CINXE.COM

Search results for: hydrogen

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hydrogen</title> <meta name="description" content="Search results for: hydrogen"> <meta name="keywords" content="hydrogen"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hydrogen" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hydrogen"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 971</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hydrogen</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">971</span> Effect of Hydrogen Content and Structure in Diamond-Like Carbon Coatings on Hydrogen Permeation Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motonori%20Tamura">Motonori Tamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrogen barrier properties of the coatings of diamond-like carbon (DLC) were evaluated. Using plasma chemical vapor deposition and sputtering, DLC coatings were deposited on Type 316L stainless steels. The hydrogen permeation rate was reduced to 1/1000 or lower by the DLC coatings. The DLC coatings with high hydrogen content had high hydrogen barrier function. For hydrogen diffusion in coatings, the movement of atoms through hydrogen trap sites such as pores in coatings, and crystal defects such as dislocations, is important. The DLC coatings are amorphous, and there are both sp3 and sp2 bonds, and excess hydrogen could be found in the interstitial space and the hydrogen trap sites. In the DLC coatings with high hydrogen content, these hydrogen trap sites are likely already filled with hydrogen atoms, and the movement of new hydrogen atoms could be limited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20permeation" title="hydrogen permeation">hydrogen permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels" title=" stainless steels"> stainless steels</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond-like%20carbon" title=" diamond-like carbon"> diamond-like carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20trap%20sites" title=" hydrogen trap sites"> hydrogen trap sites</a> </p> <a href="https://publications.waset.org/abstracts/63201/effect-of-hydrogen-content-and-structure-in-diamond-like-carbon-coatings-on-hydrogen-permeation-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">970</span> Transition to Hydrogen Cities in Korea and Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minhee%20Son">Minhee Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Nam%20Kim"> Kyung Nam Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the plan of the Korean and Japanese governments to transition into the hydrogen economy. Two motor companies, Hyundai Motor Company from Korea and Toyota from Japan, released the Hydrogen Fuel Cell Vehicle to monopolize the green energy automobile market. Although, they are the main countries which emit greenhouse gas, hydrogen energy can bring from a certain industry places, such as chemical plants and steel mills. Recent, the two countries have been focusing on the hydrogen industry including a fuel cell vehicle, a hydrogen station, a fuel cell plant, a residential fuel cell. The purpose of this paper is to find out the differences of the policies in the two countries to be hydrogen societies. We analyze the behavior of the public and private sectors in Korea and Japan about hydrogen energy and fuel cells for the transition of the hydrogen economy. Finally we show the similarities and differences of both countries in hydrogen fuel cells. And some cities have feature such as Hydrogen cities. Hydrogen energy can make impact environmental sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20city" title=" hydrogen city"> hydrogen city</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20fuel%20cell%20vehicle" title=" hydrogen fuel cell vehicle"> hydrogen fuel cell vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20station" title=" hydrogen station"> hydrogen station</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20energy" title=" hydrogen energy"> hydrogen energy</a> </p> <a href="https://publications.waset.org/abstracts/36011/transition-to-hydrogen-cities-in-korea-and-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">969</span> The Interaction between Hydrogen and Surface Stress in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osamu%20Takakuwa">Osamu Takakuwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Mano"> Yuta Mano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Soyama"> Hitoshi Soyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title="hydrogen embrittlement">hydrogen embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20finishing" title=" surface finishing"> surface finishing</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/16765/the-interaction-between-hydrogen-and-surface-stress-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">968</span> Microstructure of Hydrogen Permeation Barrier Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motonori%20Tamura">Motonori Tamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramics coatings consisting of fine crystal grains, with diameters of about 100 nm or less, provided superior hydrogen-permeation barriers. Applying TiN, TiC or Al₂O₃ coatings on a stainless steel substrate reduced the hydrogen permeation by a factor of about 100 to 5,000 compared with uncoated substrates. Effect of the microstructure of coatings on hydrogen-permeation behavior is studied. The test specimens coated with coatings, with columnar crystals grown vertically on the substrate, tended to exhibit higher hydrogen permeability. The grain boundaries of