CINXE.COM
TRAINS - AutoKeras
<!doctype html> <html lang="en" class="no-js"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width,initial-scale=1"> <meta name="description" content="Documentation for AutoKeras."> <link rel="canonical" href="http://autokeras.com/extensions/trains/"> <link rel="prev" href="../tf_cloud/"> <link rel="next" href="../../docker/"> <link rel="icon" href="/img/favicon.png"> <meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.5.14"> <title>TRAINS - AutoKeras</title> <link rel="stylesheet" href="../../assets/stylesheets/main.10ba22f1.min.css"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback"> <style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style> <link rel="stylesheet" href="../../stylesheets/extra.css"> <script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script> <script id="__analytics">function __md_analytics(){function n(){dataLayer.push(arguments)}window.dataLayer=window.dataLayer||[],n("js",new Date),n("config","G-GTF9QP8DFD"),document.addEventListener("DOMContentLoaded",function(){document.forms.search&&document.forms.search.query.addEventListener("blur",function(){this.value&&n("event","search",{search_term:this.value})}),document$.subscribe(function(){var a=document.forms.feedback;if(void 0!==a)for(var e of a.querySelectorAll("[type=submit]"))e.addEventListener("click",function(e){e.preventDefault();var t=document.location.pathname,e=this.getAttribute("data-md-value");n("event","feedback",{page:t,data:e}),a.firstElementChild.disabled=!0;e=a.querySelector(".md-feedback__note [data-md-value='"+e+"']");e&&(e.hidden=!1)}),a.hidden=!1}),location$.subscribe(function(e){n("config","G-GTF9QP8DFD",{page_path:e.pathname})})});var e=document.createElement("script");e.async=!0,e.src="https://www.googletagmanager.com/gtag/js?id=G-GTF9QP8DFD",document.getElementById("__analytics").insertAdjacentElement("afterEnd",e)}</script> <script>"undefined"!=typeof __md_analytics&&__md_analytics()</script> </head> <body dir="ltr"> <input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off"> <input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off"> <label class="md-overlay" for="__drawer"></label> <div data-md-component="skip"> <a href="#trains-integration" class="md-skip"> Skip to content </a> </div> <div data-md-component="announce"> </div> <header class="md-header md-header--shadow" data-md-component="header"> <nav class="md-header__inner md-grid" aria-label="Header"> <a href="../.." title="AutoKeras" class="md-header__button md-logo" aria-label="AutoKeras" data-md-component="logo"> <img src="/img/logo_white.svg" alt="logo"> </a> <label class="md-header__button md-icon" for="__drawer"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg> </label> <div class="md-header__title" data-md-component="header-title"> <div class="md-header__ellipsis"> <div class="md-header__topic"> <span class="md-ellipsis"> AutoKeras </span> </div> <div class="md-header__topic" data-md-component="header-topic"> <span class="md-ellipsis"> TRAINS </span> </div> </div> </div> <script>var media,input,key,value,palette=__md_get("__palette");if(palette&&palette.color){"(prefers-color-scheme)"===palette.color.media&&(media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']"),palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent"));for([key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script> <label class="md-header__button md-icon" for="__search"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg> </label> <div class="md-search" data-md-component="search" role="dialog"> <label class="md-search__overlay" for="__search"></label> <div class="md-search__inner" role="search"> <form class="md-search__form" name="search"> <input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required> <label class="md-search__icon md-icon" for="__search"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg> </label> <nav class="md-search__options" aria-label="Search"> <button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg> </button> </nav> </form> <div class="md-search__output"> <div class="md-search__scrollwrap" data-md-scrollfix> <div class="md-search-result" data-md-component="search-result"> <div class="md-search-result__meta"> Initializing search </div> <ol class="md-search-result__list" role="presentation"></ol> </div> </div> </div> </div> </div> <div class="md-header__source"> <a href="https://github.com/keras-team/autokeras" title="Go to repository" class="md-source" data-md-component="source"> <div class="md-source__icon md-icon"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z"/></svg> </div> <div