CINXE.COM

Mathematical induction - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Mathematical induction - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"68a09e21-b47e-43b8-894e-89d5b3cf2116","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Mathematical_induction","wgTitle":"Mathematical induction","wgCurRevisionId":1253171361,"wgRevisionId":1253171361,"wgArticleId":18881,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","Articles with short description","Short description matches Wikidata","Use dmy dates from February 2021","Articles lacking in-text citations from July 2013","All articles lacking in-text citations","All articles with unsourced statements","Articles with unsourced statements from January 2018","CS1 French-language sources (fr)","Articles containing proofs","Mathematical induction","Mathematical logic","Methods of proof"], "wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Mathematical_induction","wgRelevantArticleId":18881,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false, "wgWikibaseItemId":"Q178377","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site", "mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/9/92/Dominoeffect.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/9/92/Dominoeffect.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/92/Dominoeffect.png/640px-Dominoeffect.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Mathematical induction - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Mathematical_induction"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Mathematical_induction&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Mathematical_induction"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Mathematical_induction rootpage-Mathematical_induction skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Mathematical+induction" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Mathematical+induction" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Mathematical+induction" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Mathematical+induction" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Description" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Description"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Description</span> </div> </a> <ul id="toc-Description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Sum_of_consecutive_natural_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sum_of_consecutive_natural_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Sum of consecutive natural numbers</span> </div> </a> <ul id="toc-Sum_of_consecutive_natural_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_trigonometric_inequality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_trigonometric_inequality"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>A trigonometric inequality</span> </div> </a> <ul id="toc-A_trigonometric_inequality-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Variants" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Variants"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Variants</span> </div> </a> <button aria-controls="toc-Variants-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Variants subsection</span> </button> <ul id="toc-Variants-sublist" class="vector-toc-list"> <li id="toc-Base_case_other_than_0_or_1" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Base_case_other_than_0_or_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Base case other than 0 or 1</span> </div> </a> <ul id="toc-Base_case_other_than_0_or_1-sublist" class="vector-toc-list"> <li id="toc-Example:_forming_dollar_amounts_by_coins" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example:_forming_dollar_amounts_by_coins"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Example: forming dollar amounts by coins</span> </div> </a> <ul id="toc-Example:_forming_dollar_amounts_by_coins-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Induction_on_more_than_one_counter" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Induction_on_more_than_one_counter"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Induction on more than one counter</span> </div> </a> <ul id="toc-Induction_on_more_than_one_counter-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Infinite_descent" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Infinite_descent"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Infinite descent</span> </div> </a> <ul id="toc-Infinite_descent-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Limited_mathematical_induction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Limited_mathematical_induction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Limited mathematical induction</span> </div> </a> <ul id="toc-Limited_mathematical_induction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prefix_induction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Prefix_induction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Prefix induction</span> </div> </a> <ul id="toc-Prefix_induction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complete_(strong)_induction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complete_(strong)_induction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Complete (strong) induction</span> </div> </a> <ul id="toc-Complete_(strong)_induction-sublist" class="vector-toc-list"> <li id="toc-Equivalence_with_ordinary_induction" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Equivalence_with_ordinary_induction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.1</span> <span>Equivalence with ordinary induction</span> </div> </a> <ul id="toc-Equivalence_with_ordinary_induction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example:_Fibonacci_numbers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example:_Fibonacci_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.2</span> <span>Example: Fibonacci numbers</span> </div> </a> <ul id="toc-Example:_Fibonacci_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example:_prime_factorization" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example:_prime_factorization"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.3</span> <span>Example: prime factorization</span> </div> </a> <ul id="toc-Example:_prime_factorization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example:_dollar_amounts_revisited" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example:_dollar_amounts_revisited"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.4</span> <span>Example: dollar amounts revisited</span> </div> </a> <ul id="toc-Example:_dollar_amounts_revisited-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Forward-backward_induction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Forward-backward_induction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Forward-backward induction</span> </div> </a> <ul id="toc-Forward-backward_induction-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Example_of_error_in_the_induction_step" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example_of_error_in_the_induction_step"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Example of error in the induction step</span> </div> </a> <ul id="toc-Example_of_error_in_the_induction_step-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formalization" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formalization"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Formalization</span> </div> </a> <ul id="toc-Formalization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transfinite_induction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Transfinite_induction"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Transfinite induction</span> </div> </a> <ul id="toc-Transfinite_induction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relationship_to_the_well-ordering_principle" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relationship_to_the_well-ordering_principle"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Relationship to the well-ordering principle</span> </div> </a> <ul id="toc-Relationship_to_the_well-ordering_principle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Introduction</span> </div> </a> <ul id="toc-Introduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#History_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>History</span> </div> </a> <ul id="toc-History_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Mathematical induction</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 67 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-67" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">67 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D8%B3%D8%AA%D9%82%D8%B1%D8%A7%D8%A1_%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A" title="استقراء رياضي – Arabic" lang="ar" hreflang="ar" data-title="استقراء رياضي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Inducci%C3%B3n_matem%C3%A1tica" title="Inducción matemática – Asturian" lang="ast" hreflang="ast" data-title="Inducción matemática" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Riyazi_induksiya" title="Riyazi induksiya – Azerbaijani" lang="az" hreflang="az" data-title="Riyazi induksiya" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%97%E0%A6%BE%E0%A6%A3%E0%A6%BF%E0%A6%A4%E0%A6%BF%E0%A6%95_%E0%A6%86%E0%A6%B0%E0%A7%8B%E0%A6%B9_%E0%A6%AC%E0%A6%BF%E0%A6%A7%E0%A6%BF" title="গাণিতিক আরোহ বিধি – Bangla" lang="bn" hreflang="bn" data-title="গাণিতিক আরোহ বিধি" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/S%C3%B2%CD%98-ha%CC%8Dk_kui-la%CC%8Dp-hoat" title="Sò͘-ha̍k kui-la̍p-hoat – Minnan" lang="nan" hreflang="nan" data-title="Sò͘-ha̍k kui-la̍p-hoat" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Математик индукция – Bashkir" lang="ba" hreflang="ba" data-title="Математик индукция" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D1%87%D0%BD%D0%B0%D1%8F_%D1%96%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D1%8B%D1%8F" title="Матэматычная індукцыя – Belarusian" lang="be" hreflang="be" data-title="Матэматычная індукцыя" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Математическа индукция – Bulgarian" lang="bg" hreflang="bg" data-title="Математическа индукция" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Demostraci%C3%B3_per_inducci%C3%B3" title="Demostració per inducció – Catalan" lang="ca" hreflang="ca" data-title="Demostració per inducció" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%C4%83%D0%BB%D0%BB%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8" title="Математикăлла индукци – Chuvash" lang="cv" hreflang="cv" data-title="Математикăлла индукци" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Matematick%C3%A1_indukce" title="Matematická indukce – Czech" lang="cs" hreflang="cs" data-title="Matematická indukce" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Anwythiad_mathemategol" title="Anwythiad mathemategol – Welsh" lang="cy" hreflang="cy" data-title="Anwythiad mathemategol" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Induktion_(matematik)" title="Induktion (matematik) – Danish" lang="da" hreflang="da" data-title="Induktion (matematik)" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://de.wikipedia.org/wiki/Vollst%C3%A4ndige_Induktion" title="Vollständige Induktion – German" lang="de" hreflang="de" data-title="Vollständige Induktion" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AE_%CE%B5%CF%80%CE%B1%CE%B3%CF%89%CE%B3%CE%AE" title="Μαθηματική επαγωγή – Greek" lang="el" hreflang="el" data-title="Μαθηματική επαγωγή" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Inducci%C3%B3n_matem%C3%A1tica" title="Inducción matemática – Spanish" lang="es" hreflang="es" data-title="Inducción matemática" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://eo.wikipedia.org/wiki/Matematika_indukto" title="Matematika indukto – Esperanto" lang="eo" hreflang="eo" data-title="Matematika indukto" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Indukzio_matematiko" title="Indukzio matematiko – Basque" lang="eu" hreflang="eu" data-title="Indukzio matematiko" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D8%B3%D8%AA%D9%82%D8%B1%D8%A7%DB%8C_%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C" title="استقرای ریاضی – Persian" lang="fa" hreflang="fa" data-title="استقرای ریاضی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Raisonnement_par_r%C3%A9currence" title="Raisonnement par récurrence – French" lang="fr" hreflang="fr" data-title="Raisonnement par récurrence" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Induci%C3%B3n_matem%C3%A1tica" title="Indución matemática – Galician" lang="gl" hreflang="gl" data-title="Indución matemática" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%88%98%ED%95%99%EC%A0%81_%EA%B7%80%EB%82%A9%EB%B2%95" title="수학적 귀납법 – Korean" lang="ko" hreflang="ko" data-title="수학적 귀납법" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1%D5%AF%D5%A1%D5%B6_%D5%AB%D5%B6%D5%A4%D5%B8%D6%82%D5%AF%D6%81%D5%AB%D5%A1" title="Մաթեմատիկական ինդուկցիա – Armenian" lang="hy" hreflang="hy" data-title="Մաթեմատիկական ինդուկցիա" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A5%80%E0%A4%AF_%E0%A4%86%E0%A4%97%E0%A4%AE%E0%A4%A8" title="गणितीय आगमन – Hindi" lang="hi" hreflang="hi" data-title="गणितीय आगमन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Aksiom_matemati%C4%8Dke_indukcije" title="Aksiom matematičke indukcije – Croatian" lang="hr" hreflang="hr" data-title="Aksiom matematičke indukcije" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Induksi_matematika" title="Induksi matematika – Indonesian" lang="id" hreflang="id" data-title="Induksi matematika" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Induction_mathematic" title="Induction mathematic – Interlingua" lang="ia" hreflang="ia" data-title="Induction mathematic" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/%C3%9Erepas%C3%B6nnun" title="Þrepasönnun – Icelandic" lang="is" hreflang="is" data-title="Þrepasönnun" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Principio_d%27induzione" title="Principio d&#039;induzione – Italian" lang="it" hreflang="it" data-title="Principio d&#039;induzione" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%99%D7%A0%D7%93%D7%95%D7%A7%D7%A6%D7%99%D7%94_%D7%9E%D7%AA%D7%9E%D7%98%D7%99%D7%AA" title="אינדוקציה מתמטית – Hebrew" lang="he" hreflang="he" data-title="אינדוקציה מתמטית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4%E0%B2%BE%E0%B2%A8%E0%B3%81%E0%B2%AE%E0%B2%BF%E0%B2%A4%E0%B2%BF" title="ಗಣಿತಾನುಮಿತಿ – Kannada" lang="kn" hreflang="kn" data-title="ಗಣಿತಾನುಮಿತಿ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0%D0%BB%D1%8B%D2%9B_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Математикалық индукция – Kazakh" lang="kk" hreflang="kk" data-title="Математикалық индукция" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Inductio_plena" title="Inductio plena – Latin" lang="la" hreflang="la" data-title="Inductio plena" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Matem%C4%81tisk%C4%81_indukcija" title="Matemātiskā indukcija – Latvian" lang="lv" hreflang="lv" data-title="Matemātiskā indukcija" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Matematin%C4%97_indukcija" title="Matematinė indukcija – Lithuanian" lang="lt" hreflang="lt" data-title="Matematinė indukcija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Teljes_indukci%C3%B3" title="Teljes indukció – Hungarian" lang="hu" hreflang="hu" data-title="Teljes indukció" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BA%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Математичка индукција – Macedonian" lang="mk" hreflang="mk" data-title="Математичка индукција" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%97%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B5%80%E0%B4%AF_%E0%B4%86%E0%B4%97%E0%B4%AE%E0%B4%A8%E0%B4%82" title="ഗണിതീയ ആഗമനം – Malayalam" lang="ml" hreflang="ml" data-title="ഗണിതീയ ആഗമനം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Volledige_inductie" title="Volledige inductie – Dutch" lang="nl" hreflang="nl" data-title="Volledige inductie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%9A%84%E5%B8%B0%E7%B4%8D%E6%B3%95" title="数学的帰納法 – Japanese" lang="ja" hreflang="ja" data-title="数学的帰納法" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Matematisk_induksjon" title="Matematisk induksjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Matematisk induksjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Matematisk_induksjon" title="Matematisk induksjon – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Matematisk induksjon" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Induksiya_(matematika)" title="Induksiya (matematika) – Uzbek" lang="uz" hreflang="uz" data-title="Induksiya (matematika)" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Indukcja_matematyczna" title="Indukcja matematyczna – Polish" lang="pl" hreflang="pl" data-title="Indukcja matematyczna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Indu%C3%A7%C3%A3o_matem%C3%A1tica" title="Indução matemática – Portuguese" lang="pt" hreflang="pt" data-title="Indução matemática" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Induc%C8%9Bie_matematic%C4%83" title="Inducție matematică – Romanian" lang="ro" hreflang="ro" data-title="Inducție matematică" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Математическая индукция – Russian" lang="ru" hreflang="ru" data-title="Математическая индукция" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Induksioni_matematik" title="Induksioni matematik – Albanian" lang="sq" hreflang="sq" data-title="Induksioni matematik" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%9C%E0%B6%AB%E0%B7%92%E0%B6%AD_%E0%B6%85%E0%B6%B7%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%94%E0%B7%84%E0%B6%B1%E0%B6%BA" title="ගණිත අභ්‍යුහනය – Sinhala" lang="si" hreflang="si" data-title="ගණිත අභ්‍යුහනය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Mathematical_induction" title="Mathematical induction – Simple English" lang="en-simple" hreflang="en-simple" data-title="Mathematical induction" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Matematick%C3%A1_indukcia" title="Matematická indukcia – Slovak" lang="sk" hreflang="sk" data-title="Matematická indukcia" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Matemati%C4%8Dna_indukcija" title="Matematična indukcija – Slovenian" lang="sl" hreflang="sl" data-title="Matematična indukcija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A6%DB%8C%D8%B3%D8%AA%DB%8C%D9%82%D8%B1%D8%A7%DB%8C_%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9%DB%8C" title="ئیستیقرای ماتماتیکی – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ئیستیقرای ماتماتیکی" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BA%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Математичка индукција – Serbian" lang="sr" hreflang="sr" data-title="Математичка индукција" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Matemati%C4%8Dka_indukcija" title="Matematička indukcija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Matematička indukcija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Matemaattinen_induktio" title="Matemaattinen induktio – Finnish" lang="fi" hreflang="fi" data-title="Matemaattinen induktio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Matematisk_induktion" title="Matematisk induktion – Swedish" lang="sv" hreflang="sv" data-title="Matematisk induktion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%A4%E0%AF%8D_%E0%AE%A4%E0%AF%8A%E0%AE%95%E0%AF%81%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%B1%E0%AE%BF%E0%AE%A4%E0%AE%B2%E0%AF%8D" title="கணிதத் தொகுத்தறிதல் – Tamil" lang="ta" hreflang="ta" data-title="கணிதத் தொகுத்தறிதல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Математик индукция – Tatar" lang="tt" hreflang="tt" data-title="Математик индукция" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AD%E0%B8%B8%E0%B8%9B%E0%B8%99%E0%B8%B1%E0%B8%A2%E0%B9%80%E0%B8%8A%E0%B8%B4%E0%B8%87%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C" title="การอุปนัยเชิงคณิตศาสตร์ – Thai" lang="th" hreflang="th" data-title="การอุปนัยเชิงคณิตศาสตร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Matematiksel_t%C3%BCmevar%C4%B1m" title="Matematiksel tümevarım – Turkish" lang="tr" hreflang="tr" data-title="Matematiksel tümevarım" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D1%96%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D1%96%D1%8F" title="Математична індукція – Ukrainian" lang="uk" hreflang="uk" data-title="Математична індукція" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Quy_n%E1%BA%A1p_to%C3%A1n_h%E1%BB%8Dc" title="Quy nạp toán học – Vietnamese" lang="vi" hreflang="vi" data-title="Quy nạp toán học" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%BD%92%E7%BA%B3%E6%B3%95" title="数学归纳法 – Wu" lang="wuu" hreflang="wuu" data-title="数学归纳法" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%95%B8%E5%AD%B8%E6%AD%B8%E7%B4%8D%E6%B3%95" title="數學歸納法 – Cantonese" lang="yue" hreflang="yue" data-title="數學歸納法" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%BD%92%E7%BA%B3%E6%B3%95" title="数学归纳法 – Chinese" lang="zh" hreflang="zh" data-title="数学归纳法" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-rsk mw-list-item"><a href="https://rsk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F" title="Математична индукция – Pannonian Rusyn" lang="rsk" hreflang="rsk" data-title="Математична индукция" data-language-autonym="Руски" data-language-local-name="Pannonian Rusyn" class="interlanguage-link-target"><span>Руски</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q178377#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Mathematical_induction" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Mathematical_induction" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Mathematical_induction"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Mathematical_induction&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Mathematical_induction&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Mathematical_induction"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Mathematical_induction&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Mathematical_induction&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Mathematical_induction" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Mathematical_induction" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Mathematical_induction&amp;oldid=1253171361" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Mathematical_induction&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Mathematical_induction&amp;id=1253171361&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMathematical_induction"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMathematical_induction"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Mathematical_induction&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Mathematical_induction&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Induction_(mathematics)" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Mathematical_Proof/Methods_of_Proof/Proof_by_Induction" hreflang="en"><span>Wikibooks</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Mathematical_induction" hreflang="en"><span>Wikiquote</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Mathematical_induction" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q178377" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Form of mathematical proof</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Inductive_reasoning" title="Inductive reasoning">inductive reasoning</a>.