CINXE.COM

About: Basis (linear algebra)

<!DOCTYPE html> <html prefix=" dbp: http://dbpedia.org/property/ dbo: http://dbedia.org/ontology/ dct: http://purl.org/dc/terms/ dbd: http://dbpedia.org/datatype/ og: https://ogp.me/ns# " > <!-- header --> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>About: Basis (linear algebra)</title> <!-- Links --> <link rel="alternate" type="application/rdf+xml" href="http://dbpedia.org/data/Basis_(linear_algebra).rdf" title="Structured Descriptor Document (RDF/XML format)" /> <link rel="alternate" type="text/n3" href="http://dbpedia.org/data/Basis_(linear_algebra).n3" title="Structured Descriptor Document (N3 format)" /> <link rel="alternate" type="text/turtle" href="http://dbpedia.org/data/Basis_(linear_algebra).ttl" title="Structured Descriptor Document (Turtle format)" /> <link rel="alternate" type="application/json+rdf" href="http://dbpedia.org/data/Basis_(linear_algebra).jrdf" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/json" href="http://dbpedia.org/data/Basis_(linear_algebra).json" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/atom+xml" href="http://dbpedia.org/data/Basis_(linear_algebra).atom" title="OData (Atom+Feed format)" /> <link rel="alternate" type="text/plain" href="http://dbpedia.org/data/Basis_(linear_algebra).ntriples" title="Structured Descriptor Document (N-Triples format)" /> <link rel="alternate" type="text/csv" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=text%2Fcsv" title="Structured Descriptor Document (CSV format)" /> <link rel="alternate" type="application/microdata+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=application%2Fmicrodata%2Bjson" title="Structured Descriptor Document (Microdata/JSON format)" /> <link rel="alternate" type="text/html" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=text%2Fhtml" title="Structured Descriptor Document (Microdata/HTML format)" /> <link rel="alternate" type="application/ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=application%2Fld%2Bjson" title="Structured Descriptor Document (JSON-LD format)" /> <link rel="alternate" type="text/x-html-script-ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=text%2Fx-html-script-ld%2Bjson" title="Structured Descriptor Document (HTML with embedded JSON-LD)" /> <link rel="alternate" type="text/x-html-script-turtle" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=text%2Fx-html-script-turtle" title="Structured Descriptor Document (HTML with embedded Turtle)" /> <link rel="timegate" type="text/html" href="http://dbpedia.mementodepot.org/timegate/http://dbpedia.org/page/Basis_(linear_algebra)" title="Time Machine" /> <link rel="foaf:primarytopic" href="http://dbpedia.org/resource/Basis_(linear_algebra)"/> <link rev="describedby" href="http://dbpedia.org/resource/Basis_(linear_algebra)"/> <!-- /Links --> <!-- Stylesheets --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/css/bootstrap.min.css" integrity="sha512-siwe/oXMhSjGCwLn+scraPOWrJxHlUgMBMZXdPe2Tnk3I0x3ESCoLz7WZ5NTH6SZrywMY+PB1cjyqJ5jAluCOg==" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-icons/1.9.1/font/bootstrap-icons.min.css" integrity="sha512-5PV92qsds/16vyYIJo3T/As4m2d8b6oWYfoqV+vtizRB6KhF1F9kYzWzQmsO6T3z3QG2Xdhrx7FQ+5R1LiQdUA==" crossorigin="anonymous" /> <!-- link rel="stylesheet" href="/statics/css/dbpedia.css" --> <!-- /Stylesheets--> <!-- OpenGraph --> <meta property="og:title" content="Basis (linear algebra)" /> <meta property="og:type" content="article" /> <meta property="og:url" content="http://dbpedia.org/resource/Basis_(linear_algebra)" /> <meta property="og:image" content="http://commons.wikimedia.org/wiki/Special:FilePath/3d_two_bases_same_vector.svg?width=300" /> <meta property="og:description" content="In mathematics, a set B of vectors in a vector space V is called a basis if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors. Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. In other words, a basis is a linearly independent spanning set." /> <meta property="og:site_name" content="DBpedia" /> <!-- /OpenGraph--> </head> <body about="http://dbpedia.org/resource/Basis_(linear_algebra)"> <!-- navbar --> <nav class="navbar navbar-expand-md navbar-light bg-light fixed-top align-items-center"> <div class="container-xl"> <a class="navbar-brand" href="http://wiki.dbpedia.org/about" title="About DBpedia" style="color: #2c5078"> <img class="img-fluid" src="/statics/images/dbpedia_logo_land_120.png" alt="About DBpedia" /> </a> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#dbp-navbar" aria-controls="dbp-navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="dbp-navbar"> <ul class="navbar-nav me-auto mb-2 mb-lg-0"> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownBrowse" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-eye-fill"></i> Browse using<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownBrowse"> <li class="dropdown-item"><a class="nav-link" href="/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29">OpenLink Faceted Browser</a></li> <li class="dropdown-item"><a class="nav-link" href="http://osde.demo.openlinksw.com/#/editor?uri=http%3A%2F%2Fdbpedia.org%2Fdata%2FBasis_%28linear_algebra%29.ttl&amp;view=statements">OpenLink Structured Data Editor</a></li> <li class="dropdown-item"><a class="nav-link" href="http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29">LodLive Browser</a></li> <!-- li class="dropdown-item"><a class="nav-link" href="http://lodmilla.sztaki.hu/lodmilla/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29">LODmilla Browser</a></li --> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownFormats" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-file-earmark-fill"></i> Formats<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownFormats"> <li class="dropdown-item-text">RDF:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Basis_(linear_algebra).ntriples">N-Triples</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Basis_(linear_algebra).n3">N3</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Basis_(linear_algebra).ttl">Turtle</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Basis_(linear_algebra).json">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Basis_(linear_algebra).rdf">XML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">OData:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Basis_(linear_algebra).atom">Atom</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Basis_(linear_algebra).jsod">JSON</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Microdata:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=application%2Fmicrodata%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=text%2Fhtml">HTML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Embedded:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=text%2Fx-html-script-ld%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=text%2Fx-html-script-turtle">Turtle</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Other:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=text%2Fcsv">CSV</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&amp;query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FBasis_%28linear_algebra%29%3E&amp;format=application%2Fld%2Bjson">JSON-LD</a></li> </ul> </li> </ul> <ul class="navbar-nav ms-auto"> <li class="nav-item"> <a class="nav-link" href="/fct/" title="Switch to /fct endpoint"><i class="bi-box-arrow-up-right"></i> Faceted Browser </a> </li> <li class="nav-item"> <a class="nav-link" href="/sparql/" title="Switch to /sparql endpoint"><i class="bi-box-arrow-up-right"></i> Sparql Endpoint </a> </li> </ul> </div> </div> </nav> <div style="margin-bottom: 60px"></div> <!-- /navbar --> <!-- page-header --> <section> <div class="container-xl"> <div class="row"> <div class="col"> <h1 id="title" class="display-6"><b>About:</b> <a href="http://dbpedia.org/resource/Basis_(linear_algebra)">Basis (linear algebra)</a> </h1> </div> </div> <div class="row"> <div class="col"> <div class="text-muted"> <span class="text-nowrap">An Entity of Type: <a href="http://dbpedia.org/ontology/Drug">drug</a>, </span> <span class="text-nowrap">from Named Graph: <a href="http://dbpedia.org">http://dbpedia.org</a>, </span> <span class="text-nowrap">within Data Space: <a href="http://dbpedia.org">dbpedia.org</a></span> </div> </div> </div> <div class="row pt-2"> <div class="col-xs-9 col-sm-10"> <p class="lead">In mathematics, a set B of vectors in a vector space V is called a basis if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors. Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. In other words, a basis is a linearly independent spanning set.</p> </div> <div class="col-xs-3 col-sm-2"> <a href="#" class="thumbnail"> <img src="http://commons.wikimedia.org/wiki/Special:FilePath/3d_two_bases_same_vector.svg?width=300" alt="thumbnail" class="img-fluid" /> </a> </div> </div> </div> </section> <!-- page-header --> <!-- property-table --> <section> <div class="container-xl"> <div class="row"> <div class="table-responsive"> <table class="table table-hover table-sm table-light"> <thead> <tr> <th class="col-xs-3 ">Property</th> <th class="col-xs-9 px-3">Value</th> </tr> </thead> <tbody> <tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/abstract"><small>dbo:</small>abstract</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ca" >A àlgebra lineal, es diu que un conjunt ordenat B és base d&#39;un espai vectorial V si es compleixen les condicions següents: * Tots els elements de la base B han de pertànyer a l&#39;espai vectorial V. * Tots els elements de la base B han de ser linealment independents. * Tot element de V es pot escriure com una combinació lineal dels elements de la base B, és a dir B és un sistema generador de V.</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ar" >في الجبر الخطي، قاعدةٌ (بالإنجليزية: Basis)‏ هي مجموعة من المتجهات المستقلة خطيا، والتي بواسطة تركيبة خطية، يمكن لها أن تعبر عن أي متجه منتم إلى فضاء متجهي معين. لتكن V قاعدة ما لفضاء متجهي ما. جميع عناصر V يُمكن أن يعبر عنها بشكل وحيد بواسطة تأليفة خطية لمتجهات القاعدة. الأعداد المستعملة خلال هذه التأليفة الخطية تسمى إحداثيات المتجهة. يمكن لفضاء متجهي ما أن يملك العديد من القواعد، ولكن جميع هذه القواعد تملك نفس العدد من العناصر. لا يمكن لفضاء متجهي أن يملك قاعدة بعنصرين وقاعدة أخرى بثلاث عناصر. عدد عناصر القاعدة يسمى بُعد الفضاء المتجهي.</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="cs" >Práci s vektorovými prostory i samotnými vektory lze velmi ulehčit zavedením pojmu báze vektorového prostoru (krátce jen báze, angl. basis, pl. bases). Jedná se o množinu jistým způsobem výjimečných vektorů z daného vektorového prostoru, pomocí níž jsme schopni vyjádřit libovolný vektor tohoto prostoru. Pojem báze úzce souvisí s pojmem dimenze vektorového prostoru. Zatímco dimenze nám říká, kolik parametrů potřebujeme na popsání libovolného vektoru v daném prostoru, báze je množina vektorů, ze kterých jsme schopni tento vektor sestrojit, známe-li tyto parametry.</span><small> (cs)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="de" >In der linearen Algebra ist eine Basis eine Teilmenge eines Vektorraumes, mit deren Hilfe sich jeder Vektor des Raumes eindeutig als endliche Linearkombination darstellen lässt. Die Koeffizienten dieser Linearkombination heißen die Koordinaten des Vektors bezüglich dieser Basis. Ein Element der Basis heißt Basisvektor, besteht der Vektorraum aus Funktionen, werden die Elemente im Speziellen auch Basisfunktionen genannt. Wenn Verwechslungen mit anderen Basisbegriffen (z. B. der Schauderbasis) zu befürchten sind, nennt man eine solche Teilmenge auch Hamelbasis (nach Georg Hamel). Ein Vektorraum besitzt im Allgemeinen verschiedene Basen, ein Wechsel der Basis erzwingt eine Koordinatentransformation. Die Hamelbasis sollte nicht mit der Basis eines Koordinatensystems verwechselt werden, da diese Begriffe unter bestimmten Bedingungen nicht gleichgesetzt werden können (z. B. bei krummlinigen Koordinaten).</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="eo" >En lineara algebro, bazo estas minimuma aro da vektoroj, kiuj, kiam kombinitaj, povas adresi ĉiun vektoron en donita spacon. Pli detale, bazo de vektora spaco estas aro da lineare sendependaj vektoroj, kiu generas la tutan spacon.</span><small> (eo)</small></span></li> <li><span class="literal"><span property="dbo:abstract" lang="en" >In mathematics, a set B of vectors in a vector space V is called a basis if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors. Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the dimension of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="es" >En álgebra lineal, una base de un espacio vectorial sobre un campo es un subconjunto de y cumple las siguientes condiciones: * Todos los elementos de pertenecen al espacio vectorial . * Los elementos de forman un sistema linealmente independiente. * Todo elemento de V se puede escribir como combinación lineal de los elementos de la base (es decir, es un sistema generador de ).​</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="in" >Dalam aljabar linear, basis adalah himpunan vektor, yang dalam sebuah kombinasi linear dapat merepresentasikan setiap vektor dalam suatu ruang vektor. Tidak ada elemen dalam himpunan vektor tersebut yang dapat direpresentasikan sebagai kombinasi linear vektor-vektor lain. Basis juga dapat dianggap sebagai &quot;sistem koordinat&quot;.</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="fr" >En mathématiques, une base d&#39;un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d&#39;autres termes, une base de V est une famille libre de vecteurs de V qui engendre V.</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="nl" >In de lineaire algebra is een basis van een vectorruimte een verzameling van lineair onafhankelijke vectoren die de vectorruimte voortbrengen. Een element uit een basis wordt een basisvector genoemd. Voor een gegeven basis is iedere vector uit de vectorruimte een eenduidige eindige lineaire combinatie van de basisvectoren. De coëfficiënten van deze lineaire combinatie heten de coördinaten van de vector ten opzichte van de gegeven basis. Intuïtief beschouwd is een basis een zo klein mogelijke verzameling vectoren die de hele vectorruimte voortbrengen. Een vectorruimte heeft in het algemeen meerdere bases. Ter onderscheiding van andere typen basis (die overigens meestal alleen bij oneindigdimensionale vectorruimten verschillen), wordt de hier gedefinieerde basis ook Hamelbasis (naar Georg Hamel) genoemd.</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ko" >선형대수학에서, 어떤 벡터 공간의 기저(基底, 영어: basis)는 그 벡터 공간을 선형생성하는 선형독립인 벡터들이다. 달리 말해, 벡터 공간의 임의의 벡터에게 선형결합으로서 유일한 표현을 부여하는 벡터들이다.</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ja" >線型代数学における基底(きてい、英: basis)とは、線型独立なベクトルから成る集合あるいは組で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pl" >Baza – pojęcie będące przeniesieniem oraz rozwinięciem idei układu współrzędnych kartezjańskich w przestrzeniach euklidesowych na abstrakcyjne przestrzenie liniowe. Uwaga: Bazy w nieskończenie wymiarowych przestrzeniach nazywane są czasami bazami Hamela (jest to częsty zwyczaj w analizie funkcjonalnej). Z drugiej strony niektórzy matematycy rezerwują nazwę baza Hamela dla dowolnej bazy przestrzeni liczb rzeczywistych jako przestrzeni liniowej nad ciałem liczb wymiernych.