CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 77 results for author: <span class="mathjax">Chung, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Chung%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chung, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chung%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chung, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chung%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chung%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chung%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08681">arXiv:2411.08681</a> <span> [<a href="https://arxiv.org/pdf/2411.08681">pdf</a>, <a href="https://arxiv.org/format/2411.08681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the emittance of accelerated electron bunches at the AWAKE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cooke%2C+D+A">D. A. Cooke</a>, <a href="/search/physics?searchtype=author&query=Pannell%2C+F">F. Pannell</a>, <a href="/search/physics?searchtype=author&query=Della+Porta%2C+G+Z">G. Zevi Della Porta</a>, <a href="/search/physics?searchtype=author&query=Farmer%2C+J">J. Farmer</a>, <a href="/search/physics?searchtype=author&query=Bencini%2C+V">V. Bencini</a>, <a href="/search/physics?searchtype=author&query=Bergamaschi%2C+M">M. Bergamaschi</a>, <a href="/search/physics?searchtype=author&query=Mazzoni%2C+S">S. Mazzoni</a>, <a href="/search/physics?searchtype=author&query=Ranc%2C+L">L. Ranc</a>, <a href="/search/physics?searchtype=author&query=Senes%2C+E">E. Senes</a>, <a href="/search/physics?searchtype=author&query=Sherwood%2C+P">P. Sherwood</a>, <a href="/search/physics?searchtype=author&query=Wing%2C+M">M. Wing</a>, <a href="/search/physics?searchtype=author&query=Agnello%2C+R">R. Agnello</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C+C">C. C. Ahdida</a>, <a href="/search/physics?searchtype=author&query=Amoedo%2C+C">C. Amoedo</a>, <a href="/search/physics?searchtype=author&query=Andrebe%2C+Y">Y. Andrebe</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+O">O. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+R">R. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Arnesano%2C+J+M">J. M. Arnesano</a>, <a href="/search/physics?searchtype=author&query=Blanchard%2C+P">P. Blanchard</a>, <a href="/search/physics?searchtype=author&query=Burrows%2C+P+N">P. N. Burrows</a>, <a href="/search/physics?searchtype=author&query=Buttensch%C3%B6n%2C+B">B. Buttensch枚n</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Clairembaud%2C+A">A. Clairembaud</a>, <a href="/search/physics?searchtype=author&query=Davut%2C+C">C. Davut</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08681v1-abstract-short" style="display: inline;"> The vertical plane transverse emittance of accelerated electron bunches at the AWAKE experiment at CERN has been determined, using three different methods of data analysis. This is a proof-of-principle measurement using the existing AWAKE electron spectrometer to validate the measurement technique. Large values of the geometric emittance, compared to that of the injection beam, are observed (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08681v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08681v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08681v1-abstract-full" style="display: none;"> The vertical plane transverse emittance of accelerated electron bunches at the AWAKE experiment at CERN has been determined, using three different methods of data analysis. This is a proof-of-principle measurement using the existing AWAKE electron spectrometer to validate the measurement technique. Large values of the geometric emittance, compared to that of the injection beam, are observed ($\sim \SI{0.5}{\milli\metre\milli\radian}$ compared with $\sim \SI{0.08}{\milli\metre\milli\radian}$), which is in line with expectations of emittance growth arising from plasma density ramps and large injection beam bunch size. Future iterations of AWAKE are anticipated to operate in conditions where emittance growth is better controlled, and the effects of the imaging systems of the existing and future spectrometer designs on the ability to measure the emittance are discussed. Good performance of the instrument down to geometric emittances of approximately $\SI{1e-4}{\milli\metre\milli\radian}$ is required, which may be possible with improved electron optics and imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08681v1-abstract-full').style.display = 'none'; document.getElementById('2411.08681v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22609">arXiv:2410.22609</a> <span> [<a href="https://arxiv.org/pdf/2410.22609">pdf</a>, <a href="https://arxiv.org/format/2410.22609">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> A physics-aware data-driven surrogate approach for fast atmospheric radiative transfer inversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sgattoni%2C+C">Cristina Sgattoni</a>, <a href="/search/physics?searchtype=author&query=Sgheri%2C+L">Luca Sgheri</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">Matthias Chung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22609v1-abstract-short" style="display: inline;"> FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) was selected in 2019 as the ninth Earth Explorer mission by the European Space Agency (ESA). Its primary objective is to