CINXE.COM
Linda Shimizu | University of South Carolina - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Linda Shimizu | University of South Carolina - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="jm5Tzu4RkGwU3ibJ8OOVqK5rq3zUyV/sRp0ncuK52h8dfe0uQLE7CGO7mh42BEVp05y9Z6CuAWpVYYK+9ntU4Q==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="linda shimizu" /> <meta name="description" content="Linda Shimizu, University of South Carolina: 69 Followers, 10 Following, 118 Research papers. Research interest: Nanostructures." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15270,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277236812,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732509938000); window.Aedu.timeDifference = new Date().getTime() - 1732509938000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://sc.academia.edu/LindaShimizu" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu","photo":"https://0.academia-photos.com/49715886/13081587/14409513/s65_linda.shimizu.jpg","has_photo":true,"department":{"id":3285,"name":"Department of Chemistry and Biochemistry","url":"https://sc.academia.edu/Departments/Department_of_Chemistry_and_Biochemistry/Documents","university":{"id":1251,"name":"University of South Carolina","url":"https://sc.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":128132,"name":"Nanostructures","url":"https://www.academia.edu/Documents/in/Nanostructures"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sc.academia.edu/LindaShimizu","location":"/LindaShimizu","scheme":"https","host":"sc.academia.edu","port":null,"pathname":"/LindaShimizu","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-65c51daa-2d6f-4dbe-9f31-c9dfeb4d2faa"></div> <div id="ProfileCheckPaperUpdate-react-component-65c51daa-2d6f-4dbe-9f31-c9dfeb4d2faa"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Linda Shimizu" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/49715886/13081587/14409513/s200_linda.shimizu.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Linda Shimizu</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://sc.academia.edu/">University of South Carolina</a>, <a class="u-tcGrayDarker" href="https://sc.academia.edu/Departments/Department_of_Chemistry_and_Biochemistry/Documents">Department of Chemistry and Biochemistry</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Linda" data-follow-user-id="49715886" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="49715886"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">69</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">10</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">10</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="49715886" href="https://www.academia.edu/Documents/in/Nanostructures"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sc.academia.edu/LindaShimizu","location":"/LindaShimizu","scheme":"https","host":"sc.academia.edu","port":null,"pathname":"/LindaShimizu","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Nanostructures"]}" data-trace="false" data-dom-id="Pill-react-component-87895f28-7e1d-43b2-8bdd-ca49dd1daa35"></div> <div id="Pill-react-component-87895f28-7e1d-43b2-8bdd-ca49dd1daa35"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Linda Shimizu</h3></div><div class="js-work-strip profile--work_container" data-work-id="125089328"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125089328/CCDC_873697_Experimental_Crystal_Structure_Determination"><img alt="Research paper thumbnail of CCDC 873697: Experimental Crystal Structure Determination" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125089328/CCDC_873697_Experimental_Crystal_Structure_Determination">CCDC 873697: Experimental Crystal Structure Determination</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An entry from the Cambridge Structural Database, the world&#39;s repository for small molecule cr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An entry from the Cambridge Structural Database, the world&#39;s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125089328"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125089328"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125089328; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125089328]").text(description); $(".js-view-count[data-work-id=125089328]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125089328; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125089328']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125089328, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125089328]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125089328,"title":"CCDC 873697: Experimental Crystal Structure Determination","translated_title":"","metadata":{"abstract":"An entry from the Cambridge Structural Database, the world\u0026#39;s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.","publisher":"Cambridge Crystallographic Data Centre","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"An entry from the Cambridge Structural Database, the world\u0026#39;s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.","internal_url":"https://www.academia.edu/125089328/CCDC_873697_Experimental_Crystal_Structure_Determination","translated_internal_url":"","created_at":"2024-10-27T17:26:12.869-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"CCDC_873697_Experimental_Crystal_Structure_Determination","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121782390"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/121782390/Macrocycles_with_Switchable_i_exo_i_i_endo_i_Metal_Binding_Sites"><img alt="Research paper thumbnail of Macrocycles with Switchable <i>exo</i>/<i>endo</i> Metal Binding Sites" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/121782390/Macrocycles_with_Switchable_i_exo_i_i_endo_i_Metal_Binding_Sites">Macrocycles with Switchable <i>exo</i>/<i>endo</i> Metal Binding Sites</a></div><div class="wp-workCard_item"><span>Journal of the American Chemical Society</span><span>, Nov 12, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report herein the synthesis and metal complexation properties of two macrocyclic hosts that co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report herein the synthesis and metal complexation properties of two macrocyclic hosts that contain two 2,2&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-bipyridines and two urea groups. These hosts take advantage of the conformationally mobile 5,5&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-positions of the bipyridines to give metal binding sites that are dynamic. By simple bond rotation, these hosts can exchange an interior (endo) situated metal binding site for an exterior (exo) binding site. We examine the solid-state structures of the two free hosts and two coordination complexes ([Cd(host 1)(H(2)O)(NO(3))(2)] and [Ag(2)(host 2)](SO(3)CF(3))(2)) using X-ray crystallography. Analysis of these crystal structures suggests that the bipyridine groups within the hosts are able to rotate to access multiple conformations including the desired exo and endo conformations. We also investigate the binding affinity of these new ligands in solution by UV-vis titrations with…</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121782390"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121782390"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121782390; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121782390]").text(description); $(".js-view-count[data-work-id=121782390]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121782390; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121782390']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121782390, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121782390]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121782390,"title":"Macrocycles with Switchable \u003ci\u003eexo\u003c/i\u003e/\u003ci\u003eendo\u003c/i\u003e Metal Binding Sites","translated_title":"","metadata":{"abstract":"We report herein the synthesis and metal complexation properties of two macrocyclic hosts that contain two 2,2\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-bipyridines and two urea groups. These hosts take advantage of the conformationally mobile 5,5\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-positions of the bipyridines to give metal binding sites that are dynamic. By simple bond rotation, these hosts can exchange an interior (endo) situated metal binding site for an exterior (exo) binding site. We examine the solid-state structures of the two free hosts and two coordination complexes ([Cd(host 1)(H(2)O)(NO(3))(2)] and [Ag(2)(host 2)](SO(3)CF(3))(2)) using X-ray crystallography. Analysis of these crystal structures suggests that the bipyridine groups within the hosts are able to rotate to access multiple conformations including the desired exo and endo conformations. We also investigate the binding affinity of these new ligands in solution by UV-vis titrations with…","publisher":"American Chemical Society","publication_date":{"day":12,"month":11,"year":2009,"errors":{}},"publication_name":"Journal of the American Chemical Society"},"translated_abstract":"We report herein the synthesis and metal complexation properties of two macrocyclic hosts that contain two 2,2\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-bipyridines and two urea groups. These hosts take advantage of the conformationally mobile 5,5\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-positions of the bipyridines to give metal binding sites that are dynamic. By simple bond rotation, these hosts can exchange an interior (endo) situated metal binding site for an exterior (exo) binding site. We examine the solid-state structures of the two free hosts and two coordination complexes ([Cd(host 1)(H(2)O)(NO(3))(2)] and [Ag(2)(host 2)](SO(3)CF(3))(2)) using X-ray crystallography. Analysis of these crystal structures suggests that the bipyridine groups within the hosts are able to rotate to access multiple conformations including the desired exo and endo conformations. We also investigate the binding affinity of these new ligands in solution by UV-vis titrations with…","internal_url":"https://www.academia.edu/121782390/Macrocycles_with_Switchable_i_exo_i_i_endo_i_Metal_Binding_Sites","translated_internal_url":"","created_at":"2024-07-04T13:42:08.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Macrocycles_with_Switchable_i_exo_i_i_endo_i_Metal_Binding_Sites","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":100540,"name":"Feasibility Studies","url":"https://www.academia.edu/Documents/in/Feasibility_Studies"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":188706,"name":"Metal","url":"https://www.academia.edu/Documents/in/Metal"},{"id":255058,"name":"Metals","url":"https://www.academia.edu/Documents/in/Metals"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":414692,"name":"Solutions","url":"https://www.academia.edu/Documents/in/Solutions"},{"id":481695,"name":"Titration","url":"https://www.academia.edu/Documents/in/Titration"},{"id":498914,"name":"Macrocycles","url":"https://www.academia.edu/Documents/in/Macrocycles"},{"id":649537,"name":"Molecular Conformation","url":"https://www.academia.edu/Documents/in/Molecular_Conformation"},{"id":818658,"name":"Rotation","url":"https://www.academia.edu/Documents/in/Rotation"},{"id":1242506,"name":"Binding Site","url":"https://www.academia.edu/Documents/in/Binding_Site"},{"id":2898895,"name":"binding sites","url":"https://www.academia.edu/Documents/in/binding_sites"},{"id":3889175,"name":"stereoisomerism","url":"https://www.academia.edu/Documents/in/stereoisomerism"}],"urls":[{"id":43374214,"url":"https://doi.org/10.1021/ja906474z"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="114904428"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/114904428/NASC_bringing_together_supramolecular_chemists_from_across_North_America"><img alt="Research paper thumbnail of NASC: bringing together supramolecular chemists from across North America" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/114904428/NASC_bringing_together_supramolecular_chemists_from_across_North_America">NASC: bringing together supramolecular chemists from across North America</a></div><div class="wp-workCard_item"><span>Supramolecular Chemistry</span><span>, Jan 2, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="114904428"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="114904428"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 114904428; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=114904428]").text(description); $(".js-view-count[data-work-id=114904428]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 114904428; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='114904428']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 114904428, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=114904428]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":114904428,"title":"NASC: bringing together supramolecular chemists from across North America","translated_title":"","metadata":{"publisher":"Taylor \u0026 Francis","publication_date":{"day":2,"month":1,"year":2022,"errors":{}},"publication_name":"Supramolecular Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/114904428/NASC_bringing_together_supramolecular_chemists_from_across_North_America","translated_internal_url":"","created_at":"2024-02-14T10:17:18.258-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"NASC_bringing_together_supramolecular_chemists_from_across_North_America","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":4493,"name":"Supramolecular Chemistry","url":"https://www.academia.edu/Documents/in/Supramolecular_Chemistry"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":39462999,"url":"https://doi.org/10.1080/10610278.2023.2178724"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342628"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342628/Structure_property_investigations_in_urea_tethered_iodinated_triphenylamines"><img alt="Research paper thumbnail of Structure–property investigations in urea tethered iodinated triphenylamines" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342628/Structure_property_investigations_in_urea_tethered_iodinated_triphenylamines">Structure–property investigations in urea tethered iodinated triphenylamines</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A methylene urea bridged di-iodo triphenylamine dimer and its corresponding methylene di-iodo tri...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A methylene urea bridged di-iodo triphenylamine dimer and its corresponding methylene di-iodo triphenylamine monomer are crystallized to correlate their structures with properties. In addition, their conductivity is compared against Spiro-OMeTAD.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342628"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342628"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342628; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342628]").text(description); $(".js-view-count[data-work-id=109342628]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342628; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342628']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342628, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342628]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342628,"title":"Structure–property investigations in urea tethered iodinated triphenylamines","translated_title":"","metadata":{"abstract":"A methylene urea bridged di-iodo triphenylamine dimer and its corresponding methylene di-iodo triphenylamine monomer are crystallized to correlate their structures with properties. In addition, their conductivity is compared against Spiro-OMeTAD.","publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":"A methylene urea bridged di-iodo triphenylamine dimer and its corresponding methylene di-iodo triphenylamine monomer are crystallized to correlate their structures with properties. In addition, their conductivity is compared against Spiro-OMeTAD.","internal_url":"https://www.academia.edu/109342628/Structure_property_investigations_in_urea_tethered_iodinated_triphenylamines","translated_internal_url":"","created_at":"2023-11-18T08:18:36.161-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Structure_property_investigations_in_urea_tethered_iodinated_triphenylamines","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":223513,"name":"Conductivity","url":"https://www.academia.edu/Documents/in/Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":329171,"name":"Triphenylamine","url":"https://www.academia.edu/Documents/in/Triphenylamine"},{"id":902639,"name":"X Ray Photoelectron Spectroscopy","url":"https://www.academia.edu/Documents/in/X_Ray_Photoelectron_Spectroscopy"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":35508073,"url":"https://doi.org/10.1039/d2cp01856j"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342627"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342627/Inclusion_Polymerization_of_Pyrrole_and_Ethylenedioxythiophene_in_Assembled_Triphenylamine_i_Bis_i_Urea_Macrocycles"><img alt="Research paper thumbnail of Inclusion Polymerization of Pyrrole and Ethylenedioxythiophene in Assembled Triphenylamine <i>Bis</i>-Urea Macrocycles" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342627/Inclusion_Polymerization_of_Pyrrole_and_Ethylenedioxythiophene_in_Assembled_Triphenylamine_i_Bis_i_Urea_Macrocycles">Inclusion Polymerization of Pyrrole and Ethylenedioxythiophene in Assembled Triphenylamine <i>Bis</i>-Urea Macrocycles</a></div><div class="wp-workCard_item"><span>Macromolecules</span><span>, Dec 13, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342627"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342627"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342627; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342627]").text(description); $(".js-view-count[data-work-id=109342627]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342627; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342627']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342627, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342627]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342627,"title":"Inclusion Polymerization of Pyrrole and Ethylenedioxythiophene in Assembled Triphenylamine \u003ci\u003eBis\u003c/i\u003e-Urea Macrocycles","translated_title":"","metadata":{"publisher":"American Chemical Society","publication_date":{"day":13,"month":12,"year":2022,"errors":{}},"publication_name":"Macromolecules"},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342627/Inclusion_Polymerization_of_Pyrrole_and_Ethylenedioxythiophene_in_Assembled_Triphenylamine_i_Bis_i_Urea_Macrocycles","translated_internal_url":"","created_at":"2023-11-18T08:18:35.971-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inclusion_Polymerization_of_Pyrrole_and_Ethylenedioxythiophene_in_Assembled_Triphenylamine_i_Bis_i_Urea_Macrocycles","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":2526,"name":"Polymer Chemistry","url":"https://www.academia.edu/Documents/in/Polymer_Chemistry"},{"id":32909,"name":"Polymerization","url":"https://www.academia.edu/Documents/in/Polymerization"},{"id":168760,"name":"Macromolecules","url":"https://www.academia.edu/Documents/in/Macromolecules"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":387449,"name":"Monomer","url":"https://www.academia.edu/Documents/in/Monomer"}],"urls":[{"id":35508072,"url":"https://doi.org/10.1021/acs.macromol.2c02042"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342626"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342626/Structural_electrochemical_and_photophysical_properties_of_an_exocyclic_di_ruthenium_complex_and_its_application_as_a_photosensitizer"><img alt="Research paper thumbnail of Structural, electrochemical and photophysical properties of an exocyclic di-ruthenium complex and its application as a photosensitizer" class="work-thumbnail" src="https://attachments.academia-assets.com/107497311/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342626/Structural_electrochemical_and_photophysical_properties_of_an_exocyclic_di_ruthenium_complex_and_its_application_as_a_photosensitizer">Structural, electrochemical and photophysical properties of an exocyclic di-ruthenium complex and its application as a photosensitizer</a></div><div class="wp-workCard_item"><span>Dalton Transactions</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e8711b3eb77b04c1cd151c30705ecc2d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497311,"asset_id":109342626,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497311/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342626"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342626"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342626; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342626]").text(description); $(".js-view-count[data-work-id=109342626]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342626; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342626']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342626, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e8711b3eb77b04c1cd151c30705ecc2d" } } $('.js-work-strip[data-work-id=109342626]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342626,"title":"Structural, electrochemical and photophysical properties of an exocyclic di-ruthenium complex and its application as a photosensitizer","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","grobid_abstract":"The reaction of cis-bis(2,2'-bipyridine)dichlororuthenium(II) hydrate with a conformationally mobile bipyridyl macrocycle afforded [(bpy) 2 Ru(µ-L)Ru(bpy) 2 ]Cl 4 •6H 2 O, a bridged di-Ru complex. Single crystal X-ray diffraction showed the macrocyclic ligand adopting a bowl-like structure with the exo-coordinated Ru(II) centers separated by 7.29 Å. Photophysical characterization showed that the complex absorbs in the visible region (λ max = 451 nm) with an emission maximum at 610 nm (τ = 706 ns, Φ PL = 0.021). Electrochemical studies indicate the di-Ru complex undergoes three one-electron reversible reductions and a reversible one-electron oxidation process. This electrochemical reversibility is a key characteristic for its use as an electron transfer agents. The complex was evaluated as a photocatalyst for the electronically mismatched Diels-Alder reaction of isoprene and trans-anethole using visible light. It afforded the expected product in good conversion (69%) and selectivity (dr \u003e 10 : 1) at low loadings (0.5-5.0 mol%) and the sensitizer/catalyst was readily recycled. These results suggest that the bipyridyl macrocycle could be widely applied as a bridging ligand for the generation of chromophore-catalyst assemblies.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Dalton Transactions","grobid_abstract_attachment_id":107497311},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342626/Structural_electrochemical_and_photophysical_properties_of_an_exocyclic_di_ruthenium_complex_and_its_application_as_a_photosensitizer","translated_internal_url":"","created_at":"2023-11-18T08:18:35.782-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497311/thumbnails/1.jpg","file_name":"b63a66f5dd3fa588cb760fa6875da0e12bed.pdf","download_url":"https://www.academia.edu/attachments/107497311/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Structural_electrochemical_and_photophys.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497311/b63a66f5dd3fa588cb760fa6875da0e12bed-libre.pdf?1700329714=\u0026response-content-disposition=attachment%3B+filename%3DStructural_electrochemical_and_photophys.pdf\u0026Expires=1732495854\u0026Signature=g7PlUOT5asDkHx46yLY~uzbV14IYjB9s4GH7vS7hEw1vLsEUITUfeIB85uAJNFRvWgD940umqHBYLU8zYSiEvGMWeXLUXo5hherdkJdnEYIGfEnsBH9RPv94dXnQ09Es2JJ7BExX5jzcxnixL-E10eIYVy5Cwzfd7tTQfUNjhPvw62x4wya18G5XZU9OdAKs~613~w9e83Qt5g8ngATDDlLeS6EsLZQSdkjpcBG4ujqprU919WIOghbAUx4qydW6hO8ROxWcLokg~jRuGUjyzGE57iZMEqxK-sS2iQ5W-5rcuO4YTHqoB8ewTyo1O11t8BpT5qxr5Edqw1~rbEbQJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structural_electrochemical_and_photophysical_properties_of_an_exocyclic_di_ruthenium_complex_and_its_application_as_a_photosensitizer","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497311/thumbnails/1.jpg","file_name":"b63a66f5dd3fa588cb760fa6875da0e12bed.pdf","download_url":"https://www.academia.edu/attachments/107497311/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Structural_electrochemical_and_photophys.