</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="it" >In matematica, e più precisamente in algebra lineare, la base di uno spazio vettoriale è un insieme di vettori linearmente indipendenti che generano lo spazio. In modo equivalente, ogni elemento dello spazio vettoriale può essere scritto in modo unico come combinazione lineare dei vettori appartenenti alla base. Se la base di uno spazio vettoriale è composta da un numero finito di elementi allora la dimensione dello spazio è finita. In particolare, il numero di elementi della base coincide con la dimensione dello spazio.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ru" >Ба́зис (др.-греч. βάσις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами. В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения: * Базис Га́меля (англ. Hamel basis), в определении которого рассматриваются только конечные линейные комбинации; применяется в основном в абстрактной алгебре. * Базис Ша́удера, в определении которого рассматриваются и бесконечные линейные комбинации, а именно — разложение в ряды; применяется в основном в функциональном анализе, в частности, для гильбертова пространства. В конечномерных пространствах оба определения базиса совпадают.</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="sv" >En mängd sägs vara en bas för ett linjärt rum (eller vektorrum) V om den är linjärt oberoende och spänner upp V, det vill säga varje element i V är en linjärkombination av element ur basen. Det går att byta mellan baser genom basbyten. En basvektor v i ett vektorrum V med dimensionen d, är en vektor i den mängd av d stycken vektorer som bildar en bas för rummet. Basvektorerna är linjärt oberoende. Baser av stor betydelse är de som är ortogonala eller ortonormerade.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pt" >Na álgebra linear, uma base de um espaço vectorial é um conjunto de vetores linearmente independentes que geram esse espaço.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="uk" >Ба́зисом (дав.-гр. βασις, основа) векторного простору називається впорядкований набір векторів , якщо кожний вектор із можна однозначно представити у вигляді лінійної комбінації: Коефіцієнти кільця називаються координатами вектора відносно базису . Ця рівність зазвичай записується скорочено: . Тобто так само, як і для запису матриць. Якщо та - деяке дійсне число, то Таким чином, кожний вектор простору повністю визначається своїми координатами, тобто впорядкованою трійкою дійсних чисел,а операції над векторами простору зводяться до операцій над впорядкованими трійками дійсних чисел. Таким чином, з алгебричної точки зору вектори простору можна вважати впорядкованими трійками чисел. Представлення вектора у вигляді лінійної комбінації базисних векторів називається розкладанням вектора по даному базису. Кількість векторів базису не залежить від вибору базисних векторів і дорівнює розмірності простору і позначається Існують простори як із скінченним, так й нескінченним базисом. Наприклад, n-вимірний еквлідовий простір. Вектори базису є лінійно незалежними.</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="zh" >在线性代数中,基(英文:basis,又称基底) 是描述、刻画向量空间的基本概念。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 通过基底可以直接地描述向量空间。比如说,在讨论一个向量空间上定义的线性变换时,可以考察变换作用在的一组基上的效果。经此掌握,就能了解到作用在中任意元素的效果。 事实上,不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。在现代集合论中,如果承认选择公理,就可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)会是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能得到一组基。特别地,在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。</span><small> (zh)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/thumbnail"><small>dbo:</small>thumbnail</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:thumbnail" resource="http://commons.wikimedia.org/wiki/Special:FilePath/3d_two_bases_same_vector.svg?width=300" href="http://commons.wikimedia.org/wiki/Special:FilePath/3d_two_bases_same_vector.svg?width=300"><small>wiki-commons</small>:Special:FilePath/3d_two_bases_same_vector.svg?width=300</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageExternalLink"><small>dbo:</small>wikiPageExternalLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://www.math.lsa.umich.edu/~ablass/bases-AC.pdf" href="http://www.math.lsa.umich.edu/~ablass/bases-AC.pdf">http://www.math.lsa.umich.edu/~ablass/bases-AC.pdf</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://mathdoc.emath.fr/cgi-bin/oeitem%3Fid=OE_MOBIUS__1_1_0" href="http://mathdoc.emath.fr/cgi-bin/oeitem%3Fid=OE_MOBIUS__1_1_0">http://mathdoc.emath.fr/cgi-bin/oeitem%3Fid=OE_MOBIUS__1_1_0</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://ghostarchive.org/varchive/youtube/20211117/k7RM-ot2NWY%7C" href="https://ghostarchive.org/varchive/youtube/20211117/k7RM-ot2NWY%7C">https://ghostarchive.org/varchive/youtube/20211117/k7RM-ot2NWY%7C</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://web.archive.org/web/20090412013616/http:/mathdoc.emath.fr/cgi-bin/oeitem%3Fid=OE_MOBIUS__1_1_0" href="https://web.archive.org/web/20090412013616/http:/mathdoc.emath.fr/cgi-bin/oeitem%3Fid=OE_MOBIUS__1_1_0">https://web.archive.org/web/20090412013616/http:/mathdoc.emath.fr/cgi-bin/oeitem%3Fid=OE_MOBIUS__1_1_0</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://web.archive.org/web/20120426050335/http:/khanexercises.appspot.com/video%3Fv=zntNi3-ybfQ" href="https://web.archive.org/web/20120426050335/http:/khanexercises.appspot.com/video%3Fv=zntNi3-ybfQ">https://web.archive.org/web/20120426050335/http:/khanexercises.appspot.com/video%3Fv=zntNi3-ybfQ</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://web.archive.org/web/20120426050418/http:/khanexercises.appspot.com/video%3Fv=Zn2K8UIT8r4" href="https://web.archive.org/web/20120426050418/http:/khanexercises.appspot.com/video%3Fv=Zn2K8UIT8r4">https://web.archive.org/web/20120426050418/http:/khanexercises.appspot.com/video%3Fv=Zn2K8UIT8r4</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer%3Fdid=05230001&amp;seq=9" href="http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer%3Fdid=05230001&amp;seq=9">http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer%3Fdid=05230001&amp;seq=9</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://books.google.com/books%3Fid=TDQJAAAAIAAJ" href="https://books.google.com/books%3Fid=TDQJAAAAIAAJ">https://books.google.com/books%3Fid=TDQJAAAAIAAJ</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://books.google.com/books%3Fid=bKgAAAAAMAAJ&amp;pg=PA1%7C" href="https://books.google.com/books%3Fid=bKgAAAAAMAAJ&amp;pg=PA1%7C">https://books.google.com/books%3Fid=bKgAAAAAMAAJ&amp;pg=PA1%7C</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://books.google.com/books%3Fid=pFQYKlnW5Z0C" href="https://books.google.com/books%3Fid=pFQYKlnW5Z0C">https://books.google.com/books%3Fid=pFQYKlnW5Z0C</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="https://www.youtube.com/watch%3Fv=k7RM-ot2NWY&amp;list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&amp;index=3" href="https://www.youtube.com/watch%3Fv=k7RM-ot2NWY&amp;list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&amp;index=3">https://www.youtube.com/watch%3Fv=k7RM-ot2NWY&amp;list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&amp;index=3</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf" href="http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf">http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://www.digizeitschriften.de/dms/img/%3FPID=GDZPPN002260395" href="http://www.digizeitschriften.de/dms/img/%3FPID=GDZPPN002260395">http://www.digizeitschriften.de/dms/img/%3FPID=GDZPPN002260395</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://dml.cz/handle/10338.dmlcz/400338" href="http://dml.cz/handle/10338.dmlcz/400338">http://dml.cz/handle/10338.dmlcz/400338</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://archive-ouverte.unige.ch/unige:16642" href="http://archive-ouverte.unige.ch/unige:16642">http://archive-ouverte.unige.ch/unige:16642</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageID"><small>dbo:</small>wikiPageID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageID" datatype="xsd:integer" >18420</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageLength"><small>dbo:</small>wikiPageLength</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageLength" datatype="xsd:nonNegativeInteger" >34880</span><small> (xsd:nonNegativeInteger)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageRevisionID"><small>dbo:</small>wikiPageRevisionID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageRevisionID" datatype="xsd:integer" >1117296620</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Axiom_of_choice" href="http://dbpedia.org/resource/Category:Axiom_of_choice"><small>dbc</small>:Axiom_of_choice</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Probability_distribution" href="http://dbpedia.org/resource/Probability_distribution"><small>dbr</small>:Probability_distribution</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Projective_space" href="http://dbpedia.org/resource/Projective_space"><small>dbr</small>:Projective_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Scalar_(mathematics)" href="http://dbpedia.org/resource/Scalar_(mathematics)"><small>dbr</small>:Scalar_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Module_(mathematics)" href="http://dbpedia.org/resource/Module_(mathematics)"><small>dbr</small>:Module_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Monomial" href="http://dbpedia.org/resource/Monomial"><small>dbr</small>:Monomial</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Monomial_basis" href="http://dbpedia.org/resource/Monomial_basis"><small>dbr</small>:Monomial_basis</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_sequence" href="http://dbpedia.org/resource/Polynomial_sequence"><small>dbr</small>:Polynomial_sequence</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Normed_linear_space" href="http://dbpedia.org/resource/Normed_linear_space"><small>dbr</small>:Normed_linear_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_space" href="http://dbpedia.org/resource/Vector_space"><small>dbr</small>:Vector_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Indeterminate_(variable)" href="http://dbpedia.org/resource/Indeterminate_(variable)"><small>dbr</small>:Indeterminate_(variable)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Index_set" href="http://dbpedia.org/resource/Index_set"><small>dbr</small>:Index_set</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Articles_containing_proofs" href="http://dbpedia.org/resource/Category:Articles_containing_proofs"><small>dbc</small>:Articles_containing_proofs</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Column_vector" href="http://dbpedia.org/resource/Column_vector"><small>dbr</small>:Column_vector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Complete_space" href="http://dbpedia.org/resource/Complete_space"><small>dbr</small>:Complete_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Complex_number" href="http://dbpedia.org/resource/Complex_number"><small>dbr</small>:Complex_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cone_(linear_algebra)" href="http://dbpedia.org/resource/Cone_(linear_algebra)"><small>dbr</small>:Cone_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Convex_set" href="http://dbpedia.org/resource/Convex_set"><small>dbr</small>:Convex_set</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coordinate_space" href="http://dbpedia.org/resource/Coordinate_space"><small>dbr</small>:Coordinate_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mathematics" href="http://dbpedia.org/resource/Mathematics"><small>dbr</small>:Mathematics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_(mathematics)" href="http://dbpedia.org/resource/Matrix_(mathematics)"><small>dbr</small>:Matrix_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generating_set_of_a_module" href="http://dbpedia.org/resource/Generating_set_of_a_module"><small>dbr</small>:Generating_set_of_a_module</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orientation_(vector_space)" href="http://dbpedia.org/resource/Orientation_(vector_space)"><small>dbr</small>:Orientation_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Free_resolution" href="http://dbpedia.org/resource/Free_resolution"><small>dbr</small>:Free_resolution</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fréchet_space" href="http://dbpedia.org/resource/Fréchet_space"><small>dbr</small>:Fréchet_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Georg_Hamel" href="http://dbpedia.org/resource/Georg_Hamel"><small>dbr</small>:Georg_Hamel</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Convex_hull" href="http://dbpedia.org/resource/Convex_hull"><small>dbr</small>:Convex_hull</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coordinate_vector" href="http://dbpedia.org/resource/Coordinate_vector"><small>dbr</small>:Coordinate_vector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orthogonal_basis" href="http://dbpedia.org/resource/Orthogonal_basis"><small>dbr</small>:Orthogonal_basis</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_of_a_matroid" href="http://dbpedia.org/resource/Basis_of_a_matroid"><small>dbr</small>:Basis_of_a_matroid</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bernstein_polynomial" href="http://dbpedia.org/resource/Bernstein_polynomial"><small>dbr</small>:Bernstein_polynomial</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_isomorphism" href="http://dbpedia.org/resource/Linear_isomorphism"><small>dbr</small>:Linear_isomorphism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Empty_set" href="http://dbpedia.org/resource/Empty_set"><small>dbr</small>:Empty_set</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fundamenta_Mathematicae" href="http://dbpedia.org/resource/Fundamenta_Mathematicae"><small>dbr</small>:Fundamenta_Mathematicae</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schauder_basis" href="http://dbpedia.org/resource/Schauder_basis"><small>dbr</small>:Schauder_basis</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Standard_basis" href="http://dbpedia.org/resource/Standard_basis"><small>dbr</small>:Standard_basis</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ordered_pair" href="http://dbpedia.org/resource/Ordered_pair"><small>dbr</small>:Ordered_pair</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Markushevich_basis" href="http://dbpedia.org/resource/Markushevich_basis"><small>dbr</small>:Markushevich_basis</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Banach_space" href="http://dbpedia.org/resource/Banach_space"><small>dbr</small>:Banach_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Topological_vector_space" href="http://dbpedia.org/resource/Topological_vector_space"><small>dbr</small>:Topological_vector_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Total_order" href="http://dbpedia.org/resource/Total_order"><small>dbr</small>:Total_order</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tuple" href="http://dbpedia.org/resource/Tuple"><small>dbr</small>:Tuple</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_combination" href="http://dbpedia.org/resource/Linear_combination"><small>dbr</small>:Linear_combination</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_independence" href="http://dbpedia.org/resource/Linear_independence"><small>dbr</small>:Linear_independence</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_span" href="http://dbpedia.org/resource/Linear_span"><small>dbr</small>:Linear_span</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Affine_space" href="http://dbpedia.org/resource/Affine_space"><small>dbr</small>:Affine_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/American_Mathematical_Society" href="http://dbpedia.org/resource/American_Mathematical_Society"><small>dbr</small>:American_Mathematical_Society</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Linear_algebra" href="http://dbpedia.org/resource/Category:Linear_algebra"><small>dbc</small>:Linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_(mathematics)" href="http://dbpedia.org/resource/Field_(mathematics)"><small>dbr</small>:Field_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Finite_set" href="http://dbpedia.org/resource/Finite_set"><small>dbr</small>:Finite_set</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fourier_analysis" href="http://dbpedia.org/resource/Fourier_analysis"><small>dbr</small>:Fourier_analysis</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fourier_series" href="http://dbpedia.org/resource/Fourier_series"><small>dbr</small>:Fourier_series</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cardinal_number" href="http://dbpedia.org/resource/Cardinal_number"><small>dbr</small>:Cardinal_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cardinality" href="http://dbpedia.org/resource/Cardinality"><small>dbr</small>:Cardinality</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dimension_(vector_space)" href="http://dbpedia.org/resource/Dimension_(vector_space)"><small>dbr</small>:Dimension_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hilbert_basis_(linear_programming)" href="http://dbpedia.org/resource/Hilbert_basis_(linear_programming)"><small>dbr</small>:Hilbert_basis_(linear_programming)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Historia_Mathematica" href="http://dbpedia.org/resource/Historia_Mathematica"><small>dbr</small>:Historia_Mathematica</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Probability_density_function" href="http://dbpedia.org/resource/Probability_density_function"><small>dbr</small>:Probability_density_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_(mathematics)" href="http://dbpedia.org/resource/Ring_(mathematics)"><small>dbr</small>:Ring_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hilbert_space" href="http://dbpedia.org/resource/Hilbert_space"><small>dbr</small>:Hilbert_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Baire_category_theorem" href="http://dbpedia.org/resource/Baire_category_theorem"><small>dbr</small>:Baire_category_theorem</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Steinitz_exchange_lemma" href="http://dbpedia.org/resource/Steinitz_exchange_lemma"><small>dbr</small>:Steinitz_exchange_lemma</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Abelian_group" href="http://dbpedia.org/resource/Abelian_group"><small>dbr</small>:Abelian_group</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Chebyshev_polynomials" href="http://dbpedia.org/resource/Chebyshev_polynomials"><small>dbr</small>:Chebyshev_polynomials</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zorn&#39;s_lemma" href="http://dbpedia.org/resource/Zorn&#39;s_lemma"><small>dbr</small>:Zorn&#39;s_lemma</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dimension_theorem_for_vector_spaces" href="http://dbpedia.org/resource/Dimension_theorem_for_vector_spaces"><small>dbr</small>:Dimension_theorem_for_vector_spaces</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Axiom_of_choice" href="http://dbpedia.org/resource/Axiom_of_choice"><small>dbr</small>:Axiom_of_choice</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial" href="http://dbpedia.org/resource/Polynomial"><small>dbr</small>:Polynomial</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_ring" href="http://dbpedia.org/resource/Polynomial_ring"><small>dbr</small>:Polynomial_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Independent_and_identically_distributed_random_variables" href="http://dbpedia.org/resource/Independent_and_identically_distributed_random_variables"><small>dbr</small>:Independent_and_identically_distributed_random_variables</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Indexed_family" href="http://dbpedia.org/resource/Indexed_family"><small>dbr</small>:Indexed_family</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inner_product_space" href="http://dbpedia.org/resource/Inner_product_space"><small>dbr</small>:Inner_product_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Canonical_basis" href="http://dbpedia.org/resource/Canonical_basis"><small>dbr</small>:Canonical_basis</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_number" href="http://dbpedia.org/resource/Real_number"><small>dbr</small>:Real_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_numbers" href="http://dbpedia.org/resource/Real_numbers"><small>dbr</small>:Real_numbers</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Sequence" href="http://dbpedia.org/resource/Sequence"><small>dbr</small>:Sequence</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Sequence_(mathematics)" href="http://dbpedia.org/resource/Sequence_(mathematics)"><small>dbr</small>:Sequence_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Set_(mathematics)" href="http://dbpedia.org/resource/Set_(mathematics)"><small>dbr</small>:Set_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/YouTube" href="http://dbpedia.org/resource/YouTube"><small>dbr</small>:YouTube</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/General_linear_position" href="http://dbpedia.org/resource/General_linear_position"><small>dbr</small>:General_linear_position</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Expression_(mathematics)" href="http://dbpedia.org/resource/Expression_(mathematics)"><small>dbr</small>:Expression_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linearly_independent" href="http://dbpedia.org/resource/Linearly_independent"><small>dbr</small>:Linearly_independent</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polytope" href="http://dbpedia.org/resource/Polytope"><small>dbr</small>:Polytope</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Partial_order" href="http://dbpedia.org/resource/Partial_order"><small>dbr</small>:Partial_order</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inverse_image" href="http://dbpedia.org/resource/Inverse_image"><small>dbr</small>:Inverse_image</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Subset" href="http://dbpedia.org/resource/Subset"><small>dbr</small>:Subset</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Uncountable" href="http://dbpedia.org/resource/Uncountable"><small>dbr</small>:Uncountable</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orthonormal_bases" href="http://dbpedia.org/resource/Orthonormal_bases"><small>dbr</small>:Orthonormal_bases</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_of_a_linear_program" href="http://dbpedia.org/resource/Basis_of_a_linear_program"><small>dbr</small>:Basis_of_a_linear_program</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Springer-Verlag" href="http://dbpedia.org/resource/Springer-Verlag"><small>dbr</small>:Springer-Verlag</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Spanning_set" href="http://dbpedia.org/resource/Spanning_set"><small>dbr</small>:Spanning_set</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ultrafilter_lemma" href="http://dbpedia.org/resource/Ultrafilter_lemma"><small>dbr</small>:Ultrafilter_lemma</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/With_probability_one" href="http://dbpedia.org/resource/With_probability_one"><small>dbr</small>:With_probability_one</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:3d_two_bases_same_vector.svg" href="http://dbpedia.org/resource/File:3d_two_bases_same_vector.svg"><small>dbr</small>:File:3d_two_bases_same_vector.svg</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:Basis_graph_(no_label).svg" href="http://dbpedia.org/resource/File:Basis_graph_(no_label).svg"><small>dbr</small>:File:Basis_graph_(no_label).svg</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:Random_almost_orthogonal_sets.png" href="http://dbpedia.org/resource/File:Random_almost_orthogonal_sets.png"><small>dbr</small>:File:Random_almost_orthogonal_sets.png</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/id"><small>dbp:</small>id</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:id" lang="en" >p/b015350</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/title"><small>dbp:</small>title</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:title" lang="en" >Basis</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/wikiPageUsesTemplate"><small>dbp:</small>wikiPageUsesTemplate</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Springer" href="http://dbpedia.org/resource/Template:Springer"><small>dbt</small>:Springer</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:!" href="http://dbpedia.org/resource/Template:!"><small>dbt</small>:!</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Anchor" href="http://dbpedia.org/resource/Template:Anchor"><small>dbt</small>:Anchor</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Annotated_link" href="http://dbpedia.org/resource/Template:Annotated_link"><small>dbt</small>:Annotated_link</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Cbignore" href="http://dbpedia.org/resource/Template:Cbignore"><small>dbt</small>:Cbignore</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Citation" href="http://dbpedia.org/resource/Template:Citation"><small>dbt</small>:Citation</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Cite_web" href="http://dbpedia.org/resource/Template:Cite_web"><small>dbt</small>:Cite_web</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Em" href="http://dbpedia.org/resource/Template:Em"><small>dbt</small>:Em</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Main" href="http://dbpedia.org/resource/Template:Main"><small>dbt</small>:Main</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Math" href="http://dbpedia.org/resource/Template:Math"><small>dbt</small>:Math</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Mvar" href="http://dbpedia.org/resource/Template:Mvar"><small>dbt</small>:Mvar</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:NumBlk" href="http://dbpedia.org/resource/Template:NumBlk"><small>dbt</small>:NumBlk</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Redirect" href="http://dbpedia.org/resource/Template:Redirect"><small>dbt</small>:Redirect</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Reflist" href="http://dbpedia.org/resource/Template:Reflist"><small>dbt</small>:Reflist</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Short_description" href="http://dbpedia.org/resource/Template:Short_description"><small>dbt</small>:Short_description</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Slink" href="http://dbpedia.org/resource/Template:Slink"><small>dbt</small>:Slink</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Visible_anchor" href="http://dbpedia.org/resource/Template:Visible_anchor"><small>dbt</small>:Visible_anchor</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Tensors" href="http://dbpedia.org/resource/Template:Tensors"><small>dbt</small>:Tensors</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Linear_algebra" href="http://dbpedia.org/resource/Template:Linear_algebra"><small>dbt</small>:Linear_algebra</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://purl.org/dc/terms/subject"><small>dcterms:</small>subject</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dcterms:subject" resource="http://dbpedia.org/resource/Category:Axiom_of_choice" prefix="dcterms: http://purl.org/dc/terms/" href="http://dbpedia.org/resource/Category:Axiom_of_choice"><small>dbc</small>:Axiom_of_choice</a></span></li> <li><span class="literal"><a class="uri" rel="dcterms:subject" resource="http://dbpedia.org/resource/Category:Articles_containing_proofs" prefix="dcterms: http://purl.org/dc/terms/" href="http://dbpedia.org/resource/Category:Articles_containing_proofs"><small>dbc</small>:Articles_containing_proofs</a></span></li> <li><span class="literal"><a class="uri" rel="dcterms:subject" resource="http://dbpedia.org/resource/Category:Linear_algebra" prefix="dcterms: http://purl.org/dc/terms/" href="http://dbpedia.org/resource/Category:Linear_algebra"><small>dbc</small>:Linear_algebra</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://purl.org/linguistics/gold/hypernym"><small>gold:</small>hypernym</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="gold:hypernym" resource="http://dbpedia.org/resource/Combination" prefix="gold: http://purl.org/linguistics/gold/" href="http://dbpedia.org/resource/Combination"><small>dbr</small>:Combination</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><small>rdf:</small>type</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatVectorSpaces" href="http://dbpedia.org/class/yago/WikicatVectorSpaces"><small>yago</small>:WikicatVectorSpaces</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Abstraction100002137" href="http://dbpedia.org/class/yago/Abstraction100002137"><small>yago</small>:Abstraction100002137</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Attribute100024264" href="http://dbpedia.org/class/yago/Attribute100024264"><small>yago</small>:Attribute100024264</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/ontology/Drug" href="http://dbpedia.org/ontology/Drug"><small>dbo</small>:Drug</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Space100028651" href="http://dbpedia.org/class/yago/Space100028651"><small>yago</small>:Space100028651</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#comment"><small>rdfs:</small>comment</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ca" >A àlgebra lineal, es diu que un conjunt ordenat B és base d&#39;un espai vectorial V si es compleixen les condicions següents: * Tots els elements de la base B han de pertànyer a l&#39;espai vectorial V. * Tots els elements de la base B han de ser linealment independents. * Tot element de V es pot escriure com una combinació lineal dels elements de la base B, és a dir B és un sistema generador de V.