CINXE.COM

Text Classification - AutoKeras

<!doctype html> <html lang="en" class="no-js"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width,initial-scale=1"> <meta name="description" content="Documentation for AutoKeras."> <link rel="canonical" href="http://autokeras.com/tutorial/text_classification/"> <link rel="prev" href="../image_regression/"> <link rel="next" href="../text_regression/"> <link rel="icon" href="/img/favicon.png"> <meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.5.14"> <title>Text Classification - AutoKeras</title> <link rel="stylesheet" href="../../assets/stylesheets/main.10ba22f1.min.css"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback"> <style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style> <link rel="stylesheet" href="../../stylesheets/extra.css"> <script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script> <script id="__analytics">function __md_analytics(){function n(){dataLayer.push(arguments)}window.dataLayer=window.dataLayer||[],n("js",new Date),n("config","G-GTF9QP8DFD"),document.addEventListener("DOMContentLoaded",function(){document.forms.search&&document.forms.search.query.addEventListener("blur",function(){this.value&&n("event","search",{search_term:this.value})}),document$.subscribe(function(){var a=document.forms.feedback;if(void 0!==a)for(var e of a.querySelectorAll("[type=submit]"))e.addEventListener("click",function(e){e.preventDefault();var t=document.location.pathname,e=this.getAttribute("data-md-value");n("event","feedback",{page:t,data:e}),a.firstElementChild.disabled=!0;e=a.querySelector(".md-feedback__note [data-md-value='"+e+"']");e&&(e.hidden=!1)}),a.hidden=!1}),location$.subscribe(function(e){n("config","G-GTF9QP8DFD",{page_path:e.pathname})})});var e=document.createElement("script");e.async=!0,e.src="https://www.googletagmanager.com/gtag/js?id=G-GTF9QP8DFD",document.getElementById("__analytics").insertAdjacentElement("afterEnd",e)}</script> <script>"undefined"!=typeof __md_analytics&&__md_analytics()</script> </head> <body dir="ltr"> <input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off"> <input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off"> <label class="md-overlay" for="__drawer"></label> <div data-md-component="skip"> <a href="#a-simple-example" class="md-skip"> Skip to content </a> </div> <div data-md-component="announce"> </div> <header class="md-header md-header--shadow" data-md-component="header"> <nav class="md-header__inner md-grid" aria-label="Header"> <a href="../.." title="AutoKeras" class="md-header__button md-logo" aria-label="AutoKeras" data-md-component="logo"> <img src="/img/logo_white.svg" alt="logo"> </a> <label class="md-header__button md-icon" for="__drawer"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg> </label> <div class="md-header__title" data-md-component="header-title"> <div class="md-header__ellipsis"> <div class="md-header__topic"> <span class="md-ellipsis"> AutoKeras </span> </div> <div class="md-header__topic" data-md-component="header-topic"> <span class="md-ellipsis"> Text Classification </span> </div> </div> </div> <script>var media,input,key,value,palette=__md_get("__palette");if(palette&&palette.color){"(prefers-color-scheme)"===palette.color.media&&(media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']"),palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent"));for([key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script> <label class="md-header__button md-icon" for="__search"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg> </label> <div class="md-search" data-md-component="search" role="dialog"> <label class="md-search__overlay" for="__search"></label> <div class="md-search__inner" role="search"> <form class="md-search__form" name="search"> <input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required> <label class="md-search__icon md-icon" for="__search"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg> </label> <nav class="md-search__options" aria-label="Search"> <button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg> </button> </nav> </form> <div class="md-search__output"> <div class="md-search__scrollwrap" data-md-scrollfix> <div class="md-search-result" data-md-component="search-result"> <div class="md-search-result__meta"> Initializing search </div> <ol class="md-search-result__list" role="presentation"></ol> </div> </div> </div> </div> </div> <div class="md-header__source"> <a href="https://github.com/keras-team/autokeras" title="Go to repository" class="md-source" data-md-component="source"> <div class="md-source__icon