the coatings became trap sites for hydrogen, and microcrystalline structures with many grain boundaries are expected to provide effective hydrogen-barrier performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20permeation" title="hydrogen permeation">hydrogen permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=tin%20coating" title=" tin coating"> tin coating</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20grain" title=" crystal grain"> crystal grain</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/72074/microstructure-of-hydrogen-permeation-barrier-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">967</span> Investigating the Effects of Hydrogen on Wet Cement for Underground Hydrogen Storage Applications in Oil and Gas Wells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamoud%20Al-Hadrami">Hamoud Al-Hadrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Emadi"> Hossein Emadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Athar%20Hussain"> Athar Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green hydrogen is quickly emerging as a new source of renewable energy for the world. Hydrogen production using water electrolysis is deemed as an environmentally friendly and safe source of energy for transportation and other industries. However, storing a high volume of hydrogen seems to be a significant challenge. Abandoned hydrocarbon reservoirs are considered as viable hydrogen storage options because of the availability of the required infrastructure such as wells and surface facilities. However, long-term wellbore integrity in these wells could be a serious challenge. Hydrogen reduces the compressive strength of a set cement if it gets in contact with the cement slurry. Also, mixing hydrogen with cement slurry slightly increases its density and rheological properties, which need to be considered to have a successful primary cementing operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20bore%20integrity" title=" well bore integrity"> well bore integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy" title=" clean energy"> clean energy</a>, <a href="https://publications.waset.org/abstracts/search?q=cementing" title=" cementing"> cementing</a> </p> <a href="https://publications.waset.org/abstracts/142191/investigating-the-effects-of-hydrogen-on-wet-cement-for-underground-hydrogen-storage-applications-in-oil-and-gas-wells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">966</span> Hydrogen Storage in Carbonized Coconut Meat (Kernel)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viney%20Dixit">Viney Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20R.%20Shahi"> Rohit R. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Bhatnagar"> Ashish Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jain"> P. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yadav"> T. P. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Srivastava"> O. N. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20kernel" title="coconut kernel">coconut kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=KCl" title=" KCl"> KCl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca" title=" Ca"> Ca</a> </p> <a href="https://publications.waset.org/abstracts/12194/hydrogen-storage-in-carbonized-coconut-meat-kernel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">965</span> Thermal Stability of Hydrogen in ZnO Bulk and Thin Films: A Kinetic Monte Carlo Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Lahmer">M. A. Lahmer</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Guergouri"> K. Guergouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Kinetic Monte Carlo (KMC) method was applied to study the thermal stability of hydrogen in ZnO bulk and thin films. Our simulation includes different possible events such as interstitial hydrogen (Hi) jumps, substitutional hydrogen (HO) formation and dissociation, oxygen and zinc vacancies jumps, hydrogen-VZn complexes formation and dissociation, HO-Hi complex formation and hydrogen molecule (H2) formation and dissociation. The obtained results show that the hidden hydrogen formed during thermal annealing or at room temperature is constituted of both hydrogen molecule and substitutional hydrogen. The ratio of this constituants depends on the initial defects concentration as well as the annealing temperature. For annealing temperature below 300°C hidden hydrogen was found to be constituted from both substitutional hydrogen and hydrogen molecule, however, for higher temperature it is composed essentially from HO defects only because H2 was found to be unstable. In the other side, our results show that the remaining hydrogen amount in sample during thermal annealing depend greatly on the oxygen vacancies in the material. H2 molecule was found to be stable for thermal annealing up to 200°C, VZnHn complexes are stable up to 350°C and HO was found to be stable up to 450°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20annealing" title=" thermal annealing"> thermal annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20Monte%20Carlo" title=" kinetic Monte Carlo"> kinetic Monte Carlo</a> </p> <a href="https://publications.waset.org/abstracts/8488/thermal-stability-of-hydrogen-in-zno-bulk-and-thin-films-a-kinetic-monte-carlo-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Electrolysis Ship for Green Hydrogen Production and Possible Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julian%20David%20Hunt">Julian David Hunt</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Nascimento"> Andreas Nascimento</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20hydrogen" title="green