</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ar" >في الجبر الخطي، قاعدةٌ (بالإنجليزية: Basis)‏ هي مجموعة من المتجهات المستقلة خطيا، والتي بواسطة تركيبة خطية، يمكن لها أن تعبر عن أي متجه منتم إلى فضاء متجهي معين. لتكن V قاعدة ما لفضاء متجهي ما. جميع عناصر V يُمكن أن يعبر عنها بشكل وحيد بواسطة تأليفة خطية لمتجهات القاعدة. الأعداد المستعملة خلال هذه التأليفة الخطية تسمى إحداثيات المتجهة. يمكن لفضاء متجهي ما أن يملك العديد من القواعد، ولكن جميع هذه القواعد تملك نفس العدد من العناصر. لا يمكن لفضاء متجهي أن يملك قاعدة بعنصرين وقاعدة أخرى بثلاث عناصر. عدد عناصر القاعدة يسمى بُعد الفضاء المتجهي.</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="cs" >Práci s vektorovými prostory i samotnými vektory lze velmi ulehčit zavedením pojmu báze vektorového prostoru (krátce jen báze, angl. basis, pl. bases). Jedná se o množinu jistým způsobem výjimečných vektorů z daného vektorového prostoru, pomocí níž jsme schopni vyjádřit libovolný vektor tohoto prostoru. Pojem báze úzce souvisí s pojmem dimenze vektorového prostoru. Zatímco dimenze nám říká, kolik parametrů potřebujeme na popsání libovolného vektoru v daném prostoru, báze je množina vektorů, ze kterých jsme schopni tento vektor sestrojit, známe-li tyto parametry.</span><small> (cs)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="eo" >En lineara algebro, bazo estas minimuma aro da vektoroj, kiuj, kiam kombinitaj, povas adresi ĉiun vektoron en donita spacon. Pli detale, bazo de vektora spaco estas aro da lineare sendependaj vektoroj, kiu generas la tutan spacon.</span><small> (eo)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="es" >En álgebra lineal, una base de un espacio vectorial sobre un campo es un subconjunto de y cumple las siguientes condiciones: * Todos los elementos de pertenecen al espacio vectorial . * Los elementos de forman un sistema linealmente independiente. * Todo elemento de V se puede escribir como combinación lineal de los elementos de la base (es decir, es un sistema generador de ).​</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="in" >Dalam aljabar linear, basis adalah himpunan vektor, yang dalam sebuah kombinasi linear dapat merepresentasikan setiap vektor dalam suatu ruang vektor. Tidak ada elemen dalam himpunan vektor tersebut yang dapat direpresentasikan sebagai kombinasi linear vektor-vektor lain. Basis juga dapat dianggap sebagai &quot;sistem koordinat&quot;.</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="fr" >En mathématiques, une base d&#39;un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d&#39;autres termes, une base de V est une famille libre de vecteurs de V qui engendre V.</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ko" >선형대수학에서, 어떤 벡터 공간의 기저(基底, 영어: basis)는 그 벡터 공간을 선형생성하는 선형독립인 벡터들이다. 달리 말해, 벡터 공간의 임의의 벡터에게 선형결합으로서 유일한 표현을 부여하는 벡터들이다.</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ja" >線型代数学における基底(きてい、英: basis)とは、線型独立なベクトルから成る集合あるいは組で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pl" >Baza – pojęcie będące przeniesieniem oraz rozwinięciem idei układu współrzędnych kartezjańskich w przestrzeniach euklidesowych na abstrakcyjne przestrzenie liniowe. Uwaga: Bazy w nieskończenie wymiarowych przestrzeniach nazywane są czasami bazami Hamela (jest to częsty zwyczaj w analizie funkcjonalnej). Z drugiej strony niektórzy matematycy rezerwują nazwę baza Hamela dla dowolnej bazy przestrzeni liczb rzeczywistych jako przestrzeni liniowej nad ciałem liczb wymiernych.</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="it" >In matematica, e più precisamente in algebra lineare, la base di uno spazio vettoriale è un insieme di vettori linearmente indipendenti che generano lo spazio. In modo equivalente, ogni elemento dello spazio vettoriale può essere scritto in modo unico come combinazione lineare dei vettori appartenenti alla base. Se la base di uno spazio vettoriale è composta da un numero finito di elementi allora la dimensione dello spazio è finita. In particolare, il numero di elementi della base coincide con la dimensione dello spazio.</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="sv" >En mängd sägs vara en bas för ett linjärt rum (eller vektorrum) V om den är linjärt oberoende och spänner upp V, det vill säga varje element i V är en linjärkombination av element ur basen. Det går att byta mellan baser genom basbyten. En basvektor v i ett vektorrum V med dimensionen d, är en vektor i den mängd av d stycken vektorer som bildar en bas för rummet. Basvektorerna är linjärt oberoende. Baser av stor betydelse är de som är ortogonala eller ortonormerade.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pt" >Na álgebra linear, uma base de um espaço vectorial é um conjunto de vetores linearmente independentes que geram esse espaço.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="zh" >在线性代数中,基(英文:basis,又称基底) 是描述、刻画向量空间的基本概念。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 通过基底可以直接地描述向量空间。比如说,在讨论一个向量空间上定义的线性变换时,可以考察变换作用在的一组基上的效果。经此掌握,就能了解到作用在中任意元素的效果。 事实上,不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。在现代集合论中,如果承认选择公理,就可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)会是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能得到一组基。特别地,在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。</span><small> (zh)</small></span></li> <li><span class="literal"><span property="rdfs:comment" lang="en" >In mathematics, a set B of vectors in a vector space V is called a basis if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors. Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. In other words, a basis is a linearly independent spanning set.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="de" >In der linearen Algebra ist eine Basis eine Teilmenge eines Vektorraumes, mit deren Hilfe sich jeder Vektor des Raumes eindeutig als endliche Linearkombination darstellen lässt. Die Koeffizienten dieser Linearkombination heißen die Koordinaten des Vektors bezüglich dieser Basis. Ein Element der Basis heißt Basisvektor, besteht der Vektorraum aus Funktionen, werden die Elemente im Speziellen auch Basisfunktionen genannt. Wenn Verwechslungen mit anderen Basisbegriffen (z. B. der Schauderbasis) zu befürchten sind, nennt man eine solche Teilmenge auch Hamelbasis (nach Georg Hamel). Ein Vektorraum besitzt im Allgemeinen verschiedene Basen, ein Wechsel der Basis erzwingt eine Koordinatentransformation. Die Hamelbasis sollte nicht mit der Basis eines Koordinatensystems verwechselt werden, da dies</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="nl" >In de lineaire algebra is een basis van een vectorruimte een verzameling van lineair onafhankelijke vectoren die de vectorruimte voortbrengen. Een element uit een basis wordt een basisvector genoemd. Voor een gegeven basis is iedere vector uit de vectorruimte een eenduidige eindige lineaire combinatie van de basisvectoren. De coëfficiënten van deze lineaire combinatie heten de coördinaten van de vector ten opzichte van de gegeven basis. Intuïtief beschouwd is een basis een zo klein mogelijke verzameling vectoren die de hele vectorruimte voortbrengen. Een vectorruimte heeft in het algemeen meerdere bases. Ter onderscheiding van andere typen basis (die overigens meestal alleen bij oneindigdimensionale vectorruimten verschillen), wordt de hier gedefinieerde basis ook Hamelbasis (naar Georg Ha</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ru" >Ба́зис (др.-греч. βάσις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами. В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения: В конечномерных пространствах оба определения базиса совпадают.</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="uk" >Ба́зисом (дав.-гр. βασις, основа) векторного простору називається впорядкований набір векторів , якщо кожний вектор із можна однозначно представити у вигляді лінійної комбінації: Коефіцієнти кільця називаються координатами вектора відносно базису . Ця рівність зазвичай записується скорочено: . Тобто так само, як і для запису матриць. Якщо та - деяке дійсне число, то Представлення вектора у вигляді лінійної комбінації базисних векторів називається розкладанням вектора по даному базису. Вектори базису є лінійно незалежними.</span><small> (uk)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#label"><small>rdfs:</small>label</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ar" >قاعدة (جبر خطي)</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ca" >Base (àlgebra)</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="cs" >Báze (lineární algebra)</span><small> (cs)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="de" >Basis (Vektorraum)</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="eo" >Bazo (lineara algebro)</span><small> (eo)</small></span></li> <li><span class="literal"><span property="rdfs:label" lang="en" >Basis (linear algebra)</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="es" >Base (álgebra)</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="fr" >Base (algèbre linéaire)</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="in" >Basis (aljabar linear)</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="it" >Base (algebra lineare)</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ja" >基底 (線型代数学)</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ko" >기저 (선형대수학)</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pl" >Baza (przestrzeń liniowa)</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="nl" >Basis (lineaire algebra)</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pt" >Base (álgebra linear)</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ru" >Базис</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="sv" >Bas (linjär algebra)</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="uk" >Базис (математика)</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="zh" >基 (線性代數)</span><small> (zh)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#sameAs"><small>owl:</small>sameAs</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.04nx6" href="http://rdf.freebase.com/ns/m.04nx6"><small>freebase</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://yago-knowledge.org/resource/Basis_(linear_algebra)" href="http://yago-knowledge.org/resource/Basis_(linear_algebra)"><small>yago-res</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://www.wikidata.org/entity/Q189569" href="http://www.wikidata.org/entity/Q189569"><small>wikidata</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ar.dbpedia.org/resource/قاعدة_(جبر_خطي)" href="http://ar.dbpedia.org/resource/قاعدة_(جبر_خطي)"><small>dbpedia-ar</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://bar.dbpedia.org/resource/Basis_(Vektorraum)" href="http://bar.dbpedia.org/resource/Basis_(Vektorraum)"><small>dbpedia-bar</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://be.dbpedia.org/resource/Базіс" href="http://be.dbpedia.org/resource/Базіс"><small>dbpedia-be</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://bg.dbpedia.org/resource/Базис" href="http://bg.dbpedia.org/resource/Базис"><small>dbpedia-bg</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://bs.dbpedia.org/resource/Baza_(linearna_algebra)" href="http://bs.dbpedia.org/resource/Baza_(linearna_algebra)">http://bs.dbpedia.org/resource/Baza_(linearna_algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ca.dbpedia.org/resource/Base_(àlgebra)" href="http://ca.dbpedia.org/resource/Base_(àlgebra)"><small>dbpedia-ca</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://cs.dbpedia.org/resource/Báze_(lineární_algebra)" href="http://cs.dbpedia.org/resource/Báze_(lineární_algebra)"><small>dbpedia-cs</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://cv.dbpedia.org/resource/Базис" href="http://cv.dbpedia.org/resource/Базис">http://cv.dbpedia.org/resource/Базис</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://de.dbpedia.org/resource/Basis_(Vektorraum)" href="http://de.dbpedia.org/resource/Basis_(Vektorraum)"><small>dbpedia-de</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://eo.dbpedia.org/resource/Bazo_(lineara_algebro)" href="http://eo.dbpedia.org/resource/Bazo_(lineara_algebro)"><small>dbpedia-eo</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://es.dbpedia.org/resource/Base_(álgebra)" href="http://es.dbpedia.org/resource/Base_(álgebra)"><small>dbpedia-es</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://et.dbpedia.org/resource/Baas_(matemaatika)" href="http://et.dbpedia.org/resource/Baas_(matemaatika)"><small>dbpedia-et</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fa.dbpedia.org/resource/پایه_(جبر_خطی)" href="http://fa.dbpedia.org/resource/پایه_(جبر_خطی)"><small>dbpedia-fa</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fi.dbpedia.org/resource/Kanta_(lineaarialgebra)" href="http://fi.dbpedia.org/resource/Kanta_(lineaarialgebra)"><small>dbpedia-fi</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fr.dbpedia.org/resource/Base_(algèbre_linéaire)" href="http://fr.dbpedia.org/resource/Base_(algèbre_linéaire)"><small>dbpedia-fr</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://gl.dbpedia.org/resource/Base_(álxebra_linear)" href="http://gl.dbpedia.org/resource/Base_(álxebra_linear)"><small>dbpedia-gl</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://he.dbpedia.org/resource/בסיס_(אלגברה)" href="http://he.dbpedia.org/resource/בסיס_(אלגברה)"><small>dbpedia-he</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hr.dbpedia.org/resource/Baza_(linearna_algebra)" href="http://hr.dbpedia.org/resource/Baza_(linearna_algebra)"><small>dbpedia-hr</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hu.dbpedia.org/resource/Bázis_(lineáris_algebra)" href="http://hu.dbpedia.org/resource/Bázis_(lineáris_algebra)"><small>dbpedia-hu</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://id.dbpedia.org/resource/Basis_(aljabar_linear)" href="http://id.dbpedia.org/resource/Basis_(aljabar_linear)"><small>dbpedia-id</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://it.dbpedia.org/resource/Base_(algebra_lineare)" href="http://it.dbpedia.org/resource/Base_(algebra_lineare)"><small>dbpedia-it</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ja.dbpedia.org/resource/基底_(線型代数学)" href="http://ja.dbpedia.org/resource/基底_(線型代数学)"><small>dbpedia-ja</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://kk.dbpedia.org/resource/Базис" href="http://kk.dbpedia.org/resource/Базис"><small>dbpedia-kk</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ko.dbpedia.org/resource/기저_(선형대수학)" href="http://ko.dbpedia.org/resource/기저_(선형대수학)"><small>dbpedia-ko</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://lmo.dbpedia.org/resource/Bas_(algebra_lineara)" href="http://lmo.dbpedia.org/resource/Bas_(algebra_lineara)"><small>dbpedia-lmo</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://nl.dbpedia.org/resource/Basis_(lineaire_algebra)" href="http://nl.dbpedia.org/resource/Basis_(lineaire_algebra)"><small>dbpedia-nl</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://nn.dbpedia.org/resource/Basis_i_matematikk" href="http://nn.dbpedia.org/resource/Basis_i_matematikk"><small>dbpedia-nn</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://no.dbpedia.org/resource/Basis_(matematikk)" href="http://no.dbpedia.org/resource/Basis_(matematikk)"><small>dbpedia-no</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pl.dbpedia.org/resource/Baza_(przestrzeń_liniowa)" href="http://pl.dbpedia.org/resource/Baza_(przestrzeń_liniowa)"><small>dbpedia-pl</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pt.dbpedia.org/resource/Base_(álgebra_linear)" href="http://pt.dbpedia.org/resource/Base_(álgebra_linear)"><small>dbpedia-pt</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ro.dbpedia.org/resource/Bază_(algebră_liniară)" href="http://ro.dbpedia.org/resource/Bază_(algebră_liniară)"><small>dbpedia-ro</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ru.dbpedia.org/resource/Базис" href="http://ru.dbpedia.org/resource/Базис"><small>dbpedia-ru</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sh.dbpedia.org/resource/Baza_(linearna_algebra)" href="http://sh.dbpedia.org/resource/Baza_(linearna_algebra)"><small>dbpedia-sh</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://simple.dbpedia.org/resource/Basis_(linear_algebra)" href="http://simple.dbpedia.org/resource/Basis_(linear_algebra)"><small>dbpedia-simple</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sk.dbpedia.org/resource/Báza_(vektorový_priestor)" href="http://sk.dbpedia.org/resource/Báza_(vektorový_priestor)"><small>dbpedia-sk</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sl.dbpedia.org/resource/Baza_(linearna_algebra)" href="http://sl.dbpedia.org/resource/Baza_(linearna_algebra)"><small>dbpedia-sl</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sr.dbpedia.org/resource/База_(линеарна_алгебра)" href="http://sr.dbpedia.org/resource/База_(линеарна_алгебра)"><small>dbpedia-sr</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sv.dbpedia.org/resource/Bas_(linjär_algebra)" href="http://sv.dbpedia.org/resource/Bas_(linjär_algebra)"><small>dbpedia-sv</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ta.dbpedia.org/resource/திசையன்_வெளியின்_அடுக்களம்" href="http://ta.dbpedia.org/resource/திசையன்_வெளியின்_அடுக்களம்">http://ta.dbpedia.org/resource/திசையன்_வெளியின்_அடுக்களம்</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://tr.dbpedia.org/resource/Taban_(lineer_cebir)" href="http://tr.dbpedia.org/resource/Taban_(lineer_cebir)"><small>dbpedia-tr</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://uk.dbpedia.org/resource/Базис_(математика)" href="http://uk.dbpedia.org/resource/Базис_(математика)"><small>dbpedia-uk</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ur.dbpedia.org/resource/بنیاد_سمتیہ" href="http://ur.dbpedia.org/resource/بنیاد_سمتیہ">http://ur.dbpedia.org/resource/بنیاد_سمتیہ</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://vi.dbpedia.org/resource/Cơ_sở_(đại_số_tuyến_tính)" href="http://vi.dbpedia.org/resource/Cơ_sở_(đại_số_tuyến_tính)"><small>dbpedia-vi</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://zh.dbpedia.org/resource/基_(線性代數)" href="http://zh.dbpedia.org/resource/基_(線性代數)"><small>dbpedia-zh</small>:Basis (linear algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="https://global.dbpedia.org/id/pHGc" href="https://global.dbpedia.org/id/pHGc">https://global.dbpedia.org/id/pHGc</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/ns/prov#wasDerivedFrom"><small>prov:</small>wasDerivedFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="prov:wasDerivedFrom" resource="http://en.wikipedia.org/wiki/Basis_(linear_algebra)?oldid=1117296620&amp;ns=0" href="http://en.wikipedia.org/wiki/Basis_(linear_algebra)?oldid=1117296620&amp;ns=0"><small>wikipedia-en</small>:Basis_(linear_algebra)?oldid=1117296620&amp;ns=0</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/depiction"><small>foaf:</small>depiction</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/3d_two_bases_same_vector.svg" href="http://commons.wikimedia.org/wiki/Special:FilePath/3d_two_bases_same_vector.svg"><small>wiki-commons</small>:Special:FilePath/3d_two_bases_same_vector.svg</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Basis_graph_(no_label).svg" href="http://commons.wikimedia.org/wiki/Special:FilePath/Basis_graph_(no_label).svg"><small>wiki-commons</small>:Special:FilePath/Basis_graph_(no_label).svg</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Random_almost_orthogonal_sets.png" href="http://commons.wikimedia.org/wiki/Special:FilePath/Random_almost_orthogonal_sets.png"><small>wiki-commons</small>:Special:FilePath/Random_almost_orthogonal_sets.png</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/isPrimaryTopicOf"><small>foaf:</small>isPrimaryTopicOf</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:isPrimaryTopicOf" resource="http://en.wikipedia.org/wiki/Basis_(linear_algebra)" href="http://en.wikipedia.org/wiki/Basis_(linear_algebra)"><small>wikipedia-en</small>:Basis_(linear_algebra)</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageDisambiguates"><small>dbo:</small>wikiPageDisambiguates</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageDisambiguates" resource="http://dbpedia.org/resource/Basis" href="http://dbpedia.org/resource/Basis"><small>dbr</small>:Basis</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageRedirects"><small>dbo:</small>wikiPageRedirects</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Coordinate_(vector_space)" href="http://dbpedia.org/resource/Coordinate_(vector_space)"><small>dbr</small>:Coordinate_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Vector_decomposition" href="http://dbpedia.org/resource/Vector_decomposition"><small>dbr</small>:Vector_decomposition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Hamel_bases" href="http://dbpedia.org/resource/Hamel_bases"><small>dbr</small>:Hamel_bases</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Hamel_basis" href="http://dbpedia.org/resource/Hamel_basis"><small>dbr</small>:Hamel_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Convex_basis" href="http://dbpedia.org/resource/Convex_basis"><small>dbr</small>:Convex_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Component_of_a_vector" href="http://dbpedia.org/resource/Component_of_a_vector"><small>dbr</small>:Component_of_a_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Cone_basis" href="http://dbpedia.org/resource/Cone_basis"><small>dbr</small>:Cone_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Linear_Algebra/Basis_for_a_Vector_Space" href="http://dbpedia.org/resource/Linear_Algebra/Basis_for_a_Vector_Space"><small>dbr</small>:Linear_Algebra/Basis_for_a_Vector_Space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Linear_algebra/Basis_for_a_vector_space" href="http://dbpedia.org/resource/Linear_algebra/Basis_for_a_vector_space"><small>dbr</small>:Linear_algebra/Basis_for_a_vector_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Linear_basis" href="http://dbpedia.org/resource/Linear_basis"><small>dbr</small>:Linear_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Basis_(algebra)" href="http://dbpedia.org/resource/Basis_(algebra)"><small>dbr</small>:Basis_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Basis_(mathematics)" href="http://dbpedia.org/resource/Basis_(mathematics)"><small>dbr</small>:Basis_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Basis_(vector_space)" href="http://dbpedia.org/resource/Basis_(vector_space)"><small>dbr</small>:Basis_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Basis_element" href="http://dbpedia.org/resource/Basis_element"><small>dbr</small>:Basis_element</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Basis_of_a_vector_space" href="http://dbpedia.org/resource/Basis_of_a_vector_space"><small>dbr</small>:Basis_of_a_vector_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Basis_vector" href="http://dbpedia.org/resource/Basis_vector"><small>dbr</small>:Basis_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Basis_vectors" href="http://dbpedia.org/resource/Basis_vectors"><small>dbr</small>:Basis_vectors</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Vector_basis" href="http://dbpedia.org/resource/Vector_basis"><small>dbr</small>:Vector_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Vector_space_basis" href="http://dbpedia.org/resource/Vector_space_basis"><small>dbr</small>:Vector_space_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Ordered_basis" href="http://dbpedia.org/resource/Ordered_basis"><small>dbr</small>:Ordered_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Algebraic_basis" href="http://dbpedia.org/resource/Algebraic_basis"><small>dbr</small>:Algebraic_basis</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Precession" href="http://dbpedia.org/resource/Precession"><small>dbr</small>:Precession</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudo-Euclidean_space" href="http://dbpedia.org/resource/Pseudo-Euclidean_space"><small>dbr</small>:Pseudo-Euclidean_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quantum_entanglement" href="http://dbpedia.org/resource/Quantum_entanglement"><small>dbr</small>:Quantum_entanglement</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quantum_logic_gate" href="http://dbpedia.org/resource/Quantum_logic_gate"><small>dbr</small>:Quantum_logic_gate</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quantum_number" href="http://dbpedia.org/resource/Quantum_number"><small>dbr</small>:Quantum_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quantum_state" href="http://dbpedia.org/resource/Quantum_state"><small>dbr</small>:Quantum_state</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quaternion" href="http://dbpedia.org/resource/Quaternion"><small>dbr</small>:Quaternion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quaternionic_analysis" href="http://dbpedia.org/resource/Quaternionic_analysis"><small>dbr</small>:Quaternionic_analysis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Qubit" href="http://dbpedia.org/resource/Qubit"><small>dbr</small>:Qubit</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Root_of_unity" href="http://dbpedia.org/resource/Root_of_unity"><small>dbr</small>:Root_of_unity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotation_formalisms_in_three_dimensions" href="http://dbpedia.org/resource/Rotation_formalisms_in_three_dimensions"><small>dbr</small>:Rotation_formalisms_in_three_dimensions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotations_in_4-dimensional_Euclidean_space" href="http://dbpedia.org/resource/Rotations_in_4-dimensional_Euclidean_space"><small>dbr</small>:Rotations_in_4-dimensional_Euclidean_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Row_and_column_spaces" href="http://dbpedia.org/resource/Row_and_column_spaces"><small>dbr</small>:Row_and_column_spaces</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Scalar_(mathematics)" href="http://dbpedia.org/resource/Scalar_(mathematics)"><small>dbr</small>:Scalar_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schur_polynomial" href="http://dbpedia.org/resource/Schur_polynomial"><small>dbr</small>:Schur_polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_algorithms" href="http://dbpedia.org/resource/List_of_algorithms"><small>dbr</small>:List_of_algorithms</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Module_(mathematics)" href="http://dbpedia.org/resource/Module_(mathematics)"><small>dbr</small>:Module_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Multilinear_map" href="http://dbpedia.org/resource/Multilinear_map"><small>dbr</small>:Multilinear_map</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Numerical_linear_algebra" href="http://dbpedia.org/resource/Numerical_linear_algebra"><small>dbr</small>:Numerical_linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Metabolic_network_modelling" href="http://dbpedia.org/resource/Metabolic_network_modelling"><small>dbr</small>:Metabolic_network_modelling</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Monomial" href="http://dbpedia.org/resource/Monomial"><small>dbr</small>:Monomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Monomial_basis" href="http://dbpedia.org/resource/Monomial_basis"><small>dbr</small>:Monomial_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Monomial_order" href="http://dbpedia.org/resource/Monomial_order"><small>dbr</small>:Monomial_order</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/One-way_quantum_computer" href="http://dbpedia.org/resource/One-way_quantum_computer"><small>dbr</small>:One-way_quantum_computer</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Particle_number_operator" href="http://dbpedia.org/resource/Particle_number_operator"><small>dbr</small>:Particle_number_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Representation_theory" href="http://dbpedia.org/resource/Representation_theory"><small>dbr</small>:Representation_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wigner&#39;s_friend" href="http://dbpedia.org/resource/Wigner&#39;s_friend"><small>dbr</small>:Wigner&#39;s_friend</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Principal_homogeneous_space" href="http://dbpedia.org/resource/Principal_homogeneous_space"><small>dbr</small>:Principal_homogeneous_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Primordial_element_(algebra)" href="http://dbpedia.org/resource/Primordial_element_(algebra)"><small>dbr</small>:Primordial_element_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector-valued_differential_form" href="http://dbpedia.org/resource/Vector-valued_differential_form"><small>dbr</small>:Vector-valued_differential_form</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Barycentric_coordinate_system" href="http://dbpedia.org/resource/Barycentric_coordinate_system"><small>dbr</small>:Barycentric_coordinate_system</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basic_subgroup" href="http://dbpedia.org/resource/Basic_subgroup"><small>dbr</small>:Basic_subgroup</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_function" href="http://dbpedia.org/resource/Basis_function"><small>dbr</small>:Basis_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bilinear_form" href="http://dbpedia.org/resource/Bilinear_form"><small>dbr</small>:Bilinear_form</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bloch&#39;s_theorem" href="http://dbpedia.org/resource/Bloch&#39;s_theorem"><small>dbr</small>:Bloch&#39;s_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bra–ket_notation" href="http://dbpedia.org/resource/Bra–ket_notation"><small>dbr</small>:Bra–ket_notation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Degenerate_bilinear_form" href="http://dbpedia.org/resource/Degenerate_bilinear_form"><small>dbr</small>:Degenerate_bilinear_form</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dehn_invariant" href="http://dbpedia.org/resource/Dehn_invariant"><small>dbr</small>:Dehn_invariant</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Derivations_of_the_Lorentz_transformations" href="http://dbpedia.org/resource/Derivations_of_the_Lorentz_transformations"><small>dbr</small>:Derivations_of_the_Lorentz_transformations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Determinant" href="http://dbpedia.org/resource/Determinant"><small>dbr</small>:Determinant</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebra_over_a_field" href="http://dbpedia.org/resource/Algebra_over_a_field"><small>dbr</small>:Algebra_over_a_field</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Holonomic_basis" href="http://dbpedia.org/resource/Holonomic_basis"><small>dbr</small>:Holonomic_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_mathematical_jargon" href="http://dbpedia.org/resource/List_of_mathematical_jargon"><small>dbr</small>:List_of_mathematical_jargon</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pauli_matrices" href="http://dbpedia.org/resource/Pauli_matrices"><small>dbr</small>:Pauli_matrices</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Per_Enflo" href="http://dbpedia.org/resource/Per_Enflo"><small>dbr</small>:Per_Enflo</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Periodic_graph_(geometry)" href="http://dbpedia.org/resource/Periodic_graph_(geometry)"><small>dbr</small>:Periodic_graph_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Relativistic_quantum_mechanics" href="http://dbpedia.org/resource/Relativistic_quantum_mechanics"><small>dbr</small>:Relativistic_quantum_mechanics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Representation_of_a_Lie_group" href="http://dbpedia.org/resource/Representation_of_a_Lie_group"><small>dbr</small>:Representation_of_a_Lie_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Representation_theory_of_the_Lorentz_group" href="http://dbpedia.org/resource/Representation_theory_of_the_Lorentz_group"><small>dbr</small>:Representation_theory_of_the_Lorentz_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Revised_simplex_method" href="http://dbpedia.org/resource/Revised_simplex_method"><small>dbr</small>:Revised_simplex_method</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ricci_calculus" href="http://dbpedia.org/resource/Ricci_calculus"><small>dbr</small>:Ricci_calculus</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_of_integers" href="http://dbpedia.org/resource/Ring_of_integers"><small>dbr</small>:Ring_of_integers</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Characteristic_polynomial" href="http://dbpedia.org/resource/Characteristic_polynomial"><small>dbr</small>:Characteristic_polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cubic_harmonic" href="http://dbpedia.org/resource/Cubic_harmonic"><small>dbr</small>:Cubic_harmonic</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Curvature_invariant" href="http://dbpedia.org/resource/Curvature_invariant"><small>dbr</small>:Curvature_invariant</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cycle_(graph_theory)" href="http://dbpedia.org/resource/Cycle_(graph_theory)"><small>dbr</small>:Cycle_(graph_theory)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cycle_basis" href="http://dbpedia.org/resource/Cycle_basis"><small>dbr</small>:Cycle_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cycle_space" href="http://dbpedia.org/resource/Cycle_space"><small>dbr</small>:Cycle_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dagger_compact_category" href="http://dbpedia.org/resource/Dagger_compact_category"><small>dbr</small>:Dagger_compact_category</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Uncertainty_principle" href="http://dbpedia.org/resource/Uncertainty_principle"><small>dbr</small>:Uncertainty_principle</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_space" href="http://dbpedia.org/resource/Vector_space"><small>dbr</small>:Vector_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Defective_matrix" href="http://dbpedia.org/resource/Defective_matrix"><small>dbr</small>:Defective_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Degree_of_a_field_extension" href="http://dbpedia.org/resource/Degree_of_a_field_extension"><small>dbr</small>:Degree_of_a_field_extension</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Incidence_algebra" href="http://dbpedia.org/resource/Incidence_algebra"><small>dbr</small>:Incidence_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Integer-valued_polynomial" href="http://dbpedia.org/resource/Integer-valued_polynomial"><small>dbr</small>:Integer-valued_polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Invariant_basis_number" href="http://dbpedia.org/resource/Invariant_basis_number"><small>dbr</small>:Invariant_basis_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Invariant_subspace" href="http://dbpedia.org/resource/Invariant_subspace"><small>dbr</small>:Invariant_subspace</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Reciprocal_lattice" href="http://dbpedia.org/resource/Reciprocal_lattice"><small>dbr</small>:Reciprocal_lattice</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lexicographic_code" href="http://dbpedia.org/resource/Lexicographic_code"><small>dbr</small>:Lexicographic_code</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lindbladian" href="http://dbpedia.org/resource/Lindbladian"><small>dbr</small>:Lindbladian</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_mathematical_proofs" href="http://dbpedia.org/resource/List_of_mathematical_proofs"><small>dbr</small>:List_of_mathematical_proofs</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_mathematical_uses_of_Latin_letters" href="http://dbpedia.org/resource/List_of_mathematical_uses_of_Latin_letters"><small>dbr</small>:List_of_mathematical_uses_of_Latin_letters</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Nuclear_structure" href="http://dbpedia.org/resource/Nuclear_structure"><small>dbr</small>:Nuclear_structure</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Null_vector" href="http://dbpedia.org/resource/Null_vector"><small>dbr</small>:Null_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Position_and_momentum_spaces" href="http://dbpedia.org/resource/Position_and_momentum_spaces"><small>dbr</small>:Position_and_momentum_spaces</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Stanley_symmetric_function" href="http://dbpedia.org/resource/Stanley_symmetric_function"><small>dbr</small>:Stanley_symmetric_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudo-spectral_method" href="http://dbpedia.org/resource/Pseudo-spectral_method"><small>dbr</small>:Pseudo-spectral_method</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Similarity_invariance" href="http://dbpedia.org/resource/Similarity_invariance"><small>dbr</small>:Similarity_invariance</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Companion_matrix" href="http://dbpedia.org/resource/Companion_matrix"><small>dbr</small>:Companion_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Complexification" href="http://dbpedia.org/resource/Complexification"><small>dbr</small>:Complexification</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Compound_matrix" href="http://dbpedia.org/resource/Compound_matrix"><small>dbr</small>:Compound_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Conjugate_gradient_method" href="http://dbpedia.org/resource/Conjugate_gradient_method"><small>dbr</small>:Conjugate_gradient_method</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Covariant_transformation" href="http://dbpedia.org/resource/Covariant_transformation"><small>dbr</small>:Covariant_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_(mathematics)" href="http://dbpedia.org/resource/Matrix_(mathematics)"><small>dbr</small>:Matrix_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_multiplication" href="http://dbpedia.org/resource/Matrix_multiplication"><small>dbr</small>:Matrix_multiplication</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Chevalley_basis" href="http://dbpedia.org/resource/Chevalley_basis"><small>dbr</small>:Chevalley_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Elliptic_boundary_value_problem" href="http://dbpedia.org/resource/Elliptic_boundary_value_problem"><small>dbr</small>:Elliptic_boundary_value_problem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Essential_dimension" href="http://dbpedia.org/resource/Essential_dimension"><small>dbr</small>:Essential_dimension</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/General_linear_group" href="http://dbpedia.org/resource/General_linear_group"><small>dbr</small>:General_linear_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generalized_flag_variety" href="http://dbpedia.org/resource/Generalized_flag_variety"><small>dbr</small>:Generalized_flag_variety</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generating_set_of_a_module" href="http://dbpedia.org/resource/Generating_set_of_a_module"><small>dbr</small>:Generating_set_of_a_module</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generator_matrix" href="http://dbpedia.org/resource/Generator_matrix"><small>dbr</small>:Generator_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Geometric_hashing" href="http://dbpedia.org/resource/Geometric_hashing"><small>dbr</small>:Geometric_hashing</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Penrose_graphical_notation" href="http://dbpedia.org/resource/Penrose_graphical_notation"><small>dbr</small>:Penrose_graphical_notation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetric_matrix" href="http://dbpedia.org/resource/Symmetric_matrix"><small>dbr</small>:Symmetric_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotation_operator_(quantum_mechanics)" href="http://dbpedia.org/resource/Rotation_operator_(quantum_mechanics)"><small>dbr</small>:Rotation_operator_(quantum_mechanics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quantum_clustering" href="http://dbpedia.org/resource/Quantum_clustering"><small>dbr</small>:Quantum_clustering</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quantum_key_distribution" href="http://dbpedia.org/resource/Quantum_key_distribution"><small>dbr</small>:Quantum_key_distribution</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quantum_tomography" href="http://dbpedia.org/resource/Quantum_tomography"><small>dbr</small>:Quantum_tomography</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quaternionic_vector_space" href="http://dbpedia.org/resource/Quaternionic_vector_space"><small>dbr</small>:Quaternionic_vector_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Qutrit" href="http://dbpedia.org/resource/Qutrit"><small>dbr</small>:Qutrit</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Radial_basis_function_interpolation" href="http://dbpedia.org/resource/Radial_basis_function_interpolation"><small>dbr</small>:Radial_basis_function_interpolation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Clifford_algebra" href="http://dbpedia.org/resource/Clifford_algebra"><small>dbr</small>:Clifford_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Eigendecomposition_of_a_matrix" href="http://dbpedia.org/resource/Eigendecomposition_of_a_matrix"><small>dbr</small>:Eigendecomposition_of_a_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Eigenvalues_and_eigenvectors" href="http://dbpedia.org/resource/Eigenvalues_and_eigenvectors"><small>dbr</small>:Eigenvalues_and_eigenvectors</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Equatorial_coordinate_system" href="http://dbpedia.org/resource/Equatorial_coordinate_system"><small>dbr</small>:Equatorial_coordinate_system</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_of_several_real_variables" href="http://dbpedia.org/resource/Function_of_several_real_variables"><small>dbr</small>:Function_of_several_real_variables</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/GF(2)" href="http://dbpedia.org/resource/GF(2)"><small>dbr</small>:GF(2)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generalized_eigenvector" href="http://dbpedia.org/resource/Generalized_eigenvector"><small>dbr</small>:Generalized_eigenvector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_Lie_groups_and_Lie_algebras" href="http://dbpedia.org/resource/Glossary_of_Lie_groups_and_Lie_algebras"><small>dbr</small>:Glossary_of_Lie_groups_and_Lie_algebras</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_aerospace_engineering" href="http://dbpedia.org/resource/Glossary_of_aerospace_engineering"><small>dbr</small>:Glossary_of_aerospace_engineering</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_engineering:_M–Z" href="http://dbpedia.org/resource/Glossary_of_engineering:_M–Z"><small>dbr</small>:Glossary_of_engineering:_M–Z</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_linear_algebra" href="http://dbpedia.org/resource/Glossary_of_linear_algebra"><small>dbr</small>:Glossary_of_linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gluon_field" href="http://dbpedia.org/resource/Gluon_field"><small>dbr</small>:Gluon_field</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Minkowski_space" href="http://dbpedia.org/resource/Minkowski_space"><small>dbr</small>:Minkowski_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Multidimensional_sampling" href="http://dbpedia.org/resource/Multidimensional_sampling"><small>dbr</small>:Multidimensional_sampling</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Corner_reflector" href="http://dbpedia.org/resource/Corner_reflector"><small>dbr</small>:Corner_reflector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Miller_index" href="http://dbpedia.org/resource/Miller_index"><small>dbr</small>:Miller_index</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Milnor_number" href="http://dbpedia.org/resource/Milnor_number"><small>dbr</small>:Milnor_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orthogonal_functions" href="http://dbpedia.org/resource/Orthogonal_functions"><small>dbr</small>:Orthogonal_functions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Order_(ring_theory)" href="http://dbpedia.org/resource/Order_(ring_theory)"><small>dbr</small>:Order_(ring_theory)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orthogonal_basis" href="http://dbpedia.org/resource/Orthogonal_basis"><small>dbr</small>:Orthogonal_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orthogonality_(mathematics)" href="http://dbpedia.org/resource/Orthogonality_(mathematics)"><small>dbr</small>:Orthogonality_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orthonormal_function_system" href="http://dbpedia.org/resource/Orthonormal_function_system"><small>dbr</small>:Orthonormal_function_system</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orthonormality" href="http://dbpedia.org/resource/Orthonormality"><small>dbr</small>:Orthonormality</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Andreas_Blass" href="http://dbpedia.org/resource/Andreas_Blass"><small>dbr</small>:Andreas_Blass</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Angular_momentum_operator" href="http://