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497311/b63a66f5dd3fa588cb760fa6875da0e12bed-libre.pdf?1700329714=\u0026response-content-disposition=attachment%3B+filename%3DStructural_electrochemical_and_photophys.pdf\u0026Expires=1732495855\u0026Signature=NPUUBf8NMdNoZcA6e9Vk7aPPNjyS8EJ5bLIw9ycGupTFcLwoAH-NYZt4NvY0sO69D1NiW8ct6F5MNmmN-0sSv4-z2Emb1CY0UMSPYyb2mb1myjzlE44z0BaXk8aaZ3FJx8sQD4yzT4SCkjHe1ZYiZEKuDUAGSwQXb8UxmCy5oIMm~d-beJbiTwvuvKAjWwyFgHgqg9DQFIAo-F0mazuiTKGWEFrjZOGhzJGHmv0idB8sBEdc5Cgl0wssgpkNBE4tn4VJN03GfASKPk0DmYCf6zq~nL0cAH0rSkX2n~myllw5IfjUFxWkDaVSQVzOXg0z1V98LDZv0ipEPkF4L2MnbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":5104,"name":"Photochemistry","url":"https://www.academia.edu/Documents/in/Photochemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":1244641,"name":"Photosensitizer","url":"https://www.academia.edu/Documents/in/Photosensitizer"},{"id":2540146,"name":"Ruthenium","url":"https://www.academia.edu/Documents/in/Ruthenium"}],"urls":[{"id":35508071,"url":"https://doi.org/10.1039/c6dt01377e"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342625"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342625/Crystal_Structures_and_Hirshfeld_Surface_Analyses_of_6_Substituted_Chromones"><img alt="Research paper thumbnail of Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342625/Crystal_Structures_and_Hirshfeld_Surface_Analyses_of_6_Substituted_Chromones">Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones</a></div><div class="wp-workCard_item"><span>Journal of Chemical Crystallography</span><span>, Mar 5, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface anal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface analysis to identify and understand the non-covalent interactions within the lattices of chromone, 6-methylchromone, 6-methoxychromone, 6-fluorochromone, and 6-chlorochromone with reported 6-bromochromone. In chromone, H-bonds and CH–л interactions predominate. H-bonds and aryl-stacking interactions are distinct in 6-methylchromone and 6-methoxychromone. The 6-fluorochromone, showed two types of H-bonds with O···H bonds having a greater contribution than F···H. In contrast, 6-chlorochromone and 6-bromochromone, the halogen contributes the larger percentage of stabilizing H-bonding with Cl···H and Br···H predominating over the O···H bonds. Compound 1 crystallizes in the monoclinic space group P21/n with a = 8.1546(8) Å, b = 7.8364(7) Å, c = 11.1424(11) Å, β = 108.506(2)° and Z = 4. Compound 2 crystallizes in the triclinic space group P-1 with a = 7.0461(3) Å, b = 10.2108(5) Å, c = 10.7083(5) Å, α = 89.884(2)°, β = 77.679(2)°, γ = 87.367(2)° and Z = 4. Compound 3 crystallizes in the monoclinic space group P21/n with a = 8.1923(4) Å, b = 7.0431(3) Å, c = 15.3943(8) Å, β = 92.819(2)° and Z = 4. Compound 4 crystallizes in the triclinic space group P1 with a = 3.7059(2) Å, b = 6.1265(4) Å, c = 7.6161(5) Å, α = 84.085(3)°, β = 87.070(3)°, γ = 83.390(3)° and Z = 1. Compound 5 crystallizes in the monoclinic space group P21 with a = 3.8220(2) Å, b = 5.6985(2) Å, c = 16.9107(7) Å, β = 95.8256(18)° and Z = 2.Graphical AbstractThe effect of substituents at the 6-position on chromone on their crystal structures using Hirshfeld surface and fingerprint analysis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342625"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342625"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342625; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342625]").text(description); $(".js-view-count[data-work-id=109342625]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342625; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342625']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342625, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342625]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342625,"title":"Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones","translated_title":"","metadata":{"abstract":"Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface analysis to identify and understand the non-covalent interactions within the lattices of chromone, 6-methylchromone, 6-methoxychromone, 6-fluorochromone, and 6-chlorochromone with reported 6-bromochromone. In chromone, H-bonds and CH–л interactions predominate. H-bonds and aryl-stacking interactions are distinct in 6-methylchromone and 6-methoxychromone. The 6-fluorochromone, showed two types of H-bonds with O···H bonds having a greater contribution than F···H. In contrast, 6-chlorochromone and 6-bromochromone, the halogen contributes the larger percentage of stabilizing H-bonding with Cl···H and Br···H predominating over the O···H bonds. Compound 1 crystallizes in the monoclinic space group P21/n with a = 8.1546(8) Å, b = 7.8364(7) Å, c = 11.1424(11) Å, β = 108.506(2)° and Z = 4. Compound 2 crystallizes in the triclinic space group P-1 with a = 7.0461(3) Å, b = 10.2108(5) Å, c = 10.7083(5) Å, α = 89.884(2)°, β = 77.679(2)°, γ = 87.367(2)° and Z = 4. Compound 3 crystallizes in the monoclinic space group P21/n with a = 8.1923(4) Å, b = 7.0431(3) Å, c = 15.3943(8) Å, β = 92.819(2)° and Z = 4. Compound 4 crystallizes in the triclinic space group P1 with a = 3.7059(2) Å, b = 6.1265(4) Å, c = 7.6161(5) Å, α = 84.085(3)°, β = 87.070(3)°, γ = 83.390(3)° and Z = 1. Compound 5 crystallizes in the monoclinic space group P21 with a = 3.8220(2) Å, b = 5.6985(2) Å, c = 16.9107(7) Å, β = 95.8256(18)° and Z = 2.Graphical AbstractThe effect of substituents at the 6-position on chromone on their crystal structures using Hirshfeld surface and fingerprint analysis.","publisher":"Springer Science+Business Media","publication_date":{"day":5,"month":3,"year":2016,"errors":{}},"publication_name":"Journal of Chemical Crystallography"},"translated_abstract":"Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface analysis to identify and understand the non-covalent interactions within the lattices of chromone, 6-methylchromone, 6-methoxychromone, 6-fluorochromone, and 6-chlorochromone with reported 6-bromochromone. In chromone, H-bonds and CH–л interactions predominate. H-bonds and aryl-stacking interactions are distinct in 6-methylchromone and 6-methoxychromone. The 6-fluorochromone, showed two types of H-bonds with O···H bonds having a greater contribution than F···H. In contrast, 6-chlorochromone and 6-bromochromone, the halogen contributes the larger percentage of stabilizing H-bonding with Cl···H and Br···H predominating over the O···H bonds. Compound 1 crystallizes in the monoclinic space group P21/n with a = 8.1546(8) Å, b = 7.8364(7) Å, c = 11.1424(11) Å, β = 108.506(2)° and Z = 4. Compound 2 crystallizes in the triclinic space group P-1 with a = 7.0461(3) Å, b = 10.2108(5) Å, c = 10.7083(5) Å, α = 89.884(2)°, β = 77.679(2)°, γ = 87.367(2)° and Z = 4. Compound 3 crystallizes in the monoclinic space group P21/n with a = 8.1923(4) Å, b = 7.0431(3) Å, c = 15.3943(8) Å, β = 92.819(2)° and Z = 4. Compound 4 crystallizes in the triclinic space group P1 with a = 3.7059(2) Å, b = 6.1265(4) Å, c = 7.6161(5) Å, α = 84.085(3)°, β = 87.070(3)°, γ = 83.390(3)° and Z = 1. Compound 5 crystallizes in the monoclinic space group P21 with a = 3.8220(2) Å, b = 5.6985(2) Å, c = 16.9107(7) Å, β = 95.8256(18)° and Z = 2.Graphical AbstractThe effect of substituents at the 6-position on chromone on their crystal structures using Hirshfeld surface and fingerprint analysis.","internal_url":"https://www.academia.edu/109342625/Crystal_Structures_and_Hirshfeld_Surface_Analyses_of_6_Substituted_Chromones","translated_internal_url":"","created_at":"2023-11-18T08:18:35.583-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Crystal_Structures_and_Hirshfeld_Surface_Analyses_of_6_Substituted_Chromones","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":11648,"name":"Organometallic Chemistry","url":"https://www.academia.edu/Documents/in/Organometallic_Chemistry"},{"id":50630,"name":"Crystal structure","url":"https://www.academia.edu/Documents/in/Crystal_structure"}],"urls":[{"id":35508070,"url":"https://doi.org/10.1007/s10870-016-0642-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342624"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342624/Synergistic_effects_of_hydrogen_and_halogen_bonding_in_co_crystals_of_dipyridylureas_and_diiodotetrafluorobenzenes"><img alt="Research paper thumbnail of Synergistic effects of hydrogen and halogen bonding in co-crystals of dipyridylureas and diiodotetrafluorobenzenes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342624/Synergistic_effects_of_hydrogen_and_halogen_bonding_in_co_crystals_of_dipyridylureas_and_diiodotetrafluorobenzenes">Synergistic effects of hydrogen and halogen bonding in co-crystals of dipyridylureas and diiodotetrafluorobenzenes</a></div><div class="wp-workCard_item"><span>Supramolecular Chemistry</span><span>, Aug 10, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Herein, we investigate co-crystallization of three linear co-formers that contain urea a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Herein, we investigate co-crystallization of three linear co-formers that contain urea and pyridyl groups with three regioisomers of diiodotetrafluorobenzene (DITFB) to afford eleven co-crystals. The linear o-, m-, and p- dipyridylureas vary distance and geometry between the urea carbonyl oxygen and two pyridyl nitrogen acceptors, while the donors consist of urea NH groups and the activated halides in DITFB. Electrostatic potential calculations suggest that the o-dipyridylurea co-former presents two significantly different acceptors. In comparison, the acceptors in the m- and p-dipyridylurea co-formers display electrostatic potentials within 5–6 kJ/mol and should be competitive, potentially leading to altered assembly motifs. Overall, ten of the co-crystals consistently display the urea assembly motif as the best acceptor/donor pair. Seven structures were obtained as the predicted 1:1 ratio with halogen bonding interactions linking ditopic halogen bond donors and the pyridyl units through N···I interactions ranging from 78.4 to 83.1% of the van der Waals radii. Modified structures were more likely when there was a structural mismatch with the geometrically challenging o-DITFB donor and m- or p-dipyridylurea co-former. The majority of the co-crystal structures (10/11) demonstrated fully satisfied hydrogen and halogen bonding interactions suggesting that these synthons can be used synergistically to generate complex solid-state structures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342624"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342624"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342624; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342624]").text(description); $(".js-view-count[data-work-id=109342624]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342624; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342624']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342624, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342624]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342624,"title":"Synergistic effects of hydrogen and halogen bonding in co-crystals of dipyridylureas and diiodotetrafluorobenzenes","translated_title":"","metadata":{"abstract":"Abstract Herein, we investigate co-crystallization of three linear co-formers that contain urea and pyridyl groups with three regioisomers of diiodotetrafluorobenzene (DITFB) to afford eleven co-crystals. The linear o-, m-, and p- dipyridylureas vary distance and geometry between the urea carbonyl oxygen and two pyridyl nitrogen acceptors, while the donors consist of urea NH groups and the activated halides in DITFB. Electrostatic potential calculations suggest that the o-dipyridylurea co-former presents two significantly different acceptors. In comparison, the acceptors in the m- and p-dipyridylurea co-formers display electrostatic potentials within 5–6 kJ/mol and should be competitive, potentially leading to altered assembly motifs. Overall, ten of the co-crystals consistently display the urea assembly motif as the best acceptor/donor pair. Seven structures were obtained as the predicted 1:1 ratio with halogen bonding interactions linking ditopic halogen bond donors and the pyridyl units through N···I interactions ranging from 78.4 to 83.1% of the van der Waals radii. Modified structures were more likely when there was a structural mismatch with the geometrically challenging o-DITFB donor and m- or p-dipyridylurea co-former. The majority of the co-crystal structures (10/11) demonstrated fully satisfied hydrogen and halogen bonding interactions suggesting that these synthons can be used synergistically to generate complex solid-state structures.","publisher":"Taylor \u0026 Francis","publication_date":{"day":10,"month":8,"year":2017,"errors":{}},"publication_name":"Supramolecular Chemistry"},"translated_abstract":"Abstract Herein, we investigate co-crystallization of three linear co-formers that contain urea and pyridyl groups with three regioisomers of diiodotetrafluorobenzene (DITFB) to afford eleven co-crystals. The linear o-, m-, and p- dipyridylureas vary distance and geometry between the urea carbonyl oxygen and two pyridyl nitrogen acceptors, while the donors consist of urea NH groups and the activated halides in DITFB. Electrostatic potential calculations suggest that the o-dipyridylurea co-former presents two significantly different acceptors. In comparison, the acceptors in the m- and p-dipyridylurea co-formers display electrostatic potentials within 5–6 kJ/mol and should be competitive, potentially leading to altered assembly motifs. Overall, ten of the co-crystals consistently display the urea assembly motif as the best acceptor/donor pair. Seven structures were obtained as the predicted 1:1 ratio with halogen bonding interactions linking ditopic halogen bond donors and the pyridyl units through N···I interactions ranging from 78.4 to 83.1% of the van der Waals radii. Modified structures were more likely when there was a structural mismatch with the geometrically challenging o-DITFB donor and m- or p-dipyridylurea co-former. The majority of the co-crystal structures (10/11) demonstrated fully satisfied hydrogen and halogen bonding interactions suggesting that these synthons can be used synergistically to generate complex solid-state structures.","internal_url":"https://www.academia.edu/109342624/Synergistic_effects_of_hydrogen_and_halogen_bonding_in_co_crystals_of_dipyridylureas_and_diiodotetrafluorobenzenes","translated_internal_url":"","created_at":"2023-11-18T08:18:35.392-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Synergistic_effects_of_hydrogen_and_halogen_bonding_in_co_crystals_of_dipyridylureas_and_diiodotetrafluorobenzenes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":140,"name":"Pharmacology","url":"https://www.academia.edu/Documents/in/Pharmacology"},{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":4493,"name":"Supramolecular Chemistry","url":"https://www.academia.edu/Documents/in/Supramolecular_Chemistry"},{"id":5398,"name":"Biotechnology","url":"https://www.academia.edu/Documents/in/Biotechnology"},{"id":10704,"name":"Crystal Engineering","url":"https://www.academia.edu/Documents/in/Crystal_Engineering"},{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1190826,"name":"Halogen","url":"https://www.academia.edu/Documents/in/Halogen"},{"id":1930607,"name":"Acceptor","url":"https://www.academia.edu/Documents/in/Acceptor"},{"id":3184573,"name":"Synthon","url":"https://www.academia.edu/Documents/in/Synthon"}],"urls":[{"id":35508069,"url":"https://doi.org/10.1080/10610278.2017.1364380"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342623"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342623/Crystalline_Bis_urea_Nanochannel_Architectures_Tailored_for_Single_File_Diffusion_Studies"><img alt="Research paper thumbnail of Crystalline Bis-urea Nanochannel Architectures Tailored for Single-File Diffusion Studies" class="work-thumbnail" src="https://attachments.academia-assets.com/107497314/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342623/Crystalline_Bis_urea_Nanochannel_Architectures_Tailored_for_Single_File_Diffusion_Studies">Crystalline Bis-urea Nanochannel Architectures Tailored for Single-File Diffusion Studies</a></div><div class="wp-workCard_item"><span>ACS Nano</span><span>, Jun 9, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b47057f09fbcb3a80f27e3155705a73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497314,"asset_id":109342623,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497314/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342623"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342623"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342623; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342623]").text(description); $(".js-view-count[data-work-id=109342623]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342623; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342623']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342623, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b47057f09fbcb3a80f27e3155705a73" } } $('.js-work-strip[data-work-id=109342623]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342623,"title":"Crystalline Bis-urea Nanochannel Architectures Tailored for Single-File Diffusion Studies","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Urea is a versatile building block that can be modified to selfassemble into a multitude of structures. One-dimensional nanochannels with zigzag architecture and cross-sectional dimensions of only ∼3.7 Å Â 4.8 Å are formed by the columnar assembly of phenyl ether bis-urea macrocycles. Nanochannels formed by phenylethynylene bis-urea macrocycles have a round cross-section with a diameter of ∼9.0 Å. This work compares the Xe atom packing and diffusion inside the crystalline channels of these two bis-ureas using hyperpolarized Xe-129 NMR. The elliptical channel structure of the phenyl ether bis-urea macrocycle produces a Xe-129 powder pattern line shape characteristic of an asymmetric chemical shift tensor with shifts extending to well over 300 ppm with respect to the bulk gas, reflecting extreme confinement of the Xe atom. The wider channels formed by phenylethynylene bis-urea, in contrast, present an isotropic dynamically average electronic environment. Completely different diffusion dynamics are revealed in the two bis-ureas using hyperpolarized spin-tracer exchange NMR. Thus, a simple replacement of phenyl ether with phenylethynylene as the rigid linker unit results in a transition from single-file to Fickian diffusion dynamics. Selfassembled bis-urea macrocycles are found to be highly suitable materials for fundamental molecular transport studies on micrometer length scales.","publication_date":{"day":9,"month":6,"year":2015,"errors":{}},"publication_name":"ACS Nano","grobid_abstract_attachment_id":107497314},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342623/Crystalline_Bis_urea_Nanochannel_Architectures_Tailored_for_Single_File_Diffusion_Studies","translated_internal_url":"","created_at":"2023-11-18T08:18:35.179-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497314,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497314/thumbnails/1.jpg","file_name":"acsnano.5b0189520231118-1-d6gzej.pdf","download_url":"https://www.academia.edu/attachments/107497314/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crystalline_Bis_urea_Nanochannel_Archite.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497314/acsnano.5b0189520231118-1-d6gzej-libre.pdf?1700329722=\u0026response-content-disposition=attachment%3B+filename%3DCrystalline_Bis_urea_Nanochannel_Archite.pdf\u0026Expires=1732495855\u0026Signature=aoq30ER51Wf7-rGiVbCz6zXbLlJQ9eVdcqfsdlDy3BqTvCiQzpkZkvyJGVU8jWb~uTCJjQpTkUueu6x7xgxTRYV4bpL8iITdgHE2rhNaZWZlfZ~c9cFmS8NFoSeySSSPs~FwBCqjqNwkvwFfJm7Uys4RH~aMgcJl-EnolnykIzJERtYe4PjuTqh7L6e4q81XtRSUvFLl~w-iPdBYJsRbNqDfGSG-OMR-t~B~OqfkaxDw95K6LW-QipWHaaw1imiU1-BB1Ut1fIkLi4Zlh7QF~iTpudofmkg6SeYH3HwJqqHVOTrocXwSwNxLO9mu9pD~CMYKhIiutG5f4PpX6FT8gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Crystalline_Bis_urea_Nanochannel_Architectures_Tailored_for_Single_File_Diffusion_Studies","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497314,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497314/thumbnails/1.jpg","file_name":"acsnano.5b0189520231118-1-d6gzej.pdf","download_url":"https://www.academia.edu/attachments/107497314/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crystalline_Bis_urea_Nanochannel_Archite.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497314/acsnano.5b0189520231118-1-d6gzej-libre.pdf?1700329722=\u0026response-content-disposition=attachment%3B+filename%3DCrystalline_Bis_urea_Nanochannel_Archite.pdf\u0026Expires=1732495855\u0026Signature=aoq30ER51Wf7-rGiVbCz6zXbLlJQ9eVdcqfsdlDy3BqTvCiQzpkZkvyJGVU8jWb~uTCJjQpTkUueu6x7xgxTRYV4bpL8iITdgHE2rhNaZWZlfZ~c9cFmS8NFoSeySSSPs~FwBCqjqNwkvwFfJm7Uys4RH~aMgcJl-EnolnykIzJERtYe4PjuTqh7L6e4q81XtRSUvFLl~w-iPdBYJsRbNqDfGSG-OMR-t~B~OqfkaxDw95K6LW-QipWHaaw1imiU1-BB1Ut1fIkLi4Zlh7QF~iTpudofmkg6SeYH3HwJqqHVOTrocXwSwNxLO9mu9pD~CMYKhIiutG5f4PpX6FT8gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":21732,"name":"Magnetic Resonance Spectroscopy","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Spectroscopy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":83315,"name":"Diffusion","url":"https://www.academia.edu/Documents/in/Diffusion"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"}],"urls":[{"id":35508068,"url":"https://doi.org/10.1021/acsnano.5b01895"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342622"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342622/Examination_of_the_Structural_Features_That_Favor_the_Columnar_Self_Assembly_of_Bis_urea_Macrocycles"><img alt="Research paper thumbnail of Examination of the Structural Features That Favor the Columnar Self-Assembly of Bis-urea Macrocycles" class="work-thumbnail" src="https://attachments.academia-assets.com/107497325/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342622/Examination_of_the_Structural_Features_That_Favor_the_Columnar_Self_Assembly_of_Bis_urea_Macrocycles">Examination of the Structural Features That Favor the Columnar Self-Assembly of Bis-urea Macrocycles</a></div><div class="wp-workCard_item"><span>Journal of Organic Chemistry</span><span>, Dec 5, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7c57f7d1c008b805c4cf53f56f4d61d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497325,"asset_id":109342622,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497325/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342622"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342622"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342622; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342622]").text(description); $(".js-view-count[data-work-id=109342622]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342622; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342622']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342622, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7c57f7d1c008b805c4cf53f56f4d61d0" } } $('.js-work-strip[data-work-id=109342622]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342622,"title":"Examination of the Structural Features That Favor the Columnar Self-Assembly of Bis-urea Macrocycles","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Supporting Information Table of Contents General Procedure S2 Reaction Scheme for Macrocycle 2-6 S4 Characterization Data for Macrocycle 3-6 S5 1 H NMR of Macrocycle 2 S7 13 C NMR of Macrocycle 2 S8 1 H NMR of Macrocycle 3 S9 1 H NMR Titration of Macrocycle 4 S46 Determine the Diffusion Coefficients by NMR S48 FT-IR study of Self-association of Macrocycle 2, 3 and 4 in Solutions S49 References S53 b = 16.1503(6) Å β= 90°. c = 8.5508(3) Å γ = 90°. Volume 2255.14(14) Å 3 Z 4 Density (calculated) 1.215 Mg/m 3 Absorption coefficient 0.091 mm-1 F(000) 888 Crystal size 0.54 x 0.40 x 0.30 mm 3 Theta range for data collection 2.49 to 26.40°.","publication_date":{"day":5,"month":12,"year":2008,"errors":{}},"publication_name":"Journal of Organic Chemistry","grobid_abstract_attachment_id":107497325},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342622/Examination_of_the_Structural_Features_That_Favor_the_Columnar_Self_Assembly_of_Bis_urea_Macrocycles","translated_internal_url":"","created_at":"2023-11-18T08:18:34.981-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497325,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497325/thumbnails/1.jpg","file_name":"4586152.pdf","download_url":"https://www.academia.edu/attachments/107497325/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Examination_of_the_Structural_Features_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497325/4586152-libre.pdf?1700330068=\u0026response-content-disposition=attachment%3B+filename%3DExamination_of_the_Structural_Features_T.pdf\u0026Expires=1732495855\u0026Signature=cE3OmN8AQc-TcmbGqKnFBzGv6zYfkqJUGRi0I9ggDuVLylTjhzZcdOmA0psZf08n1YVpEZsV5Th-Bn5OfcdglomVL78yG5FOgYDIcuE~7HZlL8UTbQE6E7QoetFnTM0iVqzzQ8~j~rDA6k3pVNV9zIEssLzxd8wiP3A-WIlpxptATHhHHeDpxpPXEXHl582D77Fg6jNCkzAgNNeN1OzueTdfCcaHK-Gyh2xiq2cGOSg-VwVr9qwv38hmhIbp-OdeLUQ~PlCHSgQI23amUP5Jb4qpGrsioScttzpVyDF3skw0jYE-r5SzKN2eKwb9ICHP46z-bEpbYywE99DZA70IjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Examination_of_the_Structural_Features_That_Favor_the_Columnar_Self_Assembly_of_Bis_urea_Macrocycles","translated_slug":"","page_count":54,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497325,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497325/thumbnails/1.jpg","file_name":"4586152.pdf","download_url":"https://www.academia.edu/attachments/107497325/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Examination_of_the_Structural_Features_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497325/4586152-libre.pdf?1700330068=\u0026response-content-disposition=attachment%3B+filename%3DExamination_of_the_Structural_Features_T.pdf\u0026Expires=1732495855\u0026Signature=cE3OmN8AQc-TcmbGqKnFBzGv6zYfkqJUGRi0I9ggDuVLylTjhzZcdOmA0psZf08n1YVpEZsV5Th-Bn5OfcdglomVL78yG5FOgYDIcuE~7HZlL8UTbQE6E7QoetFnTM0iVqzzQ8~j~rDA6k3pVNV9zIEssLzxd8wiP3A-WIlpxptATHhHHeDpxpPXEXHl582D77Fg6jNCkzAgNNeN1OzueTdfCcaHK-Gyh2xiq2cGOSg-VwVr9qwv38hmhIbp-OdeLUQ~PlCHSgQI23amUP5Jb4qpGrsioScttzpVyDF3skw0jYE-r5SzKN2eKwb9ICHP46z-bEpbYywE99DZA70IjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":11073,"name":"Self Assembly","url":"https://www.academia.edu/Documents/in/Self_Assembly"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":27407,"name":"Material Chemistry and Photochemistry","url":"https://www.academia.edu/Documents/in/Material_Chemistry_and_Photochemistry"},{"id":49834,"name":"Molecular Recognition","url":"https://www.academia.edu/Documents/in/Molecular_Recognition"},{"id":55241,"name":"Synthetic Organic Chemistry","url":"https://www.academia.edu/Documents/in/Synthetic_Organic_Chemistry"},{"id":77287,"name":"Macrocycle","url":"https://www.academia.edu/Documents/in/Macrocycle"},{"id":205584,"name":"Solubility","url":"https://www.academia.edu/Documents/in/Solubility"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":286636,"name":"Encapsulation","url":"https://www.academia.edu/Documents/in/Encapsulation"},{"id":296798,"name":"Hydrogen Bonding","url":"https://www.academia.edu/Documents/in/Hydrogen_Bonding"},{"id":459820,"name":"Ether","url":"https://www.academia.edu/Documents/in/Ether"},{"id":469575,"name":"Solid State","url":"https://www.academia.edu/Documents/in/Solid_State"},{"id":1152821,"name":"Chemical Synthesis","url":"https://www.academia.edu/Documents/in/Chemical_Synthesis"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"},{"id":1957004,"name":"Stacking","url":"https://www.academia.edu/Documents/in/Stacking"}],"urls":[{"id":35508067,"url":"https://doi.org/10.1021/jo801717w"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342621"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342621/Origins_of_Selectivity_for_the_2_2_Cycloaddition_of_%CE%B1_%CE%B2_unsaturated_Ketones_within_a_Porous_Self_assembled_Organic_Framework"><img alt="Research paper thumbnail of Origins of Selectivity for the [2+2] Cycloaddition of α,β-unsaturated Ketones within a Porous Self-assembled Organic Framework" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342621/Origins_of_Selectivity_for_the_2_2_Cycloaddition_of_%CE%B1_%CE%B2_unsaturated_Ketones_within_a_Porous_Self_assembled_Organic_Framework">Origins of Selectivity for the [2+2] Cycloaddition of α,β-unsaturated Ketones within a Porous Self-assembled Organic Framework</a></div><div class="wp-workCard_item"><span>Journal of the American Chemical Society</span><span>, Dec 21, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Mark D. Smith, † Youyong Li, ‡ and Linda S. Shimizu* †. Department of Chemistry and Biochemis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Mark D. Smith, † Youyong Li, ‡ and Linda S. Shimizu* †. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, Materials and Process Simulation Center, California Institute of Technology, California 91125. J. Am. Chem. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342621"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342621"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342621; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342621]").text(description); $(".js-view-count[data-work-id=109342621]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342621; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342621']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342621, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342621]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342621,"title":"Origins of Selectivity for the [2+2] Cycloaddition of α,β-unsaturated Ketones within a Porous Self-assembled Organic Framework","translated_title":"","metadata":{"abstract":"... Mark D. Smith, † Youyong Li, ‡ and Linda S. Shimizu* †. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, Materials and Process Simulation Center, California Institute of Technology, California 91125. J. Am. Chem. ...","publisher":"American Chemical Society","publication_date":{"day":21,"month":12,"year":2007,"errors":{}},"publication_name":"Journal of the American Chemical Society"},"translated_abstract":"... Mark D. Smith, † Youyong Li, ‡ and Linda S. Shimizu* †. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, Materials and Process Simulation Center, California Institute of Technology, California 91125. J. Am. Chem. ...","internal_url":"https://www.academia.edu/109342621/Origins_of_Selectivity_for_the_2_2_Cycloaddition_of_%CE%B1_%CE%B2_unsaturated_Ketones_within_a_Porous_Self_assembled_Organic_Framework","translated_internal_url":"","created_at":"2023-11-18T08:18:34.755-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Origins_of_Selectivity_for_the_2_2_Cycloaddition_of_α_β_unsaturated_Ketones_within_a_Porous_Self_assembled_Organic_Framework","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11222,"name":"Powder Diffraction","url":"https://www.academia.edu/Documents/in/Powder_Diffraction"},{"id":21732,"name":"Magnetic Resonance Spectroscopy","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Spectroscopy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":38886,"name":"Cycloaddition reactions","url":"https://www.academia.edu/Documents/in/Cycloaddition_reactions"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":398652,"name":"Thermogravimetric Analysis","url":"https://www.academia.edu/Documents/in/Thermogravimetric_Analysis"},{"id":687047,"name":"Ketone","url":"https://www.academia.edu/Documents/in/Ketone"},{"id":1279814,"name":"Heterocyclic compounds","url":"https://www.academia.edu/Documents/in/Heterocyclic_compounds"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"},{"id":1868097,"name":"Selectivity","url":"https://www.academia.edu/Documents/in/Selectivity"}],"urls":[{"id":35508066,"url":"https://doi.org/10.1021/ja076001+"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342620"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342620/Functional_Materials_from_Self_Assembled_Bis_urea_Macrocycles"><img alt="Research paper thumbnail of Functional Materials from Self-Assembled Bis-urea Macrocycles" class="work-thumbnail" src="https://attachments.academia-assets.com/107497310/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342620/Functional_Materials_from_Self_Assembled_Bis_urea_Macrocycles">Functional Materials from Self-Assembled Bis-urea Macrocycles</a></div><div class="wp-workCard_item"><span>Accounts of Chemical Research</span><span>, Apr 30, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5d8bb27b167fb73ef927519c12aaed77" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497310,"asset_id":109342620,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497310/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342620"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342620"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342620; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342620]").text(description); $(".js-view-count[data-work-id=109342620]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342620; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342620']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342620, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5d8bb27b167fb73ef927519c12aaed77" } } $('.js-work-strip[data-work-id=109342620]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342620,"title":"Functional Materials from Self-Assembled Bis-urea Macrocycles","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"CONSPECTUS: This Account highlights the work from our laboratories on bisurea macrocycles constructed from two C-shaped spacers and two urea groups. These simple molecular units assembled with high fidelity into columnar structures guided by the three-centered urea hydrogen bonding motif and aryl stacking interactions. Individual columns are aligned and closely packed together to afford functional and homogeneous microporous crystals. This approach allows for precise and rational control over the dimensions of the columnar structure simply by changing the small molecular unit. When the macrocyclic unit lacks a cavity, columnar assembly gives strong pillars. Strong pillars with external functional groups such as basic lone pairs can expand like clays to accept guests between the pillars. Macrocycles that contain sizable interior cavities assemble into porous molecular crystals with aligned, well-defined columnar pores that are accessible to gases and guests. Herein, we examine the optimal design of the macrocyclic unit that leads to columnar assembly in high fidelity and probe the feasibility of incorporating a second functional group within the macrocycles. The porous molecular crystals prepared through the self-assembly of bis-urea macrocycles display surface areas similar to zeolites but lower than MOFs. Their simple one-dimensional channels are well-suited for studying binding, investigating transport, diffusion and exchange, and monitoring the effects of encapsulation on reaction mechanism and product distribution. Guests that complement the size, shape, and polarity of the channels can be absorbed into these porous crystals with repeatable stoichiometry to form solid host−guest complexes. Heating or extraction with an organic solvent enables desorption or removal of the guest and subsequent recovery of the solid host. Further, these porous crystals can be used as containers for the selective [2 + 2] cycloadditions of small enones such as 2-cyclohexenone or 3-methyl-cyclopentenone, while larger hosts bind and facilitate the photodimerization of coumarin. When the host framework incorporates benzophenone, a triplet sensitizer, UVirradiation in the presence of oxygen efficiently generates singlet oxygen. Complexes of this host were employed to influence the selectivity of photooxidations of 2-methyl-2-butene and cumene with singlet oxygen. Small systematic changes in the channel and bound reactants should enable systematic evaluation of the effects of channel dimensions, guest dimensions, and channel−guest interactions on the processes of absorption, diffusion, and reaction of guests within these nanochannels. Such studies could help in the development of new materials for separations, gas storage, and catalysis.","publication_date":{"day":30,"month":4,"year":2014,"errors":{}},"publication_name":"Accounts of Chemical Research","grobid_abstract_attachment_id":107497310},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342620/Functional_Materials_from_Self_Assembled_Bis_urea_Macrocycles","translated_internal_url":"","created_at":"2023-11-18T08:18:34.543-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497310/thumbnails/1.jpg","file_name":"ar500106f20231118-1-69qqw.pdf","download_url":"https://www.academia.edu/attachments/107497310/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Functional_Materials_from_Self_Assembled.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497310/ar500106f20231118-1-69qqw-libre.pdf?1700329728=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_Materials_from_Self_Assembled.pdf\u0026Expires=1732495855\u0026Signature=BKReNrM9BQhFdICzMW4M4NwWSffkfJuu-lH2vsMVshFpO4JZrmko9nw05lWso3hRYFp181A96Q3BPe6s9ppqaKT-NVBJ9hQpnGGGERCDXE1XRBNU5vlj-LujTx6LD5-T76YZuZ~g7hiQp0CN51K5C6HfVfpM7YuJZFbt5IT3sEAzvrxYhTMBb0voP0yBP4QVCYyjwjR5IbTNs7tXetOxj3NWvrcHh7eiCJ7FY0XAshBDxr5e1ebkrMRF45Wo0ZRgc8ZIudPfAX~B0ksKxWlTs6-aCFC2tiPpO1Oq3Jtp03Roy0AEfakNaMKyeokF1EgKlLxMFhfiu-SVGMfYOgw4kA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Functional_Materials_from_Self_Assembled_Bis_urea_Macrocycles","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497310/thumbnails/1.jpg","file_name":"ar500106f20231118-1-69qqw.pdf","download_url":"https://www.academia.edu/attachments/107497310/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Functional_Materials_from_Self_Assembled.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497310/ar500106f20231118-1-69qqw-libre.pdf?1700329728=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_Materials_from_Self_Assembled.pdf\u0026Expires=1732495855\u0026Signature=BKReNrM9BQhFdICzMW4M4NwWSffkfJuu-lH2vsMVshFpO4JZrmko9nw05lWso3hRYFp181A96Q3BPe6s9ppqaKT-NVBJ9hQpnGGGERCDXE1XRBNU5vlj-LujTx6LD5-T76YZuZ~g7hiQp0CN51K5C6HfVfpM7YuJZFbt5IT3sEAzvrxYhTMBb0voP0yBP4QVCYyjwjR5IbTNs7tXetOxj3NWvrcHh7eiCJ7FY0XAshBDxr5e1ebkrMRF45Wo0ZRgc8ZIudPfAX~B0ksKxWlTs6-aCFC2tiPpO1Oq3Jtp03Roy0AEfakNaMKyeokF1EgKlLxMFhfiu-SVGMfYOgw4kA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":11413,"name":"Functional Materials","url":"https://www.academia.edu/Documents/in/Functional_Materials"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1957004,"name":"Stacking","url":"https://www.academia.edu/Documents/in/Stacking"}],"urls":[{"id":35508065,"url":"https://doi.org/10.1021/ar500106f"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342619"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342619/Interplay_between_Hydrogen_and_Halogen_Bonding_in_Cocrystals_of_Dipyridinylmethyl_Oxalamides_and_Tetrafluorodiiodobenzenes"><img alt="Research paper thumbnail of Interplay between Hydrogen and Halogen Bonding in Cocrystals of Dipyridinylmethyl Oxalamides and Tetrafluorodiiodobenzenes" class="work-thumbnail" src="https://attachments.academia-assets.com/107497304/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342619/Interplay_between_Hydrogen_and_Halogen_Bonding_in_Cocrystals_of_Dipyridinylmethyl_Oxalamides_and_Tetrafluorodiiodobenzenes">Interplay between Hydrogen and Halogen Bonding in Cocrystals of Dipyridinylmethyl Oxalamides and Tetrafluorodiiodobenzenes</a></div><div class="wp-workCard_item"><span>Crystal Growth & Design</span><span>, Aug 22, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="00c60c34cf93041913fa01946a772332" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497304,"asset_id":109342619,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497304/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342619"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342619"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342619; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342619]").text(description); $(".js-view-count[data-work-id=109342619]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342619; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342619']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342619, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "00c60c34cf93041913fa01946a772332" } } $('.js-work-strip[data-work-id=109342619]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342619,"title":"Interplay between Hydrogen and Halogen Bonding in Cocrystals of Dipyridinylmethyl Oxalamides and Tetrafluorodiiodobenzenes","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Materials and Methods Characterization of Compounds: All DPOA ligands were synthesized by the Daniel Reger group and used as received. All TFDIB isomers and solvents were purchased from Oak Ridge Chemical®, Thermo Fisher Scientific®, VWR®, or TCI America® and were used as received without further. 1 HNMR spectra were recorded on a Bruker Avance III-HD spectrometer (300 MHz). Chemical shifts are reported as (δ ppm) with the corresponding integration values. High-resolution mass spectrum data was recorded using a direct exposure probe (DEP) in electron ionization (EI) mode on a Waters QTOF-I quadrupole time-of-flight mass spectrometer. FT-IR data was acquired. FT-IR spectra were obtained using a Perkin Elmer Spectrum 100 FT-IR Spectrometer. Background spectra were recorded from 650 to 4000 cm-1 and taken in 4 scans. The crystalline sample was then added to the sample stage until transmittance was less than 85%. 32 scans were then taken from 650 to 4000 cm-1 to obtain spectra. Crystal Growth. To obtain crystals of the parent ligands, the DPOA ligands (20 mg) were dissolved in a minimal volume of solvent, the solution was filtered, and left to slowly evaporate for 3-5 days until crystals formed. The co-crystals were synthesized by grinding 1:1 stoichiometric ratio of the TFDIB co-formers (29.6 mg, 0.07 mmol) and DPOA ligands (20 mg, 0.07 mmol) for approximately 2 min with 3-5 drops of CHCl3. Half of this mixture was added to a vial, and gently heated (when needed) in a minimal amount of solvent until completely dissolved. The samples were then allowed to slowly evaporate for 4-6 days until crystals were formed. The other half of the ground mixture dissolved in DMSO, and water was allowed to vapor diffuse into the solution for approximately 5 days until crystals formed. Both methods were repeated with multiple solvents until co-crystals were obtained. Crystal Structure Determination: X-ray intensity data was collected at 100(2) K using a Bruker D8 QUEST diffractometer equipped with a PHOTON-100 CMOS area detector and an Incoatec microfocus source (Mo Kα radiation, λ = 0.71073 Å). The raw area detector data frames were reduced and corrected for absorption effects using the Bruker APEX3, SAINT+ and SADABS programs. 1,2 Final unit cell parameters were determined by least-squares refinement of reflections taken from the data set. The structures were solved with SHELXT. 3 Subsequent difference Fourier calculations and full-matrix least-squares refinement against F 2 were performed with SHELXL-2016 3 using OLEX2. 4 Electrostatic Potential Calculations. Electrostatic potentials were calculated using Spartan 10' software package. The crystal structure files (CIFs) of the DPOA compounds were imported and energetically optimized. The energies were then calculated using DFT B3YLP level of theory, using a 6-311++G** basis set under vacuum. Electrostatic potentials for best donor and acceptor were determined using the electrostatic potential map (0.002 e a.u. isovalue) as automatically calculated by the Spartan 10' software. Electrostatic potentials of other donors and acceptors were obtained by manually searching the atom of interest until the value with the largest absolute value was found.","publication_date":{"day":22,"month":8,"year":2019,"errors":{}},"publication_name":"Crystal Growth \u0026 Design","grobid_abstract_attachment_id":107497304},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342619/Interplay_between_Hydrogen_and_Halogen_Bonding_in_Cocrystals_of_Dipyridinylmethyl_Oxalamides_and_Tetrafluorodiiodobenzenes","translated_internal_url":"","created_at":"2023-11-18T08:18:34.305-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497304,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497304/thumbnails/1.jpg","file_name":"17505875.pdf","download_url":"https://www.academia.edu/attachments/107497304/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interplay_between_Hydrogen_and_Halogen_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497304/17505875-libre.pdf?1700329762=\u0026response-content-disposition=attachment%3B+filename%3DInterplay_between_Hydrogen_and_Halogen_B.pdf\u0026Expires=1732495855\u0026Signature=Mn0CTPqtiaskZCBaSxXZKXXYR9gzHT3m-ZNIBUYPg0UEXklJHXGcgJ28Hz-XoI-2kCa3RMavRcbU1Pf7A21RpveP2QVwUdFE24tyGn8oGoX7oISqd8VlqYujEjRwY~LWjZbEkrtRssnbRT0nznJ1tkTVF-dY~9st1WCtU1pr-NoGdF9ymVt8o8GhLJdUL~FXsOy~Wg2BBC19l0NKvfe772GrGb4VOH4oeie8SYIshd~lrqk4i79XNiQj5P2iegcpyJUus1-X4cJXGE7hMinG5G3ZnIPFpDq2~YtSsmxVCGLTvoaJerac97-K94U0FEgmujmScfd1f487MLyAkldK-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interplay_between_Hydrogen_and_Halogen_Bonding_in_Cocrystals_of_Dipyridinylmethyl_Oxalamides_and_Tetrafluorodiiodobenzenes","translated_slug":"","page_count":44,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497304,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497304/thumbnails/1.jpg","file_name":"17505875.pdf","download_url":"https://www.academia.edu/attachments/107497304/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interplay_between_Hydrogen_and_Halogen_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497304/17505875-libre.pdf?1700329762=\u0026response-content-disposition=attachment%3B+filename%3DInterplay_between_Hydrogen_and_Halogen_B.pdf\u0026Expires=1732495855\u0026Signature=Mn0CTPqtiaskZCBaSxXZKXXYR9gzHT3m-ZNIBUYPg0UEXklJHXGcgJ28Hz-XoI-2kCa3RMavRcbU1Pf7A21RpveP2QVwUdFE24tyGn8oGoX7oISqd8VlqYujEjRwY~LWjZbEkrtRssnbRT0nznJ1tkTVF-dY~9st1WCtU1pr-NoGdF9ymVt8o8GhLJdUL~FXsOy~Wg2BBC19l0NKvfe772GrGb4VOH4oeie8SYIshd~lrqk4i79XNiQj5P2iegcpyJUus1-X4cJXGE7hMinG5G3ZnIPFpDq2~YtSsmxVCGLTvoaJerac97-K94U0FEgmujmScfd1f487MLyAkldK-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":1190826,"name":"Halogen","url":"https://www.academia.edu/Documents/in/Halogen"}],"urls":[{"id":35508064,"url":"https://doi.org/10.1021/acs.cgd.9b00796"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342618"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342618/Pyridyl_phenylethynylene_bis_urea_macrocycles_self_assembly_and_utility_as_a_nanoreactor_for_the_selective_photoreaction_of_isoprene"><img alt="Research paper thumbnail of Pyridyl-phenylethynylene bis-urea macrocycles: self-assembly and utility as a nanoreactor for the selective photoreaction of isoprene" class="work-thumbnail" src="https://attachments.academia-assets.com/107497308/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342618/Pyridyl_phenylethynylene_bis_urea_macrocycles_self_assembly_and_utility_as_a_nanoreactor_for_the_selective_photoreaction_of_isoprene">Pyridyl-phenylethynylene bis-urea macrocycles: self-assembly and utility as a nanoreactor for the selective photoreaction of isoprene</a></div><div class="wp-workCard_item"><span>RSC Advances</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ccc680db2a23cc414175638eb3e956e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497308,"asset_id":109342618,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497308/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342618"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342618"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342618; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342618]").text(description); $(".js-view-count[data-work-id=109342618]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342618; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342618']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342618, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ccc680db2a23cc414175638eb3e956e" } } $('.js-work-strip[data-work-id=109342618]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342618,"title":"Pyridyl-phenylethynylene bis-urea macrocycles: self-assembly and utility as a nanoreactor for the selective photoreaction of isoprene","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"RSC Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342618/Pyridyl_phenylethynylene_bis_urea_macrocycles_self_assembly_and_utility_as_a_nanoreactor_for_the_selective_photoreaction_of_isoprene","translated_internal_url":"","created_at":"2023-11-18T08:18:34.100-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497308,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497308/thumbnails/1.jpg","file_name":"95730fae928a4386453f139c7da1a879580e.pdf","download_url":"https://www.academia.edu/attachments/107497308/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pyridyl_phenylethynylene_bis_urea_macroc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497308/95730fae928a4386453f139c7da1a879580e-libre.pdf?1700329732=\u0026response-content-disposition=attachment%3B+filename%3DPyridyl_phenylethynylene_bis_urea_macroc.pdf\u0026Expires=1732495855\u0026Signature=KybMWpJ0mtUvCaidTAhE7dNc8W-ugfW2iOV01nySwCzRdptiZqTQDRhd7oNFjm2DyBTAb8Icq-r2I54sd0SyGuZZMwjYS3retrq-ldnFw52tUtih5O9oGERyf6c-JI95A2xVpDcV2Jxa10ho88UJQ0EhCRbgBhwibfYf7bpAb9LK2EnP~UK3ZaASsg4kid4Iy77QYyJhtDgRuTYW9P5tauMCRIeJvE3auIeBU1Rr9INjSyWdgASnT~vjR~ZYfn3G6KeTgP2el7eqSwhU31WmSkBtsVFvGynj1c~v0fmCVJqSA6Zfb0v57T3D7m-e~L39gx6bWE0h9CTMZJTvD2HGjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pyridyl_phenylethynylene_bis_urea_macrocycles_self_assembly_and_utility_as_a_nanoreactor_for_the_selective_photoreaction_of_isoprene","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497308,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497308/thumbnails/1.jpg","file_name":"95730fae928a4386453f139c7da1a879580e.pdf","download_url":"https://www.academia.edu/attachments/107497308/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pyridyl_phenylethynylene_bis_urea_macroc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497308/95730fae928a4386453f139c7da1a879580e-libre.pdf?1700329732=\u0026response-content-disposition=attachment%3B+filename%3DPyridyl_phenylethynylene_bis_urea_macroc.pdf\u0026Expires=1732495855\u0026Signature=KybMWpJ0mtUvCaidTAhE7dNc8W-ugfW2iOV01nySwCzRdptiZqTQDRhd7oNFjm2DyBTAb8Icq-r2I54sd0SyGuZZMwjYS3retrq-ldnFw52tUtih5O9oGERyf6c-JI95A2xVpDcV2Jxa10ho88UJQ0EhCRbgBhwibfYf7bpAb9LK2EnP~UK3ZaASsg4kid4Iy77QYyJhtDgRuTYW9P5tauMCRIeJvE3auIeBU1Rr9INjSyWdgASnT~vjR~ZYfn3G6KeTgP2el7eqSwhU31WmSkBtsVFvGynj1c~v0fmCVJqSA6Zfb0v57T3D7m-e~L39gx6bWE0h9CTMZJTvD2HGjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":32909,"name":"Polymerization","url":"https://www.academia.edu/Documents/in/Polymerization"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"},{"id":162178,"name":"Isoprene","url":"https://www.academia.edu/Documents/in/Isoprene"},{"id":184000,"name":"Oligomer","url":"https://www.academia.edu/Documents/in/Oligomer"},{"id":191586,"name":"RSC","url":"https://www.academia.edu/Documents/in/RSC"},{"id":387449,"name":"Monomer","url":"https://www.academia.edu/Documents/in/Monomer"},{"id":3083079,"name":"Dispersity","url":"https://www.academia.edu/Documents/in/Dispersity"}],"urls":[{"id":35508063,"url":"https://doi.org/10.1039/c6ra18681e"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342617"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342617/Fluorescence_Polarization_Measurements_to_Probe_Alignment_of_a_Bithiophene_Dye_in_One_Dimensional_Channels_of_Self_Assembled_Phenylethynylene_Bis_Urea_Macrocycle_Crystals"><img alt="Research paper thumbnail of Fluorescence Polarization Measurements to Probe Alignment of a Bithiophene Dye in One-Dimensional Channels of Self-Assembled Phenylethynylene Bis-Urea Macrocycle Crystals" class="work-thumbnail" src="https://attachments.academia-assets.com/107497265/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342617/Fluorescence_Polarization_Measurements_to_Probe_Alignment_of_a_Bithiophene_Dye_in_One_Dimensional_Channels_of_Self_Assembled_Phenylethynylene_Bis_Urea_Macrocycle_Crystals">Fluorescence Polarization Measurements to Probe Alignment of a Bithiophene Dye in One-Dimensional Channels of Self-Assembled Phenylethynylene Bis-Urea Macrocycle Crystals</a></div><div class="wp-workCard_item"><span>Journal of Physical Chemistry C</span><span>, Aug 10, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="90cf0c2a2bec7aef2e26c68a326c5710" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497265,"asset_id":109342617,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497265/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342617"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342617"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342617; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342617]").text(description); $(".js-view-count[data-work-id=109342617]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342617; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342617']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342617, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "90cf0c2a2bec7aef2e26c68a326c5710" } } $('.js-work-strip[data-work-id=109342617]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342617,"title":"Fluorescence Polarization Measurements to Probe Alignment of a Bithiophene Dye in One-Dimensional Channels of Self-Assembled Phenylethynylene Bis-Urea Macrocycle Crystals","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"This thesis describes the use of polarized fluorescence microscopy to directly probe guest molecule orientation in bis-urea macrocycle crystals. These macrocycles assemble to afford one-dimensional (1D) microchannels ∼9 Å in diameter that have previously been shown to exhibit normal Fickian diffusion and induce selective reactivity among the confined guest molecules. In the present work, we take advantage of the quasi-1D morphology of fiber-like microcrystals with the extended dimension corresponding to the channel axis to measure excitation and emission polarization values for a bithiophene guest. Guest fluorescence is shown to be polarized along the fiber axis with emission polarization values up to 0.729, indicating a high degree of orientational order within the 1D channels. The observed behavior is consistent with calculated results for the guest orientation and electronic transition dipole moment. The results indicate the value of functional fluorescent probes as a measure of guest confinement in low-dimensional environments. vi","publication_date":{"day":10,"month":8,"year":2017,"errors":{}},"publication_name":"Journal of Physical Chemistry C","grobid_abstract_attachment_id":107497265},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342617/Fluorescence_Polarization_Measurements_to_Probe_Alignment_of_a_Bithiophene_Dye_in_One_Dimensional_Channels_of_Self_Assembled_Phenylethynylene_Bis_Urea_Macrocycle_Crystals","translated_internal_url":"","created_at":"2023-11-18T08:18:33.855-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497265/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497265/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluorescence_Polarization_Measurements_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497265/viewcontent-libre.pdf?1700329750=\u0026response-content-disposition=attachment%3B+filename%3DFluorescence_Polarization_Measurements_t.pdf\u0026Expires=1732495855\u0026Signature=UO59Pdvisa5aKwOOXSsrbREg-G0mDhAaWkdhhlNqfoR852STF7lSLiqLRstcM4IlTO2219En1VtBCKBA3G1nEXI9e9uRdANHDkZY53eDmBcm0LVNW9t2v~KWEjkqRVhomTFdqTIusyaJFEYNQFwHX5CuRkcNJ81zpilLAc7qC6hbBSd3UmWm1WUMg84KieegEHsST6DRh0al6xTz09MF21ak87~V~kztS4TdWpHUY64JlglbSNYgfJRCB4oJdwoLIBn5IW0flyQEIfCg0O252F8SA0i8M2I8A5ynIwk5LnfyQw5YCfmbQNTwIDXnjixFHko61e-nvBYUlw3n5vK7JQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluorescence_Polarization_Measurements_to_Probe_Alignment_of_a_Bithiophene_Dye_in_One_Dimensional_Channels_of_Self_Assembled_Phenylethynylene_Bis_Urea_Macrocycle_Crystals","translated_slug":"","page_count":95,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497265/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497265/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluorescence_Polarization_Measurements_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497265/viewcontent-libre.pdf?1700329750=\u0026response-content-disposition=attachment%3B+filename%3DFluorescence_Polarization_Measurements_t.pdf\u0026Expires=1732495855\u0026Signature=UO59Pdvisa5aKwOOXSsrbREg-G0mDhAaWkdhhlNqfoR852STF7lSLiqLRstcM4IlTO2219En1VtBCKBA3G1nEXI9e9uRdANHDkZY53eDmBcm0LVNW9t2v~KWEjkqRVhomTFdqTIusyaJFEYNQFwHX5CuRkcNJ81zpilLAc7qC6hbBSd3UmWm1WUMg84KieegEHsST6DRh0al6xTz09MF21ak87~V~kztS4TdWpHUY64JlglbSNYgfJRCB4oJdwoLIBn5IW0flyQEIfCg0O252F8SA0i8M2I8A5ynIwk5LnfyQw5YCfmbQNTwIDXnjixFHko61e-nvBYUlw3n5vK7JQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":107497266,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497266/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497266/download_file","bulk_download_file_name":"Fluorescence_Polarization_Measurements_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497266/viewcontent-libre.pdf?1700329747=\u0026response-content-disposition=attachment%3B+filename%3DFluorescence_Polarization_Measurements_t.pdf\u0026Expires=1732495855\u0026Signature=MMKQcXN5by~Nxsg~KF8kzmr7jDmj0N9sMOtovCWd8-ga6Ral4iVuledn70GOfG~6219Ziktmw-PQwGhjYBftV4LsvFd0Fodu0TMsOdrqVTmRfmb16GnzJZyKnH6bML~RFwVEDaVh6Q5DYdS8lkQ6Q1bUkYhusnyuuyGsWSe9j2kGMWWhR3wnjTLnEEkXkXRyJPvbfInhn3MWiyAAFoVkbjUrWgoPEgyLFU3ixAzKSjlcj4YSozBas~1sdZ4RBeOBRWIsihWhJyca19vhooEafx-OJMiLtRNU2oynXfRXO0EFv8fJVdl8C-8sOUmEP2FhGPCeBv2Ro3OeIwT9MSmz1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"},{"id":214555,"name":"Dipole","url":"https://www.academia.edu/Documents/in/Dipole"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1029023,"name":"Molecule","url":"https://www.academia.edu/Documents/in/Molecule"}],"urls":[{"id":35508062,"url":"https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=5540\u0026context=etd"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342616"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342616/Manipulating_the_cavity_of_a_porous_material_changes_the_photoreactivity_of_included_guests"><img alt="Research paper thumbnail of Manipulating the cavity of a porous material changes the photoreactivity of included guests" class="work-thumbnail" src="https://attachments.academia-assets.com/107497264/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342616/Manipulating_the_cavity_of_a_porous_material_changes_the_photoreactivity_of_included_guests">Manipulating the cavity of a porous material changes the photoreactivity of included guests</a></div><div class="wp-workCard_item"><span>Chemical Communications</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="741358117e33983bfb92ef7a6e99cede" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497264,"asset_id":109342616,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497264/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342616"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342616"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342616; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342616]").text(description); $(".js-view-count[data-work-id=109342616]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342616; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342616']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342616, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "741358117e33983bfb92ef7a6e99cede" } } $('.js-work-strip[data-work-id=109342616]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342616,"title":"Manipulating the cavity of a porous material changes the photoreactivity of included guests","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","grobid_abstract":"Changing an ether to a ketone within the framework of a bisurea macrocycle has little effect on the supramolecular assembly of this building block into porous crystals but introduces a triplet sensitizer into the framework that dramatically alters the photochemical reactions of included guests.