collect interferometric measurements in the Far-InfraRed (FIR) spectral range, which accounts for 50\% of Earth's outgoing longwave radiation emitted into space, and will be observed from space for the first ti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22609v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22609v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22609v1-abstract-full" style="display: none;"> FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) was selected in 2019 as the ninth Earth Explorer mission by the European Space Agency (ESA). Its primary objective is to collect interferometric measurements in the Far-InfraRed (FIR) spectral range, which accounts for 50\% of Earth's outgoing longwave radiation emitted into space, and will be observed from space for the first time. Accurate measurements of the FIR at the top of the atmosphere are crucial for improving climate models. Current instruments are insufficient, necessitating the development of advanced computational techniques. To ensure the quality of the mission data, an End-to-End Simulator (E2ES) was developed to simulate the measurement process and evaluate the effects of instrument characteristics and environmental factors. The core challenge of the mission is solving the retrieval problem, which involves estimating atmospheric properties from the radiance spectra observed by the satellite. This problem is ill-posed and regularization techniques are necessary. In this work, we present a novel and fast data-driven approach to approximate the inverse mapping. In the first phase, we generate an initial approximation of the inverse mapping using only simulated FORUM data. In the second phase, we improve this approximation by introducing climatological data as a priori information and using a neural network to estimate the optimal regularization parameters. While our approach does not match the precision of full-physics retrieval methods, its key advantage is the ability to deliver results almost instantaneously, making it highly suitable for real-time applications. Furthermore, the proposed method can provide more accurate a priori estimates for full-physics methods, thereby improving the overall accuracy of the retrieved atmospheric profiles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22609v1-abstract-full').style.display = 'none'; document.getElementById('2410.22609v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span> [<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v2-abstract-short" style="display: inline;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v2-abstract-full" style="display: none;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'none'; document.getElementById('2409.18288v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span> [<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span> [<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span> [<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19892">arXiv:2403.19892</a> <span> [<a href="https://arxiv.org/pdf/2403.19892">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Heat Transfer Coefficients of Moving Particle Beds from Flow-Dependent Particle Bed Thermal Conductivity and Near-Wall Resistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adapa%2C+S+R">Sarath R. Adapa</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xintong Zhang</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+T">Tianshi Feng</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+K+M">Ka Man Chung</a>, <a href="/search/physics?searchtype=author&query=Albrecht%2C+K+J">Kevin J. Albrecht</a>, <a href="/search/physics?searchtype=author&query=Ho%2C+C+K">Clifford K. Ho</a>, <a href="/search/physics?searchtype=author&query=Madden%2C+D+A">Dimitri A. Madden</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Renkun Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19892v3-abstract-short" style="display: inline;"> Determination of heat transfer coefficients for flowing packed particle beds is essential to the design of particle heat exchangers, and other thermal processes. While such dense granular flows fall into the well-known plug-flow regime, the discrete nature of granular materials alters the thermal transport processes in both the near-wall and bulk regions of flowing particle beds from their station… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19892v3-abstract-full').style.display = 'inline'; document.getElementById('2403.19892v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19892v3-abstract-full" style="display: none;"> Determination of heat transfer coefficients for flowing packed particle beds is essential to the design of particle heat exchangers, and other thermal processes. While such dense granular flows fall into the well-known plug-flow regime, the discrete nature of granular materials alters the thermal transport processes in both the near-wall and bulk regions of flowing particle beds from their stationary counterparts. As a result, heat transfer correlations based on the stationary particle bed thermal conductivity could be inadequate for flowing particles in a heat exchanger. Earlier works have achieved reasonable agreement with experiments by treating granular media as a plug-flow continuum with a near-wall thermal resistance in series. However, the properties of the continuum were often