hydrogen">green hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolysis%20ship" title=" electrolysis ship"> electrolysis ship</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title=" renewable energies"> renewable energies</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20variations" title=" seasonal variations"> seasonal variations</a> </p> <a href="https://publications.waset.org/abstracts/133018/electrolysis-ship-for-green-hydrogen-production-and-possible-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yitong%20Xie">Yitong Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaokui%20Qin"> Chaokui Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiguang%20Chen"> Zhiguang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuangqian%20Guo"> Shuangqian Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=appliances" title=" appliances"> appliances</a>, <a href="https://publications.waset.org/abstracts/search?q=interchangeability" title=" interchangeability"> interchangeability</a> </p> <a href="https://publications.waset.org/abstracts/151532/the-influence-of-hydrogen-addition-to-natural-gas-networks-on-gas-appliances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">962</span> Study on the Suppression of Hydrogen Generation by Aluminum-Containing Waste Incineration Ash and Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hideyuki%20Onodera">Hideyuki Onodera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryoji%20Imai"> Ryoji Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Sakai"> Masahiro Sakai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Explosions have occurred in incineration plants in conveyors, ash pits, and other locations. The cause of such explosions is thought to be the reaction of metallic aluminum contained in the ash with water used to cool the ash and prevent scattering, resulting in the generation of hydrogen. Given this background, conveyors and other equipment have been damaged by explosions, which has hindered the stable operation of incineration plants. In addition, workers may be injured by equipment explosions, creating an unsafe situation. To remedy these problems, it is necessary to devise a way to prevent hydrogen explosions from occurring. To overcome this problem, we conducted a hydrogen generation reaction experiment using simulated incinerator ash powder containing aluminum, calcium oxide, and water and confirmed that conditions exist to stop the hydrogen generation reaction. The results of this research may contribute to the suppression of hydrogen explosions at incineration plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20incinerated%20ash" title="waste incinerated ash">waste incinerated ash</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=suppression%20of%20hydrogen%20generation" title=" suppression of hydrogen generation"> suppression of hydrogen generation</a>, <a href="https://publications.waset.org/abstracts/search?q=incineration%20plant" title=" incineration plant"> incineration plant</a> </p> <a href="https://publications.waset.org/abstracts/186080/study-on-the-suppression-of-hydrogen-generation-by-aluminum-containing-waste-incineration-ash-and-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">961</span> Recovery of Hydrogen Converter Efficiency Affected by Poisoning of Catalyst with Increasing of Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enayat%20Enayati">Enayat Enayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Behtash"> Reza Behtash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the H2 removal system is to reduce a content of hydrogen and other combustibles in the CO2 feed owing to avoid developing a possible explosive condition in the synthesis. In order to reduce the possibility of forming an explosive gas mixture in the synthesis as much as possible, the hydrogen percent in the fresh CO2, will be removed in hydrogen converter. Therefore the partly compressed CO2/Air mixture is led through Hydrogen converter (Reactor) where the H2, present in the CO2, is reduced by catalytic combustion to values less than 50 ppm (vol). According the following exothermic chemical reaction: 2H2 + O2 → 2H2O + Heat. The catalyst in hydrogen converter consist of platinum on a aluminum oxide carrier. Low catalyst activity maybe due to catalyst poisoning. This will result in an increase of the hydrogen content in the CO2 to the synthesis. It is advised to shut down the plant when the outlet of hydrogen converter increased above 100 ppm, to prevent undesirable gas composition in the plant. Replacement of catalyst will be time exhausting and costly so as to prevent this, we increase the inlet temperature of hydrogen converter according to following Arrhenius' equation: K=K0e (-E_a/RT) K is rate constant of a chemical reaction where K0 is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant. Increment of inlet temperature of hydrogen converter caused to increase the rate constant of chemical reaction and so declining the amount of hydrogen from 125 ppm to 70 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=converter" title=" converter"> converter</a>, <a href="https://publications.waset.org/abstracts/search?q=poisoning" title=" poisoning"> poisoning</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature "> temperature </a> </p> <a href="https://publications.waset.org/abstracts/28704/recovery-of-hydrogen-converter-efficiency-affected-by-poisoning-of-catalyst-with-increasing-of-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">820</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">960</span> Exploring