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Chemical Communications","grobid_abstract_attachment_id":107497264},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342616/Manipulating_the_cavity_of_a_porous_material_changes_the_photoreactivity_of_included_guests","translated_internal_url":"","created_at":"2023-11-18T08:18:33.654-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497264,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497264/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497264/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Manipulating_the_cavity_of_a_porous_mate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497264/viewcontent-libre.pdf?1700329717=\u0026response-content-disposition=attachment%3B+filename%3DManipulating_the_cavity_of_a_porous_mate.pdf\u0026Expires=1732495855\u0026Signature=cDvGRs52WcwCoLxbGvN8g70UhuRvxQ9n~m~JUVjnnuanELEast3kDGQ8CO7E9cKT5VSoOwmZ~QoGa6TLrmoQwMpoXcGAhQJhNWVckXMilmMflNTqWxI~Z8g7b6puh-xdfHkOW1ciBDMb0HdwhCkVQgD8jedjeMikqgdXMpDYCVt-MC~JDY8qbDhNd8bBWyzIaER2iLWe5GmgnaF0zxz92uD~GsEOn18v4-wRUIyU6Gz6UKQecnhmm8kvUXmqNZx1PqKxQdtfipqkmsDbrY3OFW9ApbI7gdgI9bQij-S2V2LFsho0ZG71x7Ps8J7aTYzdZG3jiOmesrEQu2SxoW3udw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Manipulating_the_cavity_of_a_porous_material_changes_the_photoreactivity_of_included_guests","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497264,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497264/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497264/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Manipulating_the_cavity_of_a_porous_mate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497264/viewcontent-libre.pdf?1700329717=\u0026response-content-disposition=attachment%3B+filename%3DManipulating_the_cavity_of_a_porous_mate.pdf\u0026Expires=1732495855\u0026Signature=cDvGRs52WcwCoLxbGvN8g70UhuRvxQ9n~m~JUVjnnuanELEast3kDGQ8CO7E9cKT5VSoOwmZ~QoGa6TLrmoQwMpoXcGAhQJhNWVckXMilmMflNTqWxI~Z8g7b6puh-xdfHkOW1ciBDMb0HdwhCkVQgD8jedjeMikqgdXMpDYCVt-MC~JDY8qbDhNd8bBWyzIaER2iLWe5GmgnaF0zxz92uD~GsEOn18v4-wRUIyU6Gz6UKQecnhmm8kvUXmqNZx1PqKxQdtfipqkmsDbrY3OFW9ApbI7gdgI9bQij-S2V2LFsho0ZG71x7Ps8J7aTYzdZG3jiOmesrEQu2SxoW3udw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":107497263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497263/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497263/download_file","bulk_download_file_name":"Manipulating_the_cavity_of_a_porous_mate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497263/viewcontent-libre.pdf?1700329716=\u0026response-content-disposition=attachment%3B+filename%3DManipulating_the_cavity_of_a_porous_mate.pdf\u0026Expires=1732495855\u0026Signature=D5duqme7In3Z8YM81XPuj5MQ59rs3BisD9vYcw3AgmfQlmqsZg4TLvi7GK2ab2rUjCbgy7CoPa~GRoMyHSCQejA9p62qkvO17BkiH5oUvYJbqsXfDGof09PkShrJpC7lBkZQx7ALmUAl-dxno26wnFhzIh2-HvhuEo0wAcBtK0cBqqh9TUO1f5cjXQTGtsksSGcKziFV2jo15v1cu0arik15xd0~DpiLwbYV8wwGjkj0sOwWOYQrrhtMEejmJ2Zeq6EhnB0ZvBKvfV4bN5m-2FBwu-El8~3o2nJjX0EC0wCmInUwH309js0oeK4roQTDLWMNdS045NpDrs1~9mneOg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":4493,"name":"Supramolecular Chemistry","url":"https://www.academia.edu/Documents/in/Supramolecular_Chemistry"},{"id":5104,"name":"Photochemistry","url":"https://www.academia.edu/Documents/in/Photochemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":55388,"name":"Organic Synthesis","url":"https://www.academia.edu/Documents/in/Organic_Synthesis"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":160969,"name":"Acknowledgement","url":"https://www.academia.edu/Documents/in/Acknowledgement"},{"id":199319,"name":"Citation","url":"https://www.academia.edu/Documents/in/Citation"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":267971,"name":"Download","url":"https://www.academia.edu/Documents/in/Download"},{"id":508740,"name":"Porous Material","url":"https://www.academia.edu/Documents/in/Porous_Material"},{"id":687047,"name":"Ketone","url":"https://www.academia.edu/Documents/in/Ketone"},{"id":1262355,"name":"Ethers","url":"https://www.academia.edu/Documents/in/Ethers"},{"id":1294768,"name":"Chemical Engineering Communications","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Communications"},{"id":2674022,"name":"Permission","url":"https://www.academia.edu/Documents/in/Permission"},{"id":3024741,"name":"ketones","url":"https://www.academia.edu/Documents/in/ketones"}],"urls":[{"id":35508061,"url":"https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1367\u0026context=chem_facpub"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342615"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342615/Self_Assembling_Bisurea_Macrocycles_Used_as_an_Organic_Zeolite_for_a_Highly_Stereoselective_Photodimerization_of_2_Cyclohexenone"><img alt="Research paper thumbnail of Self-Assembling Bisurea Macrocycles Used as an Organic Zeolite for a Highly Stereoselective Photodimerization of 2-Cyclohexenone" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342615/Self_Assembling_Bisurea_Macrocycles_Used_as_an_Organic_Zeolite_for_a_Highly_Stereoselective_Photodimerization_of_2_Cyclohexenone">Self-Assembling Bisurea Macrocycles Used as an Organic Zeolite for a Highly Stereoselective Photodimerization of 2-Cyclohexenone</a></div><div class="wp-workCard_item"><span>Journal of the American Chemical Society</span><span>, Jun 1, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report a highly selective 2 + 2 cycloaddition of 2-cyclohexenone in the presence of self-assem...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report a highly selective 2 + 2 cycloaddition of 2-cyclohexenone in the presence of self-assembled bisurea macrocycles that yields the head-to-tail photodimer. The reaction proceeds with high conversion and with decreased incidence of secondary photorearrangement. Furthermore, the product can be extracted from the assembly, and the solid assembly is readily recovered and reused, much like a zeolite.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342615"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342615"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342615; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342615]").text(description); $(".js-view-count[data-work-id=109342615]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342615; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342615']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342615, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342615]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342615,"title":"Self-Assembling Bisurea Macrocycles Used as an Organic Zeolite for a Highly Stereoselective Photodimerization of 2-Cyclohexenone","translated_title":"","metadata":{"abstract":"We report a highly selective 2 + 2 cycloaddition of 2-cyclohexenone in the presence of self-assembled bisurea macrocycles that yields the head-to-tail photodimer. The reaction proceeds with high conversion and with decreased incidence of secondary photorearrangement. Furthermore, the product can be extracted from the assembly, and the solid assembly is readily recovered and reused, much like a zeolite.","publisher":"American Chemical Society","publication_date":{"day":1,"month":6,"year":2006,"errors":{}},"publication_name":"Journal of the American Chemical Society"},"translated_abstract":"We report a highly selective 2 + 2 cycloaddition of 2-cyclohexenone in the presence of self-assembled bisurea macrocycles that yields the head-to-tail photodimer. The reaction proceeds with high conversion and with decreased incidence of secondary photorearrangement. Furthermore, the product can be extracted from the assembly, and the solid assembly is readily recovered and reused, much like a zeolite.","internal_url":"https://www.academia.edu/109342615/Self_Assembling_Bisurea_Macrocycles_Used_as_an_Organic_Zeolite_for_a_Highly_Stereoselective_Photodimerization_of_2_Cyclohexenone","translated_internal_url":"","created_at":"2023-11-18T08:18:33.453-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Self_Assembling_Bisurea_Macrocycles_Used_as_an_Organic_Zeolite_for_a_Highly_Stereoselective_Photodimerization_of_2_Cyclohexenone","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":5104,"name":"Photochemistry","url":"https://www.academia.edu/Documents/in/Photochemistry"},{"id":11073,"name":"Self Assembly","url":"https://www.academia.edu/Documents/in/Self_Assembly"},{"id":21732,"name":"Magnetic Resonance Spectroscopy","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Spectroscopy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":55388,"name":"Organic Synthesis","url":"https://www.academia.edu/Documents/in/Organic_Synthesis"},{"id":55543,"name":"Zeolites","url":"https://www.academia.edu/Documents/in/Zeolites"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":102203,"name":"Zeolite","url":"https://www.academia.edu/Documents/in/Zeolite"},{"id":112318,"name":"Molecular Sieve","url":"https://www.academia.edu/Documents/in/Molecular_Sieve"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":981102,"name":"Photochemical Reaction","url":"https://www.academia.edu/Documents/in/Photochemical_Reaction"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"},{"id":1809037,"name":"Dimerization","url":"https://www.academia.edu/Documents/in/Dimerization"},{"id":1863718,"name":"The American","url":"https://www.academia.edu/Documents/in/The_American"},{"id":3889175,"name":"stereoisomerism","url":"https://www.academia.edu/Documents/in/stereoisomerism"}],"urls":[{"id":35508060,"url":"https://doi.org/10.1021/ja062337s"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342614"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342614/Thermal_Reaction_of_a_Columnar_Assembled_Diacetylene_Macrocycle"><img alt="Research paper thumbnail of Thermal Reaction of a Columnar Assembled Diacetylene Macrocycle" class="work-thumbnail" src="https://attachments.academia-assets.com/107497306/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342614/Thermal_Reaction_of_a_Columnar_Assembled_Diacetylene_Macrocycle">Thermal Reaction of a Columnar Assembled Diacetylene Macrocycle</a></div><div class="wp-workCard_item"><span>Journal of the American Chemical Society</span><span>, Mar 25, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b7faa2d0f4f77ab592a36c61a861388b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497306,"asset_id":109342614,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497306/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342614"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342614"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342614; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342614]").text(description); $(".js-view-count[data-work-id=109342614]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342614; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342614']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342614, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b7faa2d0f4f77ab592a36c61a861388b" } } $('.js-work-strip[data-work-id=109342614]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342614,"title":"Thermal Reaction of a Columnar Assembled Diacetylene Macrocycle","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Conjugated polymers have demonstrated utility in organic solar cells, 1 chemical sensors, 2 and optoelectronics. 3 Microporous materials such as metal organic frameworks (MOFs) and zeolites show practical applications in gas storage, 4 separation, 5 catalysis, 6 and as confined environments for reactions. 7 MOFs and covalently linked organic frameworks 8 utilize transition metal ions or organic monomeric units to afford porous materials with high surface areas and excellent thermal stabilities. An alternate strategy for forming porous materials relies on the columnar assembly of molecular building blocks directed by noncovalent interactions. We sought to combine the attributes of a conjugated polymer with porous materials. Herein, we report a diacetylene macrocycle that was readily synthesized and self-assembled into columns to afford porous crystals (Figure 1). Heating initiated a topochemical polymerization of the preorganized diacetylene units to give covalent conjugated polydiacetylenes (PDAs). These stable conjugated materials maintained permanent porosity as evidenced by their type I gas adsorption isotherms with CO 2 (g). Conjugated porous PDAs could have applications for sensing and in electronics.","publication_date":{"day":25,"month":3,"year":2010,"errors":{}},"publication_name":"Journal of the American Chemical Society","grobid_abstract_attachment_id":107497306},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342614/Thermal_Reaction_of_a_Columnar_Assembled_Diacetylene_Macrocycle","translated_internal_url":"","created_at":"2023-11-18T08:18:33.215-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497306/thumbnails/1.jpg","file_name":"00013055_103791.pdf","download_url":"https://www.academia.edu/attachments/107497306/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_Reaction_of_a_Columnar_Assembled.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497306/00013055_103791-libre.pdf?1700329714=\u0026response-content-disposition=attachment%3B+filename%3DThermal_Reaction_of_a_Columnar_Assembled.pdf\u0026Expires=1732495855\u0026Signature=FtIkopp5IziY3C86GZWSgezb2TvlFiT0kXazag6hFkfMslDEcQapzDGhCu1kpf1S1~hmfMURs0BkBkvX8L84s-l-5CBatmn1RqAOyd6Eoin9Au7ZNwaiR5~RyFn4Zt8drUe9numjg5gIMracy880k-T0GVqqiynQPdRND-u8BwL-fqsrvZqfFu9CE-6Gwy~dOWZSa4wp7OS2QlzWKQV4dMwpEoUwsVLeaJqOB2gYLTEg-Tg5CcM9wbApI5VfQbjfSctQ3-GoeiJbC4ldC3bWFqFFQzTpN~UANlJBBkjn60Haw~oDYGPhqGn0VUbTiv3rBM4nwcDiKHwMPn~AY9uvxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thermal_Reaction_of_a_Columnar_Assembled_Diacetylene_Macrocycle","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497306/thumbnails/1.jpg","file_name":"00013055_103791.pdf","download_url":"https://www.academia.edu/attachments/107497306/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_Reaction_of_a_Columnar_Assembled.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497306/00013055_103791-libre.pdf?1700329714=\u0026response-content-disposition=attachment%3B+filename%3DThermal_Reaction_of_a_Columnar_Assembled.pdf\u0026Expires=1732495855\u0026Signature=FtIkopp5IziY3C86GZWSgezb2TvlFiT0kXazag6hFkfMslDEcQapzDGhCu1kpf1S1~hmfMURs0BkBkvX8L84s-l-5CBatmn1RqAOyd6Eoin9Au7ZNwaiR5~RyFn4Zt8drUe9numjg5gIMracy880k-T0GVqqiynQPdRND-u8BwL-fqsrvZqfFu9CE-6Gwy~dOWZSa4wp7OS2QlzWKQV4dMwpEoUwsVLeaJqOB2gYLTEg-Tg5CcM9wbApI5VfQbjfSctQ3-GoeiJbC4ldC3bWFqFFQzTpN~UANlJBBkjn60Haw~oDYGPhqGn0VUbTiv3rBM4nwcDiKHwMPn~AY9uvxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":32909,"name":"Polymerization","url":"https://www.academia.edu/Documents/in/Polymerization"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":484618,"name":"Diacetylene","url":"https://www.academia.edu/Documents/in/Diacetylene"},{"id":816984,"name":"American Chemical Society","url":"https://www.academia.edu/Documents/in/American_Chemical_Society"}],"urls":[{"id":35508059,"url":"https://doi.org/10.1021/ja9107066"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342613"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342613/Thioureas_and_Squaramides_Comparison_with_Ureas_as_Assembly_Directing_Motifs_for_i_m_i_Xylene_Macrocycles"><img alt="Research paper thumbnail of Thioureas and Squaramides: Comparison with Ureas as Assembly Directing Motifs for <i>m</i>-Xylene Macrocycles" class="work-thumbnail" src="https://attachments.academia-assets.com/107497309/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342613/Thioureas_and_Squaramides_Comparison_with_Ureas_as_Assembly_Directing_Motifs_for_i_m_i_Xylene_Macrocycles">Thioureas and Squaramides: Comparison with Ureas as Assembly Directing Motifs for <i>m</i>-Xylene Macrocycles</a></div><div class="wp-workCard_item"><span>Crystal Growth & Design</span><span>, Jan 23, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d576daabaf65ff5f052f6f13d1e98a5b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497309,"asset_id":109342613,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497309/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342613"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342613"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342613; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342613]").text(description); $(".js-view-count[data-work-id=109342613]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342613; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342613']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342613, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d576daabaf65ff5f052f6f13d1e98a5b" } } $('.js-work-strip[data-work-id=109342613]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342613,"title":"Thioureas and Squaramides: Comparison with Ureas as Assembly Directing Motifs for \u003ci\u003em\u003c/i\u003e-Xylene Macrocycles","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Intentional design of crystalline frameworks requires a good understanding of how inter-and intramolecular forces act together to afford solid-state structures. Herein, we synthesize and crystallize bis-thiourea and bissquaramide m-xylene macrocycles and compare the conformational preferences of these functional groups as well as their assembled structures to their bis-urea counterpart. Four new crystal structures of the bis-thiourea macrocycle and the bissquaramide macrocycle are reported. The m-xylene macrocycles of urea, thiourea, and squaramide each display trans− trans conformers in their pure crystal forms. The thiourea macrocycles show edge to face interactions driven by sulfur bonding to afford 2D sheets. This macrocycle also shows an ethylene diamine solvate that displays both trans−trans and cis−trans conformers in the same structure. Solution 2D EXSY NMR studies suggest that these and additional conformations interconvert at room temperature. Squaramide macrocycles display 2D hydrogen bonding networks forming interdigitated cycles using only one of the two available carbonyls for hydrogen bonding. Additionally, the bis-squaramide macrocycle can crystallize as a solvate, where it maintains its original 2D framework with propylene carbonate imbedded in-between its layers. Overall, these findings help build a foundation for predicting how assembly motifs are modulated by macrocyclic building units.","publication_date":{"day":23,"month":1,"year":2018,"errors":{}},"publication_name":"Crystal Growth \u0026 Design","grobid_abstract_attachment_id":107497309},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342613/Thioureas_and_Squaramides_Comparison_with_Ureas_as_Assembly_Directing_Motifs_for_i_m_i_Xylene_Macrocycles","translated_internal_url":"","created_at":"2023-11-18T08:18:33.019-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497309,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497309/thumbnails/1.jpg","file_name":"acs.cgd.7b0155820231118-1-xe2ze0.pdf","download_url":"https://www.academia.edu/attachments/107497309/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thioureas_and_Squaramides_Comparison_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497309/acs.cgd.7b0155820231118-1-xe2ze0-libre.pdf?1700329720=\u0026response-content-disposition=attachment%3B+filename%3DThioureas_and_Squaramides_Comparison_wit.pdf\u0026Expires=1732495855\u0026Signature=cmhnVJYMh118W5LtlqvsK74s8LBEZ35FKyHOU6G9W3Gan0ik52~b6REexm2MsXpulm~~Y1MS6Rdi7PxeOL3CgDbGhg9XwZhpivMwpzlW-Ab-imuFakOv3zfvscH~cbhxBcoqZA6c2mrH4z4VEhYYrOT5po-Qji59seST9bTW1wEDpTbJqsyHFQGLyV00giTAvl4WM3sba5lBXfM-EF5eUGrSwNk5KnyUsrEC0mDPxCzH1DIgmUIMphYQYx9lh7EVLxxQVMsPA1bA6Ge2kdfCLQKRwNcS7uZP5i5-2L8UfRt1G05g8r2Mf32UvvqbwucrdAaqLucRa~kjDbHoGZ9LeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thioureas_and_Squaramides_Comparison_with_Ureas_as_Assembly_Directing_Motifs_for_i_m_i_Xylene_Macrocycles","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497309,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497309/thumbnails/1.jpg","file_name":"acs.cgd.7b0155820231118-1-xe2ze0.pdf","download_url":"https://www.academia.edu/attachments/107497309/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thioureas_and_Squaramides_Comparison_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497309/acs.cgd.7b0155820231118-1-xe2ze0-libre.pdf?1700329720=\u0026response-content-disposition=attachment%3B+filename%3DThioureas_and_Squaramides_Comparison_wit.pdf\u0026Expires=1732495855\u0026Signature=cmhnVJYMh118W5LtlqvsK74s8LBEZ35FKyHOU6G9W3Gan0ik52~b6REexm2MsXpulm~~Y1MS6Rdi7PxeOL3CgDbGhg9XwZhpivMwpzlW-Ab-imuFakOv3zfvscH~cbhxBcoqZA6c2mrH4z4VEhYYrOT5po-Qji59seST9bTW1wEDpTbJqsyHFQGLyV00giTAvl4WM3sba5lBXfM-EF5eUGrSwNk5KnyUsrEC0mDPxCzH1DIgmUIMphYQYx9lh7EVLxxQVMsPA1bA6Ge2kdfCLQKRwNcS7uZP5i5-2L8UfRt1G05g8r2Mf32UvvqbwucrdAaqLucRa~kjDbHoGZ9LeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":5398,"name":"Biotechnology","url":"https://www.academia.edu/Documents/in/Biotechnology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":57417,"name":"Bi","url":"https://www.academia.edu/Documents/in/Bi"},{"id":100696,"name":"Combinatorial Chemistry","url":"https://www.academia.edu/Documents/in/Combinatorial_Chemistry"},{"id":229148,"name":"Thiourea","url":"https://www.academia.edu/Documents/in/Thiourea"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":699829,"name":"Tran","url":"https://www.academia.edu/Documents/in/Tran"},{"id":1944317,"name":"Conformational Isomerism","url":"https://www.academia.edu/Documents/in/Conformational_Isomerism"}],"urls":[{"id":35508058,"url":"https://doi.org/10.1021/acs.cgd.7b01558"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342612"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342612/Alkali_Metal_Ions_As_Probes_of_Structure_and_Recognition_Properties_of_Macrocyclic_Pyridyl_Urea_Hosts"><img alt="Research paper thumbnail of Alkali Metal Ions As Probes of Structure and Recognition Properties of Macrocyclic Pyridyl Urea Hosts" class="work-thumbnail" src="https://attachments.academia-assets.com/107497303/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342612/Alkali_Metal_Ions_As_Probes_of_Structure_and_Recognition_Properties_of_Macrocyclic_Pyridyl_Urea_Hosts">Alkali Metal Ions As Probes of Structure and Recognition Properties of Macrocyclic Pyridyl Urea Hosts</a></div><div class="wp-workCard_item"><span>Journal of Organic Chemistry</span><span>, Jul 20, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="54f3fb08c652a3611d950c5444fc48d8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497303,"asset_id":109342612,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497303/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342612"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342612"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342612; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342612]").text(description); $(".js-view-count[data-work-id=109342612]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342612; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342612']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342612, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "54f3fb08c652a3611d950c5444fc48d8" } } $('.js-work-strip[data-work-id=109342612]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342612,"title":"Alkali Metal Ions As Probes of Structure and Recognition Properties of Macrocyclic Pyridyl Urea Hosts","translated_title":"","metadata":{"publisher":"American Chemical Society","publication_date":{"day":20,"month":7,"year":2010,"errors":{}},"publication_name":"Journal of Organic Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342612/Alkali_Metal_Ions_As_Probes_of_Structure_and_Recognition_Properties_of_Macrocyclic_Pyridyl_Urea_Hosts","translated_internal_url":"","created_at":"2023-11-18T08:18:32.828-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497303/thumbnails/1.jpg","file_name":"4418278.pdf","download_url":"https://www.academia.edu/attachments/107497303/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Alkali_Metal_Ions_As_Probes_of_Structure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497303/4418278-libre.pdf?1700329758=\u0026response-content-disposition=attachment%3B+filename%3DAlkali_Metal_Ions_As_Probes_of_Structure.pdf\u0026Expires=1732495855\u0026Signature=PpVr0RFICfcVPLeW7kwMpPltSaE1qFL9Oc68G9vmmdw6imiCSGSFpQdBzjrnESZj0TogfQ-dbTeGWMcECXRr3ZWFiW1XzcXoG83hVJWDUJPpHUQxefduurXFt1qEiB-hmNdIM0k~kBPI3PItdc~0yEk3Lk137GAqUnOITQCVHydB6kWWuER-r2p2NNW2LEG0hKes6HA7sk9NsrgoEqkUO-z-QxJNwKLeLTISU6QxKTx9LjFHcu0jMSRRpMpgjMMYOTs3UHdlj8bHmD2kMlareDqtyWWbeB2NRZW6ux~Jy8XKrIVmzmGThO-SkwSQiQcZdfkgw-PckaWKx0Wf-EyqOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Alkali_Metal_Ions_As_Probes_of_Structure_and_Recognition_Properties_of_Macrocyclic_Pyridyl_Urea_Hosts","translated_slug":"","page_count":54,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497303/thumbnails/1.jpg","file_name":"4418278.pdf","download_url":"https://www.academia.edu/attachments/107497303/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Alkali_Metal_Ions_As_Probes_of_Structure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497303/4418278-libre.pdf?1700329758=\u0026response-content-disposition=attachment%3B+filename%3DAlkali_Metal_Ions_As_Probes_of_Structure.pdf\u0026Expires=1732495855\u0026Signature=PpVr0RFICfcVPLeW7kwMpPltSaE1qFL9Oc68G9vmmdw6imiCSGSFpQdBzjrnESZj0TogfQ-dbTeGWMcECXRr3ZWFiW1XzcXoG83hVJWDUJPpHUQxefduurXFt1qEiB-hmNdIM0k~kBPI3PItdc~0yEk3Lk137GAqUnOITQCVHydB6kWWuER-r2p2NNW2LEG0hKes6HA7sk9NsrgoEqkUO-z-QxJNwKLeLTISU6QxKTx9LjFHcu0jMSRRpMpgjMMYOTs3UHdlj8bHmD2kMlareDqtyWWbeB2NRZW6ux~Jy8XKrIVmzmGThO-SkwSQiQcZdfkgw-PckaWKx0Wf-EyqOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":49834,"name":"Molecular Recognition","url":"https://www.academia.edu/Documents/in/Molecular_Recognition"},{"id":77287,"name":"Macrocycle","url":"https://www.academia.edu/Documents/in/Macrocycle"},{"id":144609,"name":"Alkali Metals","url":"https://www.academia.edu/Documents/in/Alkali_Metals"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"},{"id":188706,"name":"Metal","url":"https://www.academia.edu/Documents/in/Metal"},{"id":386527,"name":"X ray diffraction","url":"https://www.academia.edu/Documents/in/X_ray_diffraction"},{"id":469575,"name":"Solid