</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Dominoeffect.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Dominoeffect.png/220px-Dominoeffect.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Dominoeffect.png/330px-Dominoeffect.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Dominoeffect.png/440px-Dominoeffect.png 2x" data-file-width="800" data-file-height="600" /></a><figcaption>Mathematical induction can be informally illustrated by reference to the sequential effect of <a href="/wiki/Domino_toppling" title="Domino toppling">falling dominoes</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p><b>Mathematical induction</b> is a method for <a href="/wiki/Mathematical_proof" title="Mathematical proof">proving</a> that a statement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span> is true for every <a href="/wiki/Natural_number" title="Natural number">natural number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, that is, that the infinitely many cases <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(0),P(1),P(2),P(3),\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(0),P(1),P(2),P(3),\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b711489e1c1a6623f75d4cb531a06f8204cf65b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.728ex; height:2.843ex;" alt="{\displaystyle P(0),P(1),P(2),P(3),\dots }"></span>&#8201; all hold. This is done by first proving a simple case, then also showing that if we assume the claim is true for a given case, then the next case is also true. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>Mathematical induction proves that we can climb as high as we like on a ladder, by proving that we can climb onto the bottom rung (the <b>basis</b>) and that from each rung we can climb up to the next one (the <b>step</b>).</p><div class="templatequotecite">—&#8202;<cite><i><a href="/wiki/Concrete_Mathematics" title="Concrete Mathematics">Concrete Mathematics</a></i>, page 3 margins.</cite></div></blockquote> <p>A <b>proof by induction</b> consists of two cases. The first, the <b>base case</b>, proves the statement for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span> without assuming any knowledge of other cases. The second case, the <b>induction step</b>, proves that <i>if</i> the statement holds for any given case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/809fa04eb15b435447fe64b3ca71f4feaac3d2c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.704ex; height:2.176ex;" alt="{\displaystyle n=k}"></span>, <i>then</i> it must also hold for the next case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=k+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=k+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41a27ec53b870485ae4eda0335db05ecdfd933e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.707ex; height:2.343ex;" alt="{\displaystyle n=k+1}"></span>. These two steps establish that the statement holds for every natural number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. The base case does not necessarily begin with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span>, but often with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span>, and possibly with any fixed natural number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78fd6116383f2004f7dd59ff8a81ede1c2f6d3ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.557ex; height:2.176ex;" alt="{\displaystyle n=N}"></span>, establishing the truth of the statement for all natural numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b67a4f8e2ce89617f08316bfdcc6f33887b5629" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.557ex; height:2.343ex;" alt="{\displaystyle n\geq N}"></span>. </p><p>The method can be extended to prove statements about more general <a href="/wiki/Well-founded" class="mw-redirect" title="Well-founded">well-founded</a> structures, such as <a href="/wiki/Tree_(set_theory)" title="Tree (set theory)">trees</a>; this generalization, known as <a href="/wiki/Structural_induction" title="Structural induction">structural induction</a>, is used in <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a> and <a href="/wiki/Computer_science" title="Computer science">computer science</a>. Mathematical induction in this extended sense is closely related to <a href="/wiki/Recursion" title="Recursion">recursion</a>. Mathematical induction is an <a href="/wiki/Inference_rule" class="mw-redirect" title="Inference rule">inference rule</a> used in <a href="/wiki/Formal_proof" title="Formal proof">formal proofs</a>, and is the foundation of most <a href="/wiki/Correctness_(computer_science)" title="Correctness (computer science)">correctness</a> proofs for computer programs.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Despite its name, mathematical induction differs fundamentally from <a href="/wiki/Inductive_reasoning" title="Inductive reasoning">inductive reasoning</a> as <a href="/wiki/Problem_of_induction" title="Problem of induction">used in philosophy</a>, in which the examination of many cases results in a probable conclusion. The mathematical method examines infinitely many cases to prove a general statement, but it does so by a finite chain of <a href="/wiki/Deductive_reasoning" title="Deductive reasoning">deductive reasoning</a> involving the <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, which can take infinitely many values. The result is a rigorous proof of the statement, not an assertion of its probability.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 370 BC, <a href="/wiki/Plato" title="Plato">Plato</a>'s <a href="/wiki/Parmenides_(dialogue)" title="Parmenides (dialogue)">Parmenides</a> may have contained traces of an early example of an implicit inductive proof,<sup id="cite_ref-FOOTNOTEAcerbi2000_5-0" class="reference"><a href="#cite_note-FOOTNOTEAcerbi2000-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> however, the earliest implicit proof by mathematical induction was written by <a href="/wiki/Al-Karaji" title="Al-Karaji">al-Karaji</a> around 1000 AD, who applied it to <a href="/wiki/Arithmetic_progression" title="Arithmetic progression">arithmetic sequences</a> to prove the <a href="/wiki/Binomial_theorem" title="Binomial theorem">binomial theorem</a> and properties of <a href="/wiki/Pascal%27s_triangle" title="Pascal&#39;s triangle">Pascal's triangle</a>. Whilst the original work was lost, it was later referenced by <a href="/wiki/Al-Samawal_al-Maghribi" title="Al-Samawal al-Maghribi">Al-Samawal al-Maghribi</a> in his treatise <i>al-Bahir fi'l-jabr (The Brilliant in Algebra)</i> in around 1150 AD.<sup id="cite_ref-FOOTNOTERashed199462–84_6-0" class="reference"><a href="#cite_note-FOOTNOTERashed199462–84-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p> Katz says in his history of mathematics <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"></p><blockquote class="templatequote"><p>Another important idea introduced by al-Karaji and continued by al-Samaw'al and others was that of an inductive argument for dealing with certain arithmetic sequences. Thus al-Karaji used such an argument to prove the result on the sums of integral cubes already known to <a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a> [...] Al-Karaji did not, however, state a general result for arbitrary <i>n</i>. He stated his theorem for the particular integer 10 [...] His proof, nevertheless, was clearly designed to be extendable to any other integer. [...] Al-Karaji's argument includes in essence the two basic components of a modern argument by induction, namely the <a href="/wiki/Truth" title="Truth">truth</a> of the statement for <i>n</i> = 1 (1 = 1<sup>3</sup>) and the deriving of the truth for <i>n</i> = <i>k</i> from that of <i>n</i> = <i>k</i> - 1. Of course, this second component is not explicit since, in some sense, al-Karaji's argument is in reverse; this is, he starts from <i>n</i> = 10 and goes down to 1 rather than proceeding upward. Nevertheless, his argument in <i>al-Fakhri</i> is the earliest extant proof of <a href="/wiki/Squared_triangular_number" title="Squared triangular number">the sum formula for integral cubes</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>In India, early implicit proofs by mathematical induction appear in <a href="/wiki/Bh%C4%81skara_II" title="Bhāskara II">Bhaskara</a>'s "<a href="/wiki/Chakravala_method" title="Chakravala method">cyclic method</a>".<sup id="cite_ref-Induction_Bussey_9-0" class="reference"><a href="#cite_note-Induction_Bussey-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>None of these ancient mathematicians, however, explicitly stated the induction hypothesis. Another similar case (contrary to what Vacca has written, as Freudenthal carefully showed)<sup id="cite_ref-FOOTNOTERashed199462_10-0" class="reference"><a href="#cite_note-FOOTNOTERashed199462-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> was that of <a href="/wiki/Francesco_Maurolico" title="Francesco Maurolico">Francesco Maurolico</a> in his <i>Arithmeticorum libri duo</i> (1575), who used the technique to prove that the sum of the first <span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Parity_(mathematics)" title="Parity (mathematics)">odd</a> <a href="/wiki/Integer" title="Integer">integers</a> is <span class="texhtml"><i>n</i><sup>2</sup></span>. </p><p>The earliest <a href="/wiki/Rigour#Mathematical_proof" title="Rigour">rigorous</a> use of induction was by <a href="/wiki/Gersonides" title="Gersonides">Gersonides</a> (1288–1344).<sup id="cite_ref-FOOTNOTESimonson2000_11-0" class="reference"><a href="#cite_note-FOOTNOTESimonson2000-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTERabinovitch1970_12-0" class="reference"><a href="#cite_note-FOOTNOTERabinovitch1970-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> The first explicit formulation of the principle of induction was given by <a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Pascal</a> in his <i>Traité du triangle arithmétique</i> (1665). Another Frenchman, <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Fermat</a>, made ample use of a related principle: indirect proof by <a href="/wiki/Infinite_descent" class="mw-redirect" title="Infinite descent">infinite descent</a>. </p><p>The induction hypothesis was also employed by the Swiss <a href="/wiki/Jakob_Bernoulli" class="mw-redirect" title="Jakob Bernoulli">Jakob Bernoulli</a>, and from then on it became well known. The modern formal treatment of the principle came only in the 19th century, with <a href="/wiki/George_Boole" title="George Boole">George Boole</a>,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Augustus_De_Morgan" title="Augustus De Morgan">Augustus De Morgan</a>, <a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Charles Sanders Peirce</a>,<sup id="cite_ref-FOOTNOTEPeirce1881_14-0" class="reference"><a href="#cite_note-FOOTNOTEPeirce1881-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEShields1997_15-0" class="reference"><a href="#cite_note-FOOTNOTEShields1997-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Giuseppe_Peano" title="Giuseppe Peano">Giuseppe Peano</a>, and <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a>.<sup id="cite_ref-Induction_Bussey_9-1" class="reference"><a href="#cite_note-Induction_Bussey-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Description">Description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=2" title="Edit section: Description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The simplest and most common form of mathematical induction infers that a statement involving a <a href="/wiki/Natural_number" title="Natural number">natural number</a> <span class="texhtml mvar" style="font-style:italic;">n</span> (that is, an integer <span class="texhtml"><i>n</i> ≥ 0</span> or 1) holds for all values of <span class="texhtml mvar" style="font-style:italic;">n</span>. The proof consists of two steps: </p> <ol><li>The <b><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="base_case"></span><span class="vanchor-text">base case</span></span></b> (or <b>initial case</b>): prove that the statement holds for 0, or 1.</li> <li>The <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="induction_step"></span><span class="vanchor-text">induction step</span></span></b> (or <b>inductive step</b>, or <b>step case</b>): prove that for every <span class="texhtml mvar" style="font-style:italic;">n</span>, if the statement holds for <span class="texhtml mvar" style="font-style:italic;">n</span>, then it holds for <span class="texhtml"><i>n</i> +&#8201;1</span>. In other words, assume that the statement holds for some arbitrary natural number <span class="texhtml mvar" style="font-style:italic;">n</span>, and prove that the statement holds for <span class="texhtml"><i>n</i> +&#8201;1</span>.</li></ol> <p>The hypothesis in the induction step, that the statement holds for a particular <span class="texhtml mvar" style="font-style:italic;">n</span>, is called the <b>induction hypothesis</b> or <b>inductive hypothesis</b>. To prove the induction step, one assumes the induction hypothesis for <span class="texhtml mvar" style="font-style:italic;">n</span> and then uses this assumption to prove that the statement holds for <span class="texhtml"><i>n</i> +&#8201;1</span>. </p><p>Authors who prefer to define natural numbers to begin at 0 use that value in the base case; those who define natural numbers to begin at 1 use that value. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=3" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Sum_of_consecutive_natural_numbers">Sum of consecutive natural numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=4" title="Edit section: Sum of consecutive natural numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mathematical induction can be used to prove the following statement <span class="texhtml"><i>P</i>(<i>n</i>)</span> for all natural numbers <span class="texhtml mvar" style="font-style:italic;">n</span>. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)\!:\ \ 0+1+2+\cdots +n={\frac {n(n+1)}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> <mo>:</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)\!:\ \ 0+1+2+\cdots +n={\frac {n(n+1)}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f71f7909df7374df61735ad6b1fbccdb11f0a5d2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.811ex; height:5.676ex;" alt="{\displaystyle P(n)\!:\ \ 0+1+2+\cdots +n={\frac {n(n+1)}{2}}.}"></span> </p><p>This states a general formula for the sum of the natural numbers less than or equal to a given number; in fact an infinite sequence of statements: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0={\tfrac {(0)(0+1)}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0={\tfrac {(0)(0+1)}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20722b1548fdda3b520085dc31c7a800f8596dda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.4ex; height:4.176ex;" alt="{\displaystyle 0={\tfrac {(0)(0+1)}{2}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+1={\tfrac {(1)(1+1)}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+1={\tfrac {(1)(1+1)}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/466ecc3e21f80a9cf48383e7d3674f5f0db32bb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.403ex; height:4.176ex;" alt="{\displaystyle 0+1={\tfrac {(1)(1+1)}{2}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+1+2={\tfrac {(2)(2+1)}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+1+2={\tfrac {(2)(2+1)}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f75217d762154e21f44d881f396c4558995ddf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.406ex; height:4.176ex;" alt="{\displaystyle 0+1+2={\tfrac {(2)(2+1)}{2}}}"></span>, etc. </p><p><b><u>Proposition.</u></b> For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {N} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+1+2+\cdots +n={\tfrac {n(n+1)}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+1+2+\cdots +n={\tfrac {n(n+1)}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bf0be7dc58fe4f2239432f8c455b43c81fc1915" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:28.901ex; height:4.176ex;" alt="{\displaystyle 0+1+2+\cdots +n={\tfrac {n(n+1)}{2}}.}"></span> </p><p><b>Proof.</b> Let <span class="texhtml"><i>P</i>(<i>n</i>)</span> be the statement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+1+2+\cdots +n={\tfrac {n(n+1)}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+1+2+\cdots +n={\tfrac {n(n+1)}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bf0be7dc58fe4f2239432f8c455b43c81fc1915" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:28.901ex; height:4.176ex;" alt="{\displaystyle 0+1+2+\cdots +n={\tfrac {n(n+1)}{2}}.}"></span> We give a proof by induction on <span class="texhtml mvar" style="font-style:italic;">n</span>. </p><p><i>Base case:</i> Show that the statement holds for the smallest natural number <span class="texhtml"><i>n</i> = 0</span>. </p><p><span class="texhtml"><i>P</i>(0)</span> is clearly true: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0={\tfrac {0(0+1)}{2}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>0</mn> <mo stretchy="false">(</mo> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0={\tfrac {0(0+1)}{2}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6362a08a500f5fb6a222d694977f624f1b6a01f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.155ex; height:4.176ex;" alt="{\displaystyle 0={\tfrac {0(0+1)}{2}}\,.}"></span> </p><p><i>Induction step:</i> Show that for every <span class="texhtml"><i>k</i> ≥ 0</span>, if <span class="texhtml"><i>P</i>(<i>k</i>)</span> holds, then <span class="texhtml"><i>P</i>(<i>k</i> +&#8201;1)</span> also holds. </p><p>Assume the induction hypothesis that for a particular <span class="texhtml mvar" style="font-style:italic;">k</span>, the single case <span class="texhtml"><i>n</i> = <i>k</i></span> holds, meaning <span class="texhtml"><i>P</i>(<i>k</i>)</span> is true:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+1+\cdots +k={\frac {k(k+1)}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+1+\cdots +k={\frac {k(k+1)}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8836d7410f8647a0e47edb087a580dd312f1694" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.597ex; height:5.676ex;" alt="{\displaystyle 0+1+\cdots +k={\frac {k(k+1)}{2}}.}"></span> It follows that: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0+1+2+\cdots +k)+(k+1)={\frac {k(k+1)}{2}}+(k+1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0+1+2+\cdots +k)+(k+1)={\frac {k(k+1)}{2}}+(k+1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233e4ed7ce920229cc241e45ecd575a2ad38f6d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:53.136ex; height:5.676ex;" alt="{\displaystyle (0+1+2+\cdots +k)+(k+1)={\frac {k(k+1)}{2}}+(k+1).}"></span> </p><p><a href="/wiki/Algebra" title="Algebra">Algebraically</a>, the right hand side simplifies as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {k(k+1)}{2}}+(k+1)&amp;={\frac {k(k+1)+2(k+1)}{2}}\\&amp;={\frac {(k+1)(k+2)}{2}}\\&amp;={\frac {(k+1)((k+1)+1)}{2}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {k(k+1)}{2}}+(k+1)&amp;={\frac {k(k+1)+2(k+1)}{2}}\\&amp;={\frac {(k+1)(k+2)}{2}}\\&amp;={\frac {(k+1)((k+1)+1)}{2}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8f7aa8426ee8017ea5146530412c0e80efe19ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.005ex; width:44.126ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {k(k+1)}{2}}+(k+1)&amp;={\frac {k(k+1)+2(k+1)}{2}}\\&amp;={\frac {(k+1)(k+2)}{2}}\\&amp;={\frac {(k+1)((k+1)+1)}{2}}.\end{aligned}}}"></span> </p><p>Equating the extreme left hand and right hand sides, we deduce that:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+1+2+\cdots +k+(k+1)={\frac {(k+1)((k+1)+1)}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi>k</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+1+2+\cdots +k+(k+1)={\frac {(k+1)((k+1)+1)}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42f873071efcd5268ae0aee53954dbb5ca5f5c58" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:53.088ex; height:5.676ex;" alt="{\displaystyle 0+1+2+\cdots +k+(k+1)={\frac {(k+1)((k+1)+1)}{2}}.