Distinct Materials for Hydrogen Storage: A Density Functional Theory Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20Ahmad%20Obeidat">Abdalla Ahmad Obeidat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing efficient hydrogen storage materials is critical to advancing clean energy technologies, particularly for applications in fuel cells and renewable energy systems. This study explores materials for hydrogen storage through Density Functional Theory (DFT) calculations, addressing one of the most significant challenges in sustainable energy: the safe and efficient storage and release of hydrogen. Our research provides an in-depth analysis of various candidate compounds' structural and electronic properties, aiming to identify materials with enhanced hydrogen storage capacities. By investigating adsorption mechanisms and optimizing key material properties, we aim to contribute to developing high-performance hydrogen storage solutions. The findings from this work have the potential to impact the field of hydrogen fuel technology significantly, offering insights and advancements that support the transition to sustainable energy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic" title=" electronic"> electronic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/193719/exploring-distinct-materials-for-hydrogen-storage-a-density-functional-theory-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">959</span> Hydrogen Embrittlement Properties of the Hot Stamped Carbon Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitsuhiro%20Okayasu">Mitsuhiro Okayasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lele%20Yang"> Lele Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Shimotsu"> Koji Shimotsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of microstructural characteristics on the mechanical and hydrogen embrittlement properties of 1,800MPa grade hot stamping carbon steel were investigated experimentally. The tensile strength increased with increasing the hot stamping temperature until around 921°C, but that decreased with increasing the temperature in more than 921°C due to the increment of the size of lath martensite and prior austenite. With the hot stamping process, internal strain was slightly created in the sample, which led to the slight increment of the hardness value although no clear change of the microstructural formation was detected. Severity of hydrogen embrittlement was investigated using the hot stamped carbon steels after the immersion in a hydrogen gas, and that was directly attributed to the infiltration of the hydrogen into their grain boundaries. The high strength carbon steel with tiny lath martensite microstructure could make severe hydrogen brittleness as the hydrogen was strongly penetrated in the grain boundaries in the hydrogen gas for a month. Because of weak embrittlement for the as-received carbon (ferrite and pearlite), hydrogen embrittlement is caused by the high internal strain and high dislocation density. The hydrogen embrittlement for carbon steel is attributed to amount of the hydrogen immersed in-between grain boundaries, which is caused by the dislocation density and internal strain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title="hydrogen embrittlement">hydrogen embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20stamping%20process" title=" hot stamping process"> hot stamping process</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title=" carbon steel"> carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a> </p> <a href="https://publications.waset.org/abstracts/94925/hydrogen-embrittlement-properties-of-the-hot-stamped-carbon-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">958</span> Effect of Hydrogen on the Performance of a Methanol SI-Engine at City Driving Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Bin%20Aamir">Junaid Bin Aamir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Fanhua"> Ma Fanhua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanol is one of the most suitable alternative fuels for replacing gasoline in present and future spark-ignited engines. However, for pure methanol engines, cold start problems and misfires are observed under certain operating conditions. Hydrogen provides a solution for such problems. This paper experimentally investigated the effect of hydrogen on the performance of a pure methanol SI-engine at city driving conditions (1500 rpm speed and 1.18 excess air ratio). Hydrogen was used as a part of methanol reformed syngas (67% hydrogen by volume). 4% by mass of the total methanol converted to hydrogen and other constituent gases, was used in each cycle. Port fuel injection was used to inject methanol and hydrogen-rich syngas into the 4-cylinder engine. The results indicated an increase in brake thermal efficiency up to 5% with the addition of hydrogen, a decrease in brake specific fuel consumption up to 200 g/kWh, and a decrease in exhaust gas temperature by 100°C for all mean effective pressures. Hydrogen addition also decreased harmful exhaust emissions significantly. There was a reduction in THC emissions up to 95% and CO emissions up to 50%. NOx emissions were slightly increased (up to 15%), but they can be reduced to zero by lean burn strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuels" title="alternative fuels">alternative fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engines" title=" spark ignition engines"> spark ignition engines</a> </p> <a href="https://publications.waset.org/abstracts/74911/effect-of-hydrogen-on-the-performance-of-a-methanol-si-engine-at-city-driving-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">957</span> Regulating Hydrogen Energy Evaluation During Aluminium Hydrolysis in Alkaline Solutions Containing Different Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Deyab">Mohamed A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20A.