CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;18 of 18 results for author: <span class="mathjax">Andersen, T I</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Andersen%2C+T+I">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Andersen, T I"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Andersen%2C+T+I&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Andersen, T I"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06557">arXiv:2410.06557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06557">pdf</a>, <a href="https://arxiv.org/format/2410.06557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Observation of disorder-free localization and efficient disorder averaging on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T">Tyler Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y">Yuri Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a> , et al. (195 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06557v1-abstract-short" style="display: inline;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06557v1-abstract-full" style="display: none;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'none'; document.getElementById('2410.06557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+M">Melissa Will</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11252">arXiv:2407.11252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11252">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dynamical Control of Excitons in Atomically Thin Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peterson%2C+E+L">Eric L. Peterson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scuri%2C+G">Giovanni Scuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joe%2C+A+Y">Andrew Y. Joe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valdivia%2C+A+M+M">Andr茅s M. Mier Valdivia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoling Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zibrov%2C+A+A">Alexander A. Zibrov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Bumho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hone%2C+J">James Hone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walther%2C+V">Valentin Walther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H">Hongkun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+P">Philip Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukin%2C+M+D">Mikhail D. Lukin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11252v2-abstract-short" style="display: inline;"> Excitons in transition metal dichalcogenides (TMDs) have emerged as a promising platform for novel applications ranging from optoelectronic devices to quantum optics and solid state quantum simulators. While much progress has been made towards characterizing and controlling excitons in TMDs, manipulating their properties during the course of their lifetime - a key requirement for many optoelectron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11252v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11252v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11252v2-abstract-full" style="display: none;"> Excitons in transition metal dichalcogenides (TMDs) have emerged as a promising platform for novel applications ranging from optoelectronic devices to quantum optics and solid state quantum simulators. While much progress has been made towards characterizing and controlling excitons in TMDs, manipulating their properties during the course of their lifetime - a key requirement for many optoelectronic device and information processing modalities - remains an outstanding challenge. Here we combine long-lived interlayer excitons in angle-aligned MoSe$_2$/WSe$_2$ heterostructures with fast electrical control to realize dynamical control schemes, in which exciton properties are not predetermined at the time of excitation but can be dynamically manipulated during their lifetime. Leveraging the out-of-plane exciton dipole moment, we use electric fields to demonstrate dynamical control over the exciton emission wavelength. Moreover, employing a patterned gate geometry, we demonstrate rapid local sample doping and toggling of the radiative decay rate through exciton-charge interactions during the exciton lifetime. Spatially mapping the exciton response reveals charge redistribution, offering a novel probe of electronic transport in twisted TMD heterostructures. Our results establish the feasibility of dynamical exciton control schemes, unlocking new directions for exciton-based information processing and optoelectronic devices, and the realization of excitonic phenomena in TMDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11252v2-abstract-full').style.display = 'none'; document.getElementById('2407.11252v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 4 figures in main text, 6 figures in supplemental materials; (v2) corrected funding acknowledgements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17385">arXiv:2405.17385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17385">pdf</a>, <a href="https://arxiv.org/format/2405.17385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermalization and Criticality on an Analog-Digital Quantum Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Motruk%2C+J">Johannes Motruk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szasz%2C+A">Aaron Szasz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gross%2C+J+A">Jonathan A. Gross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yaxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forati%2C+E">Ebrahim Forati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+D">Dario Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kobrin%2C+B">Bryce Kobrin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Paolo%2C+A">Agustin Di Paolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klots%2C+A+R">Andrey R. Klots</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurilovich%2C+V+D">Vladislav D. Kurilovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ioffe%2C+L+B">Lev B. Ioffe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elben%2C+A">Andreas Elben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rath%2C+A">Aniket Rath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vitale%2C+V">Vittorio Vitale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vermersch%2C+B">Benoit Vermersch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17385v2-abstract-short" style="display: inline;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17385v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17385v2-abstract-full" style="display: none;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'none'; document.getElementById('2405.17385v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04792">arXiv:2303.04792</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04792">pdf</a>, <a