navbar"> <ul class="navbar-nav me-auto mb-2 mb-lg-0"> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownBrowse" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-eye-fill"></i> Browse using<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownBrowse"> <li class="dropdown-item"><a class="nav-link" href="/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector">OpenLink Faceted Browser</a></li> <li class="dropdown-item"><a class="nav-link" href="http://osde.demo.openlinksw.com/#/editor?uri=http%3A%2F%2Fdbpedia.org%2Fdata%2FPseudovector.ttl&amp;view=statements">OpenLink Structured Data Editor</a></li> <li class="dropdown-item"><a class="nav-link" href="http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector">LodLive Browser</a></li> <!-- li class="dropdown-item"><a class="nav-link" href="http://lodmilla.sztaki.hu/lodmilla/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector">LODmilla Browser</a></li --> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownFormats" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-file-earmark-fill"></i> Formats<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownFormats"> <li class="dropdown-item-text">RDF:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Pseudovector.ntriples">N-Triples</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Pseudovector.n3">N3</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Pseudovector.ttl">Turtle</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Pseudovector.json">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Pseudovector.rdf">XML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">OData:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Pseudovector.atom">Atom</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Pseudovector.jsod">JSON</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Microdata:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=application%2Fmicrodata%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=text%2Fhtml">HTML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Embedded:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=text%2Fx-html-script-ld%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=text%2Fx-html-script-turtle">Turtle</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Other:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=text%2Fcsv">CSV</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPseudovector%3E&amp;format=application%2Fld%2Bjson">JSON-LD</a></li> </ul> </li> </ul> <ul class="navbar-nav ms-auto"> <li class="nav-item"> <a class="nav-link" href="/fct/" title="Switch to /fct endpoint"><i class="bi-box-arrow-up-right"></i> Faceted Browser </a> </li> <li class="nav-item"> <a class="nav-link" href="/sparql/" title="Switch to /sparql endpoint"><i class="bi-box-arrow-up-right"></i> Sparql Endpoint </a> </li> </ul> </div> </div> </nav> <div style="margin-bottom: 60px"></div> <!-- /navbar --> <!-- page-header --> <section> <div class="container-xl"> <div class="row"> <div class="col"> <h1 id="title" class="display-6"><b>About:</b> <a href="http://dbpedia.org/resource/Pseudovector">Pseudovector</a> </h1> </div> </div> <div class="row"> <div class="col"> <div class="text-muted"> <span class="text-nowrap">An Entity of Type: <a href="http://dbpedia.org/class/yago/LanguageUnit106284225">LanguageUnit106284225</a>, </span> <span class="text-nowrap">from Named Graph: <a href="http://dbpedia.org">http://dbpedia.org</a>, </span> <span class="text-nowrap">within Data Space: <a href="http://dbpedia.org">dbpedia.org</a></span> </div> </div> </div> <div class="row pt-2"> <div class="col-xs-9 col-sm-10"> <p class="lead">In physics and mathematics, a pseudovector (or axial vector) is a quantity that is defined as a function of some vectors or other geometric shapes, that resembles a vector, and behaves like a vector in many situations, but is changed into its opposite if the orientation of the space is changed, or an improper rigid transformation such as a reflection is applied to the whole figure. Geometrically, the direction of a reflected pseudovector is opposite to its mirror image, but with equal magnitude. In contrast, the reflection of a true (or polar) vector is exactly the same as its mirror image.</p> </div> <div class="col-xs-3 col-sm-2"> <a href="#" class="thumbnail"> <img src="http://commons.wikimedia.org/wiki/Special:FilePath/BIsAPseudovector.svg?width=300" alt="thumbnail" class="img-fluid" /> </a> </div> </div> </div> </section> <!-- page-header --> <!-- property-table --> <section> <div class="container-xl"> <div class="row"> <div class="table-responsive"> <table class="table table-hover table-sm table-light"> <thead> <tr> <th class="col-xs-3 ">Property</th> <th class="col-xs-9 px-3">Value</th> </tr> </thead> <tbody> <tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/abstract"><small>dbo:</small>abstract</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ca" >En física i matemàtiques, un pseudovector (o vector axial) és una quantitat que es transforma com un vector sota una rotació pròpia, però que canvia de signe sota una rotació impròpia com una reflexió. Geomètricament, correpondria a la imatge de mirall però cap per avall, de magnitud igual però en la direcció oposada. En canvi, per a un vector &quot;normal&quot; o polar, la reflexió genera una imatge idèntica a la seva imatge de mirall. En tres dimensions, el pseudovector p s&#39;associa amb el producte vectorial de dos vectors polars a i b: El vector p obtingut d&#39;aquesta manera és un pseudovector. Un exemple és el vector normal a un pla orientat. Un pla orientat pot ser definit per dos vectors no paral·lels, a i b, dels quals es pot dir que cobreixen el pla. El vector a × b és normal al pla (hi ha dos vectors normals, un a cada costat – la regla de la mà dreta el determina), i és un pseudovector. Nombroses quantitats físiques es comporten com a pseudovectors en comptes de com a vectors polars, incloent-hi el camp magnètic, la velocitat angular, el moment angular, el parell (o moment) de forces, i la vorticitat. En matemàtiques, els pseudovectors són equivalents a bivectors tridimensionals, a partir dels quals es poden derivar les regles de transformació dels pseudovectors. Més generalment en àlgebra geomètrica n-dimensional, els pseudovectors són els elements de l&#39;àlgebra amb dimensió n − 1, escrita Λn−1Rn. L&#39;etiqueta &#39;pseudo&#39; també s&#39;empra per al cas dels pseudoscalars i pseudotensors, tots dos canvien de signe sota rotacions impròpies, a diferència dels escalar o tensors &quot;purs&quot;.</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="de" >Ein Pseudovektor, auch Drehvektor, Axialvektor oder axialer Vektor genannt, ist in der Physik eine vektorielle Größe, die bei einer Punktspiegelung des betrachteten physikalischen Systems ihre Richtung beibehält. Im Gegensatz dazu kehren polare oder Schubvektoren bei einer Punktspiegelung ihre Richtung um. Das Bild zeigt einen Körper bei einer Drehbewegung und sein Spiegelbild. Der Drehimpuls ändert sich bei der Punktspiegelung nicht, denn die Drehgeschwindigkeit wird durch einen axialen Vektor beschrieben. Die Bahngeschwindigkeit zeigt nach der Punktspiegelung wie der Impuls in die entgegengesetzte Richtung und ist daher ein polarer Vektor. Die Richtung eines axialen Vektors ist bezüglich einer Orientierung des Raumes, üblicherweise der rechtshändigen, definiert. Axialvektoren treten typischerweise auf, wenn ein physikalischer Zusammenhang durch das Kreuzprodukt ausgedrückt wird (das bei rechtshändigen Koordinatensystemen die Rechte-Hand-Regel verwendet.)</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="es" >Un vector axial o pseudovector es una magnitud física que presenta propiedades de covariancia o transformación bajo reflexiones anómalas, presentando violaciones aparentes de la paridad física. Algunos ejemplos de vectores axiales son el momento angular, el momento de fuerza, la velocidad angular y el campo magnético. Están ligados a efectos de giro, y normalmente se definen mediante el producto vectorial. Su módulo representa el valor numérico de la magnitud, luego la dirección señala el eje de rotación y el sentido del vector se hace corresponder con el sentido de giro a través del convenio de la mano derecha.