%20A.%20El-Shamy"> Omnia A. A. El-Shamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to reveal on the systematic evaluation of hydrogen production by aluminum hydrolysis in alkaline solutions containing different surfactants using hydrogen evolution measurements and supplemented by scan electron microscope (SEM) and energy dispersive X-ray analysis (EDX). It has been demonstrated that when alkaline concentration and solution temperature rise, the rate of H2 generation and, consequently, aluminum hydrolysis also rises. The addition of nonionic and cationic surfactants solution retards the rate of H2 production. The work is a promising option for carbon-free hydrogen production from renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a> </p> <a href="https://publications.waset.org/abstracts/161815/regulating-hydrogen-energy-evaluation-during-aluminium-hydrolysis-in-alkaline-solutions-containing-different-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">956</span> Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sakthivel">S. Sakthivel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20hydrogen" title="green hydrogen">green hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=break-even%20analysis" title=" break-even analysis"> break-even analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=renewables" title=" renewables"> renewables</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyzer" title=" electrolyzer"> electrolyzer</a> </p> <a href="https://publications.waset.org/abstracts/131861/green-hydrogen-exploring-economic-viability-and-alluring-business-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">955</span> The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Zularisam">A. W. Zularisam</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhveer%20Singh"> Lakhveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimi%20Sakinah%20Abdul%20Munaim"> Mimi Sakinah Abdul Munaim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioydrogen" title="bioydrogen">bioydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20glycol" title=" polyethylene glycol"> polyethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20fermentation" title=" dark fermentation "> dark fermentation </a> </p> <a href="https://publications.waset.org/abstracts/39206/the-effect-of-immobilization-conditions-on-hydrogen-production-from-palm-oil-mill-effluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">954</span> Study on Pressurized Reforming System for the Application of Hydrogen Permeable Membrane Applying to Proton Exchange Membrane Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwangho%20Lee">Kwangho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Joongmyeon%20Bae"> Joongmyeon Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel cells are spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen fuel for a fuel cell is obtained from a number of sources. Most of fuel cell for APU(Auxiliary power unit) system using diesel fuel as a hydrogen source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC(Proton exchange membrane fuel cell) requires a large volume and complex CO removal system for the lower the CO level to less than 10ppm. In addition, the PROX(Preferential Oxidation) reaction cooling load is needed because of the strong exothermic reaction. However, the hydrogen separation membrane that we propose can be eliminated many disadvantages, because the volume is small and permeates only pure hydrogen. In this study, we were conducted to the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen permeable membrane application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=reforming" title=" reforming"> reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=ATR" title=" ATR"> ATR</a>, <a href="https://publications.waset.org/abstracts/search?q=WGS" title=" WGS"> WGS</a>, <a href="https://publications.waset.org/abstracts/search?q=PROX" title=" PROX"> PROX</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/57559/study-on-pressurized-reforming-system-for-the-application-of-hydrogen-permeable-membrane-applying-to-proton-exchange-membrane-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">953</span> The Effect of Hydrogen on Performance and Emissions of a Methanol Si-Engine at Part Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Bin%20Aamir">Junaid Bin Aamir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Fanhua"> Ma Fanhua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanol and hydrogen are the most suitable alternative fuel resources for the existing and future internal combustion engines. This paper experimentally examined the effects of hydrogen addition on the performance and emission characteristics of a spark-ignition engine fueled with methanol at part load conditions. The experiments were carried out for various engine speeds and loads. Hydrogen-rich syngas was used to enhance the performance of the test engine. It was formed by catalytic dissociation of methanol itself, and volumetric hydrogen fraction in syngas was about 67%. A certain amount of syngas dissociated from methanol was injected into the intake manifold in each engine cycle, and the low heating value (LHV) of hydrogen-rich syngas used was 4% of methanol in each cycle. Both