class="md-source__repository"> GitHub </div> </a> </div> </nav> </header> <div class="md-container" data-md-component="container"> <main class="md-main" data-md-component="main"> <div class="md-main__inner md-grid"> <div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" > <div class="md-sidebar__scrollwrap"> <div class="md-sidebar__inner"> <nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0"> <label class="md-nav__title" for="__drawer"> <a href="../.." title="AutoKeras" class="md-nav__button md-logo" aria-label="AutoKeras" data-md-component="logo"> <img src="/img/logo_white.svg" alt="logo"> </a> AutoKeras </label> <div class="md-nav__source"> <a href="https://github.com/keras-team/autokeras" title="Go to repository" class="md-source" data-md-component="source"> <div class="md-source__icon md-icon"> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z"/></svg> </div> <div class="md-source__repository"> GitHub </div> </a> </div> <ul class="md-nav__list" data-md-scrollfix> <li class="md-nav__item"> <a href="../.." class="md-nav__link"> <span class="md-ellipsis"> Home </span> </a> </li> <li class="md-nav__item"> <a href="../../install/" class="md-nav__link"> <span class="md-ellipsis"> Installation </span> </a> </li> <li class="md-nav__item md-nav__item--nested"> <input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" > <label class="md-nav__link" for="__nav_3" id="__nav_3_label" tabindex="0"> <span class="md-ellipsis"> Tutorials </span> <span class="md-nav__icon md-icon"></span> </label> <nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false"> <label class="md-nav__title" for="__nav_3"> <span class="md-nav__icon md-icon"></span> Tutorials </label> <ul class="md-nav__list" data-md-scrollfix> <li class="md-nav__item"> <a href="../../tutorial/overview/" class="md-nav__link"> <span class="md-ellipsis"> Overview </span> </a> </li> <li class="md-nav__item"> <a href="../../tutorial/image_classification/" class="md-nav__link"> <span class="md-ellipsis"> Image Classification </span> </a> </li> <li class="md-nav__item"> <a href="../../tutorial/image_regression/" class="md-nav__link"> <span class="md-ellipsis"> Image Regression </span> </a> </li> <li class="md-nav__item"> <a href="../../tutorial/text_classification/" class="md-nav__link"> <span class="md-ellipsis"> Text Classification </span> </a> </li> <li class="md-nav__item"> <a href="../../tutorial/text_regression/" class="md-nav__link"> <span class="md-ellipsis"> Text Regression </span> </a> </li> <li class="md-nav__item"> <a href="../../tutorial/multi/" class="md-nav__link"> <span class="md-ellipsis"> Multi-Modal and Multi-Task </span> </a> </li> <li class="md-nav__item"> <a href="../../tutorial/customized/" class="md-nav__link"> <span class="md-ellipsis"> Customized Model </span> </a> </li> <li class="md-nav__item"> <a href="../../tutorial/export/" class="md-nav__link"> <span class="md-ellipsis"> Export Model </span> </a> </li> <li class="md-nav__item"> <a href="../../tutorial/load/" class="md-nav__link"> <span class="md-ellipsis"> Load Data from Disk </span> </a> </li> <li class="md-nav__item"> <a href="../../tutorial/faq/" class="md-nav__link"> <span class="md-ellipsis"> FAQ </span> </a> </li> </ul> </nav> </li> <li class="md-nav__item md-nav__item--active md-nav__item--nested"> <input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" checked> <label class="md-nav__link" for="__nav_4" id="__nav_4_label" tabindex="0"> <span class="md-ellipsis"> Extensions </span> <span class="md-nav__icon md-icon"></span> </label> <nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="true"> <label class="md-nav__title" for="__nav_4"> <span class="md-nav__icon md-icon"></span> Extensions </label> <ul class="md-nav__list" data-md-scrollfix> <li class="md-nav__item"> <a href="../tf_cloud/" class="md-nav__link"> <span class="md-ellipsis"> TensorFlow Cloud </span> </a> </li> <li class="md-nav__item md-nav__item--active"> <input class="md-nav__toggle md-toggle" type="checkbox" id="__toc"> <label class="md-nav__link md-nav__link--active" for="__toc"> <span class="md-ellipsis"> TRAINS </span> <span class="md-nav__icon md-icon"></span> </label> <a href="./" class="md-nav__link md-nav__link--active"> <span class="md-ellipsis"> TRAINS </span> </a> <nav class="md-nav md-nav--secondary" aria-label="Table of contents"> <label class="md-nav__title" for="__toc"> <span class="md-nav__icon md-icon"></span> Table of contents </label> <ul class="md-nav__list" data-md-component="toc" data-md-scrollfix> <li class="md-nav__item"> <a href="#setting-up-trains" class="md-nav__link"> <span