</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="fr" >En physique, un pseudovecteur ou vecteur axial est un vecteur de dimension 3 dont le sens dépend de l&#39;orientation de l&#39;espace. Plus précisément, l&#39;inversion de l&#39;orientation de l&#39;espace se traduit par un changement de sens du pseudovecteur qui est donc changé en son opposé. On parle de pseudovecteurs par opposition aux vecteurs « ordinaires » (dits polaires) qui sont invariants par une telle inversion. Le produit vectoriel de deux vecteurs polaires est l&#39;exemple type du pseudovecteur. Pour satisfaire aux lois de la physique, on transforme un vecteur axial de la même manière qu&#39;un vecteur polaire lors d&#39;une isométrie directe (conservant les angles orientés comme une rotation) mais différemment lors d&#39;une isométrie indirecte, par exemple une symétrie par rapport à un point ou par rapport à un plan (voir la figure ci-dessous). Les règles de calcul concernant les vecteurs axiaux sont ainsi différentes de celles des vecteurs polaires. Elles sont liées à celles des pseudo-vecteurs mathématiques (c&#39;est-à-dire des bivecteurs), comme par exemple une 2-forme différentielle. En effet, une forme différentielle de degré 2 peut être représentée par une matrice antisymétrique de trois lignes et trois colonnes, possédant donc seulement trois composantes indépendantes auxquelles on peut faire correspondre un vecteur appelé vecteur dual. Si on considère les vecteurs duaux du bivecteur et de son transformé, ils se correspondent selon la loi des vecteurs axiaux (voir la figure ci-dessous et ici) et non selon la loi des vecteurs polaires.</span><small> (fr)</small></span></li> <li><span class="literal"><span property="dbo:abstract" lang="en" >In physics and mathematics, a pseudovector (or axial vector) is a quantity that is defined as a function of some vectors or other geometric shapes, that resembles a vector, and behaves like a vector in many situations, but is changed into its opposite if the orientation of the space is changed, or an improper rigid transformation such as a reflection is applied to the whole figure. Geometrically, the direction of a reflected pseudovector is opposite to its mirror image, but with equal magnitude. In contrast, the reflection of a true (or polar) vector is exactly the same as its mirror image. In three dimensions, the curl of a polar vector field at a point and the cross product of two polar vectors are pseudovectors. One example of a pseudovector is the normal to an oriented plane. An oriented plane can be defined by two non-parallel vectors, a and b, that span the plane. The vector a × b is a normal to the plane (there are two normals, one on each side – the right-hand rule will determine which), and is a pseudovector. This has consequences in computer graphics where it has to be considered when transforming surface normals. A number of quantities in physics behave as pseudovectors rather than polar vectors, including magnetic field and angular velocity. In mathematics, in three-dimensions, pseudovectors are equivalent to bivectors, from which the transformation rules of pseudovectors can be derived. More generally in n-dimensional geometric algebra pseudovectors are the elements of the algebra with dimension n − 1, written ⋀n−1 Rn. The label &quot;pseudo&quot; can be further generalized to pseudoscalars and pseudotensors, both of which gain an extra sign flip under improper rotations compared to a true scalar or tensor.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="it" >Uno pseudovettore, o vettore assiale, è un vettore che dipende dal sistema di riferimento adottato, ossia il verso di uno pseudovettore cambia al cambiare dei versi degli assi cartesiani. Nello specifico, se applichiamo una rotazione impropria (come una riflessione degli assi) avremo la comparsa di un segno meno che compensa la trasformazione.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ko" >유사벡터(pseudovector) 또는 축벡터(axial vector) 또는 수도벡터 란 참된 벡터와 달리 주어진 좌표계에서 반사에 대해 부호가 바뀌는 1차 텐서다.3차원에서의 벡터곱이 대표적인 예다. n차원 미분다양체에서 (n−1)차 미분형식으로 볼 수도 있다. (참된 벡터는 1차 미분형식이다.)</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ja" >擬ベクトル(ぎベクトル、英: pseudo vector)は座標の反転に対し符号が変わらない(向きが反転する)ベクトル。 擬ベクトルのことを軸性ベクトル(英: axial vector)とも呼ぶ。反対に座標を反転して符号が反転する(向きが変わらない)ベクトルを極性ベクトル(英: polar vector)と呼ぶ。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="nl" >Een pseudovector of axiale vector is een wiskundig object dat evenals een &quot;gewone&quot; vector een richting en een grootte heeft, maar dat, anders dan een gewone vector, invariant is onder tekenwisseling van de onderliggende assen, terwijl een gewone vector daardoor tegengesteld van richting zou worden. In de driedimensionale ruimte is met name het kruisproduct van twee vectoren bekend als pseudovector. Als beide vectoren en tegengesteld van richting worden, dan wijst de kurkentrekkerregel toch dezelfde richting aan voor . Het kruisproduct van een vector met een pseudovector is echter wel een vector. Er geldt * vector × vector = pseudovector; * pseudovector × pseudovector = pseudovector; * vector × pseudovector = vector; * pseudovector × vector = vector. Een voorbeeld van een veelgebruikte pseudovector die is afgeleid van een kruisproduct is de hoeksnelheidsvector, en het is dan ook niet verwonderlijk dat men juist bij cirkelbewegingen vaak pseudovectoren tegenkomt. Bekende voorbeelden van pseudovectoren in de natuurkunde zijn * impulsmoment * moment * magnetisch veld * vorticiteit</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pl" >Pseudowektor (wektor osiowy) – wielkość fizyczna, która przy ciągłych transformacjach układu odniesienia (takich jak translacja lub obrót) przekształca się jak wektor, natomiast przy odbiciu zwierciadlanym i symetrii środkowej transformuje się odmiennie (np. zmienia zwrot wektora). Najprostszym sposobem utworzenia pseudowektora w trójwymiarowej przestrzeni euklidesowej jest iloczyn wektorowy wektorów i : Najpopularniejszymi pseudowektorami w fizyce są wszystkie wektory wywodzące się od obrotu np.: moment pędu oraz prędkość kątowa łącznie z wektorami związanymi z polem magnetycznym. Pseudowektory mogą być traktowane jako płaszczyzny zorientowane (macierze), których dopełnieniem jest pseudowektor. O ile wektory zachowują się jak 1-formy, to pseudowektory zachowują się jak (n-1)-formy.</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="sv" >En pseudovektor (eller axiell vektor) är inom vektoralgebra en vektor vars tecken ändras vid skifte mellan höger- och vänsterorienterat koordinatsystem.Beteckningen pseudovektor kommer sig av att den inte som en ”vanlig”, ”verklig” vektor har sin orientering (med avseende på vilken ända som är startpunkt respektive ändpunkt) entydigt definierad. Storleken är definierad och riktningen är given som parallell med en viss axel, medan valet av koordinatsystem – alltså en konvention - avgör orienteringen. Pseudovektorerna kallas därför också axiella vektorer, i motsats till polära vektorer. I tre dimensioner, är pseudovektorn p associerad med kryssprodukten av två polära vektorer a and b: Vektorn p beräknad på detta sätt är en pseudovektor. Ett exempel är normalen till ett orienterat plan, där planet spänns upp av två icke-parallella vektorer a och b. Vektorn a × b är en normal till planet (det finns två normaler, en på var sida; högerhandsregeln och planets orienteringsriktning bestämmer vilken) och är en pseudovektor. En vanlig konvention är att fastställa ett högersystem då högerhandsregeln kan tillämpas, vilken innebär att kryssprodukten av a och b är riktad som tummen om a har pekfingrets riktning och b är riktad längs långfingret enligt bilden till höger.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ru" >Аксиальный вектор, или псевдовектор, — величина, компоненты которой преобразуются как компоненты обычного (истинного) вектора при поворотах системы координат, но меняющие свой знак противоположно тому, как ведут себя компоненты вектора при любой инверсии (обращении знака) координат, меняющей ориентацию базиса (в трехмерном пространстве с правой на левую или наоборот; таким преобразованием может быть, например, зеркальное отражение, в простейшем случае — зеркальное отражение одной координатной оси). То есть псевдовектор меняет направление на противоположное при сохранении абсолютной величины (домножается на «-1») при любой такой инверсии координатной системы. Графически изображённый псевдовектор при таком изменении координат меняет направление на противоположное. Для того чтобы подчеркнуть отличие настоящего вектора, координаты которого всегда преобразуются так же, как координаты вектора перемещения, настоящий вектор называют истинным, или полярным, вектором. Простейшим примером аксиального вектора в трёхмерном пространстве является векторное произведение двух полярных векторов, например, в механике — момент импульса , и момент силы , в четырёхмерном пространстве — аксиальный ток. В рамках внешней алгебры псевдовектор представлен (n-1)-вектором n-мерного пространства. Геометрически простой (n-1)-вектор представляет собой ориентированное подпространство, перпендикулярное некоторой оси. Таким образом в трёхмерном пространстве псевдовектором является бивектор, который можно в свою очередь представить как ориентированную плоскость.