dbpedia.org/resource/Angular_momentum_operator"><small>dbr</small>:Angular_momentum_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Arnoldi_iteration" href="http://dbpedia.org/resource/Arnoldi_iteration"><small>dbr</small>:Arnoldi_iteration</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_(universal_algebra)" href="http://dbpedia.org/resource/Basis_(universal_algebra)"><small>dbr</small>:Basis_(universal_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_of_a_matroid" href="http://dbpedia.org/resource/Basis_of_a_matroid"><small>dbr</small>:Basis_of_a_matroid</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bernstein_polynomial" href="http://dbpedia.org/resource/Bernstein_polynomial"><small>dbr</small>:Bernstein_polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lieb–Robinson_bounds" href="http://dbpedia.org/resource/Lieb–Robinson_bounds"><small>dbr</small>:Lieb–Robinson_bounds</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_algebra" href="http://dbpedia.org/resource/Linear_algebra"><small>dbr</small>:Linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_differential_equation" href="http://dbpedia.org/resource/Linear_differential_equation"><small>dbr</small>:Linear_differential_equation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_form" href="http://dbpedia.org/resource/Linear_form"><small>dbr</small>:Linear_form</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lorentz_transformation" href="http://dbpedia.org/resource/Lorentz_transformation"><small>dbr</small>:Lorentz_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Simplex" href="http://dbpedia.org/resource/Simplex"><small>dbr</small>:Simplex</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Stéphane_Mallat" href="http://dbpedia.org/resource/Stéphane_Mallat"><small>dbr</small>:Stéphane_Mallat</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Sufficient_dimension_reduction" href="http://dbpedia.org/resource/Sufficient_dimension_reduction"><small>dbr</small>:Sufficient_dimension_reduction</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative_magma" href="http://dbpedia.org/resource/Commutative_magma"><small>dbr</small>:Commutative_magma</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative_ring" href="http://dbpedia.org/resource/Commutative_ring"><small>dbr</small>:Commutative_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commuting_matrices" href="http://dbpedia.org/resource/Commuting_matrices"><small>dbr</small>:Commuting_matrices</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Compressed_sensing" href="http://dbpedia.org/resource/Compressed_sensing"><small>dbr</small>:Compressed_sensing</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Density_matrix" href="http://dbpedia.org/resource/Density_matrix"><small>dbr</small>:Density_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zero_object_(algebra)" href="http://dbpedia.org/resource/Zero_object_(algebra)"><small>dbr</small>:Zero_object_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Harmonic_wavelet_transform" href="http://dbpedia.org/resource/Harmonic_wavelet_transform"><small>dbr</small>:Harmonic_wavelet_transform</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Identity_matrix" href="http://dbpedia.org/resource/Identity_matrix"><small>dbr</small>:Identity_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Kernel_(algebra)" href="http://dbpedia.org/resource/Kernel_(algebra)"><small>dbr</small>:Kernel_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Normal_basis" href="http://dbpedia.org/resource/Normal_basis"><small>dbr</small>:Normal_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orthonormal_basis" href="http://dbpedia.org/resource/Orthonormal_basis"><small>dbr</small>:Orthonormal_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schauder_basis" href="http://dbpedia.org/resource/Schauder_basis"><small>dbr</small>:Schauder_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Standard_basis" href="http://dbpedia.org/resource/Standard_basis"><small>dbr</small>:Standard_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Overdetermined_system" href="http://dbpedia.org/resource/Overdetermined_system"><small>dbr</small>:Overdetermined_system</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Plane_(geometry)" href="http://dbpedia.org/resource/Plane_(geometry)"><small>dbr</small>:Plane_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pole_figure" href="http://dbpedia.org/resource/Pole_figure"><small>dbr</small>:Pole_figure</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_chaos" href="http://dbpedia.org/resource/Polynomial_chaos"><small>dbr</small>:Polynomial_chaos</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_identity_ring" href="http://dbpedia.org/resource/Polynomial_identity_ring"><small>dbr</small>:Polynomial_identity_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Spectral_theory" href="http://dbpedia.org/resource/Spectral_theory"><small>dbr</small>:Spectral_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Spectrum_of_a_matrix" href="http://dbpedia.org/resource/Spectrum_of_a_matrix"><small>dbr</small>:Spectrum_of_a_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Spline_(mathematics)" href="http://dbpedia.org/resource/Spline_(mathematics)"><small>dbr</small>:Spline_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Staggered_fermion" href="http://dbpedia.org/resource/Staggered_fermion"><small>dbr</small>:Staggered_fermion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Stirling_number" href="http://dbpedia.org/resource/Stirling_number"><small>dbr</small>:Stirling_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Stokes_parameters" href="http://dbpedia.org/resource/Stokes_parameters"><small>dbr</small>:Stokes_parameters</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Substitution_cipher" href="http://dbpedia.org/resource/Substitution_cipher"><small>dbr</small>:Substitution_cipher</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Supercell_(crystal)" href="http://dbpedia.org/resource/Supercell_(crystal)"><small>dbr</small>:Supercell_(crystal)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symplectic_vector_space" href="http://dbpedia.org/resource/Symplectic_vector_space"><small>dbr</small>:Symplectic_vector_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_ring" href="http://dbpedia.org/resource/Matrix_ring"><small>dbr</small>:Matrix_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_unit" href="http://dbpedia.org/resource/Matrix_unit"><small>dbr</small>:Matrix_unit</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matroid" href="http://dbpedia.org/resource/Matroid"><small>dbr</small>:Matroid</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Active_and_passive_transformation" href="http://dbpedia.org/resource/Active_and_passive_transformation"><small>dbr</small>:Active_and_passive_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cayley–Hamilton_theorem" href="http://dbpedia.org/resource/Cayley–Hamilton_theorem"><small>dbr</small>:Cayley–Hamilton_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Three-dimensional_space" href="http://dbpedia.org/resource/Three-dimensional_space"><small>dbr</small>:Three-dimensional_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Trace_(linear_algebra)" href="http://dbpedia.org/resource/Trace_(linear_algebra)"><small>dbr</small>:Trace_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Transpose" href="http://dbpedia.org/resource/Transpose"><small>dbr</small>:Transpose</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wave_function" href="http://dbpedia.org/resource/Wave_function"><small>dbr</small>:Wave_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Weak_charge" href="http://dbpedia.org/resource/Weak_charge"><small>dbr</small>:Weak_charge</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wigner–Eckart_theorem" href="http://dbpedia.org/resource/Wigner–Eckart_theorem"><small>dbr</small>:Wigner–Eckart_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dual_basis" href="http://dbpedia.org/resource/Dual_basis"><small>dbr</small>:Dual_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dual_basis_in_a_field_extension" href="http://dbpedia.org/resource/Dual_basis_in_a_field_extension"><small>dbr</small>:Dual_basis_in_a_field_extension</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Galerkin_method" href="http://dbpedia.org/resource/Galerkin_method"><small>dbr</small>:Galerkin_method</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hadamard_transform" href="http://dbpedia.org/resource/Hadamard_transform"><small>dbr</small>:Hadamard_transform</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hecke_algebra_of_a_finite_group" href="http://dbpedia.org/resource/Hecke_algebra_of_a_finite_group"><small>dbr</small>:Hecke_algebra_of_a_finite_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Heisenberg_picture" href="http://dbpedia.org/resource/Heisenberg_picture"><small>dbr</small>:Heisenberg_picture</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/K-frame" href="http://dbpedia.org/resource/K-frame"><small>dbr</small>:K-frame</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lattice_(group)" href="http://dbpedia.org/resource/Lattice_(group)"><small>dbr</small>:Lattice_(group)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lattice_problem" href="http://dbpedia.org/resource/Lattice_problem"><small>dbr</small>:Lattice_problem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lattice_reduction" href="http://dbpedia.org/resource/Lattice_reduction"><small>dbr</small>:Lattice_reduction</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_code" href="http://dbpedia.org/resource/Linear_code"><small>dbr</small>:Linear_code</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_combination" href="http://dbpedia.org/resource/Linear_combination"><small>dbr</small>:Linear_combination</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_complex_structure" href="http://dbpedia.org/resource/Linear_complex_structure"><small>dbr</small>:Linear_complex_structure</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_independence" href="http://dbpedia.org/resource/Linear_independence"><small>dbr</small>:Linear_independence</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_span" href="http://dbpedia.org/resource/Linear_span"><small>dbr</small>:Linear_span</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linearly_disjoint" href="http://dbpedia.org/resource/Linearly_disjoint"><small>dbr</small>:Linearly_disjoint</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lippmann–Schwinger_equation" href="http://dbpedia.org/resource/Lippmann–Schwinger_equation"><small>dbr</small>:Lippmann–Schwinger_equation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Locally_finite_operator" href="http://dbpedia.org/resource/Locally_finite_operator"><small>dbr</small>:Locally_finite_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Scalar_projection" href="http://dbpedia.org/resource/Scalar_projection"><small>dbr</small>:Scalar_projection</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_of_polynomial_functions" href="http://dbpedia.org/resource/Ring_of_polynomial_functions"><small>dbr</small>:Ring_of_polynomial_functions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Adjugate_matrix" href="http://dbpedia.org/resource/Adjugate_matrix"><small>dbr</small>:Adjugate_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Affine_connection" href="http://dbpedia.org/resource/Affine_connection"><small>dbr</small>:Affine_connection</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Affine_transformation" href="http://dbpedia.org/resource/Affine_transformation"><small>dbr</small>:Affine_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Affine_variety" href="http://dbpedia.org/resource/Affine_variety"><small>dbr</small>:Affine_variety</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cut_(graph_theory)" href="http://dbpedia.org/resource/Cut_(graph_theory)"><small>dbr</small>:Cut_(graph_theory)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dual_graph" href="http://dbpedia.org/resource/Dual_graph"><small>dbr</small>:Dual_graph</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dual_space" href="http://dbpedia.org/resource/Dual_space"><small>dbr</small>:Dual_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Duality_(mathematics)" href="http://dbpedia.org/resource/Duality_(mathematics)"><small>dbr</small>:Duality_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/E8_(mathematics)" href="http://dbpedia.org/resource/E8_(mathematics)"><small>dbr</small>:E8_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Euclidean_vector" href="http://dbpedia.org/resource/Euclidean_vector"><small>dbr</small>:Euclidean_vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Euler_angles" href="http://dbpedia.org/resource/Euler_angles"><small>dbr</small>:Euler_angles</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Exponentiation" href="http://dbpedia.org/resource/Exponentiation"><small>dbr</small>:Exponentiation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Exterior_algebra" href="http://dbpedia.org/resource/Exterior_algebra"><small>dbr</small>:Exterior_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_(mathematics)" href="http://dbpedia.org/resource/Field_(mathematics)"><small>dbr</small>:Field_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fock_state" href="http://dbpedia.org/resource/Fock_state"><small>dbr</small>:Fock_state</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Four-vector" href="http://dbpedia.org/resource/Four-vector"><small>dbr</small>:Four-vector</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fourier_series" href="http://dbpedia.org/resource/Fourier_series"><small>dbr</small>:Fourier_series</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Frame_of_reference" href="http://dbpedia.org/resource/Frame_of_reference"><small>dbr</small>:Frame_of_reference</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Angles_between_flats" href="http://dbpedia.org/resource/Angles_between_flats"><small>dbr</small>:Angles_between_flats</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Angular_momentum_coupling" href="http://dbpedia.org/resource/Angular_momentum_coupling"><small>dbr</small>:Angular_momentum_coupling</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basic_feasible_solution" href="http://dbpedia.org/resource/Basic_feasible_solution"><small>dbr</small>:Basic_feasible_solution</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Partition_function_(statistical_mechanics)" href="http://dbpedia.org/resource/Partition_function_(statistical_mechanics)"><small>dbr</small>:Partition_function_(statistical_mechanics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cauchy&#39;s_functional_equation" href="http://dbpedia.org/resource/Cauchy&#39;s_functional_equation"><small>dbr</small>:Cauchy&#39;s_functional_equation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Center_manifold" href="http://dbpedia.org/resource