obtained from measurements on stationary beds owing to the difficulty of flowing bed measurements. In this work, it was found that the properties of a stationary bed are highly sensitive to the method of particle packing and there is a decrease in the particle bed thermal conductivity and increase in the near-wall thermal resistance, measured as an effective air gap thickness, on the onset of particle flow. These variations in the thermophysical properties of stationary and flowing particle beds can lead to errors in heat transfer coefficient calculations. Therefore, the heat transfer coefficients for granular flows were calculated using experimentally determined flowing particle bed thermal conductivity and near-wall air gap for ceramic particles -CARBOCP40/100(275 um), HSP40/70(404um) and HSP16/30(956um); at velocities of 5-15mms-1; and temperatures of 300-650C. The thermal conductivity and air gap values for CP40/100 and HSP40/70 were further used to calculate heat transfer coefficients across different particle bed temperatures and velocities for different parallel-plate heat exchanger dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19892v3-abstract-full').style.display = 'none'; document.getElementById('2403.19892v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03212">arXiv:2403.03212</a> <span> [<a href="https://arxiv.org/pdf/2403.03212">pdf</a>, <a href="https://arxiv.org/format/2403.03212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance of a modular ton-scale pixel-readout liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03212v1-abstract-short" style="display: inline;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03212v1-abstract-full" style="display: none;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'none'; document.getElementById('2403.03212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 41 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0073-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01568">arXiv:2402.01568</a> <span> [<a href="https://arxiv.org/pdf/2402.01568">pdf</a>, <a href="https://arxiv.org/format/2402.01568">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Es-sghir%2C+H+A">H. Amar Es-sghir</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1297 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01568v3-abstract-short" style="display: inline;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUN… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'inline'; document.getElementById('2402.01568v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01568v3-abstract-full" style="display: none;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'none'; document.getElementById('2402.01568v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 20 figures. Corrected author list; corrected typos across paper and polished text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-024; FERMILAB-PUB-23-0819-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11083">arXiv:2401.11083</a> <span> [<a href="https://arxiv.org/pdf/2401.11083">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> New Beam Dynamics Code for Cyclotron Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kim%2C+G">G-H. Kim</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+H">H-J. Cho</a>, <a href="/search/physics?searchtype=author&query=Oh%2C+B">B-H. Oh</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+G">G-R. Hahn</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S">S. Park</a>, <a href="/search/physics?searchtype=author&query=Shin%2C+S">S. Shin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11083v1-abstract-short" style="display: inline;"> This paper describes the beam dynamic simulation with transfer matrix method for cyclotron. Starting from a description on the equation of motion in the cyclotron, lattice functions were determined from transfer matrix method and the solutions for the 2nd-order nonlinear Hamiltonian were introduced and used in phase space particle tracking. Based on the description of beam dynamics in the cyclotro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11083v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11083v1-abstract-full" style="display: none;"> This paper describes the beam dynamic simulation with transfer matrix method for cyclotron. Starting from a description on the equation of motion in the cyclotron, lattice functions were determined from transfer matrix method and the solutions for the 2nd-order nonlinear Hamiltonian were introduced and used in phase space particle tracking. Based on the description of beam dynamics in the cyclotron, simulation code was also developed for cyclotron design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11083v1-abstract-full').style.display = 'none'; document.getElementById('2401.11083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:1807.01397</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03130">arXiv:2312.03130</a> <span> [<a href="https://arxiv.org/pdf/2312.03130">pdf</a>, <a href="https://arxiv.org/format/2312.03130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Vertical Drift Technology, Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1304 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03130v1-abstract-short" style="display: inline;"> DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precisi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03130v1-abstract-full').style.display = 'inline'; document.getElementById('2312.03130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03130v1-abstract-full" style="display: none;"> DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03130v1-abstract-full').style.display = 'none'; document.getElementById('2312.03130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">425 pages; 281 figures Central editing team: A. Heavey, S. Kettell, A. Marchionni, S. Palestini, S. Rajogopalan, R. J. Wilson</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab Report no: TM-2813-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11244">arXiv:2311.11244</a> <span> [<a href="https://arxiv.org/pdf/2311.11244">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Micromechanical Origin of Heat Transfer to Granular Flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xintong Zhang</a>, <a href="/search/physics?searchtype=author&query=Adapa%2C+S">Sarath Adapa</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+T">Tianshi Feng</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+J">Jian Zeng</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+K+M">Ka Man Chung</a>, <a href="/search/physics?searchtype=author&query=Ho%2C+C">Clifford Ho</a>, <a href="/search/physics?searchtype=author&query=Albrecht%2C+K">Kevin Albrecht</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Renkun Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11244v2-abstract-short" style="display: inline;"> Heat transfer to a granular flow is comprised of two resistances in series: near the wall and within the bulk particle bed, neither of which is well understood due to the lack of experimental probes to separate their respective contribution. Here, we use a frequency modulated photothermal technique to separately quantify the thermal resistances in the near-wall and the bulk bed regions of particle… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11244v2-abstract-full').style.display = 'inline'; document.getElementById('2311.11244v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11244v2-abstract-full" style="display: none;"> Heat transfer to a granular flow is comprised of two resistances in series: near the wall and within the bulk particle bed, neither of which is well understood due to the lack of experimental probes to separate their respective contribution. Here, we use a frequency modulated photothermal technique to separately quantify the thermal resistances in the near-wall and the bulk bed regions of particles in flowing states. Compared to the stationary state, the flowing leads to a higher near-wall resistance and a lower thermal conductivity of bulk beds. Coupled with discrete element method simulation, we show that the near-wall resistance can be explained by particle diffusion in granular flows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11244v2-abstract-full').style.display = 'none'; document.getElementById('2311.11244v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05669">arXiv:2310.05669</a> <span> [<a href="https://arxiv.org/pdf/2310.05669">pdf</a>, <a href="https://arxiv.org/format/2310.05669">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Transverse Emittance Reduction in Muon Beams by Ionization Cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+MICE+Collaboration"> The MICE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&query=Savic%2C+M">M. Savic</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05669v2-abstract-short" style="display: inline;"> Accelerated muon beams have been considered for next-generation studies of high-energy lepton-antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the muon production mechanism through the decay of pions from pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05669v2-abstract-full').style.display = 'inline'; document.getElementById('2310.05669v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05669v2-abstract-full" style="display: none;"> Accelerated muon beams have been considered for next-generation studies of high-energy lepton-antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the muon production mechanism through the decay of pions from proton collisions. Ionization cooling is the technique proposed to decrease the muon beam phase-space volume. Here we demonstrate a clear signal of ionization cooling through the observation of transverse emittance reduction in beams that traverse lithium hydride or liquid hydrogen absorbers in the Muon Ionization Cooling Experiment (MICE). The measurement is well reproduced by the simulation of the experiment and the theoretical model. The results shown here represent a substantial advance towards the realization of muon-based facilities that could operate at the energy and intensity frontiers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05669v2-abstract-full').style.display = 'none'; document.getElementById('2310.05669v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages and 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> STFC-P-2023-004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15121">arXiv:2309.15121</a> <span> [<a href="https://arxiv.org/pdf/2309.15121">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thermal Conductivity Measurement Using Modulated Photothermal Radiometry for Nitrate and Chloride Molten Salts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chung%2C+K+M">Ka Man Chung</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+T">Tianshi Feng</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+J">Jian Zeng</a>, <a href="/search/physics?searchtype=author&query=Adapa%2C+S+R">Sarath Reddy Adapa</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xintong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+A+Z">Andrew Z. Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Ye Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peiwen Li</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Youyang Zhao</a>, <a href="/search/physics?searchtype=author&query=Garay%2C+J+E">Javier E. Garay</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Renkun Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15121v1-abstract-short" style="display: inline;"> Molten salts are being used or explored for thermal energy storage and conversion systems in concentrating solar power and nuclear power plants. Thermal conductivity of molten salts is an important thermophysical property dictating the performance and cost of these systems, but its accurate measurement has been challenging, as evidenced by wide scattering of existing data in literature. The corros… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15121v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15121v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15121v1-abstract-full" style="display: none;"> Molten salts are being used or explored for thermal energy storage and conversion systems in concentrating solar power and nuclear power plants. Thermal conductivity of molten salts is an important thermophysical property dictating the performance and cost of these systems, but its accurate measurement has been challenging, as evidenced by wide scattering of existing data in literature. The corrosive and conducting nature of these fluids also leads to time consuming sample preparation processes of many contact-based measurements. Here, we report the measurement of thermal conductivity of molten salts using a modulated photothermal radiometry (MPR) technique, which is a laser-based, non-contact, frequency-domain method adopted for molten salts for the first time. By unitizing the advantages of front side sensing of frequency-domain measurements and the vertical holder orientation, the technique can minimize the natural convection and salt creeping effects, thus yielding accurate molten salt thermal conductivity. The MPR technique is first calibrated using standard molten materials including paraffin wax and sulfur. It is then applied on measuring pure nitrate salts ($NaNO_3$ and $KNO_3$), solar salt ($NaNO_3-KNO_3$ mixture), and chloride salt ($NaCl-KCl-MgCl_2$). The measurement results are compared with data from literature, especially those obtained from laser flash analysis (LFA). Our results demonstrate that the MPR is a convenient and reliable technique of measuring thermal conductivity of molten salts. Accurate thermal conductivity data of molten salts will be valuable in developing the next-generation high-temperature thermal energy storage and conversion systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15121v1-abstract-full').style.display = 'none'; document.getElementById('2309.15121v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00106">arXiv:2309.00106</a> <span> [<a href="https://arxiv.org/pdf/2309.00106">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> In-situ Thermophysical Measurement of Flowing Molten Chloride Salt Using Modulated Photothermal Radiometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chung%2C+K+M">Ka Man Chung</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Ye Zhang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+J">Jian Zeng</a>, <a href="/search/physics?searchtype=author&query=Haddad%2C+F">Fouad Haddad</a>, <a href="/search/physics?searchtype=author&query=Adapa%2C+S+R">Sarath Reddy Adapa</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+T">Tianshi Feng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peiwen Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Renkun Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00106v1-abstract-short" style="display: inline;"> Molten salts are a leading candidate for high-temperature heat transfer fluids (HTFs) for thermal energy storage and conversion systems in concentrated solar power (CSP) and nuclear energy power plants. The ability to probe molten salt thermal transport properties in both stationary and flowing status is important for the evaluation of their heat transfer performance under realistic operational co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00106v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00106v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00106v1-abstract-full" style="display: none;"> Molten salts are a leading candidate for high-temperature heat transfer fluids (HTFs) for thermal energy storage and conversion systems in concentrated solar power (CSP) and nuclear energy power plants. The ability to probe molten salt thermal transport properties in both stationary and flowing status is important for the evaluation of their heat transfer performance under realistic operational conditions, including the temperature range and potential degradation due to corrosion and