the fuels were injected separately using port fuel injectors. The results showed that brake thermal efficiency of the engine was enhanced by 3-5% with hydrogen addition, while brake specific fuel consumption and exhaust gas temperature were reduced. There was a significant reduction (90-95%) in THC and (35-50%) in CO emissions at the exhaust. NOx emissions from hydrogen blended methanol increased slightly (10-15%), but they can be reduced by using lean fuel-air mixture to keep the cylinder temperature low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title=" alternative fuel"> alternative fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engines" title=" spark ignition engines"> spark ignition engines</a> </p> <a href="https://publications.waset.org/abstracts/123060/the-effect-of-hydrogen-on-performance-and-emissions-of-a-methanol-si-engine-at-part-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">952</span> Photocatalytic Conversion of Water/Methanol Mixture into Hydrogen Using Cerium/Iron Oxides Based Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20A.%20Aboutaleb">Wael A. Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20A.%20El%20Naggar"> Ahmed M. A. El Naggar</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20Gobara"> Heba M. Gobara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work reports the photocatalytic production of hydrogen from water-methanol mixture using three different 15% ceria/iron oxide catalysts. The catalysts were prepared by physical mixing, precipitation, and ultrasonication methods and labeled as catalysts A-C. The structural and texture properties of the obtained catalysts were confirmed by X-ray diffraction (XRD), BET-surface area analysis and transmission electron microscopy (TEM). The photocatalytic activity of the three catalysts towards hydrogen generation was then tested. Promising hydrogen productivity was obtained by the three catalysts however different gases compositions were obtained by each type of catalyst. Specifically, catalyst A had produced hydrogen mixed with CO₂ while the composite structure (catalyst B) had generated only pure H₂. In the case of catalyst C, syngas made of H₂ and CO was revealed, as a novel product, for the first time, in such process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysts" title=" photocatalysts"> photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy" title=" clean energy "> clean energy </a> </p> <a href="https://publications.waset.org/abstracts/82416/photocatalytic-conversion-of-watermethanol-mixture-into-hydrogen-using-ceriumiron-oxides-based-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">951</span> Hydrogen Production Using Solar Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Sakr">I. M. Sakr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Abdelsalam"> Ali M. Abdelsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ibrahim"> K. A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20El-Askary"> W. A. El-Askary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental study for hydrogen production using alkaline water electrolysis operated by solar energy. Two methods are used and compared for separation between the cathode and anode, which are acrylic separator and polymeric membrane. Further, the effects of electrolyte concentration, solar insolation, and space between the pair of electrodes on the amount of hydrogen produced and consequently on the overall electrolysis efficiency are investigated. It is found that the rate of hydrogen production increases using the polymeric membrane installed between the electrodes. The experimental results show also that, the performance of alkaline water electrolysis unit is dominated by the electrolyte concentration and the gap between the electrodes. Smaller gaps between the pair of electrodes are demonstrated to produce higher rates of hydrogen with higher system efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20electrolysis" title=" water electrolysis"> water electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a> </p> <a href="https://publications.waset.org/abstracts/62050/hydrogen-production-using-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">950</span> The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Deyab">Mohamed A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20E.%20Awadallah"> Ahmed E. Awadallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a> </p> <a href="https://publications.waset.org/abstracts/143045/the-impact-of-an-ionic-liquid-on-hydrogen-generation-from-a-redox-process-involving-magnesium-and-acidic-oilfield-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">949</span> The Effect of Ni/Dolomite Catalyst for Production of Hydrogen from NaBH₄</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Kiren">Burcu Kiren</a>, <a href="https://publications.waset.org/abstracts/search?q=Alattin%20CAkan"> Alattin CAkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezihe%20Ayas"> Nezihe Ayas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen will be arguably the best fuel in the future as it is the most abundant element in the universe. Hydrogen, as a fuel, is notably environmentally benign, sustainable and has high energy content compared to other sources of energy. It can be generated from both conventional and renewable sources. The hydrolysis reaction of metal hydrides provides an option for hydrogen production in the presence of a catalyst. In this study, Ni/dolomite catalyst was synthesized by the wet impregnation method for hydrogen production by hydrolysis reaction of sodium borohydride (NaBH4). Besides, the synthesized catalysts characterizations were examined by means of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer –Emmett – Teller (BET) and scanning electron microscopy (SEM). The influence of reaction temperature (25-75 °C), reaction time (15-60 min.), amount of catalyst (50-250 mg) and active metal loading ratio (20,30,40 wt.