</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="zh" >赝矢量(英語:Pseudovector)也稱為偽向量,指的是在瑕旋轉下,除了隨之反射外,還会再上下翻轉的矢量(因為右手定則的關係)。矢量(极矢量)和赝矢量(轴矢量)都是广义上的矢量,在一般旋轉下的特性相同。但更严格地说,矢量还要求在瑕旋轉下,除了空间反演外,不會再改变方向。 在三維空間中,赝矢量p可以表示為二個极矢量a和b的外積: 以此方式計算的p是赝矢量,其中一個例子是有向平面的法向量。有向平面可以用二個不平行的向量a和b來定義。向量a × b垂直此平面(和平面垂直的向量有二個,其方向恰好相反,可以用右手定則決定是哪一個),為一赝矢量。 許多物理量是赝矢量,例如磁感应强度、角速度等。在數學上,赝矢量是三維的二重向量,可以由此推得赝矢量的轉換規則。n維的赝矢量是n − 1維代數的元素,可以表示為Λn−1Rn。可以由赝矢量引申出贋純量及贋張量,在瑕旋轉下會比純量及張量多出一個負號。</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="uk" >Псевдовектор або аксіа́льний ве́ктор — величина, що перетворюється як вектор при операціях повороту, але, на відміну від вектора не міняє свій знак при інверсії (зміні знаку) координат. Найпростішим прикладом аксіального вектора в тривимірному просторі є векторний добуток звичайних векторів, наприклад, в механіці — момент імпульсу, в чотиривимірному просторі — аксіальний струм. Так, при множенні справжнього вектора на справжній вектор — ми отримуємо у скалярному добутку справжній скаляр, а у векторному добутку — псевдовектор. При множенні справжнього вектора на псевдовектор — отримуємо в скалярному добутку псевдоскаляр, а в векторному добутку справжній вектор. При множенні двох псевдовекторів — отримуємо, відповідно, справжній скаляр і псевдовектор.</span><small> (uk)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/thumbnail"><small>dbo:</small>thumbnail</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:thumbnail" resource="http://commons.wikimedia.org/wiki/Special:FilePath/BIsAPseudovector.svg?width=300" href="http://commons.wikimedia.org/wiki/Special:FilePath/BIsAPseudovector.svg?width=300"><small>wiki-commons</small>:Special:FilePath/BIsAPseudovector.svg?width=300</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageExternalLink"><small>dbo:</small>wikiPageExternalLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://books.google.com/books%3Fid=oaoLbMS3ErwC&amp;pg=PA100" href="https://books.google.com/books%3Fid=oaoLbMS3ErwC&amp;pg=PA100">https://books.google.com/books%3Fid=oaoLbMS3ErwC&amp;pg=PA100</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://www.encyclopediaofmath.org/index.php/Axial_vector" href="http://www.encyclopediaofmath.org/index.php/Axial_vector">http://www.encyclopediaofmath.org/index.php/Axial_vector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://feynmanlectures.caltech.edu/I_52.html" href="https://feynmanlectures.caltech.edu/I_52.html">https://feynmanlectures.caltech.edu/I_52.html</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageID"><small>dbo:</small>wikiPageID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageID" datatype="xsd:integer" >166356</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageLength"><small>dbo:</small>wikiPageLength</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageLength" datatype="xsd:nonNegativeInteger" >30478</span><small> (xsd:nonNegativeInteger)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageRevisionID"><small>dbo:</small>wikiPageRevisionID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageRevisionID" datatype="xsd:integer" >1122673983</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotation_matrix" href="http://dbpedia.org/resource/Rotation_matrix"><small>dbr</small>:Rotation_matrix</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Scalar_(mathematics)" href="http://dbpedia.org/resource/Scalar_(mathematics)"><small>dbr</small>:Scalar_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Representation_theory" href="http://dbpedia.org/resource/Representation_theory"><small>dbr</small>:Representation_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Determinant" href="http://dbpedia.org/resource/Determinant"><small>dbr</small>:Determinant</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Antivector" href="http://dbpedia.org/resource/Antivector"><small>dbr</small>:Antivector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Richard_Feynman" href="http://dbpedia.org/resource/Richard_Feynman"><small>dbr</small>:Richard_Feynman</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Right-hand_rule" href="http://dbpedia.org/resource/Right-hand_rule"><small>dbr</small>:Right-hand_rule</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rigid_transformation" href="http://dbpedia.org/resource/Rigid_transformation"><small>dbr</small>:Rigid_transformation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_field" href="http://dbpedia.org/resource/Vector_field"><small>dbr</small>:Vector_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_space" href="http://dbpedia.org/resource/Vector_space"><small>dbr</small>:Vector_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Velocity" href="http://dbpedia.org/resource/Velocity"><small>dbr</small>:Velocity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Volume_form" href="http://dbpedia.org/resource/Volume_form"><small>dbr</small>:Volume_form</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudotensor" href="http://dbpedia.org/resource/Pseudotensor"><small>dbr</small>:Pseudotensor</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Covariance_and_contravariance_of_vectors" href="http://dbpedia.org/resource/Covariance_and_contravariance_of_vectors"><small>dbr</small>:Covariance_and_contravariance_of_vectors</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cross_product" href="http://dbpedia.org/resource/Cross_product"><small>dbr</small>:Cross_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mathematics" href="http://dbpedia.org/resource/Mathematics"><small>dbr</small>:Mathematics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orientation_(vector_space)" href="http://dbpedia.org/resource/Orientation_(vector_space)"><small>dbr</small>:Orientation_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Clifford_algebra" href="http://dbpedia.org/resource/Clifford_algebra"><small>dbr</small>:Clifford_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_(mathematics)" href="http://dbpedia.org/resource/Function_(mathematics)"><small>dbr</small>:Function_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Geometric_algebra" href="http://dbpedia.org/resource/Geometric_algebra"><small>dbr</small>:Geometric_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Geometric_product" href="http://dbpedia.org/resource/Geometric_product"><small>dbr</small>:Geometric_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hodge_dual" href="http://dbpedia.org/resource/Hodge_dual"><small>dbr</small>:Hodge_dual</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetric" href="http://dbpedia.org/resource/Symmetric"><small>dbr</small>:Symmetric</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Angular_momentum" href="http://dbpedia.org/resource/Angular_momentum"><small>dbr</small>:Angular_momentum</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Angular_velocity" href="http://dbpedia.org/resource/Angular_velocity"><small>dbr</small>:Angular_velocity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_field" href="http://dbpedia.org/resource/Magnetic_field"><small>dbr</small>:Magnetic_field</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fundamental_representation" href="http://dbpedia.org/resource/Fundamental_representation"><small>dbr</small>:Fundamental_representation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Parity_(mathematics)" href="http://dbpedia.org/resource/Parity_(mathematics)"><small>dbr</small>:Parity_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Physics" href="http://dbpedia.org/resource/Physics"><small>dbr</small>:Physics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Plane_(geometry)" href="http://dbpedia.org/resource/Plane_(geometry)"><small>dbr</small>:Plane_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Torque" href="http://dbpedia.org/resource/Torque"><small>dbr</small>:Torque</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Active_and_passive_transformation" href="http://dbpedia.org