State","url":"https://www.academia.edu/Documents/in/Solid_State"},{"id":566559,"name":"Stoichiometry","url":"https://www.academia.edu/Documents/in/Stoichiometry"},{"id":664987,"name":"Pyridine","url":"https://www.academia.edu/Documents/in/Pyridine"},{"id":862676,"name":"Affinity","url":"https://www.academia.edu/Documents/in/Affinity"},{"id":1144236,"name":"Crystalline Structure","url":"https://www.academia.edu/Documents/in/Crystalline_Structure"},{"id":1417819,"name":"Probes","url":"https://www.academia.edu/Documents/in/Probes"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"}],"urls":[{"id":35508057,"url":"https://doi.org/10.1021/jo1009596"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5333894" id="papers"><div class="js-work-strip profile--work_container" data-work-id="125089328"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125089328/CCDC_873697_Experimental_Crystal_Structure_Determination"><img alt="Research paper thumbnail of CCDC 873697: Experimental Crystal Structure Determination" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125089328/CCDC_873697_Experimental_Crystal_Structure_Determination">CCDC 873697: Experimental Crystal Structure Determination</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An entry from the Cambridge Structural Database, the world&#39;s repository for small molecule cr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An entry from the Cambridge Structural Database, the world&#39;s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125089328"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125089328"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125089328; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125089328]").text(description); $(".js-view-count[data-work-id=125089328]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125089328; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125089328']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125089328, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125089328]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125089328,"title":"CCDC 873697: Experimental Crystal Structure Determination","translated_title":"","metadata":{"abstract":"An entry from the Cambridge Structural Database, the world\u0026#39;s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.","publisher":"Cambridge Crystallographic Data Centre","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"An entry from the Cambridge Structural Database, the world\u0026#39;s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.","internal_url":"https://www.academia.edu/125089328/CCDC_873697_Experimental_Crystal_Structure_Determination","translated_internal_url":"","created_at":"2024-10-27T17:26:12.869-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"CCDC_873697_Experimental_Crystal_Structure_Determination","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121782390"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/121782390/Macrocycles_with_Switchable_i_exo_i_i_endo_i_Metal_Binding_Sites"><img alt="Research paper thumbnail of Macrocycles with Switchable <i>exo</i>/<i>endo</i> Metal Binding Sites" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/121782390/Macrocycles_with_Switchable_i_exo_i_i_endo_i_Metal_Binding_Sites">Macrocycles with Switchable <i>exo</i>/<i>endo</i> Metal Binding Sites</a></div><div class="wp-workCard_item"><span>Journal of the American Chemical Society</span><span>, Nov 12, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report herein the synthesis and metal complexation properties of two macrocyclic hosts that co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report herein the synthesis and metal complexation properties of two macrocyclic hosts that contain two 2,2&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-bipyridines and two urea groups. These hosts take advantage of the conformationally mobile 5,5&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-positions of the bipyridines to give metal binding sites that are dynamic. By simple bond rotation, these hosts can exchange an interior (endo) situated metal binding site for an exterior (exo) binding site. We examine the solid-state structures of the two free hosts and two coordination complexes ([Cd(host 1)(H(2)O)(NO(3))(2)] and [Ag(2)(host 2)](SO(3)CF(3))(2)) using X-ray crystallography. Analysis of these crystal structures suggests that the bipyridine groups within the hosts are able to rotate to access multiple conformations including the desired exo and endo conformations. We also investigate the binding affinity of these new ligands in solution by UV-vis titrations with…</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121782390"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121782390"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121782390; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121782390]").text(description); $(".js-view-count[data-work-id=121782390]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121782390; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121782390']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121782390, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121782390]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121782390,"title":"Macrocycles with Switchable \u003ci\u003eexo\u003c/i\u003e/\u003ci\u003eendo\u003c/i\u003e Metal Binding Sites","translated_title":"","metadata":{"abstract":"We report herein the synthesis and metal complexation properties of two macrocyclic hosts that contain two 2,2\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-bipyridines and two urea groups. These hosts take advantage of the conformationally mobile 5,5\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-positions of the bipyridines to give metal binding sites that are dynamic. By simple bond rotation, these hosts can exchange an interior (endo) situated metal binding site for an exterior (exo) binding site. We examine the solid-state structures of the two free hosts and two coordination complexes ([Cd(host 1)(H(2)O)(NO(3))(2)] and [Ag(2)(host 2)](SO(3)CF(3))(2)) using X-ray crystallography. Analysis of these crystal structures suggests that the bipyridine groups within the hosts are able to rotate to access multiple conformations including the desired exo and endo conformations. We also investigate the binding affinity of these new ligands in solution by UV-vis titrations with…","publisher":"American Chemical Society","publication_date":{"day":12,"month":11,"year":2009,"errors":{}},"publication_name":"Journal of the American Chemical Society"},"translated_abstract":"We report herein the synthesis and metal complexation properties of two macrocyclic hosts that contain two 2,2\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-bipyridines and two urea groups. These hosts take advantage of the conformationally mobile 5,5\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;-positions of the bipyridines to give metal binding sites that are dynamic. By simple bond rotation, these hosts can exchange an interior (endo) situated metal binding site for an exterior (exo) binding site. We examine the solid-state structures of the two free hosts and two coordination complexes ([Cd(host 1)(H(2)O)(NO(3))(2)] and [Ag(2)(host 2)](SO(3)CF(3))(2)) using X-ray crystallography. Analysis of these crystal structures suggests that the bipyridine groups within the hosts are able to rotate to access multiple conformations including the desired exo and endo conformations. We also investigate the binding affinity of these new ligands in solution by UV-vis titrations with…","internal_url":"https://www.academia.edu/121782390/Macrocycles_with_Switchable_i_exo_i_i_endo_i_Metal_Binding_Sites","translated_internal_url":"","created_at":"2024-07-04T13:42:08.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Macrocycles_with_Switchable_i_exo_i_i_endo_i_Metal_Binding_Sites","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":100540,"name":"Feasibility Studies","url":"https://www.academia.edu/Documents/in/Feasibility_Studies"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":188706,"name":"Metal","url":"https://www.academia.edu/Documents/in/Metal"},{"id":255058,"name":"Metals","url":"https://www.academia.edu/Documents/in/Metals"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":414692,"name":"Solutions","url":"https://www.academia.edu/Documents/in/Solutions"},{"id":481695,"name":"Titration","url":"https://www.academia.edu/Documents/in/Titration"},{"id":498914,"name":"Macrocycles","url":"https://www.academia.edu/Documents/in/Macrocycles"},{"id":649537,"name":"Molecular Conformation","url":"https://www.academia.edu/Documents/in/Molecular_Conformation"},{"id":818658,"name":"Rotation","url":"https://www.academia.edu/Documents/in/Rotation"},{"id":1242506,"name":"Binding Site","url":"https://www.academia.edu/Documents/in/Binding_Site"},{"id":2898895,"name":"binding sites","url":"https://www.academia.edu/Documents/in/binding_sites"},{"id":3889175,"name":"stereoisomerism","url":"https://www.academia.edu/Documents/in/stereoisomerism"}],"urls":[{"id":43374214,"url":"https://doi.org/10.1021/ja906474z"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="114904428"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/114904428/NASC_bringing_together_supramolecular_chemists_from_across_North_America"><img alt="Research paper thumbnail of NASC: bringing together supramolecular chemists from across North America" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/114904428/NASC_bringing_together_supramolecular_chemists_from_across_North_America">NASC: bringing together supramolecular chemists from across North America</a></div><div class="wp-workCard_item"><span>Supramolecular Chemistry</span><span>, Jan 2, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="114904428"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="114904428"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 114904428; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=114904428]").text(description); $(".js-view-count[data-work-id=114904428]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 114904428; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='114904428']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 114904428, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=114904428]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":114904428,"title":"NASC: bringing together supramolecular chemists from across North America","translated_title":"","metadata":{"publisher":"Taylor \u0026 Francis","publication_date":{"day":2,"month":1,"year":2022,"errors":{}},"publication_name":"Supramolecular Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/114904428/NASC_bringing_together_supramolecular_chemists_from_across_North_America","translated_internal_url":"","created_at":"2024-02-14T10:17:18.258-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"NASC_bringing_together_supramolecular_chemists_from_across_North_America","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":4493,"name":"Supramolecular Chemistry","url":"https://www.academia.edu/Documents/in/Supramolecular_Chemistry"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":39462999,"url":"https://doi.org/10.1080/10610278.2023.2178724"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342628"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342628/Structure_property_investigations_in_urea_tethered_iodinated_triphenylamines"><img alt="Research paper thumbnail of Structure–property investigations in urea tethered iodinated triphenylamines" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342628/Structure_property_investigations_in_urea_tethered_iodinated_triphenylamines">Structure–property investigations in urea tethered iodinated triphenylamines</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A methylene urea bridged di-iodo triphenylamine dimer and its corresponding methylene di-iodo tri...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A methylene urea bridged di-iodo triphenylamine dimer and its corresponding methylene di-iodo triphenylamine monomer are crystallized to correlate their structures with properties. In addition, their conductivity is compared against Spiro-OMeTAD.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342628"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342628"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342628; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342628]").text(description); $(".js-view-count[data-work-id=109342628]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342628; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342628']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342628, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342628]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342628,"title":"Structure–property investigations in urea tethered iodinated triphenylamines","translated_title":"","metadata":{"abstract":"A methylene urea bridged di-iodo triphenylamine dimer and its corresponding methylene di-iodo triphenylamine monomer are crystallized to correlate their structures with properties. In addition, their conductivity is compared against Spiro-OMeTAD.","publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":"A methylene urea bridged di-iodo triphenylamine dimer and its corresponding methylene di-iodo triphenylamine monomer are crystallized to correlate their structures with properties. In addition, their conductivity is compared against Spiro-OMeTAD.","internal_url":"https://www.academia.edu/109342628/Structure_property_investigations_in_urea_tethered_iodinated_triphenylamines","translated_internal_url":"","created_at":"2023-11-18T08:18:36.161-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Structure_property_investigations_in_urea_tethered_iodinated_triphenylamines","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":223513,"name":"Conductivity","url":"https://www.academia.edu/Documents/in/Conductivity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":329171,"name":"Triphenylamine","url":"https://www.academia.edu/Documents/in/Triphenylamine"},{"id":902639,"name":"X Ray Photoelectron Spectroscopy","url":"https://www.academia.edu/Documents/in/X_Ray_Photoelectron_Spectroscopy"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":35508073,"url":"https://doi.org/10.1039/d2cp01856j"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342627"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342627/Inclusion_Polymerization_of_Pyrrole_and_Ethylenedioxythiophene_in_Assembled_Triphenylamine_i_Bis_i_Urea_Macrocycles"><img alt="Research paper thumbnail of Inclusion Polymerization of Pyrrole and Ethylenedioxythiophene in Assembled Triphenylamine <i>Bis</i>-Urea Macrocycles" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342627/Inclusion_Polymerization_of_Pyrrole_and_Ethylenedioxythiophene_in_Assembled_Triphenylamine_i_Bis_i_Urea_Macrocycles">Inclusion Polymerization of Pyrrole and Ethylenedioxythiophene in Assembled Triphenylamine <i>Bis</i>-Urea Macrocycles</a></div><div class="wp-workCard_item"><span>Macromolecules</span><span>, Dec 13, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342627"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342627"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342627; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342627]").text(description); $(".js-view-count[data-work-id=109342627]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342627; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342627']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342627, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342627]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342627,"title":"Inclusion Polymerization of Pyrrole and Ethylenedioxythiophene in Assembled Triphenylamine \u003ci\u003eBis\u003c/i\u003e-Urea Macrocycles","translated_title":"","metadata":{"publisher":"American Chemical Society","publication_date":{"day":13,"month":12,"year":2022,"errors":{}},"publication_name":"Macromolecules"},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342627/Inclusion_Polymerization_of_Pyrrole_and_Ethylenedioxythiophene_in_Assembled_Triphenylamine_i_Bis_i_Urea_Macrocycles","translated_internal_url":"","created_at":"2023-11-18T08:18:35.971-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inclusion_Polymerization_of_Pyrrole_and_Ethylenedioxythiophene_in_Assembled_Triphenylamine_i_Bis_i_Urea_Macrocycles","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":2526,"name":"Polymer Chemistry","url":"https://www.academia.edu/Documents/in/Polymer_Chemistry"},{"id":32909,"name":"Polymerization","url":"https://www.academia.edu/Documents/in/Polymerization"},{"id":168760,"name":"Macromolecules","url":"https://www.academia.edu/Documents/in/Macromolecules"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":387449,"name":"Monomer","url":"https://www.academia.edu/Documents/in/Monomer"}],"urls":[{"id":35508072,"url":"https://doi.org/10.1021/acs.macromol.2c02042"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342626"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342626/Structural_electrochemical_and_photophysical_properties_of_an_exocyclic_di_ruthenium_complex_and_its_application_as_a_photosensitizer"><img alt="Research paper thumbnail of Structural, electrochemical and photophysical properties of an exocyclic di-ruthenium complex and its application as a photosensitizer" class="work-thumbnail" src="https://attachments.academia-assets.com/107497311/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342626/Structural_electrochemical_and_photophysical_properties_of_an_exocyclic_di_ruthenium_complex_and_its_application_as_a_photosensitizer">Structural, electrochemical and photophysical properties of an exocyclic di-ruthenium complex and its application as a photosensitizer</a></div><div class="wp-workCard_item"><span>Dalton Transactions</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e8711b3eb77b04c1cd151c30705ecc2d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497311,"asset_id":109342626,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497311/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342626"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342626"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342626; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342626]").text(description); $(".js-view-count[data-work-id=109342626]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342626; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342626']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342626, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e8711b3eb77b04c1cd151c30705ecc2d" } } $('.js-work-strip[data-work-id=109342626]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342626,"title":"Structural, electrochemical and photophysical properties of an exocyclic di-ruthenium complex and its application as a photosensitizer","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","grobid_abstract":"The reaction of cis-bis(2,2'-bipyridine)dichlororuthenium(II) hydrate with a conformationally mobile bipyridyl macrocycle afforded [(bpy) 2 Ru(µ-L)Ru(bpy) 2 ]Cl 4 •6H 2 O, a bridged di-Ru complex. Single crystal X-ray diffraction showed the macrocyclic ligand adopting a bowl-like structure with the exo-coordinated Ru(II) centers separated by 7.29 Å. Photophysical characterization showed that the complex absorbs in the visible region (λ max = 451 nm) with an emission maximum at 610 nm (τ = 706 ns, Φ PL = 0.021). Electrochemical studies indicate the di-Ru complex undergoes three one-electron reversible reductions and a reversible one-electron oxidation process. This electrochemical reversibility is a key characteristic for its use as an electron transfer agents. The complex was evaluated as a photocatalyst for the electronically mismatched Diels-Alder reaction of isoprene and trans-anethole using visible light. It afforded the expected product in good conversion (69%) and selectivity (dr \u003e 10 : 1) at low loadings (0.5-5.0 mol%) and the sensitizer/catalyst was readily recycled. These results suggest that the bipyridyl macrocycle could be widely applied as a bridging ligand for the generation of chromophore-catalyst assemblies.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Dalton Transactions","grobid_abstract_attachment_id":107497311},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342626/Structural_electrochemical_and_photophysical_properties_of_an_exocyclic_di_ruthenium_complex_and_its_application_as_a_photosensitizer","translated_internal_url":"","created_at":"2023-11-18T08:18:35.782-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497311/thumbnails/1.jpg","file_name":"b63a66f5dd3fa588cb760fa6875da0e12bed.pdf","download_url":"https://www.academia.edu/attachments/107497311/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Structural_electrochemical_and_photophys.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497311/b63a66f5dd3fa588cb760fa6875da0e12bed-libre.pdf?1700329714=\u0026response-content-disposition=attachment%3B+filename%3DStructural_electrochemical_and_photophys.pdf\u0026Expires=1732495854\u0026Signature=g7PlUOT5asDkHx46yLY~uzbV14IYjB9s4GH7vS7hEw1vLsEUITUfeIB85uAJNFRvWgD940umqHBYLU8zYSiEvGMWeXLUXo5hherdkJdnEYIGfEnsBH9RPv94dXnQ09Es2JJ7BExX5jzcxnixL-E10eIYVy5Cwzfd7tTQfUNjhPvw62x4wya18G5XZU9OdAKs~613~w9e83Qt5g8ngATDDlLeS6EsLZQSdkjpcBG4ujqprU919WIOghbAUx4qydW6hO8ROxWcLokg~jRuGUjyzGE57iZMEqxK-sS2iQ5W-5rcuO4YTHqoB8ewTyo1O11t8BpT5qxr5Edqw1~rbEbQJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Structural_electrochemical_and_photophysical_properties_of_an_exocyclic_di_ruthenium_complex_and_its_application_as_a_photosensitizer","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497311/thumbnails/1.jpg","file_name":"b63a66f5dd3fa588cb760fa6875da0e12bed.pdf","download_url":"https://www.academia.edu/attachments/107497311/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Structural_electrochemical_and_photophys.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497311/b63a66f5dd3fa588cb760fa6875da0e12bed-libre.pdf?1700329714=\u0026response-content-disposition=attachment%3B+filename%3DStructural_electrochemical_and_photophys.pdf\u0026Expires=1732495855\u0026Signature=NPUUBf8NMdNoZcA6e9Vk7aPPNjyS8EJ5bLIw9ycGupTFcLwoAH-NYZt4NvY0sO69D1NiW8ct6F5MNmmN-0sSv4-z2Emb1CY0UMSPYyb2mb1myjzlE44z0BaXk8aaZ3FJx8sQD4yzT4SCkjHe1ZYiZEKuDUAGSwQXb8UxmCy5oIMm~d-beJbiTwvuvKAjWwyFgHgqg9DQFIAo-F0mazuiTKGWEFrjZOGhzJGHmv0idB8sBEdc5Cgl0wssgpkNBE4tn4VJN03GfASKPk0DmYCf6zq~nL0cAH0rSkX2n~myllw5IfjUFxWkDaVSQVzOXg0z1V98LDZv0ipEPkF4L2MnbQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":5104,"name":"Photochemistry","url":"https://www.academia.edu/Documents/in/Photochemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":1244641,"name":"Photosensitizer","url":"https://www.academia.edu/Documents/in/Photosensitizer"},{"id":2540146,"name":"Ruthenium","url":"https://www.academia.edu/Documents/in/Ruthenium"}],"urls":[{"id":35508071,"url":"https://doi.org/10.1039/c6dt01377e"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342625"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342625/Crystal_Structures_and_Hirshfeld_Surface_Analyses_of_6_Substituted_Chromones"><img alt="Research paper thumbnail of Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342625/Crystal_Structures_and_Hirshfeld_Surface_Analyses_of_6_Substituted_Chromones">Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones</a></div><div class="wp-workCard_item"><span>Journal of Chemical Crystallography</span><span>, Mar 5, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface anal...