class="md-ellipsis"> Setting up Trains </span> </a> </li> <li class="md-nav__item"> <a href="#tracking-your-autokeras-tasks" class="md-nav__link"> <span class="md-ellipsis"> Tracking your AutoKeras tasks </span> </a> <nav class="md-nav" aria-label="Tracking your AutoKeras tasks"> <ul class="md-nav__list"> <li class="md-nav__item"> <a href="#visualizing-task-results" class="md-nav__link"> <span class="md-ellipsis"> Visualizing Task Results </span> </a> </li> <li class="md-nav__item"> <a href="#task-models" class="md-nav__link"> <span class="md-ellipsis"> Task Models </span> </a> </li> <li class="md-nav__item"> <a href="#tracking-model-performance" class="md-nav__link"> <span class="md-ellipsis"> Tracking Model Performance </span> </a> </li> <li class="md-nav__item"> <a href="#model-development-insights" class="md-nav__link"> <span class="md-ellipsis"> Model Development Insights </span> </a> </li> </ul> </nav> </li> </ul> </nav> </li> </ul> </nav> </li> <li class="md-nav__item"> <a href="../../docker/" class="md-nav__link"> <span class="md-ellipsis"> Docker </span> </a> </li> <li class="md-nav__item"> <a href="../../contributing/" class="md-nav__link"> <span class="md-ellipsis"> Contributing Guide </span> </a> </li> <li class="md-nav__item md-nav__item--nested"> <input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" > <label class="md-nav__link" for="__nav_7" id="__nav_7_label" tabindex="0"> <span class="md-ellipsis"> Documentation </span> <span class="md-nav__icon md-icon"></span> </label> <nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false"> <label class="md-nav__title" for="__nav_7"> <span class="md-nav__icon md-icon"></span> Documentation </label> <ul class="md-nav__list" data-md-scrollfix> <li class="md-nav__item"> <a href="../../image_classifier/" class="md-nav__link"> <span class="md-ellipsis"> ImageClassifier </span> </a> </li> <li class="md-nav__item"> <a href="../../image_regressor/" class="md-nav__link"> <span class="md-ellipsis"> ImageRegressor </span> </a> </li> <li class="md-nav__item"> <a href="../../text_classifier/" class="md-nav__link"> <span class="md-ellipsis"> TextClassifier </span> </a> </li> <li class="md-nav__item"> <a href="../../text_regressor/" class="md-nav__link"> <span class="md-ellipsis"> TextRegressor </span> </a> </li> <li class="md-nav__item"> <a href="../../auto_model/" class="md-nav__link"> <span class="md-ellipsis"> AutoModel </span> </a> </li> <li class="md-nav__item"> <a href="../../base/" class="md-nav__link"> <span class="md-ellipsis"> Base Class </span> </a> </li> <li class="md-nav__item"> <a href="../../node/" class="md-nav__link"> <span class="md-ellipsis"> Node </span> </a> </li> <li class="md-nav__item"> <a href="../../block/" class="md-nav__link"> <span class="md-ellipsis"> Block </span> </a> </li> <li class="md-nav__item"> <a href="../../utils/" class="md-nav__link"> <span class="md-ellipsis"> Utils </span> </a> </li> </ul> </nav> </li> <li class="md-nav__item"> <a href="../../benchmarks/" class="md-nav__link"> <span class="md-ellipsis"> Benchmarks </span> </a> </li> <li class="md-nav__item"> <a href="../../about/" class="md-nav__link"> <span class="md-ellipsis"> About </span> </a> </li> </ul> </nav> </div> </div> </div> <div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" > <div class="md-sidebar__scrollwrap"> <div class="md-sidebar__inner"> <nav class="md-nav md-nav--secondary" aria-label="Table of contents"> <label class="md-nav__title" for="__toc"> <span class="md-nav__icon md-icon"></span> Table of contents </label> <ul class="md-nav__list" data-md-component="toc" data-md-scrollfix> <li class="md-nav__item"> <a href="#setting-up-trains" class="md-nav__link"> <span class="md-ellipsis"> Setting up Trains </span> </a> </li> <li class="md-nav__item"> <a href="#tracking-your-autokeras-tasks" class="md-nav__link"> <span class="md-ellipsis"> Tracking your AutoKeras tasks </span> </a> <nav class="md-nav" aria-label="Tracking your AutoKeras tasks"> <ul class="md-nav__list"> <li class="md-nav__item"> <a href="#visualizing-task-results" class="md-nav__link"> <span class="md-ellipsis"> Visualizing Task Results </span> </a> </li> <li class="md-nav__item"> <a href="#task-models" class="md-nav__link"> <span class="md-ellipsis"> Task Models </span> </a> </li> <li class="md-nav__item"> <a href="#tracking-model-performance" class="md-nav__link"> <span class="md-ellipsis"> Tracking Model Performance </span> </a> </li> <li class="md-nav__item"> <a href="#model-development-insights" class="md-nav__link"> <span class="md-ellipsis"> Model Development Insights </span> </a> </li> </ul> </nav> </li> </ul> </nav> </div> </div> </div> <div class="md-content" data-md-component="content"> <article class="md-content__inner md-typeset"> <h1 id="trains-integration">Trains Integration</h1> <p>Allegro Trains is a full system open source ML / DL experiment manager and ML-Ops solution. It enables data scientists and data engineers to effortlessly track, manage, compare and collaborate on their experiments as well as easily manage their training workloads on remote machines.