/resource/Active_and_passive_transformation"><small>dbr</small>:Active_and_passive_transformation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tuple" href="http://dbpedia.org/resource/Tuple"><small>dbr</small>:Tuple</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Weak_interaction" href="http://dbpedia.org/resource/Weak_interaction"><small>dbr</small>:Weak_interaction</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wedge_product" href="http://dbpedia.org/resource/Wedge_product"><small>dbr</small>:Wedge_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Additive_inverse" href="http://dbpedia.org/resource/Additive_inverse"><small>dbr</small>:Additive_inverse</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Linear_algebra" href="http://dbpedia.org/resource/Category:Linear_algebra"><small>dbc</small>:Linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Vectors_(mathematics_and_physics)" href="http://dbpedia.org/resource/Category:Vectors_(mathematics_and_physics)"><small>dbc</small>:Vectors_(mathematics_and_physics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Curl_(mathematics)" href="http://dbpedia.org/resource/Curl_(mathematics)"><small>dbr</small>:Curl_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Exterior_algebra" href="http://dbpedia.org/resource/Exterior_algebra"><small>dbr</small>:Exterior_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_(mathematics)" href="http://dbpedia.org/resource/Field_(mathematics)"><small>dbr</small>:Field_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Parity_violation" href="http://dbpedia.org/resource/Parity_violation"><small>dbr</small>:Parity_violation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dimension_(vector_space)" href="http://dbpedia.org/resource/Dimension_(vector_space)"><small>dbr</small>:Dimension_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_dipole_moment" href="http://dbpedia.org/resource/Magnetic_dipole_moment"><small>dbr</small>:Magnetic_dipole_moment</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_density" href="http://dbpedia.org/resource/Tensor_density"><small>dbr</small>:Tensor_density</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Einstein_summation_convention" href="http://dbpedia.org/resource/Einstein_summation_convention"><small>dbr</small>:Einstein_summation_convention</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Reflection_(mathematics)" href="http://dbpedia.org/resource/Reflection_(mathematics)"><small>dbr</small>:Reflection_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor" href="http://dbpedia.org/resource/Tensor"><small>dbr</small>:Tensor</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Vector_calculus" href="http://dbpedia.org/resource/Category:Vector_calculus"><small>dbc</small>:Vector_calculus</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Characteristic_(algebra)" href="http://dbpedia.org/resource/Characteristic_(algebra)"><small>dbr</small>:Characteristic_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/John_David_Jackson_(physicist)" href="http://dbpedia.org/resource/John_David_Jackson_(physicist)"><small>dbr</small>:John_David_Jackson_(physicist)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bivector" href="http://dbpedia.org/resource/Bivector"><small>dbr</small>:Bivector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Blade_(geometry)" href="http://dbpedia.org/resource/Blade_(geometry)"><small>dbr</small>:Blade_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differential_geometry" href="http://dbpedia.org/resource/Differential_geometry"><small>dbr</small>:Differential_geometry</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dimension" href="http://dbpedia.org/resource/Dimension"><small>dbr</small>:Dimension</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dot_product" href="http://dbpedia.org/resource/Dot_product"><small>dbr</small>:Dot_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudoscalar_(Clifford_algebra)" href="http://dbpedia.org/resource/Pseudoscalar_(Clifford_algebra)"><small>dbr</small>:Pseudoscalar_(Clifford_algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orientability" href="http://dbpedia.org/resource/Orientability"><small>dbr</small>:Orientability</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orientation_(space)" href="http://dbpedia.org/resource/Orientation_(space)"><small>dbr</small>:Orientation_(space)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Radioactive_decay" href="http://dbpedia.org/resource/Radioactive_decay"><small>dbr</small>:Radioactive_decay</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mirror_image" href="http://dbpedia.org/resource/Mirror_image"><small>dbr</small>:Mirror_image</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Geometric_shape" href="http://dbpedia.org/resource/Geometric_shape"><small>dbr</small>:Geometric_shape</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotation_(mathematics)" href="http://dbpedia.org/resource/Rotation_(mathematics)"><small>dbr</small>:Rotation_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudoscalar" href="http://dbpedia.org/resource/Pseudoscalar"><small>dbr</small>:Pseudoscalar</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Exterior_product" href="http://dbpedia.org/resource/Exterior_product"><small>dbr</small>:Exterior_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Displacement_vector" href="http://dbpedia.org/resource/Displacement_vector"><small>dbr</small>:Displacement_vector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Improper_rotation" href="http://dbpedia.org/resource/Improper_rotation"><small>dbr</small>:Improper_rotation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linearly_independent" href="http://dbpedia.org/resource/Linearly_independent"><small>dbr</small>:Linearly_independent</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Multivector" href="http://dbpedia.org/resource/Multivector"><small>dbr</small>:Multivector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inversion_through_a_point" href="http://dbpedia.org/resource/Inversion_through_a_point"><small>dbr</small>:Inversion_through_a_point</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_vector" href="http://dbpedia.org/resource/Basis_vector"><small>dbr</small>:Basis_vector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_(geometry)" href="http://dbpedia.org/resource/Vector_(geometry)"><small>dbr</small>:Vector_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_cross_product" href="http://dbpedia.org/resource/Vector_cross_product"><small>dbr</small>:Vector_cross_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dyadic_product" href="http://dbpedia.org/resource/Dyadic_product"><small>dbr</small>:Dyadic_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Feynman_Lectures_on_Physics" href="http://dbpedia.org/resource/Feynman_Lectures_on_Physics"><small>dbr</small>:Feynman_Lectures_on_Physics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetry_in_physics" href="http://dbpedia.org/resource/Symmetry_in_physics"><small>dbr</small>:Symmetry_in_physics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Surface_normal" href="http://dbpedia.org/resource/Surface_normal"><small>dbr</small>:Surface_normal</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:BIsAPseudovector.svg" href="http://dbpedia.org/resource/File:BIsAPseudovector.svg"><small>dbr</small>:File:BIsAPseudovector.svg</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:Impulsmoment_van_autowiel_onder_inversie.svg" href="http://dbpedia.org/resource/File:Impulsmoment_van_autowiel_onder_inversie.svg"><small>dbr</small>:File:Impulsmoment_van_autowiel_onder_inversie.svg</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:Uitwendig_product_onder_inversie.svg" href="http://dbpedia.org/resource/File:Uitwendig_product_onder_inversie.svg"><small>dbr</small>:File:Uitwendig_product_onder_inversie.svg</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/wikiPageUsesTemplate"><small>dbp:</small>wikiPageUsesTemplate</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:=" href="http://dbpedia.org/resource/Template:="><small>dbt</small>:=</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Authority_control" href="http://dbpedia.org/resource/Template:Authority_control"><small>dbt</small>:Authority_control</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Cite_book" href="http://dbpedia.org/resource/Template:Cite_book"><small>dbt</small>:Cite_book</