}"></span> That is, the statement <span class="texhtml"><i>P</i>(<i>k</i> +&#8201;1)</span> also holds true, establishing the induction step. </p><p><i>Conclusion:</i> Since both the base case and the induction step have been proved as true, by mathematical induction the statement <span class="texhtml"><i>P</i>(<i>n</i>)</span> holds for every natural number <span class="texhtml mvar" style="font-style:italic;">n</span>. <a href="/wiki/Q.E.D." title="Q.E.D.">Q.E.D.</a> </p> <div class="mw-heading mw-heading3"><h3 id="A_trigonometric_inequality">A trigonometric inequality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=5" title="Edit section: A trigonometric inequality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Induction is often used to prove <a href="/wiki/Inequality_(mathematics)" title="Inequality (mathematics)">inequalities</a>. As an example, we prove that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/403c2cef4db86b65faf0301acfe9b521c035cb20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.007ex; height:2.843ex;" alt="{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}"></span> for any <a href="/wiki/Real_number" title="Real number">real number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and natural number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. </p><p>At first glance, it may appear that a more general version, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/403c2cef4db86b65faf0301acfe9b521c035cb20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.007ex; height:2.843ex;" alt="{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}"></span> for any <i>real</i> numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n,x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>,</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n,x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09bbd04fc7f01076e6c76a3b09b03cae2e4da159" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.758ex; height:2.009ex;" alt="{\displaystyle n,x}"></span>, could be proven without induction; but the case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n={\frac {1}{2}},\,x=\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n={\frac {1}{2}},\,x=\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41c09e883cbf35f44e0a9956d65d0c196c20e599" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.332ex; height:3.509ex;" alt="{\textstyle n={\frac {1}{2}},\,x=\pi }"></span> shows it may be false for non-integer values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. This suggests we examine the statement specifically for <i>natural</i> values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, and induction is the readiest tool. </p><p><b><u>Proposition.</u></b> For any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c6d458566aec47a7259762034790c8981aefab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle x\in \mathbb {R} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {N} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/403c2cef4db86b65faf0301acfe9b521c035cb20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.007ex; height:2.843ex;" alt="{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}"></span>. </p><p><b>Proof.</b> Fix an arbitrary real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span> be the statement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/403c2cef4db86b65faf0301acfe9b521c035cb20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.007ex; height:2.843ex;" alt="{\displaystyle \left|\sin nx\right|\leq n\left|\sin x\right|}"></span>. We induce on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. </p><p><i>Base case:</i> The calculation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\sin 0x\right|=0\leq 0=0\left|\sin x\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>0</mn> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mn>0</mn> <mo>=</mo> <mn>0</mn> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\sin 0x\right|=0\leq 0=0\left|\sin x\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a3907fecd4f60639b771e2dd58c2bf5a72952cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.064ex; height:2.843ex;" alt="{\displaystyle \left|\sin 0x\right|=0\leq 0=0\left|\sin x\right|}"></span> verifies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60a4af3ee31a3a4e26e7cb20b4a6aed37f6e8a5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.717ex; height:2.843ex;" alt="{\displaystyle P(0)}"></span>. </p><p><i>Induction step:</i> We show the <a href="/wiki/Logical_consequence" title="Logical consequence">implication</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k)\implies P(k+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k)\implies P(k+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed02b0eb1f165f752ce4463a34a0de48db3b0147" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.921ex; height:2.843ex;" alt="{\displaystyle P(k)\implies P(k+1)}"></span> for any natural number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>. Assume the induction hypothesis: for a given value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=k\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>k</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=k\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abf7e80555f327cec9d84de4a190c1fdb73d82ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.965ex; height:2.343ex;" alt="{\displaystyle n=k\geq 0}"></span>, the single case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b41614fb84549b21f2c7f2793bbd8a87a2105027" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.766ex; height:2.843ex;" alt="{\displaystyle P(k)}"></span> is true. Using the <a href="/wiki/List_of_trigonometric_identities" title="List of trigonometric identities">angle addition formula</a> and the <a href="/wiki/Absolute_value#Real_numbers" title="Absolute value">triangle inequality</a>, we deduce: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left|\sin(k+1)x\right|&amp;=\left|\sin kx\cos x+\sin x\cos kx\right|&amp;&amp;{\text{(angle addition)}}\\&amp;\leq \left|\sin kx\cos x\right|+\left|\sin x\,\cos kx\right|&amp;&amp;{\text{(triangle inequality)}}\\&amp;=\left|\sin kx\right|\left|\cos x\right|+\left|\sin x\right|\left|\cos kx\right|\\&amp;\leq \left|\sin kx\right|+\left|\sin x\right|&amp;&amp;(\left|\cos t\right|\leq 1)\\&amp;\leq k\left|\sin x\right|+\left|\sin x\right|&amp;&amp;{\text{(induction hypothesis}})\\&amp;=(k+1)\left|\sin x\right|.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(angle addition)</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mspace width="thinmathspace" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(triangle inequality)</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mrow> <mo>|</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>t</mi> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(induction hypothesis</mtext> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>|</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left|\sin(k+1)x\right|&amp;=\left|\sin kx\cos x+\sin x\cos kx\right|&amp;&amp;{\text{(angle addition)}}\\&amp;\leq \left|\sin kx\cos x\right|+\left|\sin x\,\cos kx\right|&amp;&amp;{\text{(triangle inequality)}}\\&amp;=\left|\sin kx\right|\left|\cos x\right|+\left|\sin x\right|\left|\cos kx\right|\\&amp;\leq \left|\sin kx\right|+\left|\sin x\right|&amp;&amp;(\left|\cos t\right|\leq 1)\\&amp;\leq k\left|\sin x\right|+\left|\sin x\right|&amp;&amp;{\text{(induction hypothesis}})\\&amp;=(k+1)\left|\sin x\right|.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bee3607e0fdab6d9f5c8fb2f956f1bb664338c7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:73.647ex; height:18.509ex;" alt="{\displaystyle {\begin{aligned}\left|\sin(k+1)x\right|&amp;=\left|\sin kx\cos x+\sin x\cos kx\right|&amp;&amp;{\text{(angle addition)}}\\&amp;\leq \left|\sin kx\cos x\right|+\left|\sin x\,\cos kx\right|&amp;&amp;{\text{(triangle inequality)}}\\&amp;=\left|\sin kx\right|\left|\cos x\right|+\left|\sin x\right|\left|\cos kx\right|\\&amp;\leq \left|\sin kx\right|+\left|\sin x\right|&amp;&amp;(\left|\cos t\right|\leq 1)\\&amp;\leq k\left|\sin x\right|+\left|\sin x\right|&amp;&amp;{\text{(induction hypothesis}})\\&amp;=(k+1)\left|\sin x\right|.\end{aligned}}}"></span> </p><p>The inequality between the extreme left-hand and right-hand quantities shows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c82953120fe42f14025a07cd09ba7eaee65fcee1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.769ex; height:2.843ex;" alt="{\displaystyle P(k+1)}"></span> is true, which completes the induction step. </p><p><i>Conclusion:</i> The proposition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span> holds for all natural numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e59df02a9f67a5da3c220f1244c99a46cc4eb1c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:1.676ex;" alt="{\displaystyle n.}"></span><span style="padding-left:4;">&#160;</span> Q.E.D. </p> <div class="mw-heading mw-heading2"><h2 id="Variants">Variants</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=6" title="Edit section: Variants"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-No_footnotes plainlinks metadata ambox ambox-style ambox-No_footnotes" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section includes a <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">list of references</a>, <a href="/wiki/Wikipedia:Further_reading" title="Wikipedia:Further reading">related reading</a>, or <a href="/wiki/Wikipedia:External_links" title="Wikipedia:External links">external links</a>, <b>but its sources remain unclear because it lacks <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Wikipedia:WikiProject_Fact_and_Reference_Check" class="mw-redirect" title="Wikipedia:WikiProject Fact and Reference Check">improve</a> this section by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">July 2013</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In practice, proofs by induction are often structured differently, depending on the exact nature of the property to be proven. All variants of induction are special cases of <a href="/wiki/Transfinite_induction" title="Transfinite induction">transfinite induction</a>; see <a href="#Transfinite_induction">below</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Base_case_other_than_0_or_1">Base case other than 0 or 1</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=7" title="Edit section: Base case other than 0 or 1"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If one wishes to prove a statement, not for all natural numbers, but only for all numbers <span class="texhtml mvar" style="font-style:italic;">n</span> greater than or equal to a certain number <span class="texhtml mvar" style="font-style:italic;">b</span>, then the proof by induction consists of the following: </p> <ol><li>Showing that the statement holds when <span class="texhtml"><i>n</i> = <i>b</i></span>.</li> <li>Showing that if the statement holds for an arbitrary number <span class="texhtml"><i>n</i> ≥ <i>b</i></span>, then the same statement also holds for <span class="texhtml"><i>n</i> +&#8201;1</span>.</li></ol> <p>This can be used, for example, to show that <span class="texhtml">2<sup><i>n</i></sup> ≥ <i>n</i> + 5</span> for <span class="texhtml"><i>n</i> ≥ 3</span>. </p><p>In this way, one can prove that some statement <span class="texhtml"><i>P</i>(<i>n</i>)</span> holds for all <span class="texhtml"><i>n</i> ≥ 1</span>, or even for all <span class="texhtml"><i>n</i> ≥ −5</span>. This form of mathematical induction is actually a special case of the previous form, because if the statement to be proved is <span class="texhtml"><i>P</i>(<i>n</i>)</span> then proving it with these two rules is equivalent with proving <span class="texhtml"><i>P</i>(<i>n</i> + <i>b</i>)</span> for all natural numbers <span class="texhtml mvar" style="font-style:italic;">n</span> with an induction base case <span class="texhtml">0</span>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Example:_forming_dollar_amounts_by_coins">Example: forming dollar amounts by coins</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=8" title="Edit section: Example: forming dollar amounts by coins"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Assume an infinite supply of 4- and 5-dollar coins. Induction can be used to prove that any whole amount of dollars greater than or equal to <span class="texhtml">12</span> can be formed by a combination of such coins. Let <span class="texhtml"><i>S</i>(<i>k</i>)</span> denote the statement "<span class="texhtml mvar" style="font-style:italic;">k</span> dollars can be formed by a combination of 4- and 5-dollar coins". The proof that <span class="texhtml"><i>S</i>(<i>k</i>)</span> is true for all <span class="texhtml"><i>k</i> ≥ 12</span> can then be achieved by induction on <span class="texhtml mvar" style="font-style:italic;">k</span> as follows: </p><p><i>Base case:</i> Showing that <span class="texhtml"><i>S</i>(<i>k</i>)</span> holds for <span class="texhtml"><i>k</i> = 12</span> is simple: take three 4-dollar coins. </p><p><i>Induction step:</i> Given that <span class="texhtml"><i>S</i>(<i>k</i>)</span> holds for some value of <span class="texhtml"><i>k</i> ≥ 12</span> (<i>induction hypothesis</i>), prove that <span class="texhtml"><i>S</i>(<i>k</i> +&#8201;1)</span> holds, too. Assume <span class="texhtml"><i>S</i>(<i>k</i>)</span> is true for some arbitrary <span class="texhtml"><i>k</i> ≥ 12</span>. If there is a solution for <span class="texhtml mvar" style="font-style:italic;">k</span> dollars that includes at least one 4-dollar coin, replace it by a 5-dollar coin to make <span class="texhtml"><i>k</i> +&#8201;1</span> dollars. Otherwise, if only 5-dollar coins are used, <span class="texhtml mvar" style="font-style:italic;">k</span> must be a multiple of 5 and so at least 15; but then we can replace three 5-dollar coins by four 4-dollar coins to make <span class="texhtml"><i>k</i> +&#8201;1</span> dollars. In each case, <span class="texhtml"><i>S</i>(<i>k</i> +&#8201;1)</span> is true. </p><p>Therefore, by the principle of induction, <span class="texhtml"><i>S</i>(<i>k</i>)</span> holds for all <span class="texhtml"><i>k</i> ≥ 12</span>, and the proof is complete. </p><p>In this example, although <span class="texhtml"><i>S</i>(<i>k</i>)</span> also holds for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k\in \{4,5,8,9,10\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>9</mn> <mo>,</mo> <mn>10</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k\in \{4,5,8,9,10\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55e12a526c9c0e242d868ad6cef14a8a79ee74f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.487ex; height:2.843ex;" alt="{\textstyle k\in \{4,5,8,9,10\}}"></span>, the above proof cannot be modified to replace the minimum amount of <span class="texhtml">12</span> dollar to any lower value <span class="texhtml mvar" style="font-style:italic;">m</span>. For <span class="texhtml"><i>m</i> = 11</span>, the base case is actually false; for <span class="texhtml"><i>m</i> = 10</span>, the second case in the induction step (replacing three 5- by four 4-dollar coins) will not work; let alone for even lower <span class="texhtml mvar" style="font-style:italic;">m</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Induction_on_more_than_one_counter">Induction on more than one counter</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=9" title="Edit section: Induction on more than one counter"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is sometimes desirable to prove a statement involving two natural numbers, <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">m</span>, by iterating the induction process. That is, one proves a base case and an induction step for <span class="texhtml mvar" style="font-style:italic;">n</span>, and in each of those proves a base case and an induction step for <span class="texhtml mvar" style="font-style:italic;">m</span>. See, for example, the <a href="/wiki/Proofs_involving_the_addition_of_natural_numbers" title="Proofs involving the addition of natural numbers">proof of commutativity</a> accompanying <i><a href="/wiki/Addition_of_natural_numbers" class="mw-redirect" title="Addition of natural numbers">addition of natural numbers</a></i>. More complicated arguments involving three or more counters are also possible. </p> <div class="mw-heading mw-heading3"><h3 id="Infinite_descent">Infinite descent</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=10" title="Edit section: Infinite descent"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Infinite_descent" class="mw-redirect" title="Infinite descent">Infinite descent</a></div> <p>The method of infinite descent is a variation of mathematical induction which was used by <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a>. It is used to show that some statement <span class="texhtml"><i>Q</i>(<i>n</i>)</span> is false for all natural numbers <span class="texhtml mvar" style="font-style:italic;">n</span>. Its traditional form consists of showing that if <span class="texhtml"><i>Q</i>(<i>n</i>)</span> is true for some natural number <span class="texhtml mvar" style="font-style:italic;">n</span>, it also holds for some strictly smaller natural number <span class="texhtml mvar" style="font-style:italic;">m</span>. Because there are no infinite decreasing sequences of natural numbers, this situation would be impossible, thereby showing (<a href="/wiki/Proof_by_contradiction" title="Proof by contradiction">by contradiction</a>) that <span class="texhtml"><i>Q</i>(<i>n</i>)</span> cannot be true for any <span class="texhtml mvar" style="font-style:italic;">n</span>. </p><p>The validity of this method can be verified from the usual principle of mathematical induction. Using mathematical induction on the statement <span class="texhtml"><i>P</i>(<i>n</i>)</span> defined as "<span class="texhtml"><i>Q</i>(<i>m</i>)</span> is false for all natural numbers <span class="texhtml mvar" style="font-style:italic;">m</span> less than or equal to <span class="texhtml mvar" style="font-style:italic;">n</span>", it follows that <span class="texhtml"><i>P</i>(<i>n</i>)</span> holds for all <span class="texhtml mvar" style="font-style:italic;">n</span>, which means that <span class="texhtml"><i>Q</i>(<i>n</i>)</span> is false for every natural number <span class="texhtml mvar" style="font-style:italic;">n</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Limited_mathematical_induction">Limited mathematical induction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=11" title="Edit section: Limited mathematical induction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If one wishes to prove that a property <span class="texhtml"><i>P</i></span> holds for all natural numbers less than or equal to <span class="texhtml mvar" style="font-style:italic;">n</span>, proving <span class="texhtml"><i>P</i></span> satisfies the following conditions suffices:<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li><span class="texhtml"><i>P</i></span> holds for 0,</li> <li>For any natural number <span class="texhtml mvar" style="font-style:italic;">x</span> less than <span class="texhtml mvar" style="font-style:italic;">n</span>, if <span class="texhtml"><i>P</i></span> holds for <span class="texhtml mvar" style="font-style:italic;">x</span>, then <span class="texhtml"><i>P</i></span> holds for <span class="texhtml"><i>x</i> + 1</span></li></ol> <div class="mw-heading mw-heading3"><h3 id="Prefix_induction">Prefix induction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=12" title="Edit section: Prefix induction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The most common form of proof by mathematical induction requires proving in the induction step that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall k\,(P(k)\to P(k+1))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall k\,(P(k)\to P(k+1))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57345a4d146861cf82548d792735e2adc3cc9dc9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.849ex; height:2.843ex;" alt="{\displaystyle \forall k\,(P(k)\to P(k+1))}"></span> </p><p>whereupon the induction principle "automates" <span class="texhtml mvar" style="font-style:italic;">n</span> applications of this step in getting from <span class="texhtml"><i>P</i>(0)</span> to <span class="texhtml"><i>P</i>(<i>n</i>)</span>. This could be called "predecessor induction" because each step proves something about a number from something about that number's predecessor. </p><p>A variant of interest in <a href="/wiki/Computational_complexity" title="Computational complexity">computational complexity</a> is "prefix induction", in which one proves the following statement in the induction step: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall k\,(P(k)\to P(2k)\land P(2k+1))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall k\,(P(k)\to P(2k)\land P(2k+1))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c67a02d3cb0c7256ef73cee96f45696a5ffef29f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.522ex; height:2.843ex;" alt="{\displaystyle \forall k\,(P(k)\to P(2k)\land P(2k+1))}"></span> or equivalently <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall k\,\left(P\!\left(\left\lfloor {\frac {k}{2}}\right\rfloor \right)\to P(k)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mspace width="thinmathspace" /> <mrow> <mo>(</mo> <mrow> <mi>P</mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall k\,\left(P\!\left(\left\lfloor {\frac {k}{2}}\right\rfloor \right)\to P(k)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe1fb30c50a4437fbf6dd3c310364585822621f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.004ex; height:6.176ex;" alt="{\displaystyle \forall k\,\left(P\!