md-icon"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z"/></svg> </div> <div class="md-source__repository"> GitHub </div> </a> </div> </nav> </header> <div class="md-container" data-md-component="container"> <main class="md-main" data-md-component="main"> <div class="md-main__inner md-grid"> <div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" > <div class="md-sidebar__scrollwrap"> <div class="md-sidebar__inner"> <nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0"> <label class="md-nav__title" for="__drawer"> <a href="../.." title="AutoKeras" class="md-nav__button md-logo" aria-label="AutoKeras" data-md-component="logo"> <img src="/img/logo_white.svg" alt="logo"> </a> AutoKeras </label> <div class="md-nav__source"> <a href="https://github.com/keras-team/autokeras" title="Go to repository" class="md-source" data-md-component="source"> <div class="md-source__icon md-icon"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z"/></svg> </div> <div class="md-source__repository"> GitHub </div> </a> </div> <ul class="md-nav__list" data-md-scrollfix> <li class="md-nav__item"> <a href="../.." class="md-nav__link"> <span class="md-ellipsis"> Home </span> </a> </li> <li class="md-nav__item"> <a href="../../install/" class="md-nav__link"> <span class="md-ellipsis"> Installation </span> </a> </li> <li class="md-nav__item md-nav__item--active md-nav__item--nested"> <input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" checked> <label class="md-nav__link" for="__nav_3" id="__nav_3_label" tabindex="0"> <span class="md-ellipsis"> Tutorials </span> <span class="md-nav__icon md-icon"></span> </label> <nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true"> <label class="md-nav__title" for="__nav_3"> <span class="md-nav__icon md-icon"></span> Tutorials </label> <ul class="md-nav__list" data-md-scrollfix> <li class="md-nav__item"> <a href="../overview/" class="md-nav__link"> <span class="md-ellipsis"> Overview </span> </a> </li> <li class="md-nav__item"> <a href="../image_classification/" class="md-nav__link"> <span class="md-ellipsis"> Image Classification </span> </a> </li> <li class="md-nav__item"> <a href="../image_regression/" class="md-nav__link"> <span class="md-ellipsis"> Image Regression </span> </a> </li> <li class="md-nav__item md-nav__item--active"> <input class="md-nav__toggle md-toggle" type="checkbox" id="__toc"> <label class="md-nav__link md-nav__link--active" for="__toc"> <span class="md-ellipsis"> Text Classification </span> <span class="md-nav__icon md-icon"></span> </label> <a href="./" class="md-nav__link md-nav__link--active"> <span class="md-ellipsis"> Text Classification </span> </a> <nav class="md-nav md-nav--secondary" aria-label="Table of contents"> <label class="md-nav__title" for="__toc"> <span class="md-nav__icon md-icon"></span> Table of contents </label> <ul class="md-nav__list" data-md-component="toc" data-md-scrollfix> <li class="md-nav__item"> <a href="#a-simple-example" class="md-nav__link"> <span class="md-ellipsis"> A Simple Example </span> </a> </li> <li class="md-nav__item"> <a href="#validation-data" class="md-nav__link"> <span class="md-ellipsis"> Validation Data </span> </a> </li> <li class="md-nav__item"> <a href="#customized-search-space" class="md-nav__link"> <span class="md-ellipsis"> Customized Search Space </span> </a> </li> <li class="md-nav__item"> <a href="#data-format" class="md-nav__link"> <span class="md-ellipsis"> Data Format </span> </a> </li> <li class="md-nav__item"> <a href="#reference" class="md-nav__link"> <span class="md-ellipsis"> Reference </span> </a> </li> </ul> </nav> </li> <li class="md-nav__item"> <a href="../text_regression/" class="md-nav__link"> <span class="md-ellipsis"> Text Regression </span> </a> </li> <li class="md-nav__item"> <a href="../multi/" class="md-nav__link"> <span class="md-ellipsis"> Multi-Modal and Multi-Task </span> </a> </li> <li class="md-nav__item"> <a href="../customized/" class="md-nav__link"> <span class="md-ellipsis"> Customized Model </span> </a> </li> <li class="md-nav__item"> <a href="../export/" class="md-nav__link"> <span class="md-ellipsis"> Export Model </span> </a> </li> <li class="md-nav__item"> <a href="../load/" class="md-nav__link"> <span class="md-ellipsis"> Load Data from Disk </span> </a> </li> <li class="md-nav__item"> <a href="../faq/" class="md-nav__link"> <span class="md-ellipsis"> FAQ </span> </a> </li> </ul> </nav> </li> <li class="md-nav__item md-nav__item--nested"> <input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" > <label class="md-nav__link" for="__nav_4" id="__nav_4_label" tabindex="0"> <span