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Refbegin" href="http://dbpedia.org/resource/Template:Refbegin"><small>dbt</small>:Refbegin</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Refend" href="http://dbpedia.org/resource/Template:Refend"><small>dbt</small>:Refend</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Reflist" href="http://dbpedia.org/resource/Template:Reflist"><small>dbt</small>:Reflist</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Section_link" href="http://dbpedia.org/resource/Template:Section_link"><small>dbt</small>:Section_link</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:See_also" href="http://dbpedia.org/resource/Template:See_also"><small>dbt</small>:See_also</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Short_description" href="http://dbpedia.org/resource/Template:Short_description"><small>dbt</small>:Short_description</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Use_American_English" href="http://dbpedia.org/resource/Template:Use_American_English"><small>dbt</small>:Use_American_English</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Isbn" href="http://dbpedia.org/resource/Template:Isbn"><small>dbt</small>:Isbn</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://purl.org/dc/terms/subject"><small>dct:</small>subject</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dct:subject" resource="http://dbpedia.org/resource/Category:Linear_algebra" href="http://dbpedia.org/resource/Category:Linear_algebra"><small>dbc</small>:Linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dct:subject" resource="http://dbpedia.org/resource/Category:Vectors_(mathematics_and_physics)" href="http://dbpedia.org/resource/Category:Vectors_(mathematics_and_physics)"><small>dbc</small>:Vectors_(mathematics_and_physics)</a></span></li> <li><span class="literal"><a class="uri" rel="dct:subject" resource="http://dbpedia.org/resource/Category:Vector_calculus" href="http://dbpedia.org/resource/Category:Vector_calculus"><small>dbc</small>:Vector_calculus</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><small>rdf:</small>type</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://www.w3.org/2002/07/owl#Thing" href="http://www.w3.org/2002/07/owl#Thing"><small>owl</small>:Thing</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatBilinearForms" href="http://dbpedia.org/class/yago/WikicatBilinearForms"><small>yago</small>:WikicatBilinearForms</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatVectors" href="http://dbpedia.org/class/yago/WikicatVectors"><small>yago</small>:WikicatVectors</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Abstraction100002137" href="http://dbpedia.org/class/yago/Abstraction100002137"><small>yago</small>:Abstraction100002137</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Cognition100023271" href="http://dbpedia.org/class/yago/Cognition100023271"><small>yago</small>:Cognition100023271</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Concept105835747" href="http://dbpedia.org/class/yago/Concept105835747"><small>yago</small>:Concept105835747</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Content105809192" href="http://dbpedia.org/class/yago/Content105809192"><small>yago</small>:Content105809192</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Form106290637" href="http://dbpedia.org/class/yago/Form106290637"><small>yago</small>:Form106290637</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Idea105833840" href="http://dbpedia.org/class/yago/Idea105833840"><small>yago</small>:Idea105833840</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/LanguageUnit106284225" href="http://dbpedia.org/class/yago/LanguageUnit106284225"><small>yago</small>:LanguageUnit106284225</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Part113809207" href="http://dbpedia.org/class/yago/Part113809207"><small>yago</small>:Part113809207</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/PsychologicalFeature100023100" href="http://dbpedia.org/class/yago/PsychologicalFeature100023100"><small>yago</small>:PsychologicalFeature100023100</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Quantity105855125" href="http://dbpedia.org/class/yago/Quantity105855125"><small>yago</small>:Quantity105855125</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Relation100031921" href="http://dbpedia.org/class/yago/Relation100031921"><small>yago</small>:Relation100031921</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Word106286395" href="http://dbpedia.org/class/yago/Word106286395"><small>yago</small>:Word106286395</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Variable105857459" href="http://dbpedia.org/class/yago/Variable105857459"><small>yago</small>:Variable105857459</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Vector105864577" href="http://dbpedia.org/class/yago/Vector105864577"><small>yago</small>:Vector105864577</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#comment"><small>rdfs:</small>comment</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="es" >Un vector axial o pseudovector es una magnitud física que presenta propiedades de covariancia o transformación bajo reflexiones anómalas, presentando violaciones aparentes de la paridad física. Algunos ejemplos de vectores axiales son el momento angular, el momento de fuerza, la velocidad angular y el campo magnético. Están ligados a efectos de giro, y normalmente se definen mediante el producto vectorial. Su módulo representa el valor numérico de la magnitud, luego la dirección señala el eje de rotación y el sentido del vector se hace corresponder con el sentido de giro a través del convenio de la mano derecha.</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="it" >Uno pseudovettore, o vettore assiale, è un vettore che dipende dal sistema di riferimento adottato, ossia il verso di uno pseudovettore cambia al cambiare dei versi degli assi cartesiani. Nello specifico, se applichiamo una rotazione impropria (come una riflessione degli assi) avremo la comparsa di un segno meno che compensa la trasformazione.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ko" >유사벡터(pseudovector) 또는 축벡터(axial vector) 또는 수도벡터 란 참된 벡터와 달리 주어진 좌표계에서 반사에 대해 부호가 바뀌는 1차 텐서다.3차원에서의 벡터곱이 대표적인 예다. n차원 미분다양체에서 (n−1)차 미분형식으로 볼 수도 있다. (참된 벡터는 1차 미분형식이다.)</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ja" >擬ベクトル(ぎベクトル、英: pseudo vector)は座標の反転に対し符号が変わらない(向きが反転する)ベクトル。 擬ベクトルのことを軸性ベクトル(英: axial vector)とも呼ぶ。反対に座標を反転して符号が反転する(向きが変わらない)ベクトルを極性ベクトル(英: polar vector)と呼ぶ。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="zh" >赝矢量(英語:Pseudovector)也稱為偽向量,指的是在瑕旋轉下,除了隨之反射外,還会再上下翻轉的矢量(因為右手定則的關係)。矢量(极矢量)和赝矢量(轴矢量)都是广义上的矢量,在一般旋轉下的特性相同。但更严格地说,矢量还要求在瑕旋轉下,除了空间反演外,不會再改变方向。 在三維空間中,赝矢量p可以表示為二個极矢量a和b的外積: 以此方式計算的p是赝矢量,其中一個例子是有向平面的法向量。有向平面可以用二個不平行的向量a和b來定義。向量a × b垂直此平面(和平面垂直的向量有二個,其方向恰好相反,可以用右手定則決定是哪一個),為一赝矢量。 許多物理量是赝矢量,例如磁感应强度、角速度等。在數學上,赝矢量是三維的二重向量,可以由此推得赝矢量的轉換規則。n維的赝矢量是n − 1維代數的元素,可以表示為Λn−1Rn。可以由赝矢量引申出贋純量及贋張量,在瑕旋轉下會比純量及張量多出一個負號。</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ca" >En física i matemàtiques, un pseudovector (o vector axial) és una quantitat que es transforma com un vector sota una rotació pròpia, però que canvia de signe sota una rotació impròpia com una reflexió. Geomètricament, correpondria a la imatge de mirall però cap per avall, de magnitud igual però en la direcció oposada. En canvi, per a un vector &quot;normal&quot; o polar, la reflexió genera una imatge idèntica a la seva imatge de mirall. En tres dimensions, el pseudovector p s&#39;associa amb el producte vectorial de dos vectors polars a i b:</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="de" >Ein Pseudovektor, auch Drehvektor, Axialvektor oder axialer Vektor genannt, ist in der Physik eine vektorielle Größe, die bei einer Punktspiegelung des betrachteten physikalischen Systems ihre Richtung beibehält. Im Gegensatz dazu kehren polare oder Schubvektoren bei einer Punktspiegelung ihre Richtung um.</span><small> (de)</small></span></li> <li><span class="literal"><span property="rdfs:comment" lang="en" >In physics and mathematics, a pseudovector (or axial vector) is a quantity that is defined as a function of some vectors or other geometric shapes, that resembles a vector, and behaves like a vector in many situations, but is changed into its opposite if the orientation of the space is changed, or an improper rigid transformation such as a reflection is applied to the whole figure. Geometrically, the direction of a reflected pseudovector is opposite to its mirror image, but with equal magnitude. In contrast, the reflection of a true (or polar) vector is exactly the same as its mirror image.