%) were investigated. The catalyst prepared with 30 wt.% Ni was noted as the most suitable catalyst, achieving of 35.18% H₂ and hydrogen production rate of 19.23 mL/gcat.min at 25 °C at reaction conditions of 5 mL of 0.25 M NaOH and 100 mg NaBH₄, 100 mg Ni/dolomite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20borohydride" title="sodium borohydride">sodium borohydride</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%2Fdolomite" title=" Ni/dolomite"> Ni/dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/128593/the-effect-of-nidolomite-catalyst-for-production-of-hydrogen-from-nabh4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">948</span> Biohydrogen and Potential Vinegar Production from Agricultural Wastes Using Thermotoga neopolitana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Nalin">Nidhi Nalin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is theoretical modelling of the fermentation process of glucose in agricultural wastes like discarded peaches to produce hydrogen, acetic acid, and carbon dioxide using Thermotoga neopolitana bacteria. The hydrogen gas produced in this process can be used in hydrogen fuel cells to generate power, and the fermented broth with acetic acid and salts could be utilized as salty vinegar if enough acetic acid is produced. The theoretical modelling was done using SuperPro software, and the results indicated how much sugar (discarded peaches) is required to produce both hydrogen and vinegar for the process to be profitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermotoga" title=" thermotoga"> thermotoga</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=vinegar" title=" vinegar"> vinegar</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a> </p> <a href="https://publications.waset.org/abstracts/132463/biohydrogen-and-potential-vinegar-production-from-agricultural-wastes-using-thermotoga-neopolitana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">947</span> Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tie-Qing%20Zhang">Tie-Qing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghun%20Jung"> Seunghun Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Bae%20Kim"> Young-Bae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20thermal%20reforming" title=" auto thermal reforming"> auto thermal reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/152000/development-of-membrane-reactor-for-auto-thermal-reforming-of-dimethyl-ether-for-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">946</span> Numerical Analysis of Engine Performance and Emission of a 2-Stroke Opposed Piston Hydrogen Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahamin%20Bazooyar">Bahamin Bazooyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyan%20Wang"> Xinyan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Zhao"> Hua Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a zero-carbon fuel, hydrogen can be used in combustion engines to avoid carbon emissions. This paper numerically investigates the engine performance of a two-stroke opposed piston hydrogen engine by using three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations. The engine displacement is 12.2 cm, and the compression ratio of 39. RANS simulations with the k-ε turbulence model and coupled chemistry combustion models are performed at an engine speed of 4500 rpm and hydrogen flow rate of up to 100 gr/s. In order to model the hydrogen injection process, the hydrogen nozzle was meshed with refined mesh, and injection pressure varied between 100 and 200 bars. In order to optimize the hydrogen combustion process, the injection timing was optimized between 15 before the top dead center and 10. The results showed that the combustion efficiency was mostly influenced by the injection pressures due to its impact on the fuel/air mixing and charge inhomogeneity. Nitrogen oxide (NOₓ) emissions are well correlated with engine peak temperatures, demonstrating that the thermal NO mechanism is dominant under engine conditions. Through the optimization of hydrogen injection timing and pressure, the peak thermal efficiency of 45 and NOx emission of 15 ppm/kWh can be achieved at an injection timing of 350 CA and pressure of 160 bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine" title="engine">engine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stroke" title=" two-stroke"> two-stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed-piston" title=" opposed-piston"> opposed-piston</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title=" decarbonisation"> decarbonisation</a> </p> <a href="https://publications.waset.org/abstracts/194593/numerical-analysis-of-engine-performance-and-emission-of-a-2-stroke-opposed-piston-hydrogen-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">945</span> Atomic Hydrogen Storage in Hexagonal GdNi5 and GdNi4Cu Rare Earth Compounds: A Comparative Density Functional Theory Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kellou">A. Kellou</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Rouaiguia"> L. Rouaiguia</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Rabahi"> L. Rabahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, the atomic hydrogen absorption trend in the GdNi5 