/Center_manifold"><small>dbr</small>:Center_manifold</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis" href="http://dbpedia.org/resource/Basis"><small>dbr</small>:Basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_set" href="http://dbpedia.org/resource/Basis_set"><small>dbr</small>:Basis_set</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differential_(mathematics)" href="http://dbpedia.org/resource/Differential_(mathematics)"><small>dbr</small>:Differential_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differential_poset" href="http://dbpedia.org/resource/Differential_poset"><small>dbr</small>:Differential_poset</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dimension_(vector_space)" href="http://dbpedia.org/resource/Dimension_(vector_space)"><small>dbr</small>:Dimension_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dirac–Kähler_equation" href="http://dbpedia.org/resource/Dirac–Kähler_equation"><small>dbr</small>:Dirac–Kähler_equation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Direction_cosine" href="http://dbpedia.org/resource/Direction_cosine"><small>dbr</small>:Direction_cosine</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Forgetful_functor" href="http://dbpedia.org/resource/Forgetful_functor"><small>dbr</small>:Forgetful_functor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Frame_(linear_algebra)" href="http://dbpedia.org/resource/Frame_(linear_algebra)"><small>dbr</small>:Frame_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Frame_fields_in_general_relativity" href="http://dbpedia.org/resource/Frame_fields_in_general_relativity"><small>dbr</small>:Frame_fields_in_general_relativity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hilbert&#39;s_syzygy_theorem" href="http://dbpedia.org/resource/Hilbert&#39;s_syzygy_theorem"><small>dbr</small>:Hilbert&#39;s_syzygy_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Isomorphic_keyboard" href="http://dbpedia.org/resource/Isomorphic_keyboard"><small>dbr</small>:Isomorphic_keyboard</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Isospin" href="http://dbpedia.org/resource/Isospin"><small>dbr</small>:Isospin</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Iterative_method" href="http://dbpedia.org/resource/Iterative_method"><small>dbr</small>:Iterative_method</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jordan_normal_form" href="http://dbpedia.org/resource/Jordan_normal_form"><small>dbr</small>:Jordan_normal_form</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Korkine–Zolotarev_lattice_basis_reduction_algorithm" href="http://dbpedia.org/resource/Korkine–Zolotarev_lattice_basis_reduction_algorithm"><small>dbr</small>:Korkine–Zolotarev_lattice_basis_reduction_algorithm</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm" href="http://dbpedia.org/resource/Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm"><small>dbr</small>:Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coordinate_(vector_space)" href="http://dbpedia.org/resource/Coordinate_(vector_space)"><small>dbr</small>:Coordinate_(vector_space)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_congruence" href="http://dbpedia.org/resource/Matrix_congruence"><small>dbr</small>:Matrix_congruence</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Principal_component_analysis" href="http://dbpedia.org/resource/Principal_component_analysis"><small>dbr</small>:Principal_component_analysis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tangential_and_normal_components" href="http://dbpedia.org/resource/Tangential_and_normal_components"><small>dbr</small>:Tangential_and_normal_components</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wave_function_collapse" href="http://dbpedia.org/resource/Wave_function_collapse"><small>dbr</small>:Wave_function_collapse</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_density" href="http://dbpedia.org/resource/Tensor_density"><small>dbr</small>:Tensor_density</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_decomposition" href="http://dbpedia.org/resource/Vector_decomposition"><small>dbr</small>:Vector_decomposition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_equivalence" href="http://dbpedia.org/resource/Matrix_equivalence"><small>dbr</small>:Matrix_equivalence</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Universal_enveloping_algebra" href="http://dbpedia.org/resource/Universal_enveloping_algebra"><small>dbr</small>:Universal_enveloping_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hamel" href="http://dbpedia.org/resource/Hamel"><small>dbr</small>:Hamel</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Position_(geometry)" href="http://dbpedia.org/resource/Position_(geometry)"><small>dbr</small>:Position_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Primitive_element_theorem" href="http://dbpedia.org/resource/Primitive_element_theorem"><small>dbr</small>:Primitive_element_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Product_(mathematics)" href="http://dbpedia.org/resource/Product_(mathematics)"><small>dbr</small>:Product_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Projection_(linear_algebra)" href="http://dbpedia.org/resource/Projection_(linear_algebra)"><small>dbr</small>:Projection_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quantum_error_correction" href="http://dbpedia.org/resource/Quantum_error_correction"><small>dbr</small>:Quantum_error_correction</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quotient_space_(linear_algebra)" href="http://dbpedia.org/resource/Quotient_space_(linear_algebra)"><small>dbr</small>:Quotient_space_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rank_(linear_algebra)" href="http://dbpedia.org/resource/Rank_(linear_algebra)"><small>dbr</small>:Rank_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Regular_representation" href="http://dbpedia.org/resource/Regular_representation"><small>dbr</small>:Regular_representation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Relational_quantum_mechanics" href="http://dbpedia.org/resource/Relational_quantum_mechanics"><small>dbr</small>:Relational_quantum_mechanics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_(mathematics)" href="http://dbpedia.org/resource/Ring_(mathematics)"><small>dbr</small>:Ring_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_projection" href="http://dbpedia.org/resource/Vector_projection"><small>dbr</small>:Vector_projection</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gröbner_basis" href="http://dbpedia.org/resource/Gröbner_basis"><small>dbr</small>:Gröbner_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor" href="http://dbpedia.org/resource/Tensor"><small>dbr</small>:Tensor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_product" href="http://dbpedia.org/resource/Tensor_product"><small>dbr</small>:Tensor_product</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hydrogen-like_atom" href="http://dbpedia.org/resource/Hydrogen-like_atom"><small>dbr</small>:Hydrogen-like_atom</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hamel_bases" href="http://dbpedia.org/resource/Hamel_bases"><small>dbr</small>:Hamel_bases</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hamel_basis" href="http://dbpedia.org/resource/Hamel_basis"><small>dbr</small>:Hamel_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector-valued_function" href="http://dbpedia.org/resource/Vector-valued_function"><small>dbr</small>:Vector-valued_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Steinitz_exchange_lemma" href="http://dbpedia.org/resource/Steinitz_exchange_lemma"><small>dbr</small>:Steinitz_exchange_lemma</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Change_of_basis" href="http://dbpedia.org/resource/Change_of_basis"><small>dbr</small>:Change_of_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Character_theory" href="http://dbpedia.org/resource/Character_theory"><small>dbr</small>:Character_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Kernel_(linear_algebra)" href="http://dbpedia.org/resource/Kernel_(linear_algebra)"><small>dbr</small>:Kernel_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Language_of_mathematics" href="http://dbpedia.org/resource/Language_of_mathematics"><small>dbr</small>:Language_of_mathematics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bicomplex_number" href="http://dbpedia.org/resource/Bicomplex_number"><small>dbr</small>:Bicomplex_number</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bilinear_map" href="http://dbpedia.org/resource/Bilinear_map"><small>dbr</small>:Bilinear_map</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Biquaternion" href="http://dbpedia.org/resource/Biquaternion"><small>dbr</small>:Biquaternion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bivector_(complex)" href="http://dbpedia.org/resource/Bivector_(complex)"><small>dbr</small>:Bivector_(complex)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetric_polynomial" href="http://dbpedia.org/resource/Symmetric_polynomial"><small>dbr</small>:Symmetric_polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symplectic_matrix" href="http://dbpedia.org/resource/Symplectic_matrix"><small>dbr</small>:Symplectic_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coalgebra" href="http://dbpedia.org/resource/Coalgebra"><small>dbr</small>:Coalgebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coefficient" href="http://dbpedia.org/resource/Coefficient"><small>dbr</small>:Coefficient</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Eigenspinor" href="http://dbpedia.org/resource/Eigenspinor"><small>dbr</small>:Eigenspinor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Eisenbud–Levine–Khimshiashvili_signature_formula" href="http://dbpedia.org/resource/Eisenbud–Levine–Khimshiashvili_signature_formula"><small>dbr</small>:Eisenbud–Levine–Khimshiashvili_signature_formula</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hidden_Field_Equations" href="http://dbpedia.org/resource/Hidden_Field_Equations"><small>dbr</small>:Hidden_Field_Equations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hollow_matrix" href="http://dbpedia.org/resource/Hollow_matrix"><small>dbr</small>:Hollow_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Holographic_algorithm" href="http://dbpedia.org/resource/Holographic_algorithm"><small>dbr</small>:Holographic_algorithm</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Homogeneous_polynomial" href="http://dbpedia.org/resource/Homogeneous_polynomial"><small>dbr</small>:Homogeneous_polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetric_tensor" href="http://dbpedia.org/resource/Symmetric_tensor"><small>dbr</small>:Symmetric_tensor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tensor_(intrinsic_definition)" href="http://dbpedia.org/resource/Tensor_(intrinsic_definition)"><small>dbr</small>:Tensor_(intrinsic_definition)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tetrad_formalism" href="http://dbpedia.org/resource/Tetrad_formalism"><small>dbr</small>:Tetrad_formalism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Toeplitz_matrix" href="http://dbpedia.org/resource/Toeplitz_matrix"><small>dbr</small>:Toeplitz_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Toeplitz_operator" href="http://dbpedia.org/resource/Toeplitz_operator"><small>dbr</small>:Toeplitz_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Transform_theory" href="http://dbpedia.org/resource/Transform_theory"><small>dbr</small>:Transform_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Weyr_canonical_form" href="http://dbpedia.org/resource/Weyr_canonical_form"><small>dbr</small>:Weyr_canonical_form</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wilson_loop" href="http://dbpedia.org/resource/Wilson_loop"><small>dbr</small>:Wilson_loop</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zassenhaus_algorithm" href="http://dbpedia.org/resource/Zassenhaus_algorithm"><small>dbr</small>:Zassenhaus_algorithm</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zorn&#39;s_lemma" href="http://dbpedia.org/resource/Zorn&#39;s_lemma"><small>dbr</small>:Zorn&#39;s_lemma</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Modular_representation_theory" href="http://dbpedia.org/resource/Modular_representation_theory"><small>dbr</small>:Modular_representation_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rank_factorization" href="http://dbpedia.org/resource/Rank_factorization"><small>dbr</small>:Rank_factorization</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetric_bilinear_form" href="http://dbpedia.org/resource/Symmetric_bilinear_form"><small>dbr</small>:Symmetric_bilinear_form</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Split-octonion" href="http://dbpedia.org/resource/Split-octonion"><small>dbr</small>:Split-octonion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Reducing_subspace" href="http://dbpedia.org/resource/Reducing_subspace"><small>dbr</small>:Reducing_subspace</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://xmlns.com/foaf/0.1/primaryTopic"><small>foaf:</small>primaryTopic</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="foaf:primaryTopic" resource="http://en.wikipedia.org/wiki/Basis_(linear_algebra)" href="http://en.wikipedia.org/wiki/Basis_(linear_algebra)"><small>wikipedia-en</small>:Basis_(linear_algebra)</a></span></li> </ul></td></tr> </tbody> </table> </div> </div> </div> </section> <!-- property-table --> <!-- footer --> <section> <div class="container-xl"> <div class="text-center p-4 bg-light"> <a href="https://virtuoso.openlinksw.com/" title="OpenLink Virtuoso"><img class="powered_by" src="/statics/images/virt_power_no_border.png" alt="Powered by OpenLink Virtuoso"/></a>&#160; &#160; <a href="http://linkeddata.org/"><img alt="This material is Open Knowledge" src="/statics/images/LoDLogo.gif"/></a> &#160; &#160; <a href="http://dbpedia.org/sparql"><img alt="W3C Semantic Web Technology" src="/statics/images/sw-sparql-blue.png"/></a> &#160; &#160; <a href="https://opendefinition.org/"><img alt="This material is Open Knowledge" src="/statics/images/od_80x15_red_green.png"/></a>&#160; &#160; <span style="display:none;" about="" resource="http://www.w3.org/TR/rdfa-syntax" rel="dc:conformsTo"> <a href="https://validator.w3.org/check?uri=referer"> <img src="https://www.w3.org/Icons/valid-xhtml-rdfa" alt="Valid XHTML + RDFa" /> </a> </span> <br /> <small class="text-muted"> This content was extracted from <a href="http://en.wikipedia.org/wiki/Basis_(linear_algebra)">Wikipedia</a> and is licensed under the <a href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a> </small> </div> </div> </section> <!-- #footer --> <!-- scripts --> <script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/js/bootstrap.bundle.min.js" integrity="sha512-1TK4hjCY5+E9H3r5+05bEGbKGyK506WaDPfPe1s/ihwRjr6OtL43zJLzOFQ+/zciONEd+sp7LwrfOCnyukPSsg==" crossorigin="anonymous"> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10