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface analysis to identify and understand the non-covalent interactions within the lattices of chromone, 6-methylchromone, 6-methoxychromone, 6-fluorochromone, and 6-chlorochromone with reported 6-bromochromone. In chromone, H-bonds and CH–л interactions predominate. H-bonds and aryl-stacking interactions are distinct in 6-methylchromone and 6-methoxychromone. The 6-fluorochromone, showed two types of H-bonds with O···H bonds having a greater contribution than F···H. In contrast, 6-chlorochromone and 6-bromochromone, the halogen contributes the larger percentage of stabilizing H-bonding with Cl···H and Br···H predominating over the O···H bonds. Compound 1 crystallizes in the monoclinic space group P21/n with a = 8.1546(8) Å, b = 7.8364(7) Å, c = 11.1424(11) Å, β = 108.506(2)° and Z = 4. Compound 2 crystallizes in the triclinic space group P-1 with a = 7.0461(3) Å, b = 10.2108(5) Å, c = 10.7083(5) Å, α = 89.884(2)°, β = 77.679(2)°, γ = 87.367(2)° and Z = 4. Compound 3 crystallizes in the monoclinic space group P21/n with a = 8.1923(4) Å, b = 7.0431(3) Å, c = 15.3943(8) Å, β = 92.819(2)° and Z = 4. Compound 4 crystallizes in the triclinic space group P1 with a = 3.7059(2) Å, b = 6.1265(4) Å, c = 7.6161(5) Å, α = 84.085(3)°, β = 87.070(3)°, γ = 83.390(3)° and Z = 1. Compound 5 crystallizes in the monoclinic space group P21 with a = 3.8220(2) Å, b = 5.6985(2) Å, c = 16.9107(7) Å, β = 95.8256(18)° and Z = 2.Graphical AbstractThe effect of substituents at the 6-position on chromone on their crystal structures using Hirshfeld surface and fingerprint analysis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342625"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342625"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342625; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342625]").text(description); $(".js-view-count[data-work-id=109342625]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342625; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342625']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342625, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342625]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342625,"title":"Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones","translated_title":"","metadata":{"abstract":"Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface analysis to identify and understand the non-covalent interactions within the lattices of chromone, 6-methylchromone, 6-methoxychromone, 6-fluorochromone, and 6-chlorochromone with reported 6-bromochromone. In chromone, H-bonds and CH–л interactions predominate. H-bonds and aryl-stacking interactions are distinct in 6-methylchromone and 6-methoxychromone. The 6-fluorochromone, showed two types of H-bonds with O···H bonds having a greater contribution than F···H. In contrast, 6-chlorochromone and 6-bromochromone, the halogen contributes the larger percentage of stabilizing H-bonding with Cl···H and Br···H predominating over the O···H bonds. Compound 1 crystallizes in the monoclinic space group P21/n with a = 8.1546(8) Å, b = 7.8364(7) Å, c = 11.1424(11) Å, β = 108.506(2)° and Z = 4. Compound 2 crystallizes in the triclinic space group P-1 with a = 7.0461(3) Å, b = 10.2108(5) Å, c = 10.7083(5) Å, α = 89.884(2)°, β = 77.679(2)°, γ = 87.367(2)° and Z = 4. Compound 3 crystallizes in the monoclinic space group P21/n with a = 8.1923(4) Å, b = 7.0431(3) Å, c = 15.3943(8) Å, β = 92.819(2)° and Z = 4. Compound 4 crystallizes in the triclinic space group P1 with a = 3.7059(2) Å, b = 6.1265(4) Å, c = 7.6161(5) Å, α = 84.085(3)°, β = 87.070(3)°, γ = 83.390(3)° and Z = 1. Compound 5 crystallizes in the monoclinic space group P21 with a = 3.8220(2) Å, b = 5.6985(2) Å, c = 16.9107(7) Å, β = 95.8256(18)° and Z = 2.Graphical AbstractThe effect of substituents at the 6-position on chromone on their crystal structures using Hirshfeld surface and fingerprint analysis.","publisher":"Springer Science+Business Media","publication_date":{"day":5,"month":3,"year":2016,"errors":{}},"publication_name":"Journal of Chemical Crystallography"},"translated_abstract":"Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface analysis to identify and understand the non-covalent interactions within the lattices of chromone, 6-methylchromone, 6-methoxychromone, 6-fluorochromone, and 6-chlorochromone with reported 6-bromochromone. In chromone, H-bonds and CH–л interactions predominate. H-bonds and aryl-stacking interactions are distinct in 6-methylchromone and 6-methoxychromone. The 6-fluorochromone, showed two types of H-bonds with O···H bonds having a greater contribution than F···H. In contrast, 6-chlorochromone and 6-bromochromone, the halogen contributes the larger percentage of stabilizing H-bonding with Cl···H and Br···H predominating over the O···H bonds. Compound 1 crystallizes in the monoclinic space group P21/n with a = 8.1546(8) Å, b = 7.8364(7) Å, c = 11.1424(11) Å, β = 108.506(2)° and Z = 4. Compound 2 crystallizes in the triclinic space group P-1 with a = 7.0461(3) Å, b = 10.2108(5) Å, c = 10.7083(5) Å, α = 89.884(2)°, β = 77.679(2)°, γ = 87.367(2)° and Z = 4. Compound 3 crystallizes in the monoclinic space group P21/n with a = 8.1923(4) Å, b = 7.0431(3) Å, c = 15.3943(8) Å, β = 92.819(2)° and Z = 4. Compound 4 crystallizes in the triclinic space group P1 with a = 3.7059(2) Å, b = 6.1265(4) Å, c = 7.6161(5) Å, α = 84.085(3)°, β = 87.070(3)°, γ = 83.390(3)° and Z = 1. Compound 5 crystallizes in the monoclinic space group P21 with a = 3.8220(2) Å, b = 5.6985(2) Å, c = 16.9107(7) Å, β = 95.8256(18)° and Z = 2.Graphical AbstractThe effect of substituents at the 6-position on chromone on their crystal structures using Hirshfeld surface and fingerprint analysis.","internal_url":"https://www.academia.edu/109342625/Crystal_Structures_and_Hirshfeld_Surface_Analyses_of_6_Substituted_Chromones","translated_internal_url":"","created_at":"2023-11-18T08:18:35.583-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Crystal_Structures_and_Hirshfeld_Surface_Analyses_of_6_Substituted_Chromones","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":11648,"name":"Organometallic Chemistry","url":"https://www.academia.edu/Documents/in/Organometallic_Chemistry"},{"id":50630,"name":"Crystal structure","url":"https://www.academia.edu/Documents/in/Crystal_structure"}],"urls":[{"id":35508070,"url":"https://doi.org/10.1007/s10870-016-0642-2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342624"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342624/Synergistic_effects_of_hydrogen_and_halogen_bonding_in_co_crystals_of_dipyridylureas_and_diiodotetrafluorobenzenes"><img alt="Research paper thumbnail of Synergistic effects of hydrogen and halogen bonding in co-crystals of dipyridylureas and diiodotetrafluorobenzenes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342624/Synergistic_effects_of_hydrogen_and_halogen_bonding_in_co_crystals_of_dipyridylureas_and_diiodotetrafluorobenzenes">Synergistic effects of hydrogen and halogen bonding in co-crystals of dipyridylureas and diiodotetrafluorobenzenes</a></div><div class="wp-workCard_item"><span>Supramolecular Chemistry</span><span>, Aug 10, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Herein, we investigate co-crystallization of three linear co-formers that contain urea a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Herein, we investigate co-crystallization of three linear co-formers that contain urea and pyridyl groups with three regioisomers of diiodotetrafluorobenzene (DITFB) to afford eleven co-crystals. The linear o-, m-, and p- dipyridylureas vary distance and geometry between the urea carbonyl oxygen and two pyridyl nitrogen acceptors, while the donors consist of urea NH groups and the activated halides in DITFB. Electrostatic potential calculations suggest that the o-dipyridylurea co-former presents two significantly different acceptors. In comparison, the acceptors in the m- and p-dipyridylurea co-formers display electrostatic potentials within 5–6 kJ/mol and should be competitive, potentially leading to altered assembly motifs. Overall, ten of the co-crystals consistently display the urea assembly motif as the best acceptor/donor pair. Seven structures were obtained as the predicted 1:1 ratio with halogen bonding interactions linking ditopic halogen bond donors and the pyridyl units through N···I interactions ranging from 78.4 to 83.1% of the van der Waals radii. Modified structures were more likely when there was a structural mismatch with the geometrically challenging o-DITFB donor and m- or p-dipyridylurea co-former. The majority of the co-crystal structures (10/11) demonstrated fully satisfied hydrogen and halogen bonding interactions suggesting that these synthons can be used synergistically to generate complex solid-state structures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342624"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342624"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342624; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342624]").text(description); $(".js-view-count[data-work-id=109342624]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342624; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342624']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342624, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342624]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342624,"title":"Synergistic effects of hydrogen and halogen bonding in co-crystals of dipyridylureas and diiodotetrafluorobenzenes","translated_title":"","metadata":{"abstract":"Abstract Herein, we investigate co-crystallization of three linear co-formers that contain urea and pyridyl groups with three regioisomers of diiodotetrafluorobenzene (DITFB) to afford eleven co-crystals. The linear o-, m-, and p- dipyridylureas vary distance and geometry between the urea carbonyl oxygen and two pyridyl nitrogen acceptors, while the donors consist of urea NH groups and the activated halides in DITFB. Electrostatic potential calculations suggest that the o-dipyridylurea co-former presents two significantly different acceptors. In comparison, the acceptors in the m- and p-dipyridylurea co-formers display electrostatic potentials within 5–6 kJ/mol and should be competitive, potentially leading to altered assembly motifs. Overall, ten of the co-crystals consistently display the urea assembly motif as the best acceptor/donor pair. Seven structures were obtained as the predicted 1:1 ratio with halogen bonding interactions linking ditopic halogen bond donors and the pyridyl units through N···I interactions ranging from 78.4 to 83.1% of the van der Waals radii. Modified structures were more likely when there was a structural mismatch with the geometrically challenging o-DITFB donor and m- or p-dipyridylurea co-former. The majority of the co-crystal structures (10/11) demonstrated fully satisfied hydrogen and halogen bonding interactions suggesting that these synthons can be used synergistically to generate complex solid-state structures.","publisher":"Taylor \u0026 Francis","publication_date":{"day":10,"month":8,"year":2017,"errors":{}},"publication_name":"Supramolecular Chemistry"},"translated_abstract":"Abstract Herein, we investigate co-crystallization of three linear co-formers that contain urea and pyridyl groups with three regioisomers of diiodotetrafluorobenzene (DITFB) to afford eleven co-crystals. The linear o-, m-, and p- dipyridylureas vary distance and geometry between the urea carbonyl oxygen and two pyridyl nitrogen acceptors, while the donors consist of urea NH groups and the activated halides in DITFB. Electrostatic potential calculations suggest that the o-dipyridylurea co-former presents two significantly different acceptors. In comparison, the acceptors in the m- and p-dipyridylurea co-formers display electrostatic potentials within 5–6 kJ/mol and should be competitive, potentially leading to altered assembly motifs. Overall, ten of the co-crystals consistently display the urea assembly motif as the best acceptor/donor pair. Seven structures were obtained as the predicted 1:1 ratio with halogen bonding interactions linking ditopic halogen bond donors and the pyridyl units through N···I interactions ranging from 78.4 to 83.1% of the van der Waals radii. Modified structures were more likely when there was a structural mismatch with the geometrically challenging o-DITFB donor and m- or p-dipyridylurea co-former. The majority of the co-crystal structures (10/11) demonstrated fully satisfied hydrogen and halogen bonding interactions suggesting that these synthons can be used synergistically to generate complex solid-state structures.","internal_url":"https://www.academia.edu/109342624/Synergistic_effects_of_hydrogen_and_halogen_bonding_in_co_crystals_of_dipyridylureas_and_diiodotetrafluorobenzenes","translated_internal_url":"","created_at":"2023-11-18T08:18:35.392-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Synergistic_effects_of_hydrogen_and_halogen_bonding_in_co_crystals_of_dipyridylureas_and_diiodotetrafluorobenzenes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":140,"name":"Pharmacology","url":"https://www.academia.edu/Documents/in/Pharmacology"},{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":167,"name":"Physiology","url":"https://www.academia.edu/Documents/in/Physiology"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":4493,"name":"Supramolecular Chemistry","url":"https://www.academia.edu/Documents/in/Supramolecular_Chemistry"},{"id":5398,"name":"Biotechnology","url":"https://www.academia.edu/Documents/in/Biotechnology"},{"id":10704,"name":"Crystal Engineering","url":"https://www.academia.edu/Documents/in/Crystal_Engineering"},{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1190826,"name":"Halogen","url":"https://www.academia.edu/Documents/in/Halogen"},{"id":1930607,"name":"Acceptor","url":"https://www.academia.edu/Documents/in/Acceptor"},{"id":3184573,"name":"Synthon","url":"https://www.academia.edu/Documents/in/Synthon"}],"urls":[{"id":35508069,"url":"https://doi.org/10.1080/10610278.2017.1364380"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342623"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342623/Crystalline_Bis_urea_Nanochannel_Architectures_Tailored_for_Single_File_Diffusion_Studies"><img alt="Research paper thumbnail of Crystalline Bis-urea Nanochannel Architectures Tailored for Single-File Diffusion Studies" class="work-thumbnail" src="https://attachments.academia-assets.com/107497314/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342623/Crystalline_Bis_urea_Nanochannel_Architectures_Tailored_for_Single_File_Diffusion_Studies">Crystalline Bis-urea Nanochannel Architectures Tailored for Single-File Diffusion Studies</a></div><div class="wp-workCard_item"><span>ACS Nano</span><span>, Jun 9, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b47057f09fbcb3a80f27e3155705a73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497314,"asset_id":109342623,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497314/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342623"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342623"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342623; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342623]").text(description); $(".js-view-count[data-work-id=109342623]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342623; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342623']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342623, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b47057f09fbcb3a80f27e3155705a73" } } $('.js-work-strip[data-work-id=109342623]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342623,"title":"Crystalline Bis-urea Nanochannel Architectures Tailored for Single-File Diffusion Studies","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Urea is a versatile building block that can be modified to selfassemble into a multitude of structures. One-dimensional nanochannels with zigzag architecture and cross-sectional dimensions of only ∼3.7 Å Â 4.8 Å are formed by the columnar assembly of phenyl ether bis-urea macrocycles. Nanochannels formed by phenylethynylene bis-urea macrocycles have a round cross-section with a diameter of ∼9.0 Å. This work compares the Xe atom packing and diffusion inside the crystalline channels of these two bis-ureas using hyperpolarized Xe-129 NMR. The elliptical channel structure of the phenyl ether bis-urea macrocycle produces a Xe-129 powder pattern line shape characteristic of an asymmetric chemical shift tensor with shifts extending to well over 300 ppm with respect to the bulk gas, reflecting extreme confinement of the Xe atom. The wider channels formed by phenylethynylene bis-urea, in contrast, present an isotropic dynamically average electronic environment. Completely different diffusion dynamics are revealed in the two bis-ureas using hyperpolarized spin-tracer exchange NMR. Thus, a simple replacement of phenyl ether with phenylethynylene as the rigid linker unit results in a transition from single-file to Fickian diffusion dynamics. Selfassembled bis-urea macrocycles are found to be highly suitable materials for fundamental molecular transport studies on micrometer length scales.","publication_date":{"day":9,"month":6,"year":2015,"errors":{}},"publication_name":"ACS Nano","grobid_abstract_attachment_id":107497314},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342623/Crystalline_Bis_urea_Nanochannel_Architectures_Tailored_for_Single_File_Diffusion_Studies","translated_internal_url":"","created_at":"2023-11-18T08:18:35.179-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497314,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497314/thumbnails/1.jpg","file_name":"acsnano.5b0189520231118-1-d6gzej.pdf","download_url":"https://www.academia.edu/attachments/107497314/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crystalline_Bis_urea_Nanochannel_Archite.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497314/acsnano.5b0189520231118-1-d6gzej-libre.pdf?1700329722=\u0026response-content-disposition=attachment%3B+filename%3DCrystalline_Bis_urea_Nanochannel_Archite.pdf\u0026Expires=1732495855\u0026Signature=aoq30ER51Wf7-rGiVbCz6zXbLlJQ9eVdcqfsdlDy3BqTvCiQzpkZkvyJGVU8jWb~uTCJjQpTkUueu6x7xgxTRYV4bpL8iITdgHE2rhNaZWZlfZ~c9cFmS8NFoSeySSSPs~FwBCqjqNwkvwFfJm7Uys4RH~aMgcJl-EnolnykIzJERtYe4PjuTqh7L6e4q81XtRSUvFLl~w-iPdBYJsRbNqDfGSG-OMR-t~B~OqfkaxDw95K6LW-QipWHaaw1imiU1-BB1Ut1fIkLi4Zlh7QF~iTpudofmkg6SeYH3HwJqqHVOTrocXwSwNxLO9mu9pD~CMYKhIiutG5f4PpX6FT8gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Crystalline_Bis_urea_Nanochannel_Architectures_Tailored_for_Single_File_Diffusion_Studies","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497314,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497314/thumbnails/1.jpg","file_name":"acsnano.5b0189520231118-1-d6gzej.pdf","download_url":"https://www.academia.edu/attachments/107497314/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crystalline_Bis_urea_Nanochannel_Archite.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497314/acsnano.5b0189520231118-1-d6gzej-libre.pdf?1700329722=\u0026response-content-disposition=attachment%3B+filename%3DCrystalline_Bis_urea_Nanochannel_Archite.pdf\u0026Expires=1732495855\u0026Signature=aoq30ER51Wf7-rGiVbCz6zXbLlJQ9eVdcqfsdlDy3BqTvCiQzpkZkvyJGVU8jWb~uTCJjQpTkUueu6x7xgxTRYV4bpL8iITdgHE2rhNaZWZlfZ~c9cFmS8NFoSeySSSPs~FwBCqjqNwkvwFfJm7Uys4RH~aMgcJl-EnolnykIzJERtYe4PjuTqh7L6e4q81XtRSUvFLl~w-iPdBYJsRbNqDfGSG-OMR-t~B~OqfkaxDw95K6LW-QipWHaaw1imiU1-BB1Ut1fIkLi4Zlh7QF~iTpudofmkg6SeYH3HwJqqHVOTrocXwSwNxLO9mu9pD~CMYKhIiutG5f4PpX6FT8gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"},{"id":13621,"name":"Nanoparticles","url":"https://www.academia.edu/Documents/in/Nanoparticles"},{"id":21732,"name":"Magnetic Resonance Spectroscopy","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Spectroscopy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":83315,"name":"Diffusion","url":"https://www.academia.edu/Documents/in/Diffusion"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"}],"urls":[{"id":35508068,"url":"https://doi.org/10.1021/acsnano.5b01895"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342622"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342622/Examination_of_the_Structural_Features_That_Favor_the_Columnar_Self_Assembly_of_Bis_urea_Macrocycles"><img alt="Research paper thumbnail of Examination of the Structural Features That Favor the Columnar Self-Assembly of Bis-urea Macrocycles" class="work-thumbnail" src="https://attachments.academia-assets.com/107497325/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342622/Examination_of_the_Structural_Features_That_Favor_the_Columnar_Self_Assembly_of_Bis_urea_Macrocycles">Examination of the Structural Features That Favor the Columnar Self-Assembly of Bis-urea Macrocycles</a></div><div class="wp-workCard_item"><span>Journal of Organic Chemistry</span><span>, Dec 5, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7c57f7d1c008b805c4cf53f56f4d61d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497325,"asset_id":109342622,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497325/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342622"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342622"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342622; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342622]").text(description); $(".js-view-count[data-work-id=109342622]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342622; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342622']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342622, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7c57f7d1c008b805c4cf53f56f4d61d0" } } $('.js-work-strip[data-work-id=109342622]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342622,"title":"Examination of the Structural Features That Favor the Columnar Self-Assembly of Bis-urea Macrocycles","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Supporting Information Table of Contents General Procedure S2 Reaction Scheme for Macrocycle 2-6 S4 Characterization Data for Macrocycle 3-6 S5 1 H NMR of Macrocycle 2 S7 13 C NMR of Macrocycle 2 S8 1 H NMR of Macrocycle 3 S9 1 H NMR Titration of Macrocycle 4 S46 Determine the Diffusion Coefficients by NMR S48 FT-IR study of Self-association of Macrocycle 2, 3 and 4 in Solutions S49 References S53 b = 16.1503(6) Å β= 90°. c = 8.5508(3) Å γ = 90°. Volume 2255.14(14) Å 3 Z 4 Density (calculated) 1.215 Mg/m 3 Absorption coefficient 0.091 mm-1 F(000) 888 Crystal size 0.54 x 0.40 x 0.30 mm 3 Theta range for data collection 2.49 to 26.40°.","publication_date":{"day":5,"month":12,"year":2008,"errors":{}},"publication_name":"Journal of Organic Chemistry","grobid_abstract_attachment_id":107497325},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342622/Examination_of_the_Structural_Features_That_Favor_the_Columnar_Self_Assembly_of_Bis_urea_Macrocycles","translated_internal_url":"","created_at":"2023-11-18T08:18:34.981-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497325,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497325/thumbnails/1.jpg","file_name":"4586152.pdf","download_url":"https://www.academia.edu/attachments/107497325/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Examination_of_the_Structural_Features_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497325/4586152-libre.pdf?1700330068=\u0026response-content-disposition=attachment%3B+filename%3DExamination_of_the_Structural_Features_T.pdf\u0026Expires=1732495855\u0026Signature=cE3OmN8AQc-TcmbGqKnFBzGv6zYfkqJUGRi0I9ggDuVLylTjhzZcdOmA0psZf08n1YVpEZsV5Th-Bn5OfcdglomVL78yG5FOgYDIcuE~7HZlL8UTbQE6E7QoetFnTM0iVqzzQ8~j~rDA6k3pVNV9zIEssLzxd8wiP3A-WIlpxptATHhHHeDpxpPXEXHl582D77Fg6jNCkzAgNNeN1OzueTdfCcaHK-Gyh2xiq2cGOSg-VwVr9qwv38hmhIbp-OdeLUQ~PlCHSgQI23amUP5Jb4qpGrsioScttzpVyDF3skw0jYE-r5SzKN2eKwb9ICHP46z-bEpbYywE99DZA70IjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Examination_of_the_Structural_Features_That_Favor_the_Columnar_Self_Assembly_of_Bis_urea_Macrocycles","translated_slug":"","page_count":54,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497325,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497325/thumbnails/1.jpg","file_name":"4586152.pdf","download_url":"https://www.academia.edu/attachments/107497325/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Examination_of_the_Structural_Features_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497325/4586152-libre.pdf?1700330068=\u0026response-content-disposition=attachment%3B+filename%3DExamination_of_the_Structural_Features_T.pdf\u0026Expires=1732495855\u0026Signature=cE3OmN8AQc-TcmbGqKnFBzGv6zYfkqJUGRi0I9ggDuVLylTjhzZcdOmA0psZf08n1YVpEZsV5Th-Bn5OfcdglomVL78yG5FOgYDIcuE~7HZlL8UTbQE6E7QoetFnTM0iVqzzQ8~j~rDA6k3pVNV9zIEssLzxd8wiP3A-WIlpxptATHhHHeDpxpPXEXHl582D77Fg6jNCkzAgNNeN1OzueTdfCcaHK-Gyh2xiq2cGOSg-VwVr9qwv38hmhIbp-OdeLUQ~PlCHSgQI23amUP5Jb4qpGrsioScttzpVyDF3skw0jYE-r5SzKN2eKwb9ICHP46z-bEpbYywE99DZA70IjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":11073,"name":"Self Assembly","url":"https://www.academia.edu/Documents/in/Self_Assembly"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":27407,"name":"Material Chemistry and Photochemistry","url":"https://www.academia.edu/Documents/in/Material_Chemistry_and_Photochemistry"},{"id":49834,"name":"Molecular Recognition","url":"https://www.academia.edu/Documents/in/Molecular_Recognition"},{"id":55241,"name":"Synthetic Organic Chemistry","url":"https://www.academia.edu/Documents/in/Synthetic_Organic_Chemistry"},{"id":77287,"name":"Macrocycle","url":"https://www.academia.edu/Documents/in/Macrocycle"},{"id":205584,"name":"Solubility","url":"https://www.academia.edu/Documents/in/Solubility"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":286636,"name":"Encapsulation","url":"https://www.academia.edu/Documents/in/Encapsulation"},{"id":296798,"name":"Hydrogen Bonding","url":"https://www.academia.edu/Documents/in/Hydrogen_Bonding"},{"id":459820,"name":"Ether","url":"https://www.academia.edu/Documents/in/Ether"},{"id":469575,"name":"Solid State","url":"https://www.academia.edu/Documents/in/Solid_State"},{"id":1152821,"name":"Chemical Synthesis","url":"https://www.academia.edu/Documents/in/Chemical_Synthesis"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"},{"id":1957004,"name":"Stacking","url":"https://www.academia.edu/Documents/in/Stacking"}],"urls":[{"id":35508067,"url":"https://doi.org/10.1021/jo801717w"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342621"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342621/Origins_of_Selectivity_for_the_2_2_Cycloaddition_of_%CE%B1_%CE%B2_unsaturated_Ketones_within_a_Porous_Self_assembled_Organic_Framework"><img alt="Research paper thumbnail of Origins of Selectivity for the [2+2] Cycloaddition of α,β-unsaturated Ketones within a Porous Self-assembled Organic Framework" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342621/Origins_of_Selectivity_for_the_2_2_Cycloaddition_of_%CE%B1_%CE%B2_unsaturated_Ketones_within_a_Porous_Self_assembled_Organic_Framework">Origins of Selectivity for the [2+2] Cycloaddition of α,β-unsaturated Ketones within a Porous Self-assembled Organic Framework</a></div><div class="wp-workCard_item"><span>Journal of the American Chemical Society</span><span>, Dec 21, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... Mark D. Smith, † Youyong Li, ‡ and Linda S. Shimizu* †. Department of Chemistry and Biochemis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... Mark D. Smith, † Youyong Li, ‡ and Linda S. Shimizu* †. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, Materials and Process Simulation Center, California Institute of Technology, California 91125. J. Am. Chem. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342621"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342621"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342621; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342621]").text(description); $(".js-view-count[data-work-id=109342621]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342621; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342621']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342621, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342621]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342621,"title":"Origins of Selectivity for the [2+2] Cycloaddition of α,β-unsaturated Ketones within a Porous Self-assembled Organic Framework","translated_title":"","metadata":{"abstract":"... Mark D. Smith, † Youyong Li, ‡ and Linda S. Shimizu* †. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, Materials and Process Simulation Center, California Institute of Technology, California 91125. J. Am. Chem. ...","publisher":"American Chemical Society","publication_date":{"day":21,"month":12,"year":2007,"errors":{}},"publication_name":"Journal of the American Chemical Society"},"translated_abstract":"... Mark D. Smith, † Youyong Li, ‡ and Linda S. Shimizu* †. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, Materials and Process Simulation Center, California Institute of Technology, California 91125. J. Am. Chem. ...","internal_url":"https://www.academia.edu/109342621/Origins_of_Selectivity_for_the_2_2_Cycloaddition_of_%CE%B1_%CE%B2_unsaturated_Ketones_within_a_Porous_Self_assembled_Organic_Framework","translated_internal_url":"","created_at":"2023-11-18T08:18:34.755-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Origins_of_Selectivity_for_the_2_2_Cycloaddition_of_α_β_unsaturated_Ketones_within_a_Porous_Self_assembled_Organic_Framework","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11222,"name":"Powder Diffraction","url":"https://www.academia.edu/Documents/in/Powder_Diffraction"},{"id":21732,"name":"Magnetic Resonance Spectroscopy","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Spectroscopy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":38886,"name":"Cycloaddition reactions","url":"https://www.academia.edu/Documents/in/Cycloaddition_reactions"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":161176,"name":"The","url":"https://www.academia.edu/Documents/in/The"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":398652,"name":"Thermogravimetric Analysis","url":"https://www.academia.edu/Documents/in/Thermogravimetric_Analysis"},{"id":687047,"name":"Ketone","url":"https://www.academia.edu/Documents/in/Ketone"},{"id":1279814,"name":"Heterocyclic compounds","url":"https://www.academia.edu/Documents/in/Heterocyclic_compounds"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"},{"id":1868097,"name":"Selectivity","url":"https://www.academia.edu/Documents/in/Selectivity"}],"urls":[{"id":35508066,"url":"https://doi.org/10.1021/ja076001+"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342620"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342620/Functional_Materials_from_Self_Assembled_Bis_urea_Macrocycles"><img alt="Research paper thumbnail of Functional Materials from Self-Assembled Bis-urea Macrocycles" class="work-thumbnail" src="https://attachments.academia-assets.com/107497310/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342620/Functional_Materials_from_Self_Assembled_Bis_urea_Macrocycles">Functional Materials from Self-Assembled Bis-urea Macrocycles</a></div><div class="wp-workCard_item"><span>Accounts of Chemical Research</span><span>, Apr 30, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5d8bb27b167fb73ef927519c12aaed77" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497310,"asset_id":109342620,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497310/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342620"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342620"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342620; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342620]").text(description); $(".js-view-count[data-work-id=109342620]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342620; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342620']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342620, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5d8bb27b167fb73ef927519c12aaed77" } } $('.js-work-strip[data-work-id=109342620]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342620,"title":"Functional Materials from Self-Assembled Bis-urea Macrocycles","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"CONSPECTUS: This Account highlights the work from our laboratories on bisurea macrocycles constructed from two C-shaped spacers and two urea groups. These simple molecular units assembled with high fidelity into columnar structures guided by the three-centered urea hydrogen bonding motif and aryl stacking interactions. Individual columns are aligned and closely packed together to afford functional and homogeneous microporous crystals. This approach allows for precise and rational control over the dimensions of the columnar structure simply by changing the small molecular unit. When the macrocyclic unit lacks a cavity, columnar assembly gives strong pillars. Strong pillars with external functional groups such as basic lone pairs can expand like clays to accept guests between the pillars. Macrocycles that contain sizable interior cavities assemble into porous molecular crystals with aligned, well-defined columnar pores that are accessible to gases and guests. Herein, we examine the optimal design of the macrocyclic unit that leads to columnar assembly in high fidelity and probe the feasibility of incorporating a second functional group within the macrocycles. The porous molecular crystals prepared through the self-assembly of bis-urea macrocycles display surface areas similar to zeolites but lower than MOFs. Their simple one-dimensional channels are well-suited for studying binding, investigating transport, diffusion and exchange, and monitoring the effects of encapsulation on reaction mechanism and product distribution. Guests that complement the size, shape, and polarity of the channels can be absorbed into these porous crystals with repeatable stoichiometry to form solid host−guest complexes. Heating or extraction with an organic solvent enables desorption or removal of the guest and subsequent recovery of the solid host. Further, these porous crystals can be used as containers for the selective [2 + 2] cycloadditions of small enones such as 2-cyclohexenone or 3-methyl-cyclopentenone, while larger hosts bind and facilitate the photodimerization of coumarin. When the host framework incorporates benzophenone, a triplet sensitizer, UVirradiation in the presence of oxygen efficiently generates singlet oxygen. Complexes of this host were employed to influence the selectivity of photooxidations of 2-methyl-2-butene and cumene with singlet oxygen. Small systematic changes in the channel and bound reactants should enable systematic evaluation of the effects of channel dimensions, guest dimensions, and channel−guest interactions on the processes of absorption, diffusion, and reaction of guests within these nanochannels. Such studies could help in the development of new materials for separations, gas storage, and catalysis.","publication_date":{"day":30,"month":4,"year":2014,"errors":{}},"publication_name":"Accounts of Chemical Research","grobid_abstract_attachment_id":107497310},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342620/Functional_Materials_from_Self_Assembled_Bis_urea_Macrocycles","translated_internal_url":"","created_at":"2023-11-18T08:18:34.543-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497310/thumbnails/1.jpg","file_name":"ar500106f20231118-1-69qqw.pdf","download_url":"https://www.academia.edu/attachments/107497310/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Functional_Materials_from_Self_Assembled.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497310/ar500106f20231118-1-69qqw-libre.pdf?1700329728=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_Materials_from_Self_Assembled.pdf\u0026Expires=1732495855\u0026Signature=BKReNrM9BQhFdICzMW4M4NwWSffkfJuu-lH2vsMVshFpO4JZrmko9nw05lWso3hRYFp181A96Q3BPe6s9ppqaKT-NVBJ9hQpnGGGERCDXE1XRBNU5vlj-LujTx6LD5-T76YZuZ~g7hiQp0CN51K5C6HfVfpM7YuJZFbt5IT3sEAzvrxYhTMBb0voP0yBP4QVCYyjwjR5IbTNs7tXetOxj3NWvrcHh7eiCJ7FY0XAshBDxr5e1ebkrMRF45Wo0ZRgc8ZIudPfAX~B0ksKxWlTs6-aCFC2tiPpO1Oq3Jtp03Roy0AEfakNaMKyeokF1EgKlLxMFhfiu-SVGMfYOgw4kA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Functional_Materials_from_Self_Assembled_Bis_urea_Macrocycles","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497310/thumbnails/1.jpg","file_name":"ar500106f20231118-1-69qqw.pdf","download_url":"https://www.academia.edu/attachments/107497310/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Functional_Materials_from_Self_Assembled.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497310/ar500106f20231118-1-69qqw-libre.pdf?1700329728=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_Materials_from_Self_Assembled.pdf\u0026Expires=1732495855\u0026Signature=BKReNrM9BQhFdICzMW4M4NwWSffkfJuu-lH2vsMVshFpO4JZrmko9nw05lWso3hRYFp181A96Q3BPe6s9ppqaKT-NVBJ9hQpnGGGERCDXE1XRBNU5vlj-LujTx6LD5-T76YZuZ~g7hiQp0CN51K5C6HfVfpM7YuJZFbt5IT3sEAzvrxYhTMBb0voP0yBP4QVCYyjwjR5IbTNs7tXetOxj3NWvrcHh7eiCJ7FY0XAshBDxr5e1ebkrMRF45Wo0ZRgc8ZIudPfAX~B0ksKxWlTs6-aCFC2tiPpO1Oq3Jtp03Roy0AEfakNaMKyeokF1EgKlLxMFhfiu-SVGMfYOgw4kA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":11413,"name":"Functional Materials","url":"https://www.academia.edu/Documents/in/Functional_Materials"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1957004,"name":"Stacking","url":"https://www.academia.edu/Documents/in/Stacking"}],"urls":[{"id":35508065,"url":"https://doi.org/10.1021/ar500106f"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342619"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342619/Interplay_between_Hydrogen_and_Halogen_Bonding_in_Cocrystals_of_Dipyridinylmethyl_Oxalamides_and_Tetrafluorodiiodobenzenes"><img alt="Research paper thumbnail of Interplay between Hydrogen and Halogen Bonding in Cocrystals of Dipyridinylmethyl Oxalamides and Tetrafluorodiiodobenzenes" class="work-thumbnail" src="https://attachments.academia-assets.com/107497304/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342619/Interplay_between_Hydrogen_and_Halogen_Bonding_in_Cocrystals_of_Dipyridinylmethyl_Oxalamides_and_Tetrafluorodiiodobenzenes">Interplay between Hydrogen and Halogen Bonding in Cocrystals of Dipyridinylmethyl Oxalamides and Tetrafluorodiiodobenzenes</a></div><div class="wp-workCard_item"><span>Crystal Growth & Design</span><span>, Aug 22, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="00c60c34cf93041913fa01946a772332" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497304,"asset_id":109342619,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497304/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342619"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342619"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342619; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342619]").text(description); $(".js-view-count[data-work-id=109342619]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342619; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342619']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342619, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "00c60c34cf93041913fa01946a772332" } } $('.js-work-strip[data-work-id=109342619]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342619,"title":"Interplay between Hydrogen and Halogen Bonding in Cocrystals of Dipyridinylmethyl Oxalamides and Tetrafluorodiiodobenzenes","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Materials and Methods Characterization of Compounds: All DPOA ligands were synthesized by the Daniel Reger group and used as received. All TFDIB isomers and solvents were purchased from Oak Ridge Chemical®, Thermo Fisher Scientific®, VWR®, or TCI America® and were used as received without further. 1 HNMR spectra were recorded on a Bruker Avance III-HD spectrometer (300 MHz). Chemical shifts are reported as (δ ppm) with the corresponding integration values. High-resolution mass spectrum data was recorded using a direct exposure probe (DEP) in electron ionization (EI) mode on a Waters QTOF-I quadrupole time-of-flight mass spectrometer. FT-IR data was acquired. FT-IR spectra were obtained using a Perkin Elmer Spectrum 100 FT-IR Spectrometer. Background spectra were recorded from 650 to 4000 cm-1 and taken in 4 scans. The crystalline sample was then added to the sample stage until transmittance was less than 85%. 32 scans were then taken from 650 to 4000 cm-1 to obtain spectra. Crystal Growth. To obtain crystals of the parent ligands, the DPOA ligands (20 mg) were dissolved in a minimal volume of solvent, the solution was filtered, and left to slowly evaporate for 3-5 days until crystals formed. The co-crystals were synthesized by grinding 1:1 stoichiometric ratio of the TFDIB co-formers (29.6 mg, 0.07 mmol) and DPOA ligands (20 mg, 0.07 mmol) for approximately 2 min with 3-5 drops of CHCl3. Half of this mixture was added to a vial, and gently heated (when needed) in a minimal amount of solvent until completely dissolved. The samples were then allowed to slowly evaporate for 4-6 days until crystals were formed. The other half of the ground mixture dissolved in DMSO, and water was allowed to vapor diffuse into the solution for approximately 5 days until crystals formed. Both methods were repeated with multiple solvents until co-crystals were obtained. Crystal Structure Determination: X-ray intensity data was collected at 100(2) K using a Bruker D8 QUEST diffractometer equipped with a PHOTON-100 CMOS area detector and an Incoatec microfocus source (Mo Kα radiation, λ = 0.71073 Å). The raw area detector data frames were reduced and corrected for absorption effects using the Bruker APEX3, SAINT+ and SADABS programs. 1,2 Final unit cell parameters were determined by least-squares refinement of reflections taken from the data set. The structures were solved with SHELXT. 3 Subsequent difference Fourier calculations and full-matrix least-squares refinement against F 2 were performed with SHELXL-2016 3 using OLEX2. 4 Electrostatic Potential Calculations. Electrostatic potentials were calculated using Spartan 10' software package. The crystal structure files (CIFs) of the DPOA compounds were imported and energetically optimized. The energies were then calculated using DFT B3YLP level of theory, using a 6-311++G** basis set under vacuum. Electrostatic potentials for best donor and acceptor were determined using the electrostatic potential map (0.002 e a.u. isovalue) as automatically calculated by the Spartan 10' software. Electrostatic potentials of other donors and acceptors were obtained by manually searching the atom of interest until the value with the largest absolute value was found.","publication_date":{"day":22,"month":8,"year":2019,"errors":{}},"publication_name":"Crystal Growth \u0026 Design","grobid_abstract_attachment_id":107497304},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342619/Interplay_between_Hydrogen_and_Halogen_Bonding_in_Cocrystals_of_Dipyridinylmethyl_Oxalamides_and_Tetrafluorodiiodobenzenes","translated_internal_url":"","created_at":"2023-11-18T08:18:34.305-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497304,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497304/thumbnails/1.jpg","file_name":"17505875.pdf","download_url":"https://www.academia.edu/attachments/107497304/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interplay_between_Hydrogen_and_Halogen_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497304/17505875-libre.pdf?1700329762=\u0026response-content-disposition=attachment%3B+filename%3DInterplay_between_Hydrogen_and_Halogen_B.pdf\u0026Expires=1732495855\u0026Signature=Mn0CTPqtiaskZCBaSxXZKXXYR9gzHT3m-ZNIBUYPg0UEXklJHXGcgJ28Hz-XoI-2kCa3RMavRcbU1Pf7A21RpveP2QVwUdFE24tyGn8oGoX7oISqd8VlqYujEjRwY~LWjZbEkrtRssnbRT0nznJ1tkTVF-dY~9st1WCtU1pr-NoGdF9ymVt8o8GhLJdUL~FXsOy~Wg2BBC19l0NKvfe772GrGb4VOH4oeie8SYIshd~lrqk4i79XNiQj5P2iegcpyJUus1-X4cJXGE7hMinG5G3ZnIPFpDq2~YtSsmxVCGLTvoaJerac97-K94U0FEgmujmScfd1f487MLyAkldK-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interplay_between_Hydrogen_and_Halogen_Bonding_in_Cocrystals_of_Dipyridinylmethyl_Oxalamides_and_Tetrafluorodiiodobenzenes","translated_slug":"","page_count":44,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497304,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497304/thumbnails/1.jpg","file_name":"17505875.pdf","download_url":"https://www.academia.edu/attachments/107497304/download_file?st=MTczMjUwOTkzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interplay_between_Hydrogen_and_Halogen_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497304/17505875-libre.pdf?1700329762=\u0026response-content-disposition=attachment%3B+filename%3DInterplay_between_Hydrogen_and_Halogen_B.pdf\u0026Expires=1732495855\u0026Signature=Mn0CTPqtiaskZCBaSxXZKXXYR9gzHT3m-ZNIBUYPg0UEXklJHXGcgJ28Hz-XoI-2kCa3RMavRcbU1Pf7A21RpveP2QVwUdFE24tyGn8oGoX7oISqd8VlqYujEjRwY~LWjZbEkrtRssnbRT0nznJ1tkTVF-dY~9st1WCtU1pr-NoGdF9ymVt8o8GhLJdUL~FXsOy~Wg2BBC19l0NKvfe772GrGb4VOH4oeie8SYIshd~lrqk4i79XNiQj5P2iegcpyJUus1-X4cJXGE7hMinG5G3ZnIPFpDq2~YtSsmxVCGLTvoaJerac97-K94U0FEgmujmScfd1f487MLyAkldK-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":1190826,"name":"Halogen","url":"https://www.academia.edu/Documents/in/Halogen"}],"urls":[{"id":35508064,"url":"https://doi.org/10.1021/acs.cgd.9b00796"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342618"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342618/Pyridyl_phenylethynylene_bis_urea_macrocycles_self_assembly_and_utility_as_a_nanoreactor_for_the_selective_photoreaction_of_isoprene"><img alt="Research paper thumbnail of Pyridyl-phenylethynylene bis-urea macrocycles: self-assembly and utility as a nanoreactor for the selective photoreaction of isoprene" class="work-thumbnail" src="https://attachments.academia-assets.com/107497308/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342618/Pyridyl_phenylethynylene_bis_urea_macrocycles_self_assembly_and_utility_as_a_nanoreactor_for_the_selective_photoreaction_of_isoprene">Pyridyl-phenylethynylene bis-urea macrocycles: self-assembly and utility as a nanoreactor for the selective photoreaction of isoprene</a></div><div class="wp-workCard_item"><span>RSC Advances</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9ccc680db2a23cc414175638eb3e956e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497308,"asset_id":109342618,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497308/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342618"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342618"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342618; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342618]").text(description); $(".js-view-count[data-work-id=109342618]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342618; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342618']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342618, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9ccc680db2a23cc414175638eb3e956e" } } $('.js-work-strip[data-work-id=109342618]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342618,"title":"Pyridyl-phenylethynylene bis-urea macrocycles: self-assembly and utility as a nanoreactor for the selective photoreaction of isoprene","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"RSC Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342618/Pyridyl_phenylethynylene_bis_urea_macrocycles_self_assembly_and_utility_as_a_nanoreactor_for_the_selective_photoreaction_of_isoprene","translated_internal_url":"","created_at":"2023-11-18T08:18:34.100-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497308,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497308/thumbnails/1.jpg","file_name":"95730fae928a4386453f139c7da1a879580e.pdf","download_url":"https://www.academia.edu/attachments/107497308/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pyridyl_phenylethynylene_bis_urea_macroc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497308/95730fae928a4386453f139c7da1a879580e-libre.pdf?1700329732=\u0026response-content-disposition=attachment%3B+filename%3DPyridyl_phenylethynylene_bis_urea_macroc.pdf\u0026Expires=1732495855\u0026Signature=KybMWpJ0mtUvCaidTAhE7dNc8W-ugfW2iOV01nySwCzRdptiZqTQDRhd7oNFjm2DyBTAb8Icq-r2I54sd0SyGuZZMwjYS3retrq-ldnFw52tUtih5O9oGERyf6c-JI95A2xVpDcV2Jxa10ho88UJQ0EhCRbgBhwibfYf7bpAb9LK2EnP~UK3ZaASsg4kid4Iy77QYyJhtDgRuTYW9P5tauMCRIeJvE3auIeBU1Rr9INjSyWdgASnT~vjR~ZYfn3G6KeTgP2el7eqSwhU31WmSkBtsVFvGynj1c~v0fmCVJqSA6Zfb0v57T3D7m-e~L39gx6bWE0h9CTMZJTvD2HGjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pyridyl_phenylethynylene_bis_urea_macrocycles_self_assembly_and_utility_as_a_nanoreactor_for_the_selective_photoreaction_of_isoprene","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497308,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497308/thumbnails/1.jpg","file_name":"95730fae928a4386453f139c7da1a879580e.pdf","download_url":"https://www.academia.edu/attachments/107497308/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pyridyl_phenylethynylene_bis_urea_macroc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497308/95730fae928a4386453f139c7da1a879580e-libre.pdf?1700329732=\u0026response-content-disposition=attachment%3B+filename%3DPyridyl_phenylethynylene_bis_urea_macroc.pdf\u0026Expires=1732495855\u0026Signature=KybMWpJ0mtUvCaidTAhE7dNc8W-ugfW2iOV01nySwCzRdptiZqTQDRhd7oNFjm2DyBTAb8Icq-r2I54sd0SyGuZZMwjYS3retrq-ldnFw52tUtih5O9oGERyf6c-JI95A2xVpDcV2Jxa10ho88UJQ0EhCRbgBhwibfYf7bpAb9LK2EnP~UK3ZaASsg4kid4Iy77QYyJhtDgRuTYW9P5tauMCRIeJvE3auIeBU1Rr9INjSyWdgASnT~vjR~ZYfn3G6KeTgP2el7eqSwhU31WmSkBtsVFvGynj1c~v0fmCVJqSA6Zfb0v57T3D7m-e~L39gx6bWE0h9CTMZJTvD2HGjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":32909,"name":"Polymerization","url":"https://www.academia.edu/Documents/in/Polymerization"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"},{"id":162178,"name":"Isoprene","url":"https://www.academia.edu/Documents/in/Isoprene"},{"id":184000,"name":"Oligomer","url":"https://www.academia.edu/Documents/in/Oligomer"},{"id":191586,"name":"RSC","url":"https://www.academia.edu/Documents/in/RSC"},{"id":387449,"name":"Monomer","url":"https://www.academia.edu/Documents/in/Monomer"},{"id":3083079,"name":"Dispersity","url":"https://www.academia.edu/Documents/in/Dispersity"}],"urls":[{"id":35508063,"url":"https://doi.org/10.1039/c6ra18681e"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342617"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342617/Fluorescence_Polarization_Measurements_to_Probe_Alignment_of_a_Bithiophene_Dye_in_One_Dimensional_Channels_of_Self_Assembled_Phenylethynylene_Bis_Urea_Macrocycle_Crystals"><img alt="Research paper thumbnail of Fluorescence Polarization Measurements to Probe Alignment of a Bithiophene Dye in One-Dimensional Channels of Self-Assembled Phenylethynylene Bis-Urea Macrocycle Crystals" class="work-thumbnail" src="https://attachments.academia-assets.com/107497265/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342617/Fluorescence_Polarization_Measurements_to_Probe_Alignment_of_a_Bithiophene_Dye_in_One_Dimensional_Channels_of_Self_Assembled_Phenylethynylene_Bis_Urea_Macrocycle_Crystals">Fluorescence Polarization Measurements to Probe Alignment of a Bithiophene Dye in One-Dimensional Channels of Self-Assembled Phenylethynylene Bis-Urea Macrocycle Crystals</a></div><div class="wp-workCard_item"><span>Journal of Physical Chemistry C</span><span>, Aug 10, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="90cf0c2a2bec7aef2e26c68a326c5710" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497265,"asset_id":109342617,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497265/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342617"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342617"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342617; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342617]").text(description); $(".js-view-count[data-work-id=109342617]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342617; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342617']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342617, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "90cf0c2a2bec7aef2e26c68a326c5710" } } $('.js-work-strip[data-work-id=109342617]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342617,"title":"Fluorescence Polarization Measurements to Probe Alignment of a Bithiophene Dye in One-Dimensional Channels of Self-Assembled Phenylethynylene Bis-Urea Macrocycle Crystals","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"This thesis describes the use of polarized fluorescence microscopy to directly probe guest molecule orientation in bis-urea macrocycle crystals. These macrocycles assemble to afford one-dimensional (1D) microchannels ∼9 Å in diameter that have previously been shown to exhibit normal Fickian diffusion and induce selective reactivity among the confined guest molecules. In the present work, we take advantage of the quasi-1D morphology of fiber-like microcrystals with the extended dimension corresponding to the channel axis to measure excitation and emission polarization values for a bithiophene guest. Guest fluorescence is shown to be polarized along the fiber axis with emission polarization values up to 0.729, indicating a high degree of orientational order within the 1D channels. The observed behavior is consistent with calculated results for the guest orientation and electronic transition dipole moment. The results indicate the value of functional fluorescent probes as a measure of guest confinement in low-dimensional environments. vi","publication_date":{"day":10,"month":8,"year":2017,"errors":{}},"publication_name":"Journal of Physical Chemistry C","grobid_abstract_attachment_id":107497265},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342617/Fluorescence_Polarization_Measurements_to_Probe_Alignment_of_a_Bithiophene_Dye_in_One_Dimensional_Channels_of_Self_Assembled_Phenylethynylene_Bis_Urea_Macrocycle_Crystals","translated_internal_url":"","created_at":"2023-11-18T08:18:33.855-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497265/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497265/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluorescence_Polarization_Measurements_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497265/viewcontent-libre.pdf?1700329750=\u0026response-content-disposition=attachment%3B+filename%3DFluorescence_Polarization_Measurements_t.pdf\u0026Expires=1732495855\u0026Signature=UO59Pdvisa5aKwOOXSsrbREg-G0mDhAaWkdhhlNqfoR852STF7lSLiqLRstcM4IlTO2219En1VtBCKBA3G1nEXI9e9uRdANHDkZY53eDmBcm0LVNW9t2v~KWEjkqRVhomTFdqTIusyaJFEYNQFwHX5CuRkcNJ81zpilLAc7qC6hbBSd3UmWm1WUMg84KieegEHsST6DRh0al6xTz09MF21ak87~V~kztS4TdWpHUY64JlglbSNYgfJRCB4oJdwoLIBn5IW0flyQEIfCg0O252F8SA0i8M2I8A5ynIwk5LnfyQw5YCfmbQNTwIDXnjixFHko61e-nvBYUlw3n5vK7JQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluorescence_Polarization_Measurements_to_Probe_Alignment_of_a_Bithiophene_Dye_in_One_Dimensional_Channels_of_Self_Assembled_Phenylethynylene_Bis_Urea_Macrocycle_Crystals","translated_slug":"","page_count":95,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497265,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497265/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497265/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluorescence_Polarization_Measurements_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497265/viewcontent-libre.pdf?1700329750=\u0026response-content-disposition=attachment%3B+filename%3DFluorescence_Polarization_Measurements_t.pdf\u0026Expires=1732495855\u0026Signature=UO59Pdvisa5aKwOOXSsrbREg-G0mDhAaWkdhhlNqfoR852STF7lSLiqLRstcM4IlTO2219En1VtBCKBA3G1nEXI9e9uRdANHDkZY53eDmBcm0LVNW9t2v~KWEjkqRVhomTFdqTIusyaJFEYNQFwHX5CuRkcNJ81zpilLAc7qC6hbBSd3UmWm1WUMg84KieegEHsST6DRh0al6xTz09MF21ak87~V~kztS4TdWpHUY64JlglbSNYgfJRCB4oJdwoLIBn5IW0flyQEIfCg0O252F8SA0i8M2I8A5ynIwk5LnfyQw5YCfmbQNTwIDXnjixFHko61e-nvBYUlw3n5vK7JQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":107497266,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497266/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497266/download_file","bulk_download_file_name":"Fluorescence_Polarization_Measurements_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497266/viewcontent-libre.pdf?1700329747=\u0026response-content-disposition=attachment%3B+filename%3DFluorescence_Polarization_Measurements_t.pdf\u0026Expires=1732495855\u0026Signature=MMKQcXN5by~Nxsg~KF8kzmr7jDmj0N9sMOtovCWd8-ga6Ral4iVuledn70GOfG~6219Ziktmw-PQwGhjYBftV4LsvFd0Fodu0TMsOdrqVTmRfmb16GnzJZyKnH6bML~RFwVEDaVh6Q5DYdS8lkQ6Q1bUkYhusnyuuyGsWSe9j2kGMWWhR3wnjTLnEEkXkXRyJPvbfInhn3MWiyAAFoVkbjUrWgoPEgyLFU3ixAzKSjlcj4YSozBas~1sdZ4RBeOBRWIsihWhJyca19vhooEafx-OJMiLtRNU2oynXfRXO0EFv8fJVdl8C-8sOUmEP2FhGPCeBv2Ro3OeIwT9MSmz1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"},{"id":214555,"name":"Dipole","url":"https://www.academia.edu/Documents/in/Dipole"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1029023,"name":"Molecule","url":"https://www.academia.edu/Documents/in/Molecule"}],"urls":[{"id":35508062,"url":"https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=5540\u0026context=etd"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342616"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342616/Manipulating_the_cavity_of_a_porous_material_changes_the_photoreactivity_of_included_guests"><img alt="Research paper thumbnail of Manipulating the cavity of a porous material changes the photoreactivity of included guests" class="work-thumbnail" src="https://attachments.academia-assets.com/107497264/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342616/Manipulating_the_cavity_of_a_porous_material_changes_the_photoreactivity_of_included_guests">Manipulating the cavity of a porous material changes the photoreactivity of included guests</a></div><div class="wp-workCard_item"><span>Chemical Communications</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="741358117e33983bfb92ef7a6e99cede" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497264,"asset_id":109342616,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497264/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342616"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342616"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342616; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342616]").text(description); $(".js-view-count[data-work-id=109342616]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342616; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342616']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342616, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "741358117e33983bfb92ef7a6e99cede" } } $('.js-work-strip[data-work-id=109342616]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342616,"title":"Manipulating the cavity of a porous material changes the photoreactivity of included guests","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","grobid_abstract":"Changing an ether to a ketone within the framework of a bisurea macrocycle has little effect on the supramolecular assembly of this building block into porous crystals but introduces a triplet sensitizer into the framework that dramatically alters the photochemical reactions of included guests.