href="https://arxiv.org/format/2303.04792">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06505-7">10.1038/s41586-023-06505-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement-induced entanglement and teleportation on a noisy quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hoke%2C+J+C">Jesse C. Hoke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ippoliti%2C+M">Matteo Ippoliti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burger%2C+T">Tim Burger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiaro%2C+B">Ben Chiaro</a> , et al. (138 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04792v2-abstract-short" style="display: inline;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the &#34;arrow of time&#34; that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'inline'; document.getElementById('2303.04792v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04792v2-abstract-full" style="display: none;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the &#34;arrow of time&#34; that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'none'; document.getElementById('2303.04792v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 622, 481-486 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10255">arXiv:2210.10255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.10255">pdf</a>, <a href="https://arxiv.org/format/2210.10255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Non-Abelian braiding of graph vertices in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Sabrina Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morvan%2C+A">Alexis Morvan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Opremcak%2C+A">Alex Opremcak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+R">Richard Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a> , et al. (144 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10255v2-abstract-short" style="display: inline;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'inline'; document.getElementById('2210.10255v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10255v2-abstract-full" style="display: none;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'none'; document.getElementById('2210.10255v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05254">arXiv:2206.05254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.05254">pdf</a>, <a href="https://arxiv.org/format/2206.05254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05348-y">10.1038/s41586-022-05348-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of robust bound states of interacting microwave photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morvan%2C+A">Alexis Morvan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neill%2C+C">Charles Neill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burger%2C+T">Tim Burger</a> , et al. (125 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05254v3-abstract-short" style="display: inline;"> Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly cor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05254v3-abstract-full').style.display = 'inline'; document.getElementById('2206.05254v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05254v3-abstract-full" style="display: none;"> Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multi-particle bound states. In a ring of 24 superconducting qubits, we develop a high fidelity parameterizable fSim gate that we use to implement the periodic quantum circuit of the spin-1/2 XXZ model, an archetypal model of interaction. By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons. We devise a phase sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the common wisdom that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05254v3-abstract-full').style.display = 'none'; document.getElementById('2206.05254v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + 15 pages supplements</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 612, 240-245 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11372">arXiv:2204.11372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.11372">pdf</a>, <a href="https://arxiv.org/format/2204.11372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abq5769">10.1126/science.abq5769 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-resilient Edge Modes on a Chain of Superconducting Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sonner%2C+M">Michael Sonner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+M+Y">Murphy Yuezhen Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+W">Kenneth W. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foxen%2C+B">Brooks Foxen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aleiner%2C+I">Igor Aleiner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bushnell%2C+N">Nicholas Bushnell</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11372v2-abstract-short" style="display: inline;"> Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11372v2-abstract-full').style.display = 'inline'; document.getElementById('2204.11372v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11372v2-abstract-full" style="display: none;"> Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qubit Pauli operator overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex interplay between noise and symmetry-protected edge modes in a solid-state environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11372v2-abstract-full').style.display = 'none'; document.getElementById('2204.11372v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 378, 785 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.04781">arXiv:2111.04781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.04781">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-29976-0">10.1038/s41467-022-29976-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beam steering at the nanosecond time scale with an atomically thin reflector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gelly%2C+R+J">Ryan J. Gelly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scuri%2C+G">Giovanni Scuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dwyer%2C+B+L">Bo L. Dwyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wild%2C+D+S">Dominik S. Wild</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bekenstein%2C+R">Rivka Bekenstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sushko%2C+A">Andrey Sushko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+J">Jiho Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zibrov%2C+A+A">Alexander A. Zibrov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoling Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joe%2C+A+Y">Andrew Y. Joe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yelin%2C+S+F">Susanne F. Yelin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+P">Philip Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H">Hongkun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukin%2C+M+D">Mikhail