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="fr" >En physique, un pseudovecteur ou vecteur axial est un vecteur de dimension 3 dont le sens dépend de l&#39;orientation de l&#39;espace. Plus précisément, l&#39;inversion de l&#39;orientation de l&#39;espace se traduit par un changement de sens du pseudovecteur qui est donc changé en son opposé. On parle de pseudovecteurs par opposition aux vecteurs « ordinaires » (dits polaires) qui sont invariants par une telle inversion. Le produit vectoriel de deux vecteurs polaires est l&#39;exemple type du pseudovecteur.</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pl" >Pseudowektor (wektor osiowy) – wielkość fizyczna, która przy ciągłych transformacjach układu odniesienia (takich jak translacja lub obrót) przekształca się jak wektor, natomiast przy odbiciu zwierciadlanym i symetrii środkowej transformuje się odmiennie (np. zmienia zwrot wektora). Najprostszym sposobem utworzenia pseudowektora w trójwymiarowej przestrzeni euklidesowej jest iloczyn wektorowy wektorów i : Najpopularniejszymi pseudowektorami w fizyce są wszystkie wektory wywodzące się od obrotu np.: moment pędu oraz prędkość kątowa łącznie z wektorami związanymi z polem magnetycznym.</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="nl" >Een pseudovector of axiale vector is een wiskundig object dat evenals een &quot;gewone&quot; vector een richting en een grootte heeft, maar dat, anders dan een gewone vector, invariant is onder tekenwisseling van de onderliggende assen, terwijl een gewone vector daardoor tegengesteld van richting zou worden. * vector × vector = pseudovector; * pseudovector × pseudovector = pseudovector; * vector × pseudovector = vector; * pseudovector × vector = vector. Bekende voorbeelden van pseudovectoren in de natuurkunde zijn * impulsmoment * moment * magnetisch veld * vorticiteit</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="sv" >En pseudovektor (eller axiell vektor) är inom vektoralgebra en vektor vars tecken ändras vid skifte mellan höger- och vänsterorienterat koordinatsystem.Beteckningen pseudovektor kommer sig av att den inte som en ”vanlig”, ”verklig” vektor har sin orientering (med avseende på vilken ända som är startpunkt respektive ändpunkt) entydigt definierad. Storleken är definierad och riktningen är given som parallell med en viss axel, medan valet av koordinatsystem – alltså en konvention - avgör orienteringen. Pseudovektorerna kallas därför också axiella vektorer, i motsats till polära vektorer.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ru" >Аксиальный вектор, или псевдовектор, — величина, компоненты которой преобразуются как компоненты обычного (истинного) вектора при поворотах системы координат, но меняющие свой знак противоположно тому, как ведут себя компоненты вектора при любой инверсии (обращении знака) координат, меняющей ориентацию базиса (в трехмерном пространстве с правой на левую или наоборот; таким преобразованием может быть, например, зеркальное отражение, в простейшем случае — зеркальное отражение одной координатной оси). То есть псевдовектор меняет направление на противоположное при сохранении абсолютной величины (домножается на «-1») при любой такой инверсии координатной системы.</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="uk" >Псевдовектор або аксіа́льний ве́ктор — величина, що перетворюється як вектор при операціях повороту, але, на відміну від вектора не міняє свій знак при інверсії (зміні знаку) координат. Найпростішим прикладом аксіального вектора в тривимірному просторі є векторний добуток звичайних векторів, наприклад, в механіці — момент імпульсу, в чотиривимірному просторі — аксіальний струм. Так, при множенні справжнього вектора на справжній вектор — ми отримуємо у скалярному добутку справжній скаляр, а у векторному добутку — псевдовектор.</span><small> (uk)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#label"><small>rdfs:</small>label</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ca" >Pseudovector</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="de" >Pseudovektor</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="es" >Vector axial</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="fr" >Pseudovecteur</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="it" >Pseudovettore</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ja" >擬ベクトル</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ko" >유사벡터</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pl" >Pseudowektor</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="nl" >Pseudovector</span><small> (nl)</small></span></li> <li><span class="literal"><span property="rdfs:label" lang="en" >Pseudovector</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ru" >Аксиальный вектор</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="sv" >Pseudovektor</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="zh" >赝矢量</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="uk" >Псевдовектор</span><small> (uk)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#seeAlso"><small>rdfs:</small>seeAlso</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdfs:seeAlso" resource="http://dbpedia.org/resource/Covariance" href="http://dbpedia.org/resource/Covariance"><small>dbr</small>:Covariance</a></span></li> <li><span class="literal"><a class="uri" rel="rdfs:seeAlso" resource="http://dbpedia.org/resource/Contravariance_of_vectors" href="http://dbpedia.org/resource/Contravariance_of_vectors"><small>dbr</small>:Contravariance_of_vectors</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#sameAs"><small>owl:</small>sameAs</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.01660m" href="http://rdf.freebase.com/ns/m.01660m"><small>freebase</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://d-nb.info/gnd/4273027-2" href="http://d-nb.info/gnd/4273027-2">http://d-nb.info/gnd/4273027-2</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://www.wikidata.org/entity/Q621476" href="http://www.wikidata.org/entity/Q621476"><small>wikidata</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ca.dbpedia.org/resource/Pseudovector" href="http://ca.dbpedia.org/resource/Pseudovector"><small>dbpedia-ca</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://de.dbpedia.org/resource/Pseudovektor" href="http://de.dbpedia.org/resource/Pseudovektor"><small>dbpedia-de</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://es.dbpedia.org/resource/Vector_axial" href="http://es.dbpedia.org/resource/Vector_axial"><small>dbpedia-es</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fa.dbpedia.org/resource/شبه‌بردار" href="http://fa.dbpedia.org/resource/شبه‌بردار"><small>dbpedia-fa</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fi.dbpedia.org/resource/Pseudovektori" href="http://fi.dbpedia.org/resource/Pseudovektori"><small>dbpedia-fi</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fr.dbpedia.org/resource/Pseudovecteur" href="http://fr.dbpedia.org/resource/Pseudovecteur"><small>dbpedia-fr</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://it.dbpedia.org/resource/Pseudovettore" href="http://it.dbpedia.org/resource/Pseudovettore"><small>dbpedia-it</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ja.dbpedia.org/resource/擬ベクトル" href="http://ja.dbpedia.org/resource/擬ベクトル"><small>dbpedia-ja</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ko.dbpedia.org/resource/유사벡터" href="http://ko.dbpedia.org/resource/유사벡터"><small>dbpedia-ko</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://lv.dbpedia.org/resource/Pseidovektors" href="http://lv.dbpedia.org/resource/Pseidovektors">http://lv.dbpedia.org/resource/Pseidovektors</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://mr.dbpedia.org/resource/भादिश" href="http://mr.dbpedia.org/resource/भादिश"><small>dbpedia-mr</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://nl.dbpedia.org/resource/Pseudovector" href="http://nl.dbpedia.org/resource/Pseudovector"><small>dbpedia-nl</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pl.dbpedia.org/resource/Pseudowektor" href="http://pl.dbpedia.org/resource/Pseudowektor"><small>dbpedia-pl</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ru.dbpedia.org/resource/Аксиальный_вектор" href="http://ru.dbpedia.org/resource/Аксиальный_вектор"><small>dbpedia-ru</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://simple.dbpedia.org