\left(\left\lfloor {\frac {k}{2}}\right\rfloor \right)\to P(k)\right)}"></span> </p><p>The induction principle then "automates" <a href="/wiki/Binary_logarithm" title="Binary logarithm">log<sub>2</sub></a>&#8201;<i>n</i> applications of this inference in getting from <span class="texhtml"><i>P</i>(0)</span> to <span class="texhtml"><i>P</i>(<i>n</i>)</span>. In fact, it is called "prefix induction" because each step proves something about a number from something about the "prefix" of that number — as formed by truncating the low bit of its <a href="/wiki/Binary_representation" class="mw-redirect" title="Binary representation">binary representation</a>. It can also be viewed as an application of traditional induction on the length of that binary representation. </p><p>If traditional predecessor induction is interpreted computationally as an <span class="texhtml mvar" style="font-style:italic;">n</span>-step loop, then prefix induction would correspond to a log-<span class="texhtml mvar" style="font-style:italic;">n</span>-step loop. Because of that, proofs using prefix induction are "more feasibly constructive" than proofs using predecessor induction. </p><p>Predecessor induction can trivially simulate prefix induction on the same statement. Prefix induction can simulate predecessor induction, but only at the cost of making the statement more syntactically complex (adding a <a href="/wiki/Bounded_quantifier" title="Bounded quantifier">bounded</a> <a href="/wiki/Universal_quantifier" class="mw-redirect" title="Universal quantifier">universal quantifier</a>), so the interesting results relating prefix induction to <a href="/wiki/Polynomial-time" class="mw-redirect" title="Polynomial-time">polynomial-time</a> computation depend on excluding unbounded quantifiers entirely, and limiting the alternation of bounded universal and <a href="/wiki/Existential_quantifier" class="mw-redirect" title="Existential quantifier">existential</a> quantifiers allowed in the statement.<sup id="cite_ref-Buss:BA_18-0" class="reference"><a href="#cite_note-Buss:BA-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>One can take the idea a step further: one must prove <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall k\,\left(P\!\left(\left\lfloor {\sqrt {k}}\right\rfloor \right)\to P(k)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mspace width="thinmathspace" /> <mrow> <mo>(</mo> <mrow> <mi>P</mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> </msqrt> </mrow> <mo>&#x230B;</mo> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall k\,\left(P\!\left(\left\lfloor {\sqrt {k}}\right\rfloor \right)\to P(k)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d6977849c80fedf2af8118f769ace44a3920207" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.005ex; height:3.343ex;" alt="{\displaystyle \forall k\,\left(P\!\left(\left\lfloor {\sqrt {k}}\right\rfloor \right)\to P(k)\right)}"></span> whereupon the induction principle "automates" <span class="texhtml">log log <i>n</i></span> applications of this inference in getting from <span class="texhtml"><i>P</i>(0)</span> to <span class="texhtml"><i>P</i>(<i>n</i>)</span>. This form of induction has been used, analogously, to study log-time parallel computation.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2018)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Complete_(strong)_induction"><span id="Complete_.28strong.29_induction"></span><span class="anchor" id="Complete_induction"></span> Complete (strong) induction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=13" title="Edit section: Complete (strong) induction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another variant, called <b>complete induction</b>, <b>course of values induction</b> or <b>strong induction</b> (in contrast to which the basic form of induction is sometimes known as <b>weak induction</b>), makes the induction step easier to prove by using a stronger hypothesis: one proves the statement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(m+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(m+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1fb60af65623b68e475ce367bc049778a82d7ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.598ex; height:2.843ex;" alt="{\displaystyle P(m+1)}"></span> under the assumption that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span> holds for <i>all</i> natural numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6f7ed29a2b4a62d3b6af05cd91a58ffc6094201" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.043ex; height:2.343ex;" alt="{\displaystyle m+1}"></span>; by contrast, the basic form only assumes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a233906e02f973dc3ce3d3fc3cacca780e3714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.595ex; height:2.843ex;" alt="{\displaystyle P(m)}"></span>. The name "strong induction" does not mean that this method can prove more than "weak induction", but merely refers to the stronger hypothesis used in the induction step. </p><p>In fact, it can be shown that the two methods are actually equivalent, as explained below. In this form of complete induction, one still has to prove the base case, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60a4af3ee31a3a4e26e7cb20b4a6aed37f6e8a5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.717ex; height:2.843ex;" alt="{\displaystyle P(0)}"></span>, and it may even be necessary to prove extra-base cases such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fdf0a9cc2b05be736085c7422ebe1d8d019329a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.717ex; height:2.843ex;" alt="{\displaystyle P(1)}"></span> before the general argument applies, as in the example below of the <a href="/wiki/Fibonacci_number" class="mw-redirect" title="Fibonacci number">Fibonacci number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76cdf519c21deec43f984815e57e15d2dd3575d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\displaystyle F_{n}}"></span>. </p><p>Although the form just described requires one to prove the base case, this is unnecessary if one can prove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a233906e02f973dc3ce3d3fc3cacca780e3714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.595ex; height:2.843ex;" alt="{\displaystyle P(m)}"></span> (assuming <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span> for all lower <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>) for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0d2d765e4cfd7adfbca9ae0e37e75a2811c0333" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.301ex; height:2.343ex;" alt="{\displaystyle m\geq 0}"></span>. This is a special case of <a href="#Transfinite_induction">transfinite induction</a> as described below, although it is no longer equivalent to ordinary induction. In this form the base case is subsumed by the case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e57f21007575fd03e3be0da20af34d25829cc9a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.301ex; height:2.176ex;" alt="{\displaystyle m=0}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60a4af3ee31a3a4e26e7cb20b4a6aed37f6e8a5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.717ex; height:2.843ex;" alt="{\displaystyle P(0)}"></span> is proved with no other <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span> assumed; this case may need to be handled separately, but sometimes the same argument applies for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e57f21007575fd03e3be0da20af34d25829cc9a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.301ex; height:2.176ex;" alt="{\displaystyle m=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/501173910e6da8425b4e9d44a4e8643620bc2464" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.301ex; height:2.176ex;" alt="{\displaystyle m&gt;0}"></span>, making the proof simpler and more elegant. In this method, however, it is vital to ensure that the proof of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a233906e02f973dc3ce3d3fc3cacca780e3714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.595ex; height:2.843ex;" alt="{\displaystyle P(m)}"></span> does not implicitly assume that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/501173910e6da8425b4e9d44a4e8643620bc2464" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.301ex; height:2.176ex;" alt="{\displaystyle m&gt;0}"></span>, e.g. by saying "choose an arbitrary <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&lt;m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&lt;</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&lt;m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cff096773597d7223f9d90162eb2d780dfc18dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.534ex; height:1.843ex;" alt="{\displaystyle n&lt;m}"></span>", or by assuming that a set of <span class="texhtml mvar" style="font-style:italic;">m</span> elements has an element. </p> <div class="mw-heading mw-heading4"><h4 id="Equivalence_with_ordinary_induction">Equivalence with ordinary induction</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=14" title="Edit section: Equivalence with ordinary induction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Complete induction is equivalent to ordinary mathematical induction as described above, in the sense that a proof by one method can be transformed into a proof by the other. Suppose there is a proof of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span> by complete induction. Then, this proof can be transformed into an ordinary induction proof by assuming a stronger inductive hypothesis. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f1477b71cf9622d2d860e02dbbcffaeac2f13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.042ex; height:2.843ex;" alt="{\displaystyle Q(n)}"></span> be the statement "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a233906e02f973dc3ce3d3fc3cacca780e3714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.595ex; height:2.843ex;" alt="{\displaystyle P(m)}"></span> holds for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq m\leq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq m\leq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/697dd51930c94bcdf31d76ab181a7a20fb3823f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.794ex; height:2.343ex;" alt="{\displaystyle 0\leq m\leq n}"></span>"—this becomes the inductive hypothesis for ordinary induction. We can then show <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f363840cf8e41129830f221f8fadcbccf196c556" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.81ex; height:2.843ex;" alt="{\displaystyle Q(0)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20593934bb192fa10304f0fecd3a4b0e9f57648d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.045ex; height:2.843ex;" alt="{\displaystyle Q(n+1)}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {N} }"></span> assuming only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f1477b71cf9622d2d860e02dbbcffaeac2f13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.042ex; height:2.843ex;" alt="{\displaystyle Q(n)}"></span> and show that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f1477b71cf9622d2d860e02dbbcffaeac2f13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.042ex; height:2.843ex;" alt="{\displaystyle Q(n)}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>If, on the other hand, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span> had been proven by ordinary induction, the proof would already effectively be one by complete induction: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60a4af3ee31a3a4e26e7cb20b4a6aed37f6e8a5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.717ex; height:2.843ex;" alt="{\displaystyle P(0)}"></span> is proved in the base case, using no assumptions, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2846b7cbc67a6e521b30d90ba22d6400eb10c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.952ex; height:2.843ex;" alt="{\displaystyle P(n+1)}"></span> is proved in the induction step, in which one may assume all earlier cases but need only use the case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e303d2c14cd399b6f52b468c9fd44a542bed422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle P(n)}"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Example:_Fibonacci_numbers">Example: Fibonacci numbers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=15" title="Edit section: Example: Fibonacci numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Complete induction is most useful when several instances of the inductive hypothesis are required for each induction step. For example, complete induction can be used to show that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}={\frac {\varphi ^{n}-\psi ^{n}}{\varphi -\psi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}={\frac {\varphi ^{n}-\psi ^{n}}{\varphi -\psi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e06fe0f5b1ed7b005610e78f60cc4518399c5c9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.958ex; height:6.009ex;" alt="{\displaystyle F_{n}={\frac {\varphi ^{n}-\psi ^{n}}{\varphi -\psi }}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76cdf519c21deec43f984815e57e15d2dd3575d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\displaystyle F_{n}}"></span> is the <span class="texhtml mvar" style="font-style:italic;">n</span>-th <a href="/wiki/Fibonacci_number" class="mw-redirect" title="Fibonacci number">Fibonacci number</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \varphi ={\frac {1}{2}}(1+{\sqrt {5}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \varphi ={\frac {1}{2}}(1+{\sqrt {5}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/429266b9138e961cfc92ea684924da5128ae3311" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.187ex; height:3.509ex;" alt="{\textstyle \varphi ={\frac {1}{2}}(1+{\sqrt {5}})}"></span> (the <a href="/wiki/Golden_ratio" title="Golden ratio">golden ratio</a>) and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \psi ={\frac {1}{2}}(1-{\sqrt {5}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \psi ={\frac {1}{2}}(1-{\sqrt {5}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2be28b81a86659abfd719527da3e412fb44dfa8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.18ex; height:3.509ex;" alt="{\textstyle \psi ={\frac {1}{2}}(1-{\sqrt {5}})}"></span> are the <a href="/wiki/Root_of_a_polynomial" class="mw-redirect" title="Root of a polynomial">roots</a> of the <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}-x-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}-x-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d9a6454bbe84939273de34c70735b86dfcbc88e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.557ex; height:2.843ex;" alt="{\displaystyle x^{2}-x-1}"></span>. By using the fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n+2}=F_{n+1}+F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n+2}=F_{n+1}+F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4181a6c72e594296eba3faa89618e10dbd3e12ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.279ex; height:2.509ex;" alt="{\displaystyle F_{n+2}=F_{n+1}+F_{n}}"></span> for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {N} }"></span>, the identity above can be verified by direct calculation for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle F_{n+2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle F_{n+2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac4075aa37c49541fa8430a14ec6caf7b618bce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.814ex; height:2.509ex;" alt="{\textstyle F_{n+2}}"></span> if one assumes that it already holds for both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle F_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle F_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3f58fd46e131a8f1824d5a4c1160587819b6dd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.814ex; height:2.509ex;" alt="{\textstyle F_{n+1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3451cc5f8710d90fe02bb5f2e98848b37d0b8ac8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\textstyle F_{n}}"></span>. To complete the proof, the identity must be verified in the two base cases: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5300467b7ad341a5e79a0414b0293a43c5c6ddc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\textstyle n=1}"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Example:_prime_factorization">Example: prime factorization</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=16" title="Edit section: Example: prime factorization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another proof by complete induction uses the hypothesis that the statement holds for <i>all</i> smaller <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> more thoroughly. Consider the statement that "every <a href="/wiki/Natural_number" title="Natural number">natural number</a> greater than 1 is a product of (one or more) <a href="/wiki/Prime_number" title="Prime number">prime numbers</a>", which is the "<a href="/wiki/Fundamental_theorem_of_arithmetic#Existence" title="Fundamental theorem of arithmetic">existence</a>" part of the <a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">fundamental theorem of arithmetic</a>. For proving the induction step, the induction hypothesis is that for a given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee74e1cc07e7041edf0fcbd4481f5cd32ad17b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;1}"></span> the statement holds for all smaller <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee74e1cc07e7041edf0fcbd4481f5cd32ad17b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;1}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> is prime then it is certainly a product of primes, and if not, then by definition it is a product: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=n_{1}n_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=n_{1}n_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da77709ff5c4259e722478808dc1e88d9dbf48e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.037ex; height:2.009ex;" alt="{\displaystyle m=n_{1}n_{2}}"></span>, where neither of the factors is equal to 1; hence neither is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>, and so both are greater than 1 and smaller than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>. The induction hypothesis now applies to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee784b70e772f55ede5e6e0bdc929994bff63413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.449ex; height:2.009ex;" alt="{\displaystyle n_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/840e456e3058bc0be28e5cf653b170cdbfcc3be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.449ex; height:2.009ex;" alt="{\displaystyle n_{2}}"></span>, so each one is a product of primes. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> is a product of products of primes, and hence by extension a product of primes itself. </p> <div class="mw-heading mw-heading4"><h4 id="Example:_dollar_amounts_revisited">Example: dollar amounts revisited</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=17" title="Edit section: Example: dollar amounts revisited"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We shall look to prove the same example as <a href="#Example:_forming_dollar_amounts_by_coins">above</a>, this time with <i>strong induction</i>. The statement remains the same: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(n):\,\,n\geq 12\implies \,\exists \,a,b\in \mathbb {N} .\,\,n=4a+5b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>12</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mspace width="thinmathspace" /> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>.</mo> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>n</mi> <mo>=</mo> <mn>4</mn> <mi>a</mi> <mo>+</mo> <mn>5</mn> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(n):\,\,n\geq 12\implies \,\exists \,a,b\in \mathbb {N} .\,\,n=4a+5b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dc2627d17c6cca5ca63288a098e410e2cd03b60" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.16ex; height:2.843ex;" alt="{\displaystyle S(n):\,\,n\geq 12\implies \,\exists \,a,b\in \mathbb {N} .\,\,n=4a+5b}"></span> </p><p>However, there will be slight differences in the structure and the assumptions of the proof, starting with the extended base case. </p><p><b>Proof.