</p> <p><strong>Trains</strong> is a suite of open source Python packages and plugins, including:</p> <ul> <li><a href="https://github.com/allegroai/trains"><strong>Trains</strong></a> Python Client package - Integrate <strong>Trains</strong> into your AutoKeras tasks with just two lines of code, and get all of <strong>Trains</strong> robust features. </li> <li><a href="https://github.com/allegroai/trains-server"><strong>Trains Server</strong></a> - The <strong>Trains</strong> backend infrastructure and web UI. Use the public <a href="https://demoapp.trains.allegro.ai"><strong>Trains</strong> demo server</a>, or deploy your own.</li> <li><a href="https://github.com/allegroai/trains-agent"><strong>Trains Agent</strong></a> - The <strong>Trains</strong> DevOps component for experiment execution, resource control, and autoML..</li> <li>Additional integrations - Integrate <strong>Trains</strong> with <a href="https://github.com/allegroai/trains-pycharm-plugin">PyCharm</a> and <a href="https://github.com/allegroai/trains-jupyter-plugin">Jupyter Notebook</a>. </li> </ul> <p><img src="https://allegro.ai/docs/img/trains/gif/webapp_screenshots.gif"></p> <h2 id="setting-up-trains">Setting up Trains</h2> <p>To integrate <strong>Trains</strong> into your AutoKeras project, do the following:</p> <ol> <li> <p>Install the <strong>Trains</strong> Python Client package.</p> <div class="codehilite"><pre><span></span><code>pip install trains </code></pre></div> </li> <li> <p>Add the short <strong>Trains</strong> initialization code to your task.</p> <div class="codehilite"><pre><span></span><code><span class="kn">from</span> <span class="nn">trains</span> <span class="kn">import</span> <span class="n">Task</span> <span class="n">task</span> <span class="o">=</span> <span class="n">Task</span><span class="o">.</span><span class="n">init</span><span class="p">(</span><span class="n">project_name</span><span class="o">=</span><span class="s2">"autokeras"</span><span class="p">,</span> <span class="n">task_name</span><span class="o">=</span><span class="s2">"autokeras imdb example with scalars"</span><span class="p">)</span> </code></pre></div> </li> <li> <p>Run your task. The console output will include the URL of the task's <strong>RESULTS</strong> page.</p> <div class="codehilite"><pre><span></span><code>TRAINS<span class="w"> </span>Task:<span class="w"> </span>overwriting<span class="w"> </span>(reusing)<span class="w"> </span>task<span class="w"> </span>id=60763e04c0ba45ea9fe3cfe79f3f06a3 TRAINS<span class="w"> </span>results<span class="w"> </span>page:<span class="w"> </span>https://demoapp.trains.allegro.ai/projects/21643e0f1c4a4c99953302fc88a1a84c/experiments/60763e04c0ba45ea9fe3cfe79f3f06a3/output/log<span class="nt"></code></pre></span> </code></pre></div> </li> </ol> <p>See an example script <a href="https://github.com/allegroai/trains/blob/master/examples/autokeras/autokeras_imdb_example.py">here</a>.</p> <h2 id="tracking-your-autokeras-tasks">Tracking your AutoKeras tasks</h2> <h3 id="visualizing-task-results">Visualizing Task Results</h3> <p><strong>Trains</strong> automatically logs comprehensive information about your AutoKeras task: code source control, execution environment, hyperparameters and more.<br /> It also automatically records any scalars, histograms and images reported to Tensorboard/Matplotlib or Seaborn.</p> <p>For example, making use of Tensorboard in your task will make all recorded information available in <strong>Trains</strong> as well:</p> <div class="highlight"><pre><span></span><code><span class="kn">from</span> <span class="nn">tensorflow</span> <span class="kn">import</span> <span class="n">keras</span> <span class="n">tensorboard_callback_train</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">callbacks</span><span class="o">.</span><span class="n">TensorBoard</span><span class="p">(</span><span class="n">log_dir</span><span class="o">=</span><span class="s1">'log'</span><span class="p">)</span> <span class="n">tensorboard_callback_test</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">callbacks</span><span class="o">.