class="md-ellipsis"> Extensions </span> <span class="md-nav__icon md-icon"></span> </label> <nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false"> <label class="md-nav__title" for="__nav_4"> <span class="md-nav__icon md-icon"></span> Extensions </label> <ul class="md-nav__list" data-md-scrollfix> <li class="md-nav__item"> <a href="../../extensions/tf_cloud/" class="md-nav__link"> <span class="md-ellipsis"> TensorFlow Cloud </span> </a> </li> <li class="md-nav__item"> <a href="../../extensions/trains/" class="md-nav__link"> <span class="md-ellipsis"> TRAINS </span> </a> </li> </ul> </nav> </li> <li class="md-nav__item"> <a href="../../docker/" class="md-nav__link"> <span class="md-ellipsis"> Docker </span> </a> </li> <li class="md-nav__item"> <a href="../../contributing/" class="md-nav__link"> <span class="md-ellipsis"> Contributing Guide </span> </a> </li> <li class="md-nav__item md-nav__item--nested"> <input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" > <label class="md-nav__link" for="__nav_7" id="__nav_7_label" tabindex="0"> <span class="md-ellipsis"> Documentation </span> <span class="md-nav__icon md-icon"></span> </label> <nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false"> <label class="md-nav__title" for="__nav_7"> <span class="md-nav__icon md-icon"></span> Documentation </label> <ul class="md-nav__list" data-md-scrollfix> <li class="md-nav__item"> <a href="../../image_classifier/" class="md-nav__link"> <span class="md-ellipsis"> ImageClassifier </span> </a> </li> <li class="md-nav__item"> <a href="../../image_regressor/" class="md-nav__link"> <span class="md-ellipsis"> ImageRegressor </span> </a> </li> <li class="md-nav__item"> <a href="../../text_classifier/" class="md-nav__link"> <span class="md-ellipsis"> TextClassifier </span> </a> </li> <li class="md-nav__item"> <a href="../../text_regressor/" class="md-nav__link"> <span class="md-ellipsis"> TextRegressor </span> </a> </li> <li class="md-nav__item"> <a href="../../auto_model/" class="md-nav__link"> <span class="md-ellipsis"> AutoModel </span> </a> </li> <li class="md-nav__item"> <a href="../../base/" class="md-nav__link"> <span class="md-ellipsis"> Base Class </span> </a> </li> <li class="md-nav__item"> <a href="../../node/" class="md-nav__link"> <span class="md-ellipsis"> Node </span> </a> </li> <li class="md-nav__item"> <a href="../../block/" class="md-nav__link"> <span class="md-ellipsis"> Block </span> </a> </li> <li class="md-nav__item"> <a href="../../utils/" class="md-nav__link"> <span class="md-ellipsis"> Utils </span> </a> </li> </ul> </nav> </li> <li class="md-nav__item"> <a href="../../benchmarks/" class="md-nav__link"> <span class="md-ellipsis"> Benchmarks </span> </a> </li> <li class="md-nav__item"> <a href="../../about/" class="md-nav__link"> <span class="md-ellipsis"> About </span> </a> </li> </ul> </nav> </div> </div> </div> <div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" > <div class="md-sidebar__scrollwrap"> <div class="md-sidebar__inner"> <nav class="md-nav md-nav--secondary" aria-label="Table of contents"> <label class="md-nav__title" for="__toc"> <span class="md-nav__icon md-icon"></span> Table of contents </label> <ul class="md-nav__list" data-md-component="toc" data-md-scrollfix> <li class="md-nav__item"> <a href="#a-simple-example" class="md-nav__link"> <span class="md-ellipsis"> A Simple Example </span> </a> </li> <li class="md-nav__item"> <a href="#validation-data" class="md-nav__link"> <span class="md-ellipsis"> Validation Data </span> </a> </li> <li class="md-nav__item"> <a href="#customized-search-space" class="md-nav__link"> <span class="md-ellipsis"> Customized Search Space </span> </a> </li> <li class="md-nav__item"> <a href="#data-format" class="md-nav__link"> <span class="md-ellipsis"> Data Format </span> </a> </li> <li class="md-nav__item"> <a href="#reference" class="md-nav__link"> <span class="md-ellipsis"> Reference </span> </a> </li> </ul> </nav> </div> </div> </div> <div class="md-content" data-md-component="content"> <article class="md-content__inner md-typeset"> <h1>Text Classification</h1> <p><span class="twemoji"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3.9 12c0-1.71 1.39-3.1 3.1-3.1h4V7H7a5 5 0 0 0-5 5 5 5 0 0 0 5 5h4v-1.9H7c-1.71 0-3.1-1.39-3.1-3.1M8 13h8v-2H8v2m9-6h-4v1.9h4c1.71 0 3.1 1.39 3.1 3.1 0 1.71-1.39 3.1-3.1 3.1h-4V17h4a5 5 0 0 0 5-5 5 5 0 0 0-5-5Z"/></svg></span> <a href="https://colab.research.google.com/github/keras-team/autokeras/blob/master/docs/ipynb/text_classification.ipynb"><strong>View in Colab</strong></a> &nbsp; &nbsp;<span class="twemoji"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16"><path d="M8 0c4.42 0 8 3.58 8 8a8.013 8.013 0 0 1-5.45 7.59c-.4.08-.55-.17-.55-.38 0-.27.01-1.13.01-2.2 0-.75-.25-1.23-.54-1.48 1.78-.2 3.65-.88 3.65-3.95 0-.88-.31-1.59-.82-2.15.08-.2.36-1.02-.08-2.12 0 0-.67-.22-2.2.82-.64-.18-1.32-.27-2-.27-.68 0-1.36.09-2 .27-1.53-1.03-2.2-.82-2.2-.82-.44 1.1-.16 1.92-.08 2.12-.51.56-.82 1.28-.82 2.15 0 3.06 1.86 3.75 3.64 3.95-.23.2-.44.55-.51 1.07-.46.21-1.61.55-2.33-.66-.15-.24-.6-.83-1.23-.82-.67.01-.27.38.01.53.34.19.73.9.82 1.13.16.45.68 1.31 2.69.94 0 .67.01 1.3.01 1.49 0 .21-.15.45-.55.38A7.995 7.995 0 0 1 0 8c0-4.42 3.58-8 8-8Z"/></svg></span> <a href="https://github.com/keras-team/autokeras/blob/master/docs/py/text_classification.py"><strong>GitHub source</strong></a></p> <div class="highlight"><pre><span></span><code><span class="err">!</span><span class="n">pip</span> <span class="n">install</span> <span class="n">autokeras</span> </code></pre></div> <div class="highlight"><pre><span></span><code><span class="kn">import</span> <span class="nn">os</span> <span class="kn">import</span> <span class="nn">keras</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">tensorflow</span> <span class="k">as</span> <span class="nn">tf</span> <span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">load_files</span> <span class="kn">import</span> <span class="nn">autokeras</span> <span class="k">as</span> <span class="nn">ak</span> </code></pre></div> <h2 id="a-simple-example">A Simple Example</h2> <p>The first step is to prepare your data. Here we use the <a href="https://keras.io/datasets/#imdb-movie-reviews-sentiment-classification">IMDB dataset</a> as an example.</p> <div class="highlight"><pre><span></span><code><span class="n">dataset</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">get_file</span><span class="p">(</span> <span class="n">fname</span><span class="o">=</span><span class="s2">&quot;aclImdb.tar.gz&quot;</span><span class="p">,</span> <span class="n">origin</span><span class="o">=</span><span class="s2">&quot;http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz&quot;</span><span class="p">,</span> <span class="n">extract</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="p">)</span> <span class="c1"># set path to dataset</span> <span class="n">IMDB_DATADIR</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">dirname</span><span class="p">(</span><span class="n">dataset</span><span class="p">),</span> <span class="s2">&quot;aclImdb&quot;</span><span class="p">)</span> <span class="n">classes</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;pos&quot;</span><span class="p">,</span> <span class="s2">&quot;neg&quot;</span><span class="p">]</span> <span class="n">train_data</span> <span class="o">=</span> <span class="n">load_files</span><span class="p">(</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">IMDB_DATADIR</span><span class="p">,</span> <span class="s2">&quot;train&quot;</span><span class="p">),</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">categories</span><span class="o">=</span><span class="n">classes</span> <span class="p">)</span> <span class="n">test_data</span> <span class="o">=</span> <span class="n">load_files</span><span class="p">(</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">IMDB_DATADIR</span><span class="p">,</span> <span class="s2">&quot;test&quot;</span><span class="p">),</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">categories</span><span class="o">=</span><span class="n">classes</span> <span class="p">)</span> <span class="n">x_train</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">train_data</span><span class="o">.</span><span class="n">data</span><span class="p">)[:</span><span class="mi">100</span><span class="p">]</span> <span class="n">y_train</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">train_data</span><span class="o">.</span><span class="n">target</span><span class="p">)[:</span><span class="mi">100</span><span class="p">]</span> <span class="n">x_test</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">test_data</span><span class="o">.</span><span class="n">data</span><span class="p">)[:</span><span class="mi">100</span><span class="p">]</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">test_data</span><span class="o">.