</b> </p><p><i>Base case:</i> Show that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04a593db47be6f284bc1330c62f692ff5cd5e749" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.52ex; height:2.843ex;" alt="{\displaystyle S(k)}"></span> holds for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=12,13,14,15}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>12</mn> <mo>,</mo> <mn>13</mn> <mo>,</mo> <mn>14</mn> <mo>,</mo> <mn>15</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=12,13,14,15}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94b46976fc51b9191accdb2d703ec6e7c3058992" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.711ex; height:2.509ex;" alt="{\displaystyle k=12,13,14,15}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}4\cdot 3+5\cdot 0=12\\4\cdot 2+5\cdot 1=13\\4\cdot 1+5\cdot 2=14\\4\cdot 0+5\cdot 3=15\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>+</mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>0</mn> <mo>=</mo> <mn>12</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>+</mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> <mo>=</mo> <mn>13</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> <mo>=</mo> <mn>14</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>0</mn> <mo>+</mo> <mn>5</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo>=</mo> <mn>15</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}4\cdot 3+5\cdot 0=12\\4\cdot 2+5\cdot 1=13\\4\cdot 1+5\cdot 2=14\\4\cdot 0+5\cdot 3=15\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04a060c64cab7abfe684fab1e9222cfb51276f3d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:17.023ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}4\cdot 3+5\cdot 0=12\\4\cdot 2+5\cdot 1=13\\4\cdot 1+5\cdot 2=14\\4\cdot 0+5\cdot 3=15\end{aligned}}}"></span> </p><p>The base case holds. </p><p><i>Induction step:</i> Given some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j&gt;15}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>&gt;</mo> <mn>15</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j&gt;15}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449821ed8dd9fc2feedf14db7e9def269b6e2597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:6.408ex; height:2.509ex;" alt="{\displaystyle j&gt;15}"></span>, assume <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da5ab66b1231fb42c70285826dacad7d55b6bc48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.349ex; height:2.843ex;" alt="{\displaystyle S(m)}"></span> holds for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 12\leq m&lt;j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>12</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> <mo>&lt;</mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 12\leq m&lt;j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59ed2020caf0cb282baf69756180a2ab1247df0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.52ex; height:2.509ex;" alt="{\displaystyle 12\leq m&lt;j}"></span>. Prove that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(j)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5436f5d29dbadbfba26a5b9ab6b685ba2026e0b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.267ex; height:2.843ex;" alt="{\displaystyle S(j)}"></span> holds. </p><p>Choosing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=j-4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=j-4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1944a371c7ee101e7defaccf3dcaa96bbdc4634e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.1ex; height:2.509ex;" alt="{\displaystyle m=j-4}"></span>, and observing that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 15&lt;j\implies 12\leq j-4&lt;j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>15</mn> <mo>&lt;</mo> <mi>j</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mn>12</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo>&lt;</mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 15&lt;j\implies 12\leq j-4&lt;j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcc12cb72589d178e5c030f59aeb1619382db10f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.208ex; height:2.509ex;" alt="{\displaystyle 15&lt;j\implies 12\leq j-4&lt;j}"></span> shows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(j-4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(j-4)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7f6359738ec380534f7ced306cf1f6673c3f70e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.269ex; height:2.843ex;" alt="{\displaystyle S(j-4)}"></span> holds, by the inductive hypothesis. That is, the sum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j-4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j-4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66ba0faa63ff486716b00755d001dfa072e7fd5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:4.988ex; height:2.509ex;" alt="{\displaystyle j-4}"></span> can be formed by some combination of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span> dollar coins. Then, simply adding a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}"></span> dollar coin to that combination yields the sum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(j)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5436f5d29dbadbfba26a5b9ab6b685ba2026e0b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.267ex; height:2.843ex;" alt="{\displaystyle S(j)}"></span> holds<sup id="cite_ref-yorku_20-0" class="reference"><a href="#cite_note-yorku-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> Q.E.D. </p> <div class="mw-heading mw-heading3"><h3 id="Forward-backward_induction">Forward-backward induction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=18" title="Edit section: Forward-backward induction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Inequality_of_arithmetic_and_geometric_means#Proof_by_Cauchy_using_forward–backward_induction" class="mw-redirect" title="Inequality of arithmetic and geometric means">Forward-backward induction</a></div> <p>Sometimes, it is more convenient to deduce backwards, proving the statement for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span>, given its validity for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. However, proving the validity of the statement for no single number suffices to establish the base case; instead, one needs to prove the statement for an infinite subset of the natural numbers. For example, <a href="/wiki/Augustin_Louis_Cauchy" class="mw-redirect" title="Augustin Louis Cauchy">Augustin Louis Cauchy</a> first used forward (regular) induction to prove the <a href="/wiki/Inequality_of_arithmetic_and_geometric_means#Proof_by_Cauchy_using_forward–backward_induction" class="mw-redirect" title="Inequality of arithmetic and geometric means">inequality of arithmetic and geometric means</a> for all <a href="/wiki/Powers_of_2" class="mw-redirect" title="Powers of 2">powers of 2</a>, and then used backwards induction to show it for all natural numbers.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Example_of_error_in_the_induction_step">Example of error in the induction step</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=19" title="Edit section: Example of error in the induction step"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/All_horses_are_the_same_color" title="All horses are the same color">All horses are the same color</a></div> <p>The induction step must be proved for all values of <span class="texhtml mvar" style="font-style:italic;">n</span>. To illustrate this, Joel E. Cohen proposed the following argument, which purports to prove by mathematical induction that <a href="/wiki/All_horses_are_the_same_color" title="All horses are the same color">all horses are of the same color</a>:<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p><p><i>Base case:</i> in a set of only <i>one</i> horse, there is only one color. </p><p><i>Induction step:</i> assume as induction hypothesis that within any set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> horses, there is only one color. Now look at any set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a135e65a42f2d73cccbfc4569523996ca0036f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n+1}"></span> horses. Number them: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1,2,3,\dotsc ,n,n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1,2,3,\dotsc ,n,n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e890e2c1cb034bdc2bfebcd6dbcdf7f45942b61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.56ex; height:2.509ex;" alt="{\displaystyle 1,2,3,\dotsc ,n,n+1}"></span>. Consider the sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left\{1,2,3,\dotsc ,n\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left\{1,2,3,\dotsc ,n\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98c9d3f3d5329a65f3a7585a7cb0eda646045e91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.453ex; height:2.843ex;" alt="{\textstyle \left\{1,2,3,\dotsc ,n\right\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left\{2,3,4,\dotsc ,n+1\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left\{2,3,4,\dotsc ,n+1\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb581ffc8f6e88652258cbccffedc6bf53156ca4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.456ex; height:2.843ex;" alt="{\textstyle \left\{2,3,4,\dotsc ,n+1\right\}}"></span>. Each is a set of only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a135e65a42f2d73cccbfc4569523996ca0036f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n+1}"></span> horses. </p><p>The base case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span> is trivial, and the induction step is correct in all cases <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee74e1cc07e7041edf0fcbd4481f5cd32ad17b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;1}"></span>. However, the argument used in the induction step is incorrect for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n+1=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n+1=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e5a41ae3cb687d0836e9cb57c42dbc86d97624e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.658ex; height:2.343ex;" alt="{\displaystyle n+1=2}"></span>, because the statement that "the two sets overlap" is false for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left\{1\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>{</mo> <mn>1</mn> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left\{1\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/254bf77826263f68d2bca544ebc09802c97f7ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\textstyle \left\{1\right\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left\{2\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>{</mo> <mn>2</mn> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left\{2\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e66e470e4c16ac78dfc56adea4237f0f0227bc30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.487ex; height:2.843ex;" alt="{\textstyle \left\{2\right\}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Formalization">Formalization <span class="anchor" id="Axiom_of_induction"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=20" title="Edit section: Formalization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <b><a href="/wiki/Second-order_logic" title="Second-order logic">second-order logic</a></b>, one can write down the "<a href="/wiki/Axiom" title="Axiom">axiom</a> of induction" as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall P\,{\Bigl (}P(0)\land \forall k{\bigl (}P(k)\to P(k+1){\bigr )}\to \forall n\,{\bigl (}P(n){\bigr )}{\Bigr )},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>P</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>n</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall P\,{\Bigl (}P(0)\land \forall k{\bigl (}P(k)\to P(k+1){\bigr )}\to \forall n\,{\bigl (}P(n){\bigr )}{\Bigr )},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97c73121166dfc11f8b6853a3192bedd695c4880" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:49.697ex; height:4.843ex;" alt="{\displaystyle \forall P\,{\Bigl (}P(0)\land \forall k{\bigl (}P(k)\to P(k+1){\bigr )}\to \forall n\,{\bigl (}P(n){\bigr )}{\Bigr )},}"></span> where <span class="texhtml"><i>P</i>(&#183;)</span> is a variable for predicates involving one natural number and <span class="texhtml mvar" style="font-style:italic;">k</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> are variables for <a href="/wiki/Natural_number" title="Natural number">natural numbers</a>. </p><p>In words, the base case <span class="texhtml"><i>P</i>(0)</span> and the induction step (namely, that the induction hypothesis <span class="texhtml"><i>P</i>(<i>k</i>)</span> implies <span class="texhtml"><i>P</i>(<i>k</i> +&#8201;1)</span>) together imply that <span class="texhtml"><i>P</i>(<i>n</i>)</span> for any natural number <span class="texhtml mvar" style="font-style:italic;">n</span>. The axiom of induction asserts the validity of inferring that <span class="texhtml"><i>P</i>(<i>n</i>)</span> holds for any natural number <span class="texhtml mvar" style="font-style:italic;">n</span> from the base case and the induction step. </p><p>The first quantifier in the axiom ranges over <i>predicates</i> rather than over individual numbers. This is a second-order quantifier, which means that this axiom is stated in <a href="/wiki/Second-order_logic" title="Second-order logic">second-order logic</a>. Axiomatizing arithmetic induction in <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a> requires an <a href="/wiki/Axiom_schema" title="Axiom schema">axiom schema</a> containing a separate axiom for each possible predicate. The article <a href="/wiki/Peano_axioms" title="Peano axioms">Peano axioms</a> contains further discussion of this issue. </p><p>The axiom of structural induction for the natural numbers was first formulated by Peano, who used it to specify the natural numbers together with the following four other axioms: </p> <ol><li>0 is a natural number.</li> <li>The successor function <span class="texhtml mvar" style="font-style:italic;">s</span> of every natural number yields a natural number <span class="texhtml">(<i>s</i>(<i>x</i>) = <i>x</i> + 1)</span>.</li> <li>The successor function is <a href="/wiki/Injective" class="mw-redirect" title="Injective">injective</a>.</li> <li>0 is not in the <a href="/wiki/Range_of_a_function" title="Range of a function">range</a> of <span class="texhtml mvar" style="font-style:italic;">s</span>.</li></ol> <p>In <b><a href="/wiki/First-order_logic" title="First-order logic">first-order</a> <a href="/wiki/ZFC_set_theory" class="mw-redirect" title="ZFC set theory">ZFC set theory</a></b>, quantification over predicates is not allowed, but one can still express induction by quantification over sets: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall A{\Bigl (}0\in A\land \forall k\in \mathbb {N} {\bigl (}k\in A\to (k+1)\in A{\bigr )}\to \mathbb {N} \subseteq A{\Bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mn>0</mn> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>&#x2286;<!-- ⊆ --></mo> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall A{\Bigl (}0\in A\land \forall k\in \mathbb {N} {\bigl (}k\in A\to (k+1)\in A{\bigr )}\to \mathbb {N} \subseteq A{\Bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4757318e068a3d55ce71fb1205b13ca936b2a392" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:54.442ex; height:4.843ex;" alt="{\displaystyle \forall A{\Bigl (}0\in A\land \forall k\in \mathbb {N} {\bigl (}k\in A\to (k+1)\in A{\bigr )}\to \mathbb {N} \subseteq A{\Bigr )}}"></span> <span class="texhtml mvar" style="font-style:italic;">A</span> may be read as a set representing a proposition, and containing natural numbers, for which the proposition holds. This is not an axiom, but a theorem, given that natural numbers are defined in the language of ZFC set theory by axioms, analogous to Peano's. See <a href="/wiki/Axiom_of_infinity#Alternative_method" title="Axiom of infinity">construction of the natural numbers</a> using the <a href="/wiki/Axiom_of_infinity" title="Axiom of infinity">axiom of infinity</a> and <a href="/wiki/Axiom_schema_of_specification" title="Axiom schema of specification">axiom schema of specification</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Transfinite_induction">Transfinite induction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=21" title="Edit section: Transfinite induction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Transfinite_induction" title="Transfinite induction">Transfinite induction</a></div> <p>One variation of the principle of complete induction can be generalized for statements about elements of any <a href="/wiki/Well-founded_set" class="mw-redirect" title="Well-founded set">well-founded set</a>, that is, a set with an <a href="/wiki/Reflexive_relation" title="Reflexive relation">irreflexive relation</a> &lt; that contains no <a href="/wiki/Infinite_descending_chain" class="mw-redirect" title="Infinite descending chain">infinite descending chains</a>. Every set representing an <a href="/wiki/Ordinal_number" title="Ordinal number">ordinal number</a> is well-founded, the set of natural numbers is one of them. </p><p>Applied to a well-founded set, transfinite induction can be formulated as a single step. To prove that a statement <span class="texhtml"><i>P</i>(<i>n</i>)</span> holds for each ordinal number: </p> <ol><li>Show, for each ordinal number <span class="texhtml mvar" style="font-style:italic;">n</span>, that if <span class="texhtml"><i>P</i>(<i>m</i>)</span> holds for all <span class="texhtml"><i>m</i> &lt; <i>n</i></span>, then <span class="texhtml"><i>P</i>(<i>n</i>)</span> also holds.</li></ol> <p>This form of induction, when applied to a set of ordinal numbers (which form a <a href="/wiki/Well-order" title="Well-order">well-ordered</a> and hence well-founded <a href="/wiki/Class_(set_theory)" title="Class (set theory)">class</a>), is called <i><a href="/wiki/Transfinite_induction" title="Transfinite induction">transfinite induction</a></i>. It is an important proof technique in <a href="/wiki/Set_theory" title="Set theory">set theory</a>, <a href="/wiki/Topology" title="Topology">topology</a> and other fields. </p><p>Proofs by transfinite induction typically distinguish three cases: </p> <ol><li>when <span class="texhtml mvar" style="font-style:italic;">n</span> is a minimal element, i.e. there is no element smaller than <span class="texhtml mvar" style="font-style:italic;">n</span>;</li> <li>when <span class="texhtml mvar" style="font-style:italic;">n</span> has a direct predecessor, i.e. the set of elements which are smaller than <span class="texhtml mvar" style="font-style:italic;">n</span> has a largest element;</li> <li>when <span class="texhtml mvar" style="font-style:italic;">n</span> has no direct predecessor, i.e. <span class="texhtml mvar" style="font-style:italic;">n</span> is a so-called <a href="/wiki/Limit_ordinal" title="Limit ordinal">limit ordinal</a>.</li></ol> <p>Strictly speaking, it is not necessary in transfinite induction to prove a base case, because it is a <a href="/wiki/Vacuous_truth" title="Vacuous truth">vacuous</a> special case of the proposition that if <span class="texhtml"><i>P</i></span> is true of all <span class="texhtml"><i>n</i> &lt; <i>m</i></span>, then <span class="texhtml"><i>P</i></span> is true of <span class="texhtml mvar" style="font-style:italic;">m</span>. It is vacuously true precisely because there are no values of <span class="texhtml"><i>n</i> &lt; <i>m</i></span> that could serve as counterexamples. So the special cases are special cases of the general case. </p> <div class="mw-heading mw-heading2"><h2 id="Relationship_to_the_well-ordering_principle">Relationship to the well-ordering principle<span class="anchor" id="Proof_of_mathematical_induction"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=22" title="Edit section: Relationship to the well-ordering principle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The principle of mathematical induction is usually stated as an <a href="/wiki/Axiom" title="Axiom">axiom</a> of the natural numbers; see <a href="/wiki/Peano_axioms" title="Peano axioms">Peano axioms</a>. It is strictly stronger than the <a href="/wiki/Well-ordering_principle" title="Well-ordering principle">well-ordering principle</a> in the context of the other Peano axioms. Suppose the following: </p> <ul><li>The <a href="/wiki/Trichotomy_(mathematics)" class="mw-redirect" title="Trichotomy (mathematics)">trichotomy</a> axiom: For any natural numbers <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">m</span>, <span class="texhtml mvar" style="font-style:italic;">n</span> is less than or equal to <span class="texhtml mvar" style="font-style:italic;">m</span> if and only if <span class="texhtml mvar" style="font-style:italic;">m</span> is not less than <span class="texhtml mvar" style="font-style:italic;">n</span>.</li> <li>For any natural number <span class="texhtml mvar" style="font-style:italic;">n</span>, <span class="texhtml"><i>n</i> +&#8201;1</span> is greater <span class="nowrap">than <i>n</i></span>.</li> <li>For any natural number <span class="texhtml mvar" style="font-style:italic;">n</span>, no natural number is <span class="nowrap">between <i>n</i></span> and <span class="texhtml"><i>n</i> +&#8201;1</span>.</li> <li>No natural number is less than zero.</li></ul> <p>It can then be proved that induction, given the above-listed axioms, implies the well-ordering principle. The following proof uses complete induction and the first and fourth axioms. </p><p><b>Proof.</b> Suppose there exists a <a href="/wiki/Empty_set" title="Empty set">non-empty</a> set, <span class="texhtml mvar" style="font-style:italic;">S</span>, of natural numbers that has no least element. Let <span class="texhtml"><i>P</i>(<i>n</i>)</span> be the assertion that <span class="texhtml mvar" style="font-style:italic;">n</span> is not in <span class="texhtml mvar" style="font-style:italic;">S</span>. Then <span class="texhtml"><i>P</i>(0)</span> is true, for if it were false then 0 is the least element of <span class="texhtml mvar" style="font-style:italic;">S</span>. Furthermore, let <span class="texhtml mvar" style="font-style:italic;">n</span> be a natural number, and suppose <span class="texhtml"><i>P</i>(<i>m</i>)</span> is true for all natural numbers <span class="texhtml mvar" style="font-style:italic;">m</span> less than <span class="texhtml"><i>n</i> +&#8201;1</span>. Then if <span class="texhtml"><i>P</i>(<i>n</i> +&#8201;1)</span> is false <span class="texhtml"><i>n</i> +&#8201;1</span> is in <span class="texhtml mvar" style="font-style:italic;">S</span>, thus being a minimal element in <span class="texhtml mvar" style="font-style:italic;">S</span>, a contradiction. Thus <span class="texhtml"><i>P</i>(<i>n</i> +&#8201;1)</span> is true. Therefore, by the complete induction principle, <span class="texhtml"><i>P</i>(<i>n</i>)</span> holds for all natural numbers <span class="texhtml mvar" style="font-style:italic;">n</span>; so <span class="texhtml mvar" style="font-style:italic;">S</span> is empty, a contradiction. Q.E.D. </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:OmegaPlusOmega_svg.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/OmegaPlusOmega_svg.svg/600px-OmegaPlusOmega_svg.svg.png" decoding="async" width="600" height="56" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/OmegaPlusOmega_svg.svg/900px-OmegaPlusOmega_svg.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/93/OmegaPlusOmega_svg.svg/1200px-OmegaPlusOmega_svg.svg.png 2x" data-file-width="762" data-file-height="71" /></a><figcaption>"<a href="/wiki/Number_line" title="Number line">Number line</a>" for the set <span class="texhtml"><style data-mw-deduplicate="TemplateStyles:r1239334494">@media screen{html.skin-theme-clientpref-night .