</span><span class="n">TensorBoard</span><span class="p">(</span><span class="n">log_dir</span><span class="o">=</span><span class="s1">'log'</span><span class="p">)</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">x_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">callbacks</span><span class="o">=</span><span class="p">[</span><span class="n">tensorboard_callback_train</span><span class="p">])</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">x_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">callbacks</span><span class="o">=</span><span class="p">[</span><span class="n">tensorboard_callback_test</span><span class="p">])</span> </code></pre></div> <p>When your task runs, you can follow its results, including any collected metrics through the <strong>Trains</strong> web UI.</p> <p>View your task results in the <strong>Trains</strong> web UI, by clicking on it in the <strong>EXPERIMENTS</strong> table.<br /> Find the <strong>EXPERIMENT</strong> table under the specified project listed in the <strong>HOME</strong> or <strong>PROJECTS</strong> page: </p> <p><img src="https://allegro-datasets.s3.amazonaws.com/erez/Selection_028.png" style="border: 1px solid black; border-radius:3px"></p> <p>Detailed description <strong>Trains</strong> Web UI experiment information can be obtained <a href="https://allegro.ai/docs/webapp/webapp_exp_details/">here</a>.<br /> Additional information on <strong>Trains</strong> logging capabilities can be obtained in the <a href="https://allegro.ai/docs/concepts_arch/concepts_arch/#logging">relevant <strong>Trains</strong> Documentation</a></p> <h3 id="task-models">Task Models</h3> <p><strong>Trains</strong> automatically tracks models produced by your AutoKeras tasks.</p> <p>To upload models, specify the <code>output_uri</code> parameter when calling <code>Task.init</code> to provide the upload destination:</p> <div class="codehilite"><pre><span></span><code> task = Task.init(project_name="autokeras", task_name="autokeras imdb example with scalars", output_uri="http://localhost:8081/") </code></pre></div> <p>View models information in the experiment details panel, <strong>ARTIFACTS</strong> tab: </p> <p><img id="myImg_01" class="modalImg" src="https://allegro-datasets.s3.amazonaws.com/erez/Selection_029.png" style="border: 1px solid black; border-radius:3px"></p> <h3 id="tracking-model-performance">Tracking Model Performance</h3> <p>Use the <strong>Trains</strong> web UI to easily create experiment leaderboards and quickly identify best performing models.<br /> Customize your board adding any valuable metric or hyperparameter.</p> <p><img id="myImg_03" class="modalImg" src="https://allegro-datasets.s3.amazonaws.com/erez/Selection_031.png" style="border: 1px solid black; border-radius:3px"> </p> <p>Additional information on customizing <strong>Trains</strong> experiment and model tables can be obtained in the <a href="https://allegro.ai/docs/webapp/webapp_exp_table/#customize-the-experiments-table">relevant <strong>Trains</strong> Documentation</a></p> <h3 id="model-development-insights">Model Development Insights</h3> <p>Use the <strong>Trains</strong> web UI to view side-by-side comparison of experiments: Easily locate the differences and impact of experiment configuration parameters, metrics, scalars etc.</p> <p>Compare multiple experiments, by selecting two or more experiments in the <strong>EXPERIMENTS</strong> table, and clicking <strong>COMPARE</strong>.</p> <p>The following image shows how two experiments compare in their epoch_accuracy and epoch_loss behaviour:</p> <p><img id="myImg_02" class="modalImg" src="https://allegro-datasets.s3.amazonaws.com/erez/Selection_030.png" style="border: 1px solid black; border-radius:3px"></p> </article> </div> <script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script> </div> </main> <footer class="md-footer"> <div class="md-footer-meta md-typeset"> <div class="md-footer-meta__inner md-grid"> <div class="md-copyright"> Made with <a href="https://squidfunk.github.io/mkdocs-material/" target="_blank" rel="noopener"> Material for MkDocs </a> </div> </div> </div> </footer> </div> <div class="md-dialog" data-md-component="dialog"> <div class="md-dialog__inner md-typeset"></div> </div> <script id="__config" type="application/json">{"base": "../..", "features": [], "search": "../../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}}</script> <script src="../../assets/javascripts/bundle.bd41221c.min.js"></script> <script src="https://unpkg.com/mermaid@8.4.4/dist/mermaid.min.js"></script> </body> </html>