</span><span class="n">target</span><span class="p">)[:</span><span class="mi">100</span><span class="p">]</span> <span class="nb">print</span><span class="p">(</span><span class="n">x_train</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="c1"># (25000,)</span> <span class="nb">print</span><span class="p">(</span><span class="n">y_train</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="c1"># (25000, 1)</span> <span class="nb">print</span><span class="p">(</span><span class="n">x_train</span><span class="p">[</span><span class="mi">0</span><span class="p">][:</span><span class="mi">50</span><span class="p">])</span> <span class="c1"># this film was just brilliant casting</span> </code></pre></div> <p>The second step is to run the <a href="/text_classifier">TextClassifier</a>. As a quick demo, we set epochs to 2. You can also leave the epochs unspecified for an adaptive number of epochs.</p> <div class="highlight"><pre><span></span><code><span class="c1"># Initialize the text classifier.</span> <span class="n">clf</span> <span class="o">=</span> <span class="n">ak</span><span class="o">.</span><span class="n">TextClassifier</span><span class="p">(</span> <span class="n">overwrite</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">max_trials</span><span class="o">=</span><span class="mi">1</span> <span class="p">)</span> <span class="c1"># It only tries 1 model as a quick demo.</span> <span class="c1"># Feed the text classifier with training data.</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">x_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># Predict with the best model.</span> <span class="n">predicted_y</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">x_test</span><span class="p">)</span> <span class="c1"># Evaluate the best model with testing data.</span> <span class="nb">print</span><span class="p">(</span><span class="n">clf</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">x_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span> </code></pre></div> <h2 id="validation-data">Validation Data</h2> <p>By default, AutoKeras use the last 20% of training data as validation data. As shown in the example below, you can use <code>validation_split</code> to specify the percentage.</p> <div class="highlight"><pre><span></span><code><span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span> <span class="n">x_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="c1"># Split the training data and use the last 15% as validation data.</span> <span class="n">validation_split</span><span class="o">=</span><span class="mf">0.15</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="p">)</span> </code></pre></div> <p>You can also use your own validation set instead of splitting it from the training data with <code>validation_data</code>.</p> <div class="highlight"><pre><span></span><code><span class="n">split</span> <span class="o">=</span> <span class="mi">5</span> <span class="n">x_val</span> <span class="o">=</span> <span class="n">x_train</span><span class="p">[</span><span class="n">split</span><span class="p">:]</span> <span class="n">y_val</span> <span class="o">=</span> <span class="n">y_train</span><span class="p">[</span><span class="n">split</span><span class="p">:]</span> <span class="n">x_train</span> <span class="o">=</span> <span class="n">x_train</span><span class="p">[:</span><span class="n">split</span><span class="p">]</span> <span class="n">y_train</span> <span class="o">=</span> <span class="n">y_train</span><span class="p">[:</span><span class="n">split</span><span class="p">]</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span> <span class="n">x_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="c1"># Use your own validation set.</span> <span class="n">validation_data</span><span class="o">=</span><span class="p">(</span><span class="n">x_val</span><span class="p">,</span> <span class="n">y_val</span><span class="p">),</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="p">)</span> </code></pre></div> <h2 id="customized-search-space">Customized Search Space</h2> <p>For advanced users, you may customize your search space by using <a href="/auto_model/#automodel-class">AutoModel</a> instead of <a href="/text_classifier">TextClassifier</a>. You can configure the <a href="/block/#textblock-class">TextBlock</a> for some high-level configurations. You can also do not specify these arguments, which would leave the different choices to be tuned automatically. See the following example for detail.</p> <div class="highlight"><pre><span></span><code><span class="n">input_node</span> <span class="o">=</span> <span class="n">ak</span><span class="o">.</span><span class="n">TextInput</span><span class="p">()</span> <span class="n">output_node</span> <span class="o">=</span> <span class="n">ak</span><span class="o">.