contamination. However, accurate thermal transport properties are usually challenging to obtain even for stagnant molten salts due to different sources of errors from convection, radiation, and corrosion, let alone flowing ones. To the best of authors' knowledge, there is no available in-situ technique for measuring flowing molten salt thermal conductivity. Here, we report the first in-situ flowing molten salt thermal conductivity measurement using modulated photothermal radiometry (MPR). We could successfully perform the first in-situ thermal conductivity measurement of flowing molten $NaCl-KCl-MgCl_2$ in the typical operating temperature (520 and 580 $^oC$) with flow velocities ranging from around 0.3 to 1.0 $m$$s^-1$. The relative change of the molten salt thermal conductivity was measured. Gnielinski's correlation was also used to estimate the heat transfer coefficient h of the flowing $NaCl-KCl-MgCl_2$ in the given experimental condition. The work showed the potential of the MPR technique serving as an in-situ diagnostics tool to evaluate the heat transfer performance of flowing molten salts and other high-temperature HTFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00106v1-abstract-full').style.display = 'none'; document.getElementById('2309.00106v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15801">arXiv:2306.15801</a> <span> [<a href="https://arxiv.org/pdf/2306.15801">pdf</a>, <a href="https://arxiv.org/format/2306.15801">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-12137-y">10.1140/epjc/s10052-023-12137-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Production of antihydrogen atoms by 6 keV antiprotons through a positronium cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adrich%2C+P">P. Adrich</a>, <a href="/search/physics?searchtype=author&query=Blumer%2C+P">P. Blumer</a>, <a href="/search/physics?searchtype=author&query=Caratsch%2C+G">G. Caratsch</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Clad%C3%A9%2C+P">P. Clad茅</a>, <a href="/search/physics?searchtype=author&query=Comini%2C+P">P. Comini</a>, <a href="/search/physics?searchtype=author&query=Crivelli%2C+P">P. Crivelli</a>, <a href="/search/physics?searchtype=author&query=Dalkarov%2C+O">O. Dalkarov</a>, <a href="/search/physics?searchtype=author&query=Debu%2C+P">P. Debu</a>, <a href="/search/physics?searchtype=author&query=Douillet%2C+A">A. Douillet</a>, <a href="/search/physics?searchtype=author&query=Drapier%2C+D">D. Drapier</a>, <a href="/search/physics?searchtype=author&query=Froelich%2C+P">P. Froelich</a>, <a href="/search/physics?searchtype=author&query=Garroum%2C+N">N. Garroum</a>, <a href="/search/physics?searchtype=author&query=Guellati-Khelifa%2C+S">S. Guellati-Khelifa</a>, <a href="/search/physics?searchtype=author&query=Guyomard%2C+J">J. Guyomard</a>, <a href="/search/physics?searchtype=author&query=Hervieux%2C+P">P-A. Hervieux</a>, <a href="/search/physics?searchtype=author&query=Hilico%2C+L">L. Hilico</a>, <a href="/search/physics?searchtype=author&query=Indelicato%2C+P">P. Indelicato</a>, <a href="/search/physics?searchtype=author&query=Jonsell%2C+S">S. Jonsell</a>, <a href="/search/physics?searchtype=author&query=Karr%2C+J">J-P. Karr</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B">B. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S">S. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+E">E-S. Kim</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&query=Kosinski%2C+T">T. Kosinski</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15801v2-abstract-short" style="display: inline;"> We report on the first production of an antihydrogen beam by charge exchange of 6.1 keV antiprotons with a cloud of positronium in the GBAR experiment at CERN. The antiproton beam was delivered by the AD/ELENA facility. The positronium target was produced from a positron beam itself obtained from an electron linear accelerator. We observe an excess over background indicating antihydrogen productio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15801v2-abstract-full').style.display = 'inline'; document.getElementById('2306.15801v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15801v2-abstract-full" style="display: none;"> We report on the first production of an antihydrogen beam by charge exchange of 6.1 keV antiprotons with a cloud of positronium in the GBAR experiment at CERN. The antiproton beam was delivered by the AD/ELENA facility. The positronium target was produced from a positron beam itself obtained from an electron linear accelerator. We observe an excess over background indicating antihydrogen production with a significance of 3-4 standard deviations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15801v2-abstract-full').style.display = 'none'; document.getElementById('2306.15801v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> European Physical Journal C 83, 1004 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16942">arXiv:2305.16942</a> <span> [<a href="https://arxiv.org/pdf/2305.16942">pdf</a>, <a href="https://arxiv.org/format/2305.16942">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Multipolar Pseudochirality Induced Optical Torque </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Achouri%2C+K">Karim Achouri</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">Mintae Chung</a>, <a href="/search/physics?searchtype=author&query=Kiselev%2C