/resource/Pseudovector" href="http://simple.dbpedia.org/resource/Pseudovector"><small>dbpedia-simple</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sl.dbpedia.org/resource/Psevdovektor" href="http://sl.dbpedia.org/resource/Psevdovektor"><small>dbpedia-sl</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sv.dbpedia.org/resource/Pseudovektor" href="http://sv.dbpedia.org/resource/Pseudovektor"><small>dbpedia-sv</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://uk.dbpedia.org/resource/Псевдовектор" href="http://uk.dbpedia.org/resource/Псевдовектор"><small>dbpedia-uk</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://zh.dbpedia.org/resource/赝矢量" href="http://zh.dbpedia.org/resource/赝矢量"><small>dbpedia-zh</small>:Pseudovector</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="https://global.dbpedia.org/id/4oZrG" href="https://global.dbpedia.org/id/4oZrG">https://global.dbpedia.org/id/4oZrG</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://yago-knowledge.org/resource/Pseudovector" href="http://yago-knowledge.org/resource/Pseudovector"><small>yago-res</small>:Pseudovector</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/ns/prov#wasDerivedFrom"><small>prov:</small>wasDerivedFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="prov:wasDerivedFrom" resource="http://en.wikipedia.org/wiki/Pseudovector?oldid=1122673983&amp;ns=0" href="http://en.wikipedia.org/wiki/Pseudovector?oldid=1122673983&amp;ns=0"><small>wikipedia-en</small>:Pseudovector?oldid=1122673983&amp;ns=0</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/depiction"><small>foaf:</small>depiction</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/BIsAPseudovector.svg" href="http://commons.wikimedia.org/wiki/Special:FilePath/BIsAPseudovector.svg"><small>wiki-commons</small>:Special:FilePath/BIsAPseudovector.svg</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Impulsmoment_van_autowiel_onder_inversie.svg" href="http://commons.wikimedia.org/wiki/Special:FilePath/Impulsmoment_van_autowiel_onder_inversie.svg"><small>wiki-commons</small>:Special:FilePath/Impulsmoment_van_autowiel_onder_inversie.svg</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Uitwendig_product_onder_inversie.svg" href="http://commons.wikimedia.org/wiki/Special:FilePath/Uitwendig_product_onder_inversie.svg"><small>wiki-commons</small>:Special:FilePath/Uitwendig_product_onder_inversie.svg</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/isPrimaryTopicOf"><small>foaf:</small>isPrimaryTopicOf</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:isPrimaryTopicOf" resource="http://en.wikipedia.org/wiki/Pseudovector" href="http://en.wikipedia.org/wiki/Pseudovector"><small>wikipedia-en</small>:Pseudovector</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageRedirects"><small>dbo:</small>wikiPageRedirects</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Axial_vector" href="http://dbpedia.org/resource/Axial_vector"><small>dbr</small>:Axial_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Pseudo-vector" href="http://dbpedia.org/resource/Pseudo-vector"><small>dbr</small>:Pseudo-vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Pseudo_vector" href="http://dbpedia.org/resource/Pseudo_vector"><small>dbr</small>:Pseudo_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Polar_and_Axial_vectors" href="http://dbpedia.org/resource/Polar_and_Axial_vectors"><small>dbr</small>:Polar_and_Axial_vectors</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Polar_and_axial_vectors" href="http://dbpedia.org/resource/Polar_and_axial_vectors"><small>dbr</small>:Polar_and_axial_vectors</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Polar_vector" href="http://dbpedia.org/resource/Polar_vector"><small>dbr</small>:Polar_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Polar_vectors" href="http://dbpedia.org/resource/Polar_vectors"><small>dbr</small>:Polar_vectors</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Potential_gradient" href="http://dbpedia.org/resource/Potential_gradient"><small>dbr</small>:Potential_gradient</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quaternion" href="http://dbpedia.org/resource/Quaternion"><small>dbr</small>:Quaternion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_equations_in_classical_mechanics" href="http://dbpedia.org/resource/List_of_equations_in_classical_mechanics"><small>dbr</small>:List_of_equations_in_classical_mechanics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_equations_in_fluid_mechanics" href="http://dbpedia.org/resource/List_of_equations_in_fluid_mechanics"><small>dbr</small>:List_of_equations_in_fluid_mechanics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Antivector" href="http://dbpedia.org/resource/Antivector"><small>dbr</small>:Antivector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Areal_velocity" href="http://dbpedia.org/resource/Areal_velocity"><small>dbr</small>:Areal_velocity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Beta_decay_transition" href="http://dbpedia.org/resource/Beta_decay_transition"><small>dbr</small>:Beta_decay_transition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pauli–Lubanski_pseudovector" href="http://dbpedia.org/resource/Pauli–Lubanski_pseudovector"><small>dbr</small>:Pauli–Lubanski_pseudovector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Relativistic_angular_momentum" href="http://dbpedia.org/resource/Relativistic_angular_momentum"><small>dbr</small>:Relativistic_angular_momentum</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Relativistic_quantum_mechanics" href="http://dbpedia.org/resource/Relativistic_quantum_mechanics"><small>dbr</small>:Relativistic_quantum_mechanics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Representation_theory_of_the_Lorentz_group" href="http://dbpedia.org/resource/Representation_theory_of_the_Lorentz_group"><small>dbr</small>:Representation_theory_of_the_Lorentz_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Right-hand_rule" href="http://dbpedia.org/resource/Right-hand_rule"><small>dbr</small>:Right-hand_rule</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_space" href="http://dbpedia.org/resource/Vector_space"><small>dbr</small>:Vector_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vorticity" href="http://dbpedia.org/resource/Vorticity"><small>dbr</small>:Vorticity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dyadics" href="http://dbpedia.org/resource/Dyadics"><small>dbr</small>:Dyadics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Index_of_physics_articles_(P)" href="http://dbpedia.org/resource/Index_of_physics_articles_(P)"><small>dbr</small>:Index_of_physics_articles_(P)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudotensor" href="http://dbpedia.org/resource/Pseudotensor"><small>dbr</small>:Pseudotensor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cross_product" href="http://dbpedia.org/resource/Cross_product"><small>dbr</small>:Cross_product</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_mechanics" href="http://dbpedia.org/resource/Matrix_mechanics"><small>dbr</small>:Matrix_mechanics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Maxwell&#39;s_equations" href="http://dbpedia.org/resource/Maxwell&#39;s_equations"><small>dbr</small>:Maxwell&#39;s_equations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Normal_(geometry)" href="http://dbpedia.org/resource/Normal_(geometry)"><small>dbr</small>:Normal_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orientation_(vector_space)" href="http://dbpedia.org/resource/Orientation_(vector_space)"><small>dbr</small>:Orientation_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_civil_engineering" href="http://dbpedia.org/resource/Glossary_of_civil_engineering"><small>dbr</small>:Glossary_of_civil_engineering</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_engineering:_A–L" href="http://dbpedia.org/resource/Glossary_of_engineering:_A–L"><small>dbr</small>:Glossary_of_engineering:_A–L</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_engineering:_M–Z" href="http://dbpedia.org/resource/Glossary_of_engineering:_M–Z"><small>dbr</small>:Glossary_of_engineering:_M–Z</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_physics" href="http://dbpedia.org/resource/Glossary_of_physics"><small>dbr</small>:Glossary_of_physics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Multilinear_algebra" href="http://dbpedia.org/resource/Multilinear_algebra"><small>dbr</small>:Multilinear_