</span><span class="n">TextBlock</span><span class="p">()(</span><span class="n">input_node</span><span class="p">)</span> <span class="n">output_node</span> <span class="o">=</span> <span class="n">ak</span><span class="o">.</span><span class="n">ClassificationHead</span><span class="p">()(</span><span class="n">output_node</span><span class="p">)</span> <span class="n">clf</span> <span class="o">=</span> <span class="n">ak</span><span class="o">.</span><span class="n">AutoModel</span><span class="p">(</span> <span class="n">inputs</span><span class="o">=</span><span class="n">input_node</span><span class="p">,</span> <span class="n">outputs</span><span class="o">=</span><span class="n">output_node</span><span class="p">,</span> <span class="n">overwrite</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">max_trials</span><span class="o">=</span><span class="mi">1</span> <span class="p">)</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">x_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> </code></pre></div> <h2 id="data-format">Data Format</h2> <p>The AutoKeras TextClassifier is quite flexible for the data format.</p> <p>For the text, the input data should be one-dimensional For the classification labels, AutoKeras accepts both plain labels, i.e. strings or integers, and one-hot encoded encoded labels, i.e. vectors of 0s and 1s.</p> <p>We also support using <a href="https://www.tensorflow.org/api_docs/python/tf/data/Dataset?version=stable">tf.data.Dataset</a> format for the training data.</p> <div class="highlight"><pre><span></span><code><span class="n">train_set</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">Dataset</span><span class="o">.</span><span class="n">from_tensor_slices</span><span class="p">(((</span><span class="n">x_train</span><span class="p">,),</span> <span class="p">(</span><span class="n">y_train</span><span class="p">,)))</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span> <span class="mi">2</span> <span class="p">)</span> <span class="n">test_set</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">Dataset</span><span class="o">.</span><span class="n">from_tensor_slices</span><span class="p">(((</span><span class="n">x_test</span><span class="p">,),</span> <span class="p">(</span><span class="n">y_test</span><span class="p">,)))</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> <span class="n">clf</span> <span class="o">=</span> <span class="n">ak</span><span class="o">.</span><span class="n">TextClassifier</span><span class="p">(</span><span class="n">overwrite</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">max_trials</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># Feed the tensorflow Dataset to the classifier.</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train_set</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># Predict with the best model.</span> <span class="n">predicted_y</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">test_set</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span> <span class="c1"># Evaluate the best model with testing data.</span> <span class="nb">print</span><span class="p">(</span><span class="n">clf</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">test_set</span><span class="o">.</span><span class="n">take</span><span class="p">(</span><span class="mi">2</span><span class="p">)))</span> </code></pre></div> <h2 id="reference">Reference</h2> <p><a href="/text_classifier">TextClassifier</a>, <a href="/auto_model/#automodel-class">AutoModel</a>, <a href="/block/#convblock-class">ConvBlock</a>, <a href="/node/#textinput-class">TextInput</a>, <a href="/block/#classificationhead-class">ClassificationHead</a>.</p> </article> </div> <script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script> </div> </main> <footer class="md-footer"> <div class="md-footer-meta md-typeset"> <div class="md-footer-meta__inner md-grid"> <div class="md-copyright"> Made with <a href="https://squidfunk.github.io/mkdocs-material/" target="_blank" rel="noopener"> Material for MkDocs </a> </div> </div> </div> </footer> </div> <div class="md-dialog" data-md-component="dialog"> <div class="md-dialog__inner md-typeset"></div> </div> <script id="__config" type="application/json">{"base": "../..", "features": [], "search": "../../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}}</script> <script src="../../assets/javascripts/bundle.bd41221c.min.js"></script> <script src="https://unpkg.com/mermaid@8.4.4/dist/mermaid.min.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10