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}</style><span class="tmp-color" style="color:#800000">{(0, <i>n</i>): <i>n</i> ∈ <b>N</b>}</span> ∪ <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239334494"><span class="tmp-color" style="color:#000080">{(1, <i>n</i>): <i>n</i> ∈ <b>N</b>}</span></span>. Numbers refer to the second component of pairs; the first can be obtained from color or location.</figcaption></figure> <p>On the other hand, the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{(0,n):n\in \mathbb {N} \}\cup \{(1,n):n\in \mathbb {N} \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo fence="false" stretchy="false">}</mo> <mo>&#x222A;<!-- ∪ --></mo> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{(0,n):n\in \mathbb {N} \}\cup \{(1,n):n\in \mathbb {N} \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d85e9def332c72f23f810066e30e343243237581" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.734ex; height:2.843ex;" alt="{\displaystyle \{(0,n):n\in \mathbb {N} \}\cup \{(1,n):n\in \mathbb {N} \}}"></span>, shown in the picture, is well-ordered<sup id="cite_ref-Ohman2019_24-0" class="reference"><a href="#cite_note-Ohman2019-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 35lf">&#58;&#8202;35lf&#8202;</span></sup> by the <a href="/wiki/Lexicographic_order" title="Lexicographic order">lexicographic order</a>. Moreover, except for the induction axiom, it satisfies all Peano axioms, where Peano's constant 0 is interpreted as the pair (0,&#8201;0), and Peano's <i>successor</i> function is defined on pairs by <span class="texhtml">succ(<i>x</i>, <i>n</i>) = (<i>x</i>, <i>n</i> +&#8201;1)</span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \{0,1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \{0,1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05013ded6c9801acf787923a2b8aa521f3542c57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.854ex; height:2.843ex;" alt="{\displaystyle x\in \{0,1\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.913ex; height:2.176ex;" alt="{\displaystyle n\in \mathbb {N} }"></span>. As an example for the violation of the induction axiom, define the predicate <span class="texhtml"><i>P</i>(<i>x</i>, <i>n</i>)</span> as <span class="texhtml">(<i>x</i>, <i>n</i>) = (0, 0)</span> or <span class="texhtml">(<i>x</i>, <i>n</i>) = succ(<i>y</i>, <i>m</i>)</span> for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in \{0,1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in \{0,1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c66170a51fd7b916d42c2cf8e8512c75c85a594" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.68ex; height:2.843ex;" alt="{\displaystyle y\in \{0,1\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42411e85d874a733209223302bbd8d5e3ad04cb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.559ex; height:2.176ex;" alt="{\displaystyle m\in \mathbb {N} }"></span>. Then the base case <span class="texhtml"><i>P</i>(0,&#8201;0)</span> is trivially true, and so is the induction step: if <span class="texhtml"><i>P</i>(<i>x</i>, <i>n</i>)</span>, then <span class="texhtml"><i>P</i>(succ(<i>x</i>, <i>n</i>))</span>. However, <span class="texhtml"><i>P</i></span> is not true for all pairs in the set, since <span class="texhtml"><i>P</i>(1,0)</span> is false. </p><p>Peano's axioms with the induction principle uniquely model the natural numbers. Replacing the induction principle with the well-ordering principle allows for more exotic models that fulfill all the axioms.<sup id="cite_ref-Ohman2019_24-1" class="reference"><a href="#cite_note-Ohman2019-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>It is mistakenly printed in several books<sup id="cite_ref-Ohman2019_24-2" class="reference"><a href="#cite_note-Ohman2019-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> and sources that the well-ordering principle is equivalent to the induction axiom. In the context of the other Peano axioms, this is not the case, but in the context of other axioms, they are equivalent;<sup id="cite_ref-Ohman2019_24-3" class="reference"><a href="#cite_note-Ohman2019-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> specifically, the well-ordering principle implies the induction axiom in the context of the first two above listed axioms and </p> <ul><li>Every natural number is either 0 or <span class="texhtml"><i>n</i> +&#8201;1</span> for some natural number <span class="texhtml mvar" style="font-style:italic;">n</span>.</li></ul> <p>A common mistake in many erroneous proofs is to assume that <span class="texhtml"><i>n</i> −&#8201;1</span> is a unique and well-defined natural number, a property which is not implied by the other Peano axioms.<sup id="cite_ref-Ohman2019_24-4" class="reference"><a href="#cite_note-Ohman2019-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=23" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Induction_puzzles" title="Induction puzzles">Induction puzzles</a></li> <li><a href="/wiki/Proof_by_exhaustion" title="Proof by exhaustion">Proof by exhaustion</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=24" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Matt DeVos, <a rel="nofollow" class="external text" href="https://www.sfu.ca/~mdevos/notes/graph/induction.pdf"><i>Mathematical Induction</i></a>, <a href="/wiki/Simon_Fraser_University" title="Simon Fraser University">Simon Fraser University</a></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Gerardo con Diaz, <i><a rel="nofollow" class="external text" href="http://www.math.harvard.edu/archive/23a_fall_05/Handouts/induction.pdf">Mathematical Induction</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130502163438/http://www.math.harvard.edu/archive/23a_fall_05/Handouts/induction.pdf">Archived</a> 2 May 2013 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></i>, <a href="/wiki/Harvard_University" title="Harvard University">Harvard University</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAnderson1979" class="citation book cs1">Anderson, Robert B. (1979). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/provingprogramsc0000ande"><i>Proving Programs Correct</i></a></span>. New York: John Wiley &amp; Sons. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/provingprogramsc0000ande/page/1">1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471033950" title="Special:BookSources/978-0471033950"><bdi>978-0471033950</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Proving+Programs+Correct&amp;rft.place=New+York&amp;rft.pages=1&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1979&amp;rft.isbn=978-0471033950&amp;rft.aulast=Anderson&amp;rft.aufirst=Robert+B.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprovingprogramsc0000ande&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuber" class="citation web cs1">Suber, Peter. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110524104121/http://www.earlham.edu/~peters/courses/logsys/math-ind.htm">"Mathematical Induction"</a>. Earlham College. Archived from <a rel="nofollow" class="external text" href="http://www.earlham.edu/~peters/courses/logsys/math-ind.htm">the original</a> on 24 May 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">26 March</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Mathematical+Induction&amp;rft.pub=Earlham+College&amp;rft.aulast=Suber&amp;rft.aufirst=Peter&amp;rft_id=http%3A%2F%2Fwww.earlham.edu%2F~peters%2Fcourses%2Flogsys%2Fmath-ind.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEAcerbi2000-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAcerbi2000_5-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAcerbi2000">Acerbi 2000</a>.</span> </li> <li id="cite_note-FOOTNOTERashed199462–84-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERashed199462–84_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRashed1994">Rashed 1994</a>, pp.&#160;62–84.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=HGMXCgAAQBAJ&amp;pg=PA193">Mathematical Knowledge and the Interplay of Practices</a> "The earliest implicit proof by mathematical induction was given around 1000 in a work by the Persian mathematician Al-Karaji"</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Katz (1998), p. 255</span> </li> <li id="cite_note-Induction_Bussey-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Induction_Bussey_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Induction_Bussey_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFCajori1918">Cajori (1918)</a>, p.&#160;197: 'The process of reasoning called "Mathematical Induction" has had several independent origins. It has been traced back to the Swiss Jakob (James) Bernoulli, the Frenchman B. Pascal and P. Fermat, and the Italian F. Maurolycus. [...] By reading a little between the lines one can find traces of mathematical induction still earlier, in the writings of the Hindus and the Greeks, as, for instance, in the "cyclic method" of Bhaskara, and in Euclid's proof that the number of primes is infinite.'</span> </li> <li id="cite_note-FOOTNOTERashed199462-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERashed199462_10-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRashed1994">Rashed 1994</a>, p.&#160;62.</span> </li> <li id="cite_note-FOOTNOTESimonson2000-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESimonson2000_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSimonson2000">Simonson 2000</a>.</span> </li> <li id="cite_note-FOOTNOTERabinovitch1970-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERabinovitch1970_12-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRabinovitch1970">Rabinovitch 1970</a>.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">"It is sometimes required to prove a theorem which shall be true whenever a certain quantity <i>n</i> which it involves shall be an integer or whole number and the method of proof is usually of the following kind. <i>1st</i>. The theorem is proved to be true <span class="nowrap">when <i>n</i> = 1</span>. <i>2ndly</i>. It is proved that if the theorem is true when <i>n</i> is a given whole number, it will be true if <i>n</i> is the next greater integer. Hence the theorem is true universally. … This species of argument may be termed a continued <i><a href="/wiki/Polysyllogism" title="Polysyllogism">sorites</a></i>" (Boole c. 1849 <i>Elementary Treatise on Logic not mathematical</i> pp. 40–41 reprinted in <a href="/wiki/Ivor_Grattan-Guinness" title="Ivor Grattan-Guinness">Grattan-Guinness, Ivor</a> and Bornet, Gérard (1997), <i>George Boole: Selected Manuscripts on Logic and its Philosophy</i>, Birkhäuser Verlag, Berlin, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-7643-5456-9" title="Special:BookSources/3-7643-5456-9">3-7643-5456-9</a>)</span> </li> <li id="cite_note-FOOTNOTEPeirce1881-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPeirce1881_14-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPeirce1881">Peirce 1881</a>.</span> </li> <li id="cite_note-FOOTNOTEShields1997-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEShields1997_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFShields1997">Shields 1997</a>.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">Ted Sundstrom, <i>Mathematical Reasoning</i>, p. 190, Pearson, 2006, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0131877184" title="Special:BookSources/978-0131877184">978-0131877184</a></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmullyan2014" class="citation book cs1">Smullyan, Raymond (2014). <i>A Beginner's Guide to Mathematical Logic</i>. Dover. p.&#160;41. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0486492370" title="Special:BookSources/0486492370"><bdi>0486492370</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Beginner%27s+Guide+to+Mathematical+Logic&amp;rft.pages=41&amp;rft.pub=Dover&amp;rft.date=2014&amp;rft.isbn=0486492370&amp;rft.aulast=Smullyan&amp;rft.aufirst=Raymond&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></span> </li> <li id="cite_note-Buss:BA-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Buss:BA_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuss1986" class="citation book cs1">Buss, Samuel (1986). <i>Bounded Arithmetic</i>. Naples: Bibliopolis.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bounded+Arithmetic&amp;rft.place=Naples&amp;rft.pub=Bibliopolis&amp;rft.date=1986&amp;rft.aulast=Buss&amp;rft.aufirst=Samuel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://courses.cs.cornell.edu/cs2800/wiki/index.php/Proof:Strong_induction_is_equivalent_to_weak_induction">"Proof:Strong induction is equivalent to weak induction"</a>. <i><a href="/wiki/Cornell_University" title="Cornell University">Cornell University</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">4 May</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Cornell+University&amp;rft.atitle=Proof%3AStrong+induction+is+equivalent+to+weak+induction&amp;rft_id=https%3A%2F%2Fcourses.cs.cornell.edu%2Fcs2800%2Fwiki%2Findex.php%2FProof%3AStrong_induction_is_equivalent_to_weak_induction&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></span> </li> <li id="cite_note-yorku-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-yorku_20-0">^</a></b></span> <span class="reference-text">.<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShafiei" class="citation web cs1">Shafiei, Niloufar. <a rel="nofollow" class="external text" href="https://www.eecs.yorku.ca/course_archive/2008-09/S/1019/Website_files/16-stong-induction-and-well-ordering.pdf">"Strong Induction and Well-Ordering"</a> <span class="cs1-format">(PDF)</span>. <i>York University</i><span class="reference-accessdate">. Retrieved <span class="nowrap">28 May</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=York+University&amp;rft.atitle=Strong+Induction+and+Well-Ordering&amp;rft.aulast=Shafiei&amp;rft.aufirst=Niloufar&amp;rft_id=https%3A%2F%2Fwww.eecs.yorku.ca%2Fcourse_archive%2F2008-09%2FS%2F1019%2FWebsite_files%2F16-stong-induction-and-well-ordering.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://brilliant.org/wiki/forward-backwards-induction/">"Forward-Backward Induction | Brilliant Math &amp; Science Wiki"</a>. <i>brilliant.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">23 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=brilliant.org&amp;rft.atitle=Forward-Backward+Induction+%7C+Brilliant+Math+%26+Science+Wiki&amp;rft_id=https%3A%2F%2Fbrilliant.org%2Fwiki%2Fforward-backwards-induction%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Cauchy, Augustin-Louis (1821). <a rel="nofollow" class="external text" href="http://visualiseur.bnf.fr/Visualiseur?Destination=Gallica&amp;O=NUMM-29058"><i>Cours d'analyse de l'École Royale Polytechnique, première partie, Analyse algébrique,</i></a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171014135801/http://visualiseur.bnf.fr/Visualiseur?Destination=Gallica&amp;O=NUMM-29058">Archived</a> 14 October 2017 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> Paris. The proof of the inequality of arithmetic and geometric means can be found on pages 457ff.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohen1961" class="citation journal cs1">Cohen, Joel E. (1961). "On the nature of mathematical proof". <i>Opus</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Opus&amp;rft.atitle=On+the+nature+of+mathematical+proof&amp;rft.date=1961&amp;rft.aulast=Cohen&amp;rft.aufirst=Joel+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span>. Reprinted in <i>A Random Walk in Science</i> (R. L. Weber, ed.), Crane, Russak &amp; Co., 1973.</span> </li> <li id="cite_note-Ohman2019-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ohman2019_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ohman2019_24-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ohman2019_24-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Ohman2019_24-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Ohman2019_24-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFÖhman2019" class="citation journal cs1">Öhman, Lars–Daniel (6 May 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00283-019-09898-4">"Are Induction and Well-Ordering Equivalent?"</a>. <i>The Mathematical Intelligencer</i>. <b>41</b> (3): 33–40. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00283-019-09898-4">10.1007/s00283-019-09898-4</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.atitle=Are+Induction+and+Well-Ordering+Equivalent%3F&amp;rft.volume=41&amp;rft.issue=3&amp;rft.pages=33-40&amp;rft.date=2019-05-06&amp;rft_id=info%3Adoi%2F10.1007%2Fs00283-019-09898-4&amp;rft.aulast=%C3%96hman&amp;rft.aufirst=Lars%E2%80%93Daniel&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs00283-019-09898-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=25" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <div class="mw-heading mw-heading3"><h3 id="Introduction">Introduction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=26" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranklinDaoud2011" class="citation book cs1"><a href="/wiki/James_Franklin_(philosopher)" title="James Franklin (philosopher)">Franklin, J.</a>; Daoud, A. (2011). <a rel="nofollow" class="external text" href="http://www.maths.unsw.edu.au/~jim/proofs.html"><i>Proof in Mathematics: An Introduction</i></a>. Sydney: Kew Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-646-54509-7" title="Special:BookSources/978-0-646-54509-7"><bdi>978-0-646-54509-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Proof+in+Mathematics%3A+An+Introduction&amp;rft.place=Sydney&amp;rft.pub=Kew+Books&amp;rft.date=2011&amp;rft.isbn=978-0-646-54509-7&amp;rft.aulast=Franklin&amp;rft.aufirst=J.&amp;rft.au=Daoud%2C+A.&amp;rft_id=http%3A%2F%2Fwww.maths.unsw.edu.au%2F~jim%2Fproofs.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span> (Ch. 8.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs1"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Mathematical_induction">"Mathematical induction"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>. 2001 [1994].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematical+induction&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DMathematical_induction&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHermes1973" class="citation book cs1"><a href="/wiki/Hans_Hermes" title="Hans Hermes">Hermes, Hans</a> (1973). <i>Introduction to Mathematical Logic</i>. Hochschultext. London: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3540058199" title="Special:BookSources/978-3540058199"><bdi>978-3540058199</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1431-4657">1431-4657</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0345788">0345788</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Mathematical+Logic&amp;rft.place=London&amp;rft.series=Hochschultext&amp;rft.pub=Springer&amp;rft.date=1973&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0345788%23id-name%3DMR&amp;rft.issn=1431-4657&amp;rft.isbn=978-3540058199&amp;rft.aulast=Hermes&amp;rft.aufirst=Hans&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1997" class="citation book cs1"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald E.</a> (1997). <a href="/wiki/The_Art_of_Computer_Programming" title="The Art of Computer Programming"><i>The Art of Computer Programming, Volume 1: Fundamental Algorithms</i></a> (3rd&#160;ed.). Addison-Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-89683-1" title="Special:BookSources/978-0-201-89683-1"><bdi>978-0-201-89683-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Art+of+Computer+Programming%2C+Volume+1%3A+Fundamental+Algorithms&amp;rft.edition=3rd&amp;rft.pub=Addison-Wesley&amp;rft.date=1997&amp;rft.isbn=978-0-201-89683-1&amp;rft.aulast=Knuth&amp;rft.aufirst=Donald+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span> (Section 1.2.1: Mathematical Induction, pp.&#160;11–21.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKolmogorovFomin1975" class="citation book cs1"><a href="/wiki/Andrey_Kolmogorov" title="Andrey Kolmogorov">Kolmogorov, Andrey N.</a>; <a href="/wiki/Sergei_Fomin" title="Sergei Fomin">Fomin, Sergei V.</a> (1975). <a rel="nofollow" class="external text" href="https://archive.org/details/introductoryreal00kolm_0"><i>Introductory Real Analysis</i></a>. Silverman, R. A. (trans., ed.). New York: Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-61226-3" title="Special:BookSources/978-0-486-61226-3"><bdi>978-0-486-61226-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introductory+Real+Analysis&amp;rft.place=New+York&amp;rft.pub=Dover&amp;rft.date=1975&amp;rft.isbn=978-0-486-61226-3&amp;rft.aulast=Kolmogorov&amp;rft.aufirst=Andrey+N.&amp;rft.au=Fomin%2C+Sergei+V.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductoryreal00kolm_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span> (Section 3.8: Transfinite induction, pp.&#160;28–29.)</li></ul> <div class="mw-heading mw-heading3"><h3 id="History_2">History</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mathematical_induction&amp;action=edit&amp;section=27" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAcerbi2000" class="citation journal cs1">Acerbi, Fabio (August 2000). <a rel="nofollow" class="external text" href="https://www.academia.edu/8016024">"Plato: <i>Parmenides</i> 149a7-c3. A Proof by Complete Induction?"</a>. <i><a href="/wiki/Archive_for_History_of_Exact_Sciences" title="Archive for History of Exact Sciences">Archive for History of Exact Sciences</a></i>. <b>55</b> (1): 57–76. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs004070000020">10.1007/s004070000020</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41134098">41134098</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123045154">123045154</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=Plato%3A+Parmenides+149a7-c3.