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Chemical Communications","grobid_abstract_attachment_id":107497264},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342616/Manipulating_the_cavity_of_a_porous_material_changes_the_photoreactivity_of_included_guests","translated_internal_url":"","created_at":"2023-11-18T08:18:33.654-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497264,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497264/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497264/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Manipulating_the_cavity_of_a_porous_mate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497264/viewcontent-libre.pdf?1700329717=\u0026response-content-disposition=attachment%3B+filename%3DManipulating_the_cavity_of_a_porous_mate.pdf\u0026Expires=1732495855\u0026Signature=cDvGRs52WcwCoLxbGvN8g70UhuRvxQ9n~m~JUVjnnuanELEast3kDGQ8CO7E9cKT5VSoOwmZ~QoGa6TLrmoQwMpoXcGAhQJhNWVckXMilmMflNTqWxI~Z8g7b6puh-xdfHkOW1ciBDMb0HdwhCkVQgD8jedjeMikqgdXMpDYCVt-MC~JDY8qbDhNd8bBWyzIaER2iLWe5GmgnaF0zxz92uD~GsEOn18v4-wRUIyU6Gz6UKQecnhmm8kvUXmqNZx1PqKxQdtfipqkmsDbrY3OFW9ApbI7gdgI9bQij-S2V2LFsho0ZG71x7Ps8J7aTYzdZG3jiOmesrEQu2SxoW3udw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Manipulating_the_cavity_of_a_porous_material_changes_the_photoreactivity_of_included_guests","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497264,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497264/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497264/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Manipulating_the_cavity_of_a_porous_mate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497264/viewcontent-libre.pdf?1700329717=\u0026response-content-disposition=attachment%3B+filename%3DManipulating_the_cavity_of_a_porous_mate.pdf\u0026Expires=1732495855\u0026Signature=cDvGRs52WcwCoLxbGvN8g70UhuRvxQ9n~m~JUVjnnuanELEast3kDGQ8CO7E9cKT5VSoOwmZ~QoGa6TLrmoQwMpoXcGAhQJhNWVckXMilmMflNTqWxI~Z8g7b6puh-xdfHkOW1ciBDMb0HdwhCkVQgD8jedjeMikqgdXMpDYCVt-MC~JDY8qbDhNd8bBWyzIaER2iLWe5GmgnaF0zxz92uD~GsEOn18v4-wRUIyU6Gz6UKQecnhmm8kvUXmqNZx1PqKxQdtfipqkmsDbrY3OFW9ApbI7gdgI9bQij-S2V2LFsho0ZG71x7Ps8J7aTYzdZG3jiOmesrEQu2SxoW3udw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":107497263,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497263/thumbnails/1.jpg","file_name":"viewcontent.pdf","download_url":"https://www.academia.edu/attachments/107497263/download_file","bulk_download_file_name":"Manipulating_the_cavity_of_a_porous_mate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497263/viewcontent-libre.pdf?1700329716=\u0026response-content-disposition=attachment%3B+filename%3DManipulating_the_cavity_of_a_porous_mate.pdf\u0026Expires=1732495855\u0026Signature=D5duqme7In3Z8YM81XPuj5MQ59rs3BisD9vYcw3AgmfQlmqsZg4TLvi7GK2ab2rUjCbgy7CoPa~GRoMyHSCQejA9p62qkvO17BkiH5oUvYJbqsXfDGof09PkShrJpC7lBkZQx7ALmUAl-dxno26wnFhzIh2-HvhuEo0wAcBtK0cBqqh9TUO1f5cjXQTGtsksSGcKziFV2jo15v1cu0arik15xd0~DpiLwbYV8wwGjkj0sOwWOYQrrhtMEejmJ2Zeq6EhnB0ZvBKvfV4bN5m-2FBwu-El8~3o2nJjX0EC0wCmInUwH309js0oeK4roQTDLWMNdS045NpDrs1~9mneOg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":4493,"name":"Supramolecular Chemistry","url":"https://www.academia.edu/Documents/in/Supramolecular_Chemistry"},{"id":5104,"name":"Photochemistry","url":"https://www.academia.edu/Documents/in/Photochemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":55388,"name":"Organic Synthesis","url":"https://www.academia.edu/Documents/in/Organic_Synthesis"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":160969,"name":"Acknowledgement","url":"https://www.academia.edu/Documents/in/Acknowledgement"},{"id":199319,"name":"Citation","url":"https://www.academia.edu/Documents/in/Citation"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":267971,"name":"Download","url":"https://www.academia.edu/Documents/in/Download"},{"id":508740,"name":"Porous Material","url":"https://www.academia.edu/Documents/in/Porous_Material"},{"id":687047,"name":"Ketone","url":"https://www.academia.edu/Documents/in/Ketone"},{"id":1262355,"name":"Ethers","url":"https://www.academia.edu/Documents/in/Ethers"},{"id":1294768,"name":"Chemical Engineering Communications","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Communications"},{"id":2674022,"name":"Permission","url":"https://www.academia.edu/Documents/in/Permission"},{"id":3024741,"name":"ketones","url":"https://www.academia.edu/Documents/in/ketones"}],"urls":[{"id":35508061,"url":"https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1367\u0026context=chem_facpub"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342615"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/109342615/Self_Assembling_Bisurea_Macrocycles_Used_as_an_Organic_Zeolite_for_a_Highly_Stereoselective_Photodimerization_of_2_Cyclohexenone"><img alt="Research paper thumbnail of Self-Assembling Bisurea Macrocycles Used as an Organic Zeolite for a Highly Stereoselective Photodimerization of 2-Cyclohexenone" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/109342615/Self_Assembling_Bisurea_Macrocycles_Used_as_an_Organic_Zeolite_for_a_Highly_Stereoselective_Photodimerization_of_2_Cyclohexenone">Self-Assembling Bisurea Macrocycles Used as an Organic Zeolite for a Highly Stereoselective Photodimerization of 2-Cyclohexenone</a></div><div class="wp-workCard_item"><span>Journal of the American Chemical Society</span><span>, Jun 1, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We report a highly selective 2 + 2 cycloaddition of 2-cyclohexenone in the presence of self-assem...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We report a highly selective 2 + 2 cycloaddition of 2-cyclohexenone in the presence of self-assembled bisurea macrocycles that yields the head-to-tail photodimer. The reaction proceeds with high conversion and with decreased incidence of secondary photorearrangement. Furthermore, the product can be extracted from the assembly, and the solid assembly is readily recovered and reused, much like a zeolite.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342615"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342615"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342615; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342615]").text(description); $(".js-view-count[data-work-id=109342615]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342615; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342615']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342615, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=109342615]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342615,"title":"Self-Assembling Bisurea Macrocycles Used as an Organic Zeolite for a Highly Stereoselective Photodimerization of 2-Cyclohexenone","translated_title":"","metadata":{"abstract":"We report a highly selective 2 + 2 cycloaddition of 2-cyclohexenone in the presence of self-assembled bisurea macrocycles that yields the head-to-tail photodimer. The reaction proceeds with high conversion and with decreased incidence of secondary photorearrangement. Furthermore, the product can be extracted from the assembly, and the solid assembly is readily recovered and reused, much like a zeolite.","publisher":"American Chemical Society","publication_date":{"day":1,"month":6,"year":2006,"errors":{}},"publication_name":"Journal of the American Chemical Society"},"translated_abstract":"We report a highly selective 2 + 2 cycloaddition of 2-cyclohexenone in the presence of self-assembled bisurea macrocycles that yields the head-to-tail photodimer. The reaction proceeds with high conversion and with decreased incidence of secondary photorearrangement. Furthermore, the product can be extracted from the assembly, and the solid assembly is readily recovered and reused, much like a zeolite.","internal_url":"https://www.academia.edu/109342615/Self_Assembling_Bisurea_Macrocycles_Used_as_an_Organic_Zeolite_for_a_Highly_Stereoselective_Photodimerization_of_2_Cyclohexenone","translated_internal_url":"","created_at":"2023-11-18T08:18:33.453-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Self_Assembling_Bisurea_Macrocycles_Used_as_an_Organic_Zeolite_for_a_Highly_Stereoselective_Photodimerization_of_2_Cyclohexenone","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":5104,"name":"Photochemistry","url":"https://www.academia.edu/Documents/in/Photochemistry"},{"id":11073,"name":"Self Assembly","url":"https://www.academia.edu/Documents/in/Self_Assembly"},{"id":21732,"name":"Magnetic Resonance Spectroscopy","url":"https://www.academia.edu/Documents/in/Magnetic_Resonance_Spectroscopy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":55388,"name":"Organic Synthesis","url":"https://www.academia.edu/Documents/in/Organic_Synthesis"},{"id":55543,"name":"Zeolites","url":"https://www.academia.edu/Documents/in/Zeolites"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":102203,"name":"Zeolite","url":"https://www.academia.edu/Documents/in/Zeolite"},{"id":112318,"name":"Molecular Sieve","url":"https://www.academia.edu/Documents/in/Molecular_Sieve"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":981102,"name":"Photochemical Reaction","url":"https://www.academia.edu/Documents/in/Photochemical_Reaction"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"},{"id":1809037,"name":"Dimerization","url":"https://www.academia.edu/Documents/in/Dimerization"},{"id":1863718,"name":"The American","url":"https://www.academia.edu/Documents/in/The_American"},{"id":3889175,"name":"stereoisomerism","url":"https://www.academia.edu/Documents/in/stereoisomerism"}],"urls":[{"id":35508060,"url":"https://doi.org/10.1021/ja062337s"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342614"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342614/Thermal_Reaction_of_a_Columnar_Assembled_Diacetylene_Macrocycle"><img alt="Research paper thumbnail of Thermal Reaction of a Columnar Assembled Diacetylene Macrocycle" class="work-thumbnail" src="https://attachments.academia-assets.com/107497306/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342614/Thermal_Reaction_of_a_Columnar_Assembled_Diacetylene_Macrocycle">Thermal Reaction of a Columnar Assembled Diacetylene Macrocycle</a></div><div class="wp-workCard_item"><span>Journal of the American Chemical Society</span><span>, Mar 25, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b7faa2d0f4f77ab592a36c61a861388b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497306,"asset_id":109342614,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497306/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342614"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342614"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342614; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342614]").text(description); $(".js-view-count[data-work-id=109342614]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342614; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342614']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342614, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b7faa2d0f4f77ab592a36c61a861388b" } } $('.js-work-strip[data-work-id=109342614]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342614,"title":"Thermal Reaction of a Columnar Assembled Diacetylene Macrocycle","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Conjugated polymers have demonstrated utility in organic solar cells, 1 chemical sensors, 2 and optoelectronics. 3 Microporous materials such as metal organic frameworks (MOFs) and zeolites show practical applications in gas storage, 4 separation, 5 catalysis, 6 and as confined environments for reactions. 7 MOFs and covalently linked organic frameworks 8 utilize transition metal ions or organic monomeric units to afford porous materials with high surface areas and excellent thermal stabilities. An alternate strategy for forming porous materials relies on the columnar assembly of molecular building blocks directed by noncovalent interactions. We sought to combine the attributes of a conjugated polymer with porous materials. Herein, we report a diacetylene macrocycle that was readily synthesized and self-assembled into columns to afford porous crystals (Figure 1). Heating initiated a topochemical polymerization of the preorganized diacetylene units to give covalent conjugated polydiacetylenes (PDAs). These stable conjugated materials maintained permanent porosity as evidenced by their type I gas adsorption isotherms with CO 2 (g). Conjugated porous PDAs could have applications for sensing and in electronics.","publication_date":{"day":25,"month":3,"year":2010,"errors":{}},"publication_name":"Journal of the American Chemical Society","grobid_abstract_attachment_id":107497306},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342614/Thermal_Reaction_of_a_Columnar_Assembled_Diacetylene_Macrocycle","translated_internal_url":"","created_at":"2023-11-18T08:18:33.215-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497306/thumbnails/1.jpg","file_name":"00013055_103791.pdf","download_url":"https://www.academia.edu/attachments/107497306/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_Reaction_of_a_Columnar_Assembled.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497306/00013055_103791-libre.pdf?1700329714=\u0026response-content-disposition=attachment%3B+filename%3DThermal_Reaction_of_a_Columnar_Assembled.pdf\u0026Expires=1732495855\u0026Signature=FtIkopp5IziY3C86GZWSgezb2TvlFiT0kXazag6hFkfMslDEcQapzDGhCu1kpf1S1~hmfMURs0BkBkvX8L84s-l-5CBatmn1RqAOyd6Eoin9Au7ZNwaiR5~RyFn4Zt8drUe9numjg5gIMracy880k-T0GVqqiynQPdRND-u8BwL-fqsrvZqfFu9CE-6Gwy~dOWZSa4wp7OS2QlzWKQV4dMwpEoUwsVLeaJqOB2gYLTEg-Tg5CcM9wbApI5VfQbjfSctQ3-GoeiJbC4ldC3bWFqFFQzTpN~UANlJBBkjn60Haw~oDYGPhqGn0VUbTiv3rBM4nwcDiKHwMPn~AY9uvxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thermal_Reaction_of_a_Columnar_Assembled_Diacetylene_Macrocycle","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497306/thumbnails/1.jpg","file_name":"00013055_103791.pdf","download_url":"https://www.academia.edu/attachments/107497306/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_Reaction_of_a_Columnar_Assembled.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497306/00013055_103791-libre.pdf?1700329714=\u0026response-content-disposition=attachment%3B+filename%3DThermal_Reaction_of_a_Columnar_Assembled.pdf\u0026Expires=1732495855\u0026Signature=FtIkopp5IziY3C86GZWSgezb2TvlFiT0kXazag6hFkfMslDEcQapzDGhCu1kpf1S1~hmfMURs0BkBkvX8L84s-l-5CBatmn1RqAOyd6Eoin9Au7ZNwaiR5~RyFn4Zt8drUe9numjg5gIMracy880k-T0GVqqiynQPdRND-u8BwL-fqsrvZqfFu9CE-6Gwy~dOWZSa4wp7OS2QlzWKQV4dMwpEoUwsVLeaJqOB2gYLTEg-Tg5CcM9wbApI5VfQbjfSctQ3-GoeiJbC4ldC3bWFqFFQzTpN~UANlJBBkjn60Haw~oDYGPhqGn0VUbTiv3rBM4nwcDiKHwMPn~AY9uvxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":32909,"name":"Polymerization","url":"https://www.academia.edu/Documents/in/Polymerization"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":484618,"name":"Diacetylene","url":"https://www.academia.edu/Documents/in/Diacetylene"},{"id":816984,"name":"American Chemical Society","url":"https://www.academia.edu/Documents/in/American_Chemical_Society"}],"urls":[{"id":35508059,"url":"https://doi.org/10.1021/ja9107066"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342613"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342613/Thioureas_and_Squaramides_Comparison_with_Ureas_as_Assembly_Directing_Motifs_for_i_m_i_Xylene_Macrocycles"><img alt="Research paper thumbnail of Thioureas and Squaramides: Comparison with Ureas as Assembly Directing Motifs for <i>m</i>-Xylene Macrocycles" class="work-thumbnail" src="https://attachments.academia-assets.com/107497309/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342613/Thioureas_and_Squaramides_Comparison_with_Ureas_as_Assembly_Directing_Motifs_for_i_m_i_Xylene_Macrocycles">Thioureas and Squaramides: Comparison with Ureas as Assembly Directing Motifs for <i>m</i>-Xylene Macrocycles</a></div><div class="wp-workCard_item"><span>Crystal Growth & Design</span><span>, Jan 23, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d576daabaf65ff5f052f6f13d1e98a5b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497309,"asset_id":109342613,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497309/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342613"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342613"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342613; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342613]").text(description); $(".js-view-count[data-work-id=109342613]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342613; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342613']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342613, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d576daabaf65ff5f052f6f13d1e98a5b" } } $('.js-work-strip[data-work-id=109342613]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342613,"title":"Thioureas and Squaramides: Comparison with Ureas as Assembly Directing Motifs for \u003ci\u003em\u003c/i\u003e-Xylene Macrocycles","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Intentional design of crystalline frameworks requires a good understanding of how inter-and intramolecular forces act together to afford solid-state structures. Herein, we synthesize and crystallize bis-thiourea and bissquaramide m-xylene macrocycles and compare the conformational preferences of these functional groups as well as their assembled structures to their bis-urea counterpart. Four new crystal structures of the bis-thiourea macrocycle and the bissquaramide macrocycle are reported. The m-xylene macrocycles of urea, thiourea, and squaramide each display trans− trans conformers in their pure crystal forms. The thiourea macrocycles show edge to face interactions driven by sulfur bonding to afford 2D sheets. This macrocycle also shows an ethylene diamine solvate that displays both trans−trans and cis−trans conformers in the same structure. Solution 2D EXSY NMR studies suggest that these and additional conformations interconvert at room temperature. Squaramide macrocycles display 2D hydrogen bonding networks forming interdigitated cycles using only one of the two available carbonyls for hydrogen bonding. Additionally, the bis-squaramide macrocycle can crystallize as a solvate, where it maintains its original 2D framework with propylene carbonate imbedded in-between its layers. Overall, these findings help build a foundation for predicting how assembly motifs are modulated by macrocyclic building units.","publication_date":{"day":23,"month":1,"year":2018,"errors":{}},"publication_name":"Crystal Growth \u0026 Design","grobid_abstract_attachment_id":107497309},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342613/Thioureas_and_Squaramides_Comparison_with_Ureas_as_Assembly_Directing_Motifs_for_i_m_i_Xylene_Macrocycles","translated_internal_url":"","created_at":"2023-11-18T08:18:33.019-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497309,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497309/thumbnails/1.jpg","file_name":"acs.cgd.7b0155820231118-1-xe2ze0.pdf","download_url":"https://www.academia.edu/attachments/107497309/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thioureas_and_Squaramides_Comparison_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497309/acs.cgd.7b0155820231118-1-xe2ze0-libre.pdf?1700329720=\u0026response-content-disposition=attachment%3B+filename%3DThioureas_and_Squaramides_Comparison_wit.pdf\u0026Expires=1732495855\u0026Signature=cmhnVJYMh118W5LtlqvsK74s8LBEZ35FKyHOU6G9W3Gan0ik52~b6REexm2MsXpulm~~Y1MS6Rdi7PxeOL3CgDbGhg9XwZhpivMwpzlW-Ab-imuFakOv3zfvscH~cbhxBcoqZA6c2mrH4z4VEhYYrOT5po-Qji59seST9bTW1wEDpTbJqsyHFQGLyV00giTAvl4WM3sba5lBXfM-EF5eUGrSwNk5KnyUsrEC0mDPxCzH1DIgmUIMphYQYx9lh7EVLxxQVMsPA1bA6Ge2kdfCLQKRwNcS7uZP5i5-2L8UfRt1G05g8r2Mf32UvvqbwucrdAaqLucRa~kjDbHoGZ9LeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thioureas_and_Squaramides_Comparison_with_Ureas_as_Assembly_Directing_Motifs_for_i_m_i_Xylene_Macrocycles","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497309,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497309/thumbnails/1.jpg","file_name":"acs.cgd.7b0155820231118-1-xe2ze0.pdf","download_url":"https://www.academia.edu/attachments/107497309/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thioureas_and_Squaramides_Comparison_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497309/acs.cgd.7b0155820231118-1-xe2ze0-libre.pdf?1700329720=\u0026response-content-disposition=attachment%3B+filename%3DThioureas_and_Squaramides_Comparison_wit.pdf\u0026Expires=1732495855\u0026Signature=cmhnVJYMh118W5LtlqvsK74s8LBEZ35FKyHOU6G9W3Gan0ik52~b6REexm2MsXpulm~~Y1MS6Rdi7PxeOL3CgDbGhg9XwZhpivMwpzlW-Ab-imuFakOv3zfvscH~cbhxBcoqZA6c2mrH4z4VEhYYrOT5po-Qji59seST9bTW1wEDpTbJqsyHFQGLyV00giTAvl4WM3sba5lBXfM-EF5eUGrSwNk5KnyUsrEC0mDPxCzH1DIgmUIMphYQYx9lh7EVLxxQVMsPA1bA6Ge2kdfCLQKRwNcS7uZP5i5-2L8UfRt1G05g8r2Mf32UvvqbwucrdAaqLucRa~kjDbHoGZ9LeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":502,"name":"Biophysics","url":"https://www.academia.edu/Documents/in/Biophysics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":5398,"name":"Biotechnology","url":"https://www.academia.edu/Documents/in/Biotechnology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":57417,"name":"Bi","url":"https://www.academia.edu/Documents/in/Bi"},{"id":100696,"name":"Combinatorial Chemistry","url":"https://www.academia.edu/Documents/in/Combinatorial_Chemistry"},{"id":229148,"name":"Thiourea","url":"https://www.academia.edu/Documents/in/Thiourea"},{"id":240148,"name":"Hydrogen Bond","url":"https://www.academia.edu/Documents/in/Hydrogen_Bond"},{"id":699829,"name":"Tran","url":"https://www.academia.edu/Documents/in/Tran"},{"id":1944317,"name":"Conformational Isomerism","url":"https://www.academia.edu/Documents/in/Conformational_Isomerism"}],"urls":[{"id":35508058,"url":"https://doi.org/10.1021/acs.cgd.7b01558"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="109342612"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/109342612/Alkali_Metal_Ions_As_Probes_of_Structure_and_Recognition_Properties_of_Macrocyclic_Pyridyl_Urea_Hosts"><img alt="Research paper thumbnail of Alkali Metal Ions As Probes of Structure and Recognition Properties of Macrocyclic Pyridyl Urea Hosts" class="work-thumbnail" src="https://attachments.academia-assets.com/107497303/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/109342612/Alkali_Metal_Ions_As_Probes_of_Structure_and_Recognition_Properties_of_Macrocyclic_Pyridyl_Urea_Hosts">Alkali Metal Ions As Probes of Structure and Recognition Properties of Macrocyclic Pyridyl Urea Hosts</a></div><div class="wp-workCard_item"><span>Journal of Organic Chemistry</span><span>, Jul 20, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="54f3fb08c652a3611d950c5444fc48d8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":107497303,"asset_id":109342612,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/107497303/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="109342612"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="109342612"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 109342612; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=109342612]").text(description); $(".js-view-count[data-work-id=109342612]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 109342612; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='109342612']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 109342612, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "54f3fb08c652a3611d950c5444fc48d8" } } $('.js-work-strip[data-work-id=109342612]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":109342612,"title":"Alkali Metal Ions As Probes of Structure and Recognition Properties of Macrocyclic Pyridyl Urea Hosts","translated_title":"","metadata":{"publisher":"American Chemical Society","publication_date":{"day":20,"month":7,"year":2010,"errors":{}},"publication_name":"Journal of Organic Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/109342612/Alkali_Metal_Ions_As_Probes_of_Structure_and_Recognition_Properties_of_Macrocyclic_Pyridyl_Urea_Hosts","translated_internal_url":"","created_at":"2023-11-18T08:18:32.828-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":49715886,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":107497303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497303/thumbnails/1.jpg","file_name":"4418278.pdf","download_url":"https://www.academia.edu/attachments/107497303/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Alkali_Metal_Ions_As_Probes_of_Structure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497303/4418278-libre.pdf?1700329758=\u0026response-content-disposition=attachment%3B+filename%3DAlkali_Metal_Ions_As_Probes_of_Structure.pdf\u0026Expires=1732495855\u0026Signature=PpVr0RFICfcVPLeW7kwMpPltSaE1qFL9Oc68G9vmmdw6imiCSGSFpQdBzjrnESZj0TogfQ-dbTeGWMcECXRr3ZWFiW1XzcXoG83hVJWDUJPpHUQxefduurXFt1qEiB-hmNdIM0k~kBPI3PItdc~0yEk3Lk137GAqUnOITQCVHydB6kWWuER-r2p2NNW2LEG0hKes6HA7sk9NsrgoEqkUO-z-QxJNwKLeLTISU6QxKTx9LjFHcu0jMSRRpMpgjMMYOTs3UHdlj8bHmD2kMlareDqtyWWbeB2NRZW6ux~Jy8XKrIVmzmGThO-SkwSQiQcZdfkgw-PckaWKx0Wf-EyqOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Alkali_Metal_Ions_As_Probes_of_Structure_and_Recognition_Properties_of_Macrocyclic_Pyridyl_Urea_Hosts","translated_slug":"","page_count":54,"language":"en","content_type":"Work","owner":{"id":49715886,"first_name":"Linda","middle_initials":null,"last_name":"Shimizu","page_name":"LindaShimizu","domain_name":"sc","created_at":"2016-06-06T08:09:22.235-07:00","display_name":"Linda Shimizu","url":"https://sc.academia.edu/LindaShimizu"},"attachments":[{"id":107497303,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/107497303/thumbnails/1.jpg","file_name":"4418278.pdf","download_url":"https://www.academia.edu/attachments/107497303/download_file?st=MTczMjUwOTkzOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Alkali_Metal_Ions_As_Probes_of_Structure.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/107497303/4418278-libre.pdf?1700329758=\u0026response-content-disposition=attachment%3B+filename%3DAlkali_Metal_Ions_As_Probes_of_Structure.pdf\u0026Expires=1732495855\u0026Signature=PpVr0RFICfcVPLeW7kwMpPltSaE1qFL9Oc68G9vmmdw6imiCSGSFpQdBzjrnESZj0TogfQ-dbTeGWMcECXRr3ZWFiW1XzcXoG83hVJWDUJPpHUQxefduurXFt1qEiB-hmNdIM0k~kBPI3PItdc~0yEk3Lk137GAqUnOITQCVHydB6kWWuER-r2p2NNW2LEG0hKes6HA7sk9NsrgoEqkUO-z-QxJNwKLeLTISU6QxKTx9LjFHcu0jMSRRpMpgjMMYOTs3UHdlj8bHmD2kMlareDqtyWWbeB2NRZW6ux~Jy8XKrIVmzmGThO-SkwSQiQcZdfkgw-PckaWKx0Wf-EyqOw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":49834,"name":"Molecular Recognition","url":"https://www.academia.edu/Documents/in/Molecular_Recognition"},{"id":77287,"name":"Macrocycle","url":"https://www.academia.edu/Documents/in/Macrocycle"},{"id":144609,"name":"Alkali Metals","url":"https://www.academia.edu/Documents/in/Alkali_Metals"},{"id":146242,"name":"Urea","url":"https://www.academia.edu/Documents/in/Urea"},{"id":188706,"name":"Metal","url":"https://www.academia.edu/Documents/in/Metal"},{"id":386527,"name":"X ray diffraction","url":"https://www.academia.edu/Documents/in/X_ray_diffraction"},{"id":469575,"name":"Solid State","url":"https://www.academia.edu/Documents/in/Solid_State"},{"id":566559,"name":"Stoichiometry","url":"https://www.academia.edu/Documents/in/Stoichiometry"},{"id":664987,"name":"Pyridine","url":"https://www.academia.edu/Documents/in/Pyridine"},{"id":862676,"name":"Affinity","url":"https://www.academia.edu/Documents/in/Affinity"},{"id":1144236,"name":"Crystalline Structure","url":"https://www.academia.edu/Documents/in/Crystalline_Structure"},{"id":1417819,"name":"Probes","url":"https://www.academia.edu/Documents/in/Probes"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"}],"urls":[{"id":35508057,"url":"https://doi.org/10.1021/jo1009596"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "7ab2dfd7f68ca0dba042f68bba6822e2e41a39bb57419b3e9c2d576a229ac7fb", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="P+HT+LIvGfMPRnGC9jzS2z3pT78sSUlufx4znmPQxxSs8m0YHI+yl3gjzVUw2wIaQB5ZpFguF+hs4pZSdxJJ6g==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://sc.academia.edu/LindaShimizu" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="IrziHUPTKRNDIdmC9ykuXc0hzbXhFmF4zFkqDZFmST+xr1z97XOCdzREZVUxzv6csNbbrpVxP/7fpY/BhaTHwQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>