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Muon" href="http://dbpedia.org/resource/Muon"><small>dbr</small>:Muon</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Thomas_precession" href="http://dbpedia.org/resource/Thomas_precession"><small>dbr</small>:Thomas_precession</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Angular_acceleration" href="http://dbpedia.org/resource/Angular_acceleration"><small>dbr</small>:Angular_acceleration</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Angular_momentum" href="http://dbpedia.org/resource/Angular_momentum"><small>dbr</small>:Angular_momentum</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Angular_velocity" href="http://dbpedia.org/resource/Angular_velocity"><small>dbr</small>:Angular_velocity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Berry_connection_and_curvature" href="http://dbpedia.org/resource/Berry_connection_and_curvature"><small>dbr</small>:Berry_connection_and_curvature</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Levi-Civita_symbol" href="http://dbpedia.org/resource/Levi-Civita_symbol"><small>dbr</small>:Levi-Civita_symbol</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_vector_potential" href="http://dbpedia.org/resource/Magnetic_vector_potential"><small>dbr</small>:Magnetic_vector_potential</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Comparison_of_vector_algebra_and_geometric_algebra" href="http://dbpedia.org/resource/Comparison_of_vector_algebra_and_geometric_algebra"><small>dbr</small>:Comparison_of_vector_algebra_and_geometric_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetic_topological_insulator" href="http://dbpedia.org/resource/Magnetic_topological_insulator"><small>dbr</small>:Magnetic_topological_insulator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magnetization" href="http://dbpedia.org/resource/Magnetization"><small>dbr</small>:Magnetization</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Magneto-optic_effect" href="http://dbpedia.org/resource/Magneto-optic_effect"><small>dbr</small>:Magneto-optic_effect</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Torque" href="http://dbpedia.org/resource/Torque"><small>dbr</small>:Torque</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Microscopic_reversibility" href="http://dbpedia.org/resource/Microscopic_reversibility"><small>dbr</small>:Microscopic_reversibility</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Axis–angle_representation" href="http://dbpedia.org/resource/Axis–angle_representation"><small>dbr</small>:Axis–angle_representation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Euclidean_vector" href="http://dbpedia.org/resource/Euclidean_vector"><small>dbr</small>:Euclidean_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Parity_(physics)" href="http://dbpedia.org/resource/Parity_(physics)"><small>dbr</small>:Parity_(physics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Triple_product" href="http://dbpedia.org/resource/Triple_product"><small>dbr</small>:Triple_product</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jerk_(physics)" href="http://dbpedia.org/resource/Jerk_(physics)"><small>dbr</small>:Jerk_(physics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bivector" href="http://dbpedia.org/resource/Bivector"><small>dbr</small>:Bivector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Blade_(geometry)" href="http://dbpedia.org/resource/Blade_(geometry)"><small>dbr</small>:Blade_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Einstein–de_Haas_effect" href="http://dbpedia.org/resource/Einstein–de_Haas_effect"><small>dbr</small>:Einstein–de_Haas_effect</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cartesian_tensor" href="http://dbpedia.org/resource/Cartesian_tensor"><small>dbr</small>:Cartesian_tensor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_calculus" href="http://dbpedia.org/resource/Vector_calculus"><small>dbr</small>:Vector_calculus</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotation_(mathematics)" href="http://dbpedia.org/resource/Rotation_(mathematics)"><small>dbr</small>:Rotation_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudoscalar" href="http://dbpedia.org/resource/Pseudoscalar"><small>dbr</small>:Pseudoscalar</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Improper_rotation" href="http://dbpedia.org/resource/Improper_rotation"><small>dbr</small>:Improper_rotation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zone_axis" href="http://dbpedia.org/resource/Zone_axis"><small>dbr</small>:Zone_axis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotational_viscosity" href="http://dbpedia.org/resource/Rotational_viscosity"><small>dbr</small>:Rotational_viscosity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Multivector" href="http://dbpedia.org/resource/Multivector"><small>dbr</small>:Multivector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Spacetime_algebra" href="http://dbpedia.org/resource/Spacetime_algebra"><small>dbr</small>:Spacetime_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_operator" href="http://dbpedia.org/resource/Tensor_operator"><small>dbr</small>:Tensor_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rigid_body_dynamics" href="http://dbpedia.org/resource/Rigid_body_dynamics"><small>dbr</small>:Rigid_body_dynamics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/True_vector" href="http://dbpedia.org/resource/True_vector"><small>dbr</small>:True_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Axial_vector" href="http://dbpedia.org/resource/Axial_vector"><small>dbr</small>:Axial_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudo-vector" href="http://dbpedia.org/resource/Pseudo-vector"><small>dbr</small>:Pseudo-vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudo_vector" href="http://dbpedia.org/resource/Pseudo_vector"><small>dbr</small>:Pseudo_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polar_and_Axial_vectors" href="http://dbpedia.org/resource/Polar_and_Axial_vectors"><small>dbr</small>:Polar_and_Axial_vectors</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polar_and_axial_vectors" href="http://dbpedia.org/resource/Polar_and_axial_vectors"><small>dbr</small>:Polar_and_axial_vectors</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polar_vector" href="http://dbpedia.org/resource/Polar_vector"><small>dbr</small>:Polar_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polar_vectors" href="http://dbpedia.org/resource/Polar_vectors"><small>dbr</small>:Polar_vectors</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://xmlns.com/foaf/0.1/primaryTopic"><small>foaf:</small>primaryTopic</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="foaf:primaryTopic" resource="http://en.wikipedia.org/wiki/Pseudovector" href="http://en.wikipedia.org/wiki/Pseudovector"><small>wikipedia-en</small>:Pseudovector</a></span></li> </ul></td></tr> </tbody> </table> </div> </div> </div> </section> <!-- property-table --> <!-- footer --> <section> <div class="container-xl"> <div class="text-center p-4 bg-light"> <a href="https://virtuoso.openlinksw.com/" title="OpenLink Virtuoso"><img class="powered_by" src="/statics/images/virt_power_no_border.png" alt="Powered by OpenLink Virtuoso"/></a>&#160; &#160; <a href="http://linkeddata.org/"><img alt="This material is Open Knowledge" src="/statics/images/LoDLogo.gif"/></a> &#160; &#160; <a href="http://dbpedia.org/sparql"><img alt="W3C Semantic Web Technology" src="/statics/images/sw-sparql-blue.png"/></a> &#160; &#160; <a href="https://opendefinition.org/"><img alt="This material is Open Knowledge" src="/statics/images/od_80x15_red_green.png"/></a>&#160; &#160; <span style="display:none;" about="" resource="http://www.w3.org/TR/rdfa-syntax" rel="dc:conformsTo"> <a href="https://validator.w3.org/check?uri=referer"> <img src="https://www.w3.org/Icons/valid-xhtml-rdfa" alt="Valid XHTML + RDFa" /> </a> </span> <br /> <small class="text-muted"> This content was extracted from <a href="http://en.wikipedia.org/wiki/Pseudovector">Wikipedia</a> and is licensed under the <a href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a> </small> </div> </div> </section> <!-- #footer --> <!-- scripts --> <script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/js/bootstrap.bundle.min.js" integrity="sha512-1TK4hjCY5+E9H3r5+05bEGbKGyK506WaDPfPe1s/ihwRjr6OtL43zJLzOFQ+/zciONEd+sp7LwrfOCnyukPSsg==" crossorigin="anonymous"> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10