+A+Proof+by+Complete+Induction%3F&amp;rft.volume=55&amp;rft.issue=1&amp;rft.pages=57-76&amp;rft.date=2000-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123045154%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41134098%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1007%2Fs004070000020&amp;rft.aulast=Acerbi&amp;rft.aufirst=Fabio&amp;rft_id=https%3A%2F%2Fwww.academia.edu%2F8016024&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBussey1917" class="citation journal cs1">Bussey, W. H. (1917). "The Origin of Mathematical Induction". <i><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>. <b>24</b> (5): 199–207. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2974308">10.2307/2974308</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2974308">2974308</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=The+Origin+of+Mathematical+Induction&amp;rft.volume=24&amp;rft.issue=5&amp;rft.pages=199-207&amp;rft.date=1917&amp;rft_id=info%3Adoi%2F10.2307%2F2974308&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2974308%23id-name%3DJSTOR&amp;rft.aulast=Bussey&amp;rft.aufirst=W.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCajori1918" class="citation journal cs1"><a href="/wiki/Florian_Cajori" title="Florian Cajori">Cajori, Florian</a> (1918). "Origin of the Name "Mathematical Induction"<span class="cs1-kern-right"></span>". <i><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>. <b>25</b> (5): 197–201. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2972638">10.2307/2972638</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2972638">2972638</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Origin+of+the+Name+%22Mathematical+Induction%22&amp;rft.volume=25&amp;rft.issue=5&amp;rft.pages=197-201&amp;rft.date=1918&amp;rft_id=info%3Adoi%2F10.2307%2F2972638&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2972638%23id-name%3DJSTOR&amp;rft.aulast=Cajori&amp;rft.aufirst=Florian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFowler1994" class="citation journal cs1"><a href="/wiki/David_Fowler_(mathematician)" title="David Fowler (mathematician)">Fowler, D.</a> (1994). "Could the Greeks Have Used Mathematical Induction? Did They Use It?". <i>Physis</i>. <b>31</b>: 253–265.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physis&amp;rft.atitle=Could+the+Greeks+Have+Used+Mathematical+Induction%3F+Did+They+Use+It%3F&amp;rft.volume=31&amp;rft.pages=253-265&amp;rft.date=1994&amp;rft.aulast=Fowler&amp;rft.aufirst=D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreudenthal1953" class="citation journal cs1"><a href="/wiki/Hans_Freudenthal" title="Hans Freudenthal">Freudenthal, Hans</a> (1953). "Zur Geschichte der vollständigen Induction". <i><a href="/wiki/Archives_Internationales_d%27Histoire_des_Sciences" class="mw-redirect" title="Archives Internationales d&#39;Histoire des Sciences">Archives Internationales d'Histoire des Sciences</a></i>. <b>6</b>: 17–37.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archives+Internationales+d%27Histoire+des+Sciences&amp;rft.atitle=Zur+Geschichte+der+vollst%C3%A4ndigen+Induction&amp;rft.volume=6&amp;rft.pages=17-37&amp;rft.date=1953&amp;rft.aulast=Freudenthal&amp;rft.aufirst=Hans&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz1998" class="citation book cs1"><a href="/wiki/Victor_J._Katz" title="Victor J. Katz">Katz, Victor J.</a> (1998). <i>History of Mathematics: An Introduction</i>. <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-321-01618-1" title="Special:BookSources/0-321-01618-1"><bdi>0-321-01618-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=History+of+Mathematics%3A+An+Introduction&amp;rft.pub=Addison-Wesley&amp;rft.date=1998&amp;rft.isbn=0-321-01618-1&amp;rft.aulast=Katz&amp;rft.aufirst=Victor+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeirce1881" class="citation journal cs1"><a href="/wiki/Charles_Sanders_Peirce" title="Charles Sanders Peirce">Peirce, Charles Sanders</a> (1881). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LQgPAAAAIAAJ">"On the Logic of Number"</a>. <i><a href="/wiki/American_Journal_of_Mathematics" title="American Journal of Mathematics">American Journal of Mathematics</a></i>. <b>4</b> (1–4): 85–95. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2369151">10.2307/2369151</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2369151">2369151</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1507856">1507856</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Mathematics&amp;rft.atitle=On+the+Logic+of+Number&amp;rft.volume=4&amp;rft.issue=1%E2%80%934&amp;rft.pages=85-95&amp;rft.date=1881&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1507856%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2369151%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2369151&amp;rft.aulast=Peirce&amp;rft.aufirst=Charles+Sanders&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLQgPAAAAIAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span> Reprinted (CP&#160;3.252–288), (W&#160;4:299–309)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRabinovitch1970" class="citation journal cs1"><a href="/wiki/Nahum_Rabinovitch" title="Nahum Rabinovitch">Rabinovitch, Nachum L.</a> (1970). "Rabbi Levi Ben Gershon and the origins of mathematical induction". <i>Archive for History of Exact Sciences</i>. <b>6</b> (3): 237–248. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00327237">10.1007/BF00327237</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1554128">1554128</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119948133">119948133</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=Rabbi+Levi+Ben+Gershon+and+the+origins+of+mathematical+induction&amp;rft.volume=6&amp;rft.issue=3&amp;rft.pages=237-248&amp;rft.date=1970&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1554128%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119948133%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF00327237&amp;rft.aulast=Rabinovitch&amp;rft.aufirst=Nachum+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRashed1972" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Roshdi_Rashed" title="Roshdi Rashed">Rashed, Roshdi</a> (1972). "L'induction mathématique: al-Karajī, as-Samaw'al". <i><a href="/wiki/Archive_for_History_of_Exact_Sciences" title="Archive for History of Exact Sciences">Archive for History of Exact Sciences</a></i> (in French). <b>9</b> (1): 1–21. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00348537">10.1007/BF00348537</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1554160">1554160</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124040444">124040444</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.atitle=L%27induction+math%C3%A9matique%3A+al-Karaj%C4%AB%2C+as-Samaw%27al&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=1-21&amp;rft.date=1972&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1554160%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124040444%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF00348537&amp;rft.aulast=Rashed&amp;rft.aufirst=Roshdi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRashed1994" class="citation book cs1">Rashed, R. (1994). "Mathematical induction: al-Karajī and al-Samawʾal". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=vSkClSvU_9AC&amp;pg=PA62"><i>The Development of Arabic Mathematics: Between Arithmetic and Algebra</i></a>. Boston Studies in the Philosophy of Science. Vol.&#160;156. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780792325659" title="Special:BookSources/9780792325659"><bdi>9780792325659</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematical+induction%3A+al-Karaj%C4%AB+and+al-Samaw%CA%BEal&amp;rft.btitle=The+Development+of+Arabic+Mathematics%3A+Between+Arithmetic+and+Algebra&amp;rft.series=Boston+Studies+in+the+Philosophy+of+Science&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=1994&amp;rft.isbn=9780792325659&amp;rft.aulast=Rashed&amp;rft.aufirst=R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DvSkClSvU_9AC%26pg%3DPA62&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShields1997" class="citation book cs1">Shields, Paul (1997). "Peirce's Axiomatization of Arithmetic". In Houser, Nathan; Roberts, Don D.; Evra, James Van (eds.). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/studiesinlogicof00nath"><i>Studies in the Logic of Charles S. Peirce</i></a></span>. Indiana University Press. pp.&#160;43–52. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-253-33020-3" title="Special:BookSources/0-253-33020-3"><bdi>0-253-33020-3</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1720827">1720827</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Peirce%27s+Axiomatization+of+Arithmetic&amp;rft.btitle=Studies+in+the+Logic+of+Charles+S.+Peirce&amp;rft.pages=43-52&amp;rft.pub=Indiana+University+Press&amp;rft.date=1997&amp;rft.isbn=0-253-33020-3&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1720827%23id-name%3DMR&amp;rft.aulast=Shields&amp;rft.aufirst=Paul&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstudiesinlogicof00nath&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonson2000" class="citation journal cs1">Simonson, Charles G. (Winter 2000). <a rel="nofollow" class="external text" href="http://web.stonehill.edu/compsci/Shai_papers/MathofLevi.pdf">"The Mathematics of Levi ben Gershon, the Ralbag"</a> <span class="cs1-format">(PDF)</span>. <i>Bekhol Derakhekha Daehu</i>. <b>10</b>. Bar-Ilan University Press: 5–21.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bekhol+Derakhekha+Daehu&amp;rft.atitle=The+Mathematics+of+Levi+ben+Gershon%2C+the+Ralbag&amp;rft.ssn=winter&amp;rft.volume=10&amp;rft.pages=5-21&amp;rft.date=2000&amp;rft.aulast=Simonson&amp;rft.aufirst=Charles+G.&amp;rft_id=http%3A%2F%2Fweb.stonehill.edu%2Fcompsci%2FShai_papers%2FMathofLevi.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUnguru1991" class="citation journal cs1"><a href="/wiki/Sabetai_Unguru" title="Sabetai Unguru">Unguru, S.</a> (1991). "Greek Mathematics and Mathematical Induction". <i>Physis</i>. <b>28</b>: 273–289.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physis&amp;rft.atitle=Greek+Mathematics+and+Mathematical+Induction&amp;rft.volume=28&amp;rft.pages=273-289&amp;rft.date=1991&amp;rft.aulast=Unguru&amp;rft.aufirst=S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUnguru1994" class="citation journal cs1"><a href="/wiki/Sabetai_Unguru" title="Sabetai Unguru">Unguru, S.</a> (1994). "Fowling after Induction". <i>Physis</i>. <b>31</b>: 267–272.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physis&amp;rft.atitle=Fowling+after+Induction&amp;rft.volume=31&amp;rft.pages=267-272&amp;rft.date=1994&amp;rft.aulast=Unguru&amp;rft.aufirst=S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVacca1909" class="citation journal cs1">Vacca, G. (1909). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9904-1909-01860-9">"Maurolycus, the First Discoverer of the Principle of Mathematical Induction"</a>. <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>. <b>16</b> (2): 70–73. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9904-1909-01860-9">10.1090/S0002-9904-1909-01860-9</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1558845">1558845</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+American+Mathematical+Society&amp;rft.atitle=Maurolycus%2C+the+First+Discoverer+of+the+Principle+of+Mathematical+Induction&amp;rft.volume=16&amp;rft.issue=2&amp;rft.pages=70-73&amp;rft.date=1909&amp;rft_id=info%3Adoi%2F10.1090%2FS0002-9904-1909-01860-9&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1558845%23id-name%3DMR&amp;rft.aulast=Vacca&amp;rft.aufirst=G.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0002-9904-1909-01860-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYadegari1978" class="citation journal cs1">Yadegari, Mohammad (1978). "The Use of Mathematical Induction by Abū Kāmil Shujā' Ibn Aslam (850-930)". <i><a href="/wiki/Isis_(journal)" title="Isis (journal)">Isis</a></i>. <b>69</b> (2): 259–262. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F352009">10.1086/352009</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/230435">230435</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:144112534">144112534</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Isis&amp;rft.atitle=The+Use+of+Mathematical+Induction+by+Ab%C5%AB+K%C4%81mil+Shuj%C4%81%27+Ibn+Aslam+%28850-930%29&amp;rft.volume=69&amp;rft.issue=2&amp;rft.pages=259-262&amp;rft.date=1978&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A144112534%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F230435%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1086%2F352009&amp;rft.aulast=Yadegari&amp;rft.aufirst=Mohammad&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMathematical+induction" class="Z3988"></span></li></ul> </div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Mathematical_logic" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Mathematical_logic" title="Template:Mathematical logic"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Mathematical_logic" title="Template talk:Mathematical logic"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Mathematical_logic" title="Special:EditPage/Template:Mathematical logic"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Mathematical_logic" style="font-size:114%;margin:0 4em"><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axiom" title="Axiom">Axiom</a> <ul><li><a href="/wiki/List_of_axioms" title="List of axioms">list</a></li></ul></li> <li><a href="/wiki/Cardinality" title="Cardinality">Cardinality</a></li> <li><a href="/wiki/First-order_logic" title="First-order logic">First-order logic</a></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a href="/wiki/Formal_semantics_(logic)" class="mw-redirect" title="Formal semantics (logic)">Formal semantics</a></li> <li><a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations of mathematics</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a></li> <li><a href="/wiki/Lemma_(mathematics)" title="Lemma (mathematics)">Lemma</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems&#160;(<a href="/wiki/Category:Theorems_in_the_foundations_of_mathematics" title="Category:Theorems in the foundations of mathematics">list</a>)<br />&#160;and&#160;<a href="/wiki/Paradoxes_of_set_theory" title="Paradoxes of set theory">paradoxes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/G%C3%B6del%27s_completeness_theorem" title="Gödel&#39;s completeness theorem">Gödel's completeness</a>&#160;and&#160;<a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel&#39;s incompleteness theorems">incompleteness theorems</a></li> <li><a href="/wiki/Tarski%27s_undefinability_theorem" title="Tarski&#39;s undefinability theorem">Tarski's undefinability</a></li> <li><a href="/wiki/Banach%E2%80%93Tarski_paradox" title="Banach–Tarski paradox">Banach–Tarski paradox</a></li> <li>Cantor's&#160;<a href="/wiki/Cantor%27s_theorem" title="Cantor&#39;s theorem">theorem,</a>&#160;<a href="/wiki/Cantor%27s_paradox" title="Cantor&#39;s paradox">paradox</a>&#160;and&#160;<a href="/wiki/Cantor%27s_diagonal_argument" title="Cantor&#39;s diagonal argument">diagonal argument</a></li> <li><a href="/wiki/Compactness_theorem" title="Compactness theorem">Compactness</a></li> <li><a href="/wiki/Halting_problem" title="Halting problem">Halting problem</a></li> <li><a href="/wiki/Lindstr%C3%B6m%27s_theorem" title="Lindström&#39;s theorem">Lindström's</a></li> <li><a href="/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem" title="Löwenheim–Skolem theorem">Löwenheim–Skolem</a></li> <li><a href="/wiki/Russell%27s_paradox" title="Russell&#39;s paradox">Russell's paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Logic" title="Logic">Logics</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Traditional" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Term_logic" title="Term logic">Traditional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_logic" title="Classical logic">Classical logic</a></li> <li><a href="/wiki/Logical_truth" title="Logical truth">Logical truth</a></li> <li><a href="/wiki/Tautology_(logic)" title="Tautology (logic)">Tautology</a></li> <li><a href="/wiki/Proposition" title="Proposition">Proposition</a></li> <li><a href="/wiki/Inference" title="Inference">Inference</a></li> <li><a href="/wiki/Logical_equivalence" title="Logical equivalence">Logical equivalence</a></li> <li><a href="/wiki/Consistency" title="Consistency">Consistency</a> <ul><li><a href="/wiki/Equiconsistency" title="Equiconsistency">Equiconsistency</a></li></ul></li> <li><a href="/wiki/Argument" title="Argument">Argument</a></li> <li><a href="/wiki/Soundness" title="Soundness">Soundness</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li> <li><a href="/wiki/Syllogism" title="Syllogism">Syllogism</a></li> <li><a href="/wiki/Square_of_opposition" title="Square of opposition">Square of opposition</a></li> <li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a></li> <li><a href="/wiki/Boolean_function" title="Boolean function">Boolean functions</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connectives</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li> <li><a href="/wiki/Propositional_formula" title="Propositional formula">Propositional formula</a></li> <li><a href="/wiki/Truth_table" title="Truth table">Truth tables</a></li> <li><a href="/wiki/Many-valued_logic" title="Many-valued logic">Many-valued logic</a> <ul><li><a href="/wiki/Three-valued_logic" title="Three-valued logic">3</a></li> <li><a href="/wiki/Finite-valued_logic" title="Finite-valued logic">finite</a></li> <li><a href="/wiki/Infinite-valued_logic" title="Infinite-valued logic">∞</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">Predicate</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/First-order_logic" title="First-order logic">First-order</a> <ul><li><a href="/wiki/List_of_first-order_theories" title="List of first-order theories"><span style="font-size:85%;">list</span></a></li></ul></li> <li><a href="/wiki/Second-order_logic" title="Second-order logic">Second-order</a> <ul><li><a href="/wiki/Monadic_second-order_logic" title="Monadic second-order logic">Monadic</a></li></ul></li> <li><a href="/wiki/Higher-order_logic" title="Higher-order logic">Higher-order</a></li> <li><a href="/wiki/Fixed-point_logic" title="Fixed-point logic">Fixed-point</a></li> <li><a href="/wiki/Free_logic" title="Free logic">Free</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifiers</a></li> <li><a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">Predicate</a></li> <li><a href="/wiki/Monadic_predicate_calculus" title="Monadic predicate calculus">Monadic predicate calculus</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Set_theory" title="Set theory">Set theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Set</a> <ul><li><a href="/wiki/Hereditary_set" title="Hereditary set">hereditary</a></li></ul></li> <li><a href="/wiki/Class_(set_theory)" title="Class (set theory)">Class</a></li> <li>(<a href="/wiki/Urelement" title="Urelement">Ur-</a>)<a href="/wiki/Element_(mathematics)" title="Element (mathematics)">Element</a></li> <li><a href="/wiki/Ordinal_number" title="Ordinal number">Ordinal number</a></li> <li><a href="/wiki/Extensionality" title="Extensionality">Extensionality</a></li> <li><a href="/wiki/Forcing_(mathematics)" title="Forcing (mathematics)">Forcing</a></li> <li><a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">Relation</a> <ul><li><a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence</a></li> <li><a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a></li></ul></li> <li>Set operations: <ul><li><a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a></li> <li><a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a></li> <li><a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">complement</a></li> <li><a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a></li> <li><a href="/wiki/Power_set" title="Power set">power set</a></li> <li><a href="/wiki/List_of_set_identities_and_relations" title="List of set identities and relations">identities</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">sets</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Countable_set" title="Countable set">Countable</a></li> <li><a href="/wiki/Uncountable_set" title="Uncountable set">Uncountable</a></li> <li><a href="/wiki/Empty_set" title="Empty set">Empty</a></li> <li><a href="/wiki/Inhabited_set" title="Inhabited set">Inhabited</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li> <li><a href="/wiki/Finite_set" title="Finite set">Finite</a></li> <li><a href="/wiki/Infinite_set" title="Infinite set">Infinite</a></li> <li><a href="/wiki/Transitive_set" title="Transitive set">Transitive</a></li> <li><a href="/wiki/Ultrafilter_(set_theory)" class="mw-redirect" title="Ultrafilter (set theory)">Ultrafilter</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive</a></li> <li><a href="/wiki/Fuzzy_set" title="Fuzzy set">Fuzzy</a></li> <li><a href="/wiki/Universal_set" title="Universal set">Universal</a></li> <li><a href="/wiki/Universe_(mathematics)" title="Universe (mathematics)">Universe</a> <ul><li><a href="/wiki/Constructible_universe" title="Constructible universe">constructible</a></li> <li><a href="/wiki/Grothendieck_universe" title="Grothendieck universe">Grothendieck</a></li> <li><a href="/wiki/Von_Neumann_universe" title="Von Neumann universe">Von Neumann</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Maps</a>&#160;and&#160;<a href="/wiki/Cardinality" title="Cardinality">cardinality</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Function</a>/<a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Map</a> <ul><li><a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a></li> <li><a href="/wiki/Codomain" title="Codomain">codomain</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></li> <li><a href="/wiki/Injective_function" title="Injective function">In</a>/<a href="/wiki/Surjective_function" title="Surjective