and GdNi4Cu rare earth compounds within the hexagonal CaCu5 type of crystal structure (space group P6/mmm) is investigated. The density functional theory (DFT) combined with the generalized gradient approximation (GGA) is used to study the site preference of atomic hydrogen at 0K. The octahedral and tetrahedral interstitial sites are considered. The formation energies and structural properties are determined in order to evaluate hydrogen effects on the stability of the studied compounds. The energetic diagram of hydrogen storage is established and compared in GdNi5 and GdNi4Cu. The magnetic properties of the selected compounds are determined using spin polarized calculations. The obtained results are discussed with and without hydrogen addition taking into account available theoretical and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title=" hydrogen storage"> hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20compounds" title=" rare earth compounds"> rare earth compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20and%20magnetic%20properties" title=" structural and magnetic properties"> structural and magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/113034/atomic-hydrogen-storage-in-hexagonal-gdni5-and-gdni4cu-rare-earth-compounds-a-comparative-density-functional-theory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">944</span> Addressing the Oracle Problem: Decentralized Authentication in Blockchain-Based Green Hydrogen Certification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volker%20Wannack">Volker Wannack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to present a concept for addressing the Oracle Problem in the context of hydrogen production using renewable energy sources. The proposed approach relies on the authentication of the electricity used for hydrogen production by multiple surrounding actors with similar electricity generation facilities, which attest to the authenticity of the electricity production. The concept introduces an Authenticity Score assigned to each certificate, as well as a Trust Score assigned to each witness. Each certificate must be attested by different actors with a sufficient Trust Score to achieve an Authenticity Score above a predefined threshold, thereby demonstrating that the produced hydrogen is indeed "green." <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20change" title=" structural change"> structural change</a> </p> <a href="https://publications.waset.org/abstracts/181604/addressing-the-oracle-problem-decentralized-authentication-in-blockchain-based-green-hydrogen-certification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">943</span> On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20R.%20Reda%20%20Mahmoud%20Reda">Ghazi R. Reda Mahmoud Reda </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20forming%20hydrides" title="metal forming hydrides">metal forming hydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=polar%20molecule%20impurities" title=" polar molecule impurities"> polar molecule impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagram" title=" phase diagram"> phase diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20absorption" title=" hydrogen absorption"> hydrogen absorption</a> </p> <a href="https://publications.waset.org/abstracts/33527/on-the-effect-of-carbon-on-the-efficiency-of-titanium-as-a-hydrogen-storage-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">942</span> Efficient Hydrogen Separation through Pd-Pt Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Muhammad%20Adam">Lawan Muhammad Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abduljabar%20Hilal%20Alsayoud"> Abduljabar Hilal Alsayoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most promising techniques to produce pure hydrogen is through a palladium-based membrane (Pd-membrane). Density functional theory (DFT) is employed in this work to examine how the physical and chemical adsorption properties of hydrogen on the surface of Pd-Pt can be mutated in the presence of contaminating gases, CH₄, CO, and CO₂. The main target is to survey the energy topology related to hydrogen adsorption while adjusting the stages of freedom in both the structure and composition. The adsorption sites, crystal plane of the slab, and relative orientation of the adsorbed molecules on its surface, as well as various arrangements of adsorbed species, have been considered in this study. The dependency of hydrogen adsorption on surface coverage is studied. The study demonstrated the physical adsorption energies of the molecules on the surface concerning the different coverages of hydrogen atoms. The most stable combinations of the adsorption sites (Top, Hollow, and Bridge) with various orientations of gaseous molecules on the Pd-Pt surface were identified according to their calculated energies. When the binding of contaminating gaseous species to the Pd-Pt surface and their impact on the physical adsorption energies of the H₂ are examined, it is observed that the most poisonous gas relative to all other gases modifies the energetics of the adsorption process of hydrogen on the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd-Pt-membrane" title=" Pd-Pt-membrane"> Pd-Pt-membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82" title=" H₂"> H₂</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title=" CO₂"> CO₂</a> </p> <a href="https://publications.waset.org/abstracts/178203/efficient-hydrogen-separation-through-pd-pt-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogen&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10