D. Lukin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.04781v2-abstract-short" style="display: inline;"> Techniques to mold the flow of light on subwavelength scales enable fundamentally new optical systems and device applications. The realization of programmable, active optical systems with fast, tunable components is among the outstanding challenges in the field. Here, we experimentally demonstrate a few-pixel beam steering device based on electrostatic gate control of excitons in an atomically thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04781v2-abstract-full').style.display = 'inline'; document.getElementById('2111.04781v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.04781v2-abstract-full" style="display: none;"> Techniques to mold the flow of light on subwavelength scales enable fundamentally new optical systems and device applications. The realization of programmable, active optical systems with fast, tunable components is among the outstanding challenges in the field. Here, we experimentally demonstrate a few-pixel beam steering device based on electrostatic gate control of excitons in an atomically thin semiconductor with strong light-matter interactions. By combining the high reflectivity of a MoSe2 monolayer with a graphene split-gate geometry, we shape the wavefront phase profile to achieve continuously tunable beam deflection with a range of 10$^\circ$, two-dimensional beam steering, and switching times down to 1.6 nanoseconds. Our approach opens the door for a new class of atomically thin optical systems, such as rapidly switchable beam arrays and quantum metasurfaces operating at their fundamental thickness limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04781v2-abstract-full').style.display = 'none'; document.getElementById('2111.04781v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.01157">arXiv:2001.01157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.01157">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-020-0728-z">10.1038/s41565-020-0728-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe$_2$/MoSe$_2$ bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+J">Jiho Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scuri%2C+G">Giovanni Scuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Z%C3%B3lyomi%2C+V">Viktor Z贸lyomi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+H">Hyobin Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wild%2C+D+S">Dominik S. Wild</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joe%2C+A+Y">Andrew Y. Joe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gelly%2C+R+J">Ryan J. Gelly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heo%2C+H">Hoseok Heo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valdivia%2C+A+M+M">Andr茅s M. Mier Valdivia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukin%2C+M+D">Mikhail D. Lukin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+P">Philip Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fal%27ko%2C+V+I">Vladimir I. Fal&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H">Hongkun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.01157v1-abstract-short" style="display: inline;"> Structural engineering of van der Waals heterostructures via stacking and twisting has recently been used to create moir茅 superlattices, enabling the realization of new optical and electronic properties in solid-state systems. In particular, moir茅 lattices in twisted bilayers of transition metal dichalcogenides (TMDs) have been shown to lead to exciton trapping, host Mott insulating and supercondu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01157v1-abstract-full').style.display = 'inline'; document.getElementById('2001.01157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.01157v1-abstract-full" style="display: none;"> Structural engineering of van der Waals heterostructures via stacking and twisting has recently been used to create moir茅 superlattices, enabling the realization of new optical and electronic properties in solid-state systems. In particular, moir茅 lattices in twisted bilayers of transition metal dichalcogenides (TMDs) have been shown to lead to exciton trapping, host Mott insulating and superconducting states, and act as unique Hubbard systems whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures also feature atomic reconstruction and domain formation. Unfortunately, due to the nanoscale sizes (~10 nm) of typical moir茅 domains, the effects of atomic reconstruction on the electronic and excitonic properties of these heterostructures could not be investigated systematically and have often been ignored. Here, we use near-0$^o$ twist angle MoSe$_2$/MoSe$_2$ bilayers with large rhombohedral AB/BA domains to directly probe excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane (z) electric dipole moments in opposite directions. The dipole orientation of ground-state $螕$-K interlayer excitons (X$_{I,1}$) can be flipped with electric fields, while higher-energy K-K interlayer excitons (X$_{I,2}$) undergo field-asymmetric hybridization with intralayer K-K excitons (X$_0$). Our study reveals the profound impacts of crystal symmetry on TMD excitons and points to new avenues for realizing topologically nontrivial systems, exotic metasurfaces, collective excitonic phases, and quantum emitter arrays via domain-pattern engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01157v1-abstract-full').style.display = 'none'; document.getElementById('2001.01157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures in main text, 6 figures in supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11306">arXiv:1912.11306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.11306">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.217403">10.1103/PhysRevLett.124.217403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrically tunable valley dynamics in twisted WSe$_2$/WSe$_2$ bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scuri%2C+G">Giovanni Scuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wild%2C+D+S">Dominik S. Wild</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+J">Jiho Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gelly%2C+R+J">Ryan J. Gelly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heo%2C+H">Hoseok Heo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+L">Linbo Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joe%2C+A+Y">Andrew Y. Joe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valdivia%2C+A+M+M">Andr茅s M. Mier Valdivia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lon%C4%8Dar%2C+M">Marko Lon膷ar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+P">Philip Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukin%2C+M+D">Mikhail D. Lukin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H">Hongkun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11306v1-abstract-short" style="display: inline;"> The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11306v1-abstract-full').style.display = 'inline'; document.getElementById('1912.11306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11306v1-abstract-full" style="display: none;"> The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe$_2$/WSe$_2$ bilayers exhibit a high (&gt;60%) degree of circular polarization (DOCP) and long valley lifetimes (&gt;40 ns) at zero electric and magnetic fields. The valley lifetime can be tuned by more than three orders of magnitude via electrostatic doping, enabling switching of the DOCP from ~80% in the n-doped regime to &lt;5% in the p-doped regime. These results open up new avenues for tunable chiral light-matter interactions, enabling novel device schemes that exploit the valley degree of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11306v1-abstract-full').style.display = 'none'; document.getElementById('1912.11306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 4 figures in main text, 5 figures in supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 217403 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07446">arXiv:1912.07446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07446">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> High resolution imaging of reconstructed domains and moire patterns in functional van der Waals heterostructure devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sushko%2C+A">Andrey Sushko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Greve%2C+K">Kristiaan De Greve</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scuri%2C+G">Giovanni Scuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+J">Jiho Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+P">Philip Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H">Hongkun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukin%2C+M+D">Mikhail D. Lukin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07446v1-abstract-short" style="display: inline;"> The optical and electronic properties of van der Waals (vdW) heterostructures depend strongly on the atomic stacking order of the constituent layers. This is exemplified by periodic variation of the local atomic registry, known as moire patterns, giving rise to superconductivity and ferromagnetism in twisted bilayer graphene and novel exciton states in transition metal dichalcogenides (TMD) hetero&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07446v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07446v1-abstract-full" style="display: none;"> The optical and electronic properties of van der Waals (vdW) heterostructures depend strongly on the atomic stacking order of the constituent layers. This is exemplified by periodic variation of the local atomic registry, known as moire patterns, giving rise to superconductivity and ferromagnetism in twisted bilayer graphene and novel exciton states in transition metal dichalcogenides (TMD) heterobilayers. However, the presence of the nanometer-scale moire superlattices is typically deduced indirectly, because conventional imaging techniques, such as transmission electron microscopy (TEM), require special sample preparation that is incompatible with most optical and transport measurements. Here, we demonstrate a method that uses a secondary electron microscope to directly image the local stacking order in fully hexagonal boron nitride (hBN) encapsulated, gated vdW heterostructure devices on standard Si-substrates. Using this method, we demonstrate imaging of reconstructed moire patterns in stacked TMDs, ABC/ABA stacking order in graphene multilayers, and AB/BA boundaries in bilayer graphene. Furthermore, we show that the technique is non-destructive, thus unlocking the possibility of directly correlating local stacking order with optical and electronic properties, crucial to the development of vdW heterostructure devices with precisely controlled functionality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07446v1-abstract-full').style.display = 'none'; document.getElementById('1912.07446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06955">arXiv:1912.06955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.06955">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-020-00873-5">10.1038/s41563-020-00873-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Moir茅 Excitons Correlated with Superlattice Structure in Twisted WSe$_2$/WSe$_2$ Homobilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scuri%2C+G">Giovanni Scuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sushko%2C+A">Andrey Sushko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Greve%2C+K">Kristiaan De Greve</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+J">Jiho Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">You Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wild%2C+D+S">Dominik S. Wild</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gelly%2C+R+J">Ryan J. Gelly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heo%2C+H">Hoseok Heo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+P">Philip Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H">Hongkun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukin%2C+M+D">Mikhail D. Lukin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06955v1-abstract-short" style="display: inline;"> Moir茅 superlattices in twisted van der Waals materials constitute a promising platform for engineering electronic and optical properties. However, a major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate the local moir茅 structure with optical properties. By using a recently developed scanning electron microscopy technique to image twi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06955v1-abstract-full').style.display = 'inline'; document.getElementById('1912.06955v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06955v1-abstract-full" style="display: none;"> Moir茅 superlattices in twisted van der Waals materials constitute a promising platform for engineering electronic and optical properties. However, a major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate the local moir茅 structure with optical properties. By using a recently developed scanning electron microscopy technique to image twisted WSe$_2$/WSe$_2$ bilayers, we directly correlate increasing moir茅 periodicity with the emergence of two distinct exciton species. These can be tuned individually through electrostatic gating, and feature different valley coherence properties. Our observations can be understood as resulting from an array of two intralayer exciton species residing in alternating locations in the superlattice, and illuminate the influence of the moir茅 potential on lateral exciton motion. They open up new avenues for controlling exciton arrays in twisted TMDs, with applications in quantum optoelectronics and explorations of novel many body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06955v1-abstract-full').style.display = 'none'; document.getElementById('1912.06955v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures in main text, 4 figures in supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.09627">arXiv:1806.09627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.09627">pdf</a>, <a href="https://arxiv.org/format/1806.09627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.166802">10.1103/PhysRevLett.122.166802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced photoenergy harvesting and extreme Thomson effect in hydrodynamic electronic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+T+B">Thomas B. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Principi%2C+A">Alessandro Principi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.09627v2-abstract-short" style="display: inline;"> The thermoelectric (TE) properties of a material are dramatically altered when electron-electron interactions become the dominant scattering mechanism. In the degenerate hydrodynamic regime, the thermal conductivity is reduced and becomes a {\it decreasing} function of the electronic temperature, due to a violation of the Wiedemann-Franz (WF) law. We here show how this peculiar temperature depende&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09627v2-abstract-full').style.display = 'inline'; document.getElementById('1806.09627v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.09627v2-abstract-full" style="display: none;"> The thermoelectric (TE) properties of a material are dramatically altered when electron-electron interactions become the dominant scattering mechanism. In the degenerate hydrodynamic regime, the thermal conductivity is reduced and becomes a {\it decreasing} function of the electronic temperature, due to a violation of the Wiedemann-Franz (WF) law. We here show how this peculiar temperature dependence gives rise to new striking TE phenomena. These include an 80-fold increase in TE efficiency compared to the WF regime, dramatic qualitative changes in the steady state temperature profile, and an anomalously large Thomson effect. In graphene, which we pay special attention to here, these effects are further amplified due to a doubling of the thermopower. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.09627v2-abstract-full').style.display = 'none'; document.getElementById('1806.09627v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 166802 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.05618">arXiv:1704.05618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.05618">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.7b01587">10.1021/acs.nanolett.7b01587 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relative efficiency of polariton emission in two-dimensional materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Siyuan Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yafang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenfeld%2C+J">Jeremy Rosenfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldflam%2C+M+D">Michael D. Goldflam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McLeod%2C+A">Alex McLeod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhiyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zhe Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mengkun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Y">Yinming Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiemens%2C+M">Mark Thiemens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keilmann%2C+F">Fritz Keilmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarillo-Herrero%2C+P">Pablo Jarillo-Herrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fogler%2C+M+M">Michael M. Fogler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basov%2C+D+N">D. N. Basov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.05618v1-abstract-short" style="display: inline;"> We investigated emission and propagation of polaritons in a two dimensional van der Waals material hexagonal boron nitride (hBN). Our specific emphasis in this work is on hyperbolic phonon polariton emission that we investigated by means of scattering-type scanning near-field optical microscopy. Real-space nano-images detail how the polaritons are launched in several common arrangements including:&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05618v1-abstract-full').style.display = 'inline'; document.getElementById('1704.05618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.05618v1-abstract-full" style="display: none;"> We investigated emission and propagation of polaritons in a two dimensional van der Waals material hexagonal boron nitride (hBN). Our specific emphasis in this work is on hyperbolic phonon polariton emission that we investigated by means of scattering-type scanning near-field optical microscopy. Real-space nano-images detail how the polaritons are launched in several common arrangements including: light scattering by the edges of the crystal, metallic nanostructures deposited on the surface of hBN crystals, as well as random defects and impurities. Notably, the scanned tip of the near-field microscope is itself an efficient polariton launcher. Our analysis reveals that the scanning tips are superior to other types of emitters we have investigated. Furthermore, the study of polariton emission and emission efficiency may provide insights for development of polaritonic devices and for fundamental studies of collective modes in other van der Waals materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05618v1-abstract-full').style.display = 'none'; document.getElementById('1704.05618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 7b01587 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.02265">arXiv:1601.02265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.02265">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nair%2C+N+L">Nityan L. Nair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gabor%2C+N+M">Nathaniel M. Gabor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Massicotte%2C+M">Mathieu Massicotte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lui%2C+C+H">Chun Hung Lui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+A+F">Andrea F. Young</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+W">Wenjing Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+J">Jing Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gedik%2C+N">Nuh Gedik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koppens%2C+F+H+L">Frank H. L. Koppens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarillo-Herrero%2C+P">Pablo Jarillo-Herrero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.02265v1-abstract-short" style="display: inline;"> Ultrafast electron thermalization - the process leading to Auger recombination, carrier multiplication via impact ionization and hot carrier luminescence - occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Due to extremely short time and length scales, the measurement and manipula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.02265v1-abstract-full').style.display = 'inline'; document.getElementById('1601.02265v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.02265v1-abstract-full" style="display: none;"> Ultrafast electron thermalization - the process leading to Auger recombination, carrier multiplication via impact ionization and hot carrier luminescence - occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Due to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials in order to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a novel means to probe and directly modulate electron energy transport in nanoscale materials, represent an important step toward designing and implementing novel optoelectronic and energy-harvesting devices with tailored microscopic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.02265v1-abstract-full').style.display = 'none'; document.getElementById('1601.02265v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Nature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.4224">arXiv:1410.4224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.4224">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.165403">10.1103/PhysRevB.91.165403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of interlayer phonon modes in van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lui%2C+C+H">Chun Hung Lui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Z">Zhipeng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+C">Chao Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+K">Kuan-Chang Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+C">Cheng-Tse Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Means-Shively%2C+C">Casie Means-Shively</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anderson%2C+H">Heidi Anderson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jenn-Ming Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kidd%2C+T">Tim Kidd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yi-Hsien Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Rui He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.4224v1-abstract-short" style="display: inline;"> We have investigated the vibrational properties of van der Waals heterostructures of monolayer transition metal dichalcogenides (TMDs), specifically MoS2/WSe2 and MoSe2/MoS2 heterobilayers as well as twisted MoS2 bilayers, by means of ultralow-frequency Raman spectroscopy. We discovered Raman features (at 30 ~ 40 cm-1) that arise from the layer-breathing mode (LBM) vibrations between the two incom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.4224v1-abstract-full').style.display = 'inline'; document.getElementById('1410.4224v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.4224v1-abstract-full" style="display: none;"> We have investigated the vibrational properties of van der Waals heterostructures of monolayer transition metal dichalcogenides (TMDs), specifically MoS2/WSe2 and MoSe2/MoS2 heterobilayers as well as twisted MoS2 bilayers, by means of ultralow-frequency Raman spectroscopy. We discovered Raman features (at 30 ~ 40 cm-1) that arise from the layer-breathing mode (LBM) vibrations between the two incommensurate TMD monolayers in these structures. The LBM Raman intensity correlates strongly with the suppression of photoluminescence that arises from interlayer charge transfer. The LBM is generated only in bilayer areas with direct layer-layer contact and atomically clean interface. Its frequency also evolves systematically with the relative orientation between of the two layers. Our research demonstrates that LBM can serve as a sensitive probe to the interface environment and interlayer interactions in van der Waals materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.4224v1-abstract-full').style.display = 'none'; document.getElementById('1410.4224v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 165403 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.8152">arXiv:1403.8152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.8152">pdf</a>, <a href="https://arxiv.org/format/1403.8152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.247401">10.1103/PhysRevLett.112.247401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competing Channels for Hot Electron Cooling in Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gabor%2C+N+M">Nathaniel M. Gabor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nair%2C+N+L">Nityan L. Nair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarillo-Herrero%2C+P">Pablo Jarillo-Herrero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.8152v1-abstract-short" style="display: inline;"> We report on temperature dependent photocurrent measurements of high-quality dual-gated monolayer graphene (MLG) p-n junction devices. A photothermoelectric (PTE) effect governs the photocurrent response in our devices, allowing us to track the hot electron temperature and probe hot electron cooling channels over a wide temperature range (4 K to 300 K). At high temperatures ($T &gt; T^*$), we found t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.8152v1-abstract-full').style.display = 'inline'; document.getElementById('1403.8152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.8152v1-abstract-full" style="display: none;"> We report on temperature dependent photocurrent measurements of high-quality dual-gated monolayer graphene (MLG) p-n junction devices. A photothermoelectric (PTE) effect governs the photocurrent response in our devices, allowing us to track the hot electron temperature and probe hot electron cooling channels over a wide temperature range (4 K to 300 K). At high temperatures ($T &gt; T^*$), we found that both the peak photocurrent and the hot spot size decreased with temperature, while at low temperatures ($T &lt; T^*$), we found the opposite, namely that the peak photocurrent and the hot spot size increased with temperature. This non-monotonic temperature dependence can be understood as resulting from the competition between two hot electron cooling pathways: (a) (intrinsic) momentum-conserving normal collisions (NC) that dominates at low temperatures and (b) (extrinsic) disorder-assisted supercollisions (SC) that dominates at high temperatures. Gate control in our high quality samples allows us to resolve the two processes in the same device for the first time. The peak temperature $T^*$ depends on carrier density and disorder concentration, thus allowing for an unprecedented way of controlling graphene&#39;s photoresponse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.8152v1-abstract-full').style.display = 'none'; document.getElementById('1403.8152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 247401 (2014) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10