function">Sur</a>/<a href="/wiki/Bijection" title="Bijection">Bi</a>-jection</li> <li><a href="/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorem" title="Schröder–Bernstein theorem">Schröder–Bernstein theorem</a></li> <li><a href="/wiki/Isomorphism" title="Isomorphism">Isomorphism</a></li> <li><a href="/wiki/G%C3%B6del_numbering" title="Gödel numbering">Gödel numbering</a></li> <li><a href="/wiki/Enumeration" title="Enumeration">Enumeration</a></li> <li><a href="/wiki/Large_cardinal" title="Large cardinal">Large cardinal</a> <ul><li><a href="/wiki/Inaccessible_cardinal" title="Inaccessible cardinal">inaccessible</a></li></ul></li> <li><a href="/wiki/Aleph_number" title="Aleph number">Aleph number</a></li> <li><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operation</a> <ul><li><a href="/wiki/Binary_operation" title="Binary operation">binary</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Set theories</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel</a> <ul><li><a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a></li> <li><a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">continuum hypothesis</a></li></ul></li> <li><a href="/wiki/General_set_theory" title="General set theory">General</a></li> <li><a href="/wiki/Kripke%E2%80%93Platek_set_theory" title="Kripke–Platek set theory">Kripke–Platek</a></li> <li><a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley</a></li> <li><a href="/wiki/Naive_set_theory" title="Naive set theory">Naive</a></li> <li><a href="/wiki/New_Foundations" title="New Foundations">New Foundations</a></li> <li><a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski–Grothendieck</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel</a></li> <li><a href="/wiki/Ackermann_set_theory" title="Ackermann set theory">Ackermann</a></li> <li><a href="/wiki/Constructive_set_theory" title="Constructive set theory">Constructive</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Formal_system" title="Formal system">Formal systems</a>&#160;(<a href="/wiki/List_of_formal_systems" title="List of formal systems"><span style="font-size:85%;">list</span></a>),<br /><a href="/wiki/Formal_language" title="Formal language">language</a>&#160;and&#160;<a href="/wiki/Syntax_(logic)" title="Syntax (logic)">syntax</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alphabet_(formal_languages)" title="Alphabet (formal languages)">Alphabet</a></li> <li><a href="/wiki/Arity" title="Arity">Arity</a></li> <li><a href="/wiki/Automata_theory" title="Automata theory">Automata</a></li> <li><a href="/wiki/Axiom_schema" title="Axiom schema">Axiom schema</a></li> <li><a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">Expression</a> <ul><li><a href="/wiki/Ground_expression" title="Ground expression">ground</a></li></ul></li> <li><a href="/wiki/Extension_by_new_constant_and_function_names" title="Extension by new constant and function names">Extension</a> <ul><li><a href="/wiki/Extension_by_definitions" title="Extension by definitions">by definition</a></li> <li><a href="/wiki/Conservative_extension" title="Conservative extension">conservative</a></li></ul></li> <li><a href="/wiki/Finitary_relation" title="Finitary relation">Relation</a></li> <li><a href="/wiki/Formation_rule" title="Formation rule">Formation rule</a></li> <li><a href="/wiki/Formal_grammar" title="Formal grammar">Grammar</a></li> <li><a href="/wiki/Well-formed_formula" title="Well-formed formula">Formula</a> <ul><li><a href="/wiki/Atomic_formula" title="Atomic formula">atomic</a></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">closed</a></li> <li><a href="/wiki/Ground_formula" class="mw-redirect" title="Ground formula">ground</a></li> <li><a href="/wiki/Open_formula" title="Open formula">open</a></li></ul></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free/bound variable</a></li> <li><a href="/wiki/Formal_language" title="Formal language">Language</a></li> <li><a href="/wiki/Metalanguage" title="Metalanguage">Metalanguage</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connective</a> <ul><li><a href="/wiki/Negation" title="Negation">¬</a></li> <li><a href="/wiki/Logical_disjunction" title="Logical disjunction">∨</a></li> <li><a href="/wiki/Logical_conjunction" title="Logical conjunction">∧</a></li> <li><a href="/wiki/Material_conditional" title="Material conditional">→</a></li> <li><a href="/wiki/Logical_biconditional" title="Logical biconditional">↔</a></li> <li><a href="/wiki/Logical_equality" title="Logical equality">=</a></li></ul></li> <li><a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">Predicate</a> <ul><li><a href="/wiki/Functional_predicate" title="Functional predicate">functional</a></li> <li><a href="/wiki/Predicate_variable" title="Predicate variable">variable</a></li> <li><a href="/wiki/Propositional_variable" title="Propositional variable">propositional variable</a></li></ul></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Proof</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifier</a> <ul><li><a href="/wiki/Existential_quantification" title="Existential quantification">∃</a></li> <li><a href="/wiki/Uniqueness_quantification" title="Uniqueness quantification">!</a></li> <li><a href="/wiki/Universal_quantification" title="Universal quantification">∀</a></li> <li><a href="/wiki/Quantifier_rank" title="Quantifier rank">rank</a></li></ul></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">Sentence</a> <ul><li><a href="/wiki/Atomic_sentence" title="Atomic sentence">atomic</a></li> <li><a href="/wiki/Spectrum_of_a_sentence" title="Spectrum of a sentence">spectrum</a></li></ul></li> <li><a href="/wiki/Signature_(logic)" title="Signature (logic)">Signature</a></li> <li><a href="/wiki/String_(formal_languages)" class="mw-redirect" title="String (formal languages)">String</a></li> <li><a href="/wiki/Substitution_(logic)" title="Substitution (logic)">Substitution</a></li> <li><a href="/wiki/Symbol_(formal)" title="Symbol (formal)">Symbol</a> <ul><li><a href="/wiki/Uninterpreted_function" title="Uninterpreted function">function</a></li> <li><a href="/wiki/Logical_constant" title="Logical constant">logical/constant</a></li> <li><a href="/wiki/Non-logical_symbol" title="Non-logical symbol">non-logical</a></li> <li><a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a></li></ul></li> <li><a href="/wiki/Term_(logic)" title="Term (logic)">Term</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a> <ul><li><a href="/wiki/List_of_mathematical_theories" title="List of mathematical theories"><span style="font-size:85%;">list</span></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span class="nowrap">Example&#160;<a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic<br />systems</a>&#160;<span style="font-size:85%;">(<a href="/wiki/List_of_first-order_theories" title="List of first-order theories">list</a>)</span></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>of <a href="/wiki/True_arithmetic" title="True arithmetic">arithmetic</a>: <ul><li><a href="/wiki/Peano_axioms" title="Peano axioms">Peano</a></li> <li><a href="/wiki/Second-order_arithmetic" title="Second-order arithmetic">second-order</a></li> <li><a href="/wiki/Elementary_function_arithmetic" title="Elementary function arithmetic">elementary function</a></li> <li><a href="/wiki/Primitive_recursive_arithmetic" title="Primitive recursive arithmetic">primitive recursive</a></li> <li><a href="/wiki/Robinson_arithmetic" title="Robinson arithmetic">Robinson</a></li> <li><a href="/wiki/Skolem_arithmetic" title="Skolem arithmetic">Skolem</a></li></ul></li> <li>of the <a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">real numbers</a> <ul><li><a href="/wiki/Tarski%27s_axiomatization_of_the_reals" title="Tarski&#39;s axiomatization of the reals">Tarski's axiomatization</a></li></ul></li> <li>of <a href="/wiki/Axiomatization_of_Boolean_algebras" class="mw-redirect" title="Axiomatization of Boolean algebras">Boolean algebras</a> <ul><li><a href="/wiki/Boolean_algebras_canonically_defined" title="Boolean algebras canonically defined">canonical</a></li> <li><a href="/wiki/Minimal_axioms_for_Boolean_algebra" title="Minimal axioms for Boolean algebra">minimal axioms</a></li></ul></li> <li>of <a href="/wiki/Foundations_of_geometry" title="Foundations of geometry">geometry</a>: <ul><li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean</a>: <ul><li><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements"><i>Elements</i></a></li> <li><a href="/wiki/Hilbert%27s_axioms" title="Hilbert&#39;s axioms">Hilbert's</a></li> <li><a href="/wiki/Tarski%27s_axioms" title="Tarski&#39;s axioms">Tarski's</a></li></ul></li> <li><a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean</a></li></ul></li></ul> <ul><li><i><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></i></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Proof_theory" title="Proof theory">Proof theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a href="/wiki/Natural_deduction" title="Natural deduction">Natural deduction</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Rule_of_inference" title="Rule of inference">Rule of inference</a></li> <li><a href="/wiki/Sequent_calculus" title="Sequent calculus">Sequent calculus</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Formal_system" title="Formal system">Systems</a> <ul><li><a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic</a></li> <li><a href="/wiki/Deductive_system" class="mw-redirect" title="Deductive system">deductive</a></li> <li><a href="/wiki/Hilbert_system" title="Hilbert system">Hilbert</a> <ul><li><a href="/wiki/List_of_Hilbert_systems" class="mw-redirect" title="List of Hilbert systems">list</a></li></ul></li></ul></li> <li><a href="/wiki/Complete_theory" title="Complete theory">Complete theory</a></li> <li><a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">Independence</a>&#160;(<a href="/wiki/List_of_statements_independent_of_ZFC" title="List of statements independent of ZFC">from&#160;ZFC</a>)</li> <li><a href="/wiki/Proof_of_impossibility" title="Proof of impossibility">Proof of impossibility</a></li> <li><a href="/wiki/Ordinal_analysis" title="Ordinal analysis">Ordinal analysis</a></li> <li><a href="/wiki/Reverse_mathematics" title="Reverse mathematics">Reverse mathematics</a></li> <li><a href="/wiki/Self-verifying_theories" title="Self-verifying theories">Self-verifying theories</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Model_theory" title="Model theory">Model theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Interpretation_(logic)" title="Interpretation (logic)">Interpretation</a> <ul><li><a href="/wiki/Interpretation_function" class="mw-redirect" title="Interpretation function">function</a></li> <li><a href="/wiki/Interpretation_(model_theory)" title="Interpretation (model theory)">of models</a></li></ul></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a> <ul><li><a href="/wiki/Elementary_equivalence" title="Elementary equivalence">equivalence</a></li> <li><a href="/wiki/Finite_model_theory" title="Finite model theory">finite</a></li> <li><a href="/wiki/Saturated_model" title="Saturated model">saturated</a></li> <li><a href="/wiki/Spectrum_of_a_theory" title="Spectrum of a theory">spectrum</a></li> <li><a href="/wiki/Substructure_(mathematics)" title="Substructure (mathematics)">submodel</a></li></ul></li> <li><a href="/wiki/Non-standard_model" title="Non-standard model">Non-standard model</a> <ul><li><a href="/wiki/Non-standard_model_of_arithmetic" title="Non-standard model of arithmetic">of arithmetic</a></li></ul></li> <li><a href="/wiki/Diagram_(mathematical_logic)" title="Diagram (mathematical logic)">Diagram</a> <ul><li><a href="/wiki/Elementary_diagram" title="Elementary diagram">elementary</a></li></ul></li> <li><a href="/wiki/Categorical_theory" title="Categorical theory">Categorical theory</a></li> <li><a href="/wiki/Model_complete_theory" title="Model complete theory">Model complete theory</a></li> <li><a href="/wiki/Satisfiability" title="Satisfiability">Satisfiability</a></li> <li><a href="/wiki/Semantics_of_logic" title="Semantics of logic">Semantics of logic</a></li> <li><a href="/wiki/Strength_(mathematical_logic)" title="Strength (mathematical logic)">Strength</a></li> <li><a href="/wiki/Theories_of_truth" class="mw-redirect" title="Theories of truth">Theories of truth</a> <ul><li><a href="/wiki/Semantic_theory_of_truth" title="Semantic theory of truth">semantic</a></li> <li><a href="/wiki/Tarski%27s_theory_of_truth" class="mw-redirect" title="Tarski&#39;s theory of truth">Tarski's</a></li> <li><a href="/wiki/Kripke%27s_theory_of_truth" class="mw-redirect" title="Kripke&#39;s theory of truth">Kripke's</a></li></ul></li> <li><a href="/wiki/T-schema" title="T-schema">T-schema</a></li> <li><a href="/wiki/Transfer_principle" title="Transfer principle">Transfer principle</a></li> <li><a href="/wiki/Truth_predicate" title="Truth predicate">Truth predicate</a></li> <li><a href="/wiki/Truth_value" title="Truth value">Truth value</a></li> <li><a href="/wiki/Type_(model_theory)" title="Type (model theory)">Type</a></li> <li><a href="/wiki/Ultraproduct" title="Ultraproduct">Ultraproduct</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computability_theory" title="Computability theory">Computability theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Church_encoding" title="Church encoding">Church encoding</a></li> <li><a href="/wiki/Church%E2%80%93Turing_thesis" title="Church–Turing thesis">Church–Turing thesis</a></li> <li><a href="/wiki/Computably_enumerable_set" title="Computably enumerable set">Computably enumerable</a></li> <li><a href="/wiki/Computable_function" title="Computable function">Computable function</a></li> <li><a href="/wiki/Computable_set" title="Computable set">Computable set</a></li> <li><a href="/wiki/Decision_problem" title="Decision problem">Decision problem</a> <ul><li><a href="/wiki/Decidability_(logic)" title="Decidability (logic)">decidable</a></li> <li><a href="/wiki/Undecidable_problem" title="Undecidable problem">undecidable</a></li> <li><a href="/wiki/P_(complexity)" title="P (complexity)">P</a></li> <li><a href="/wiki/NP_(complexity)" title="NP (complexity)">NP</a></li> <li><a href="/wiki/P_versus_NP_problem" title="P versus NP problem">P versus NP problem</a></li></ul></li> <li><a href="/wiki/Kolmogorov_complexity" title="Kolmogorov complexity">Kolmogorov complexity</a></li> <li><a href="/wiki/Lambda_calculus" title="Lambda calculus">Lambda calculus</a></li> <li><a href="/wiki/Primitive_recursive_function" title="Primitive recursive function">Primitive recursive function</a></li> <li><a href="/wiki/Recursion" title="Recursion">Recursion</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive set</a></li> <li><a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_logic" title="Abstract logic">Abstract logic</a></li> <li><a href="/wiki/Algebraic_logic" title="Algebraic logic">Algebraic logic</a></li> <li><a href="/wiki/Automated_theorem_proving" title="Automated theorem proving">Automated theorem proving</a></li> <li><a href="/wiki/Category_theory" title="Category theory">Category theory</a></li> <li><a href="/wiki/Concrete_category" title="Concrete category">Concrete</a>/<a href="/wiki/Category_(mathematics)" title="Category (mathematics)">Abstract category</a></li> <li><a href="/wiki/Category_of_sets" title="Category of sets">Category of sets</a></li> <li><a href="/wiki/History_of_logic" title="History of logic">History of logic</a></li> <li><a href="/wiki/History_of_mathematical_logic" class="mw-redirect" title="History of mathematical logic">History of mathematical logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/Logicism" title="Logicism">Logicism</a></li> <li><a href="/wiki/Mathematical_object" title="Mathematical object">Mathematical object</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Supertask" title="Supertask">Supertask</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q178377#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q178377#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q178377#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4124408-4">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85065806">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007548367405171">Israel</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://esu.com.ua/search_articles.php?id=67450">Encyclopedia of Modern Ukraine</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐2gr4p Cached time: 20241124053324 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.958 seconds Real time usage: 1.206 seconds Preprocessor visited node count: 10067/1000000 Post‐expand include size: 162218/2097152 bytes Template argument size: 12787/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 117233/5000000 bytes Lua time usage: 0.445/10.000 seconds Lua memory usage: 9905972/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 829.775 1 -total 17.51% 145.334 1 Template:Reflist 14.48% 120.172 4 Template:Navbox 13.56% 112.490 104 Template:Math 13.40% 111.164 10 Template:Cite_book 13.36% 110.838 1 Template:Mathematical_logic 8.15% 67.640 1 Template:Short_description 7.54% 62.569 15 Template:Cite_journal 6.14% 50.909 7 Template:Sfn 5.72% 47.483 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:18881-0!canonical and timestamp 20241124053324 and revision id 1253171361. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Mathematical_induction&amp;oldid=1253171361">https://en.wikipedia.org/w/index.php?title=Mathematical_induction&amp;oldid=1253171361</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Mathematical_induction" title="Category:Mathematical induction">Mathematical induction</a></li><li><a href="/wiki/Category:Mathematical_logic" title="Category:Mathematical logic">Mathematical logic</a></li><li><a href="/wiki/Category:Methods_of_proof" title="Category:Methods of proof">Methods of proof</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_February_2021" title="Category:Use dmy dates from February 2021">Use dmy dates from February 2021</a></li><li><a href="/wiki/Category:Articles_lacking_in-text_citations_from_July_2013" title="Category:Articles lacking in-text citations from July 2013">Articles lacking in-text citations from July 2013</a></li><li><a href="/wiki/Category:All_articles_lacking_in-text_citations" title="Category:All articles lacking in-text citations">All articles lacking in-text citations</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_January_2018" title="Category:Articles with unsourced statements from January 2018">Articles with unsourced statements from January 2018</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 October 2024, at 17:50<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Mathematical_induction&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-vp9pw","wgBackendResponseTime":145,"wgPageParseReport":{"limitreport":{"cputime":"0.958","walltime":"1.206","ppvisitednodes":{"value":10067,"limit":1000000},"postexpandincludesize":{"value":162218,"limit":2097152},"templateargumentsize":{"value":12787,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":117233,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 829.775 1 -total"," 17.51% 145.334 1 Template:Reflist"," 14.48% 120.172 4 Template:Navbox"," 13.56% 112.490 104 Template:Math"," 13.40% 111.164 10 Template:Cite_book"," 13.36% 110.838 1 Template:Mathematical_logic"," 8.15% 67.640 1 Template:Short_description"," 7.54% 62.569 15 Template:Cite_journal"," 6.14% 50.909 7 Template:Sfn"," 5.72% 47.483 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.445","limit":"10.000"},"limitreport-memusage":{"value":9905972,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"Axiom_of_induction\"] = 1,\n [\"CITEREFAcerbi2000\"] = 1,\n [\"CITEREFAnderson1979\"] = 1,\n [\"CITEREFBuss1986\"] = 1,\n [\"CITEREFBussey1917\"] = 1,\n [\"CITEREFCajori1918\"] = 1,\n [\"CITEREFCohen1961\"] = 1,\n [\"CITEREFFowler1994\"] = 1,\n [\"CITEREFFranklinDaoud2011\"] = 1,\n [\"CITEREFFreudenthal1953\"] = 1,\n [\"CITEREFHermes1973\"] = 1,\n [\"CITEREFKatz1998\"] = 1,\n [\"CITEREFKnuth1997\"] = 1,\n [\"CITEREFKolmogorovFomin1975\"] = 1,\n [\"CITEREFPeirce1881\"] = 1,\n [\"CITEREFRabinovitch1970\"] = 1,\n [\"CITEREFRashed1972\"] = 1,\n [\"CITEREFRashed1994\"] = 1,\n [\"CITEREFShafiei\"] = 1,\n [\"CITEREFShields1997\"] = 1,\n [\"CITEREFSimonson2000\"] = 1,\n [\"CITEREFSmullyan2014\"] = 1,\n [\"CITEREFSuber\"] = 1,\n [\"CITEREFUnguru1991\"] = 1,\n [\"CITEREFUnguru1994\"] = 1,\n [\"CITEREFVacca1909\"] = 1,\n [\"CITEREFYadegari1978\"] = 1,\n [\"CITEREFÖhman2019\"] = 1,\n [\"Complete_induction\"] = 1,\n [\"Proof_of_mathematical_induction\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"Anchor\"] = 3,\n [\"Authority control\"] = 1,\n [\"Blockquote\"] = 1,\n [\"Citation needed\"] = 1,\n [\"Cite book\"] = 10,\n [\"Cite journal\"] = 15,\n [\"Cite web\"] = 4,\n [\"Color\"] = 2,\n [\"Distinguish\"] = 1,\n [\"Harvp\"] = 1,\n [\"Isbn\"] = 2,\n [\"Main\"] = 3,\n [\"Main articles\"] = 1,\n [\"Math\"] = 104,\n [\"Mathematical logic\"] = 1,\n [\"Mvar\"] = 77,\n [\"No footnotes\"] = 1,\n [\"Nowrap\"] = 3,\n [\"Pad\"] = 1,\n [\"Quote\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Rp\"] = 1,\n [\"Sfn\"] = 7,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"Vanchor\"] = 2,\n [\"Webarchive\"] = 2,\n}\narticle_whitelist = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-2gr4p","timestamp":"20241124053324","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Mathematical induction","url":"https:\/\/en.wikipedia.org\/wiki\/Mathematical_induction","sameAs":"http:\/\/www.wikidata.org\/entity\/Q178377","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q178377","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-10-26T14:01:30Z","dateModified":"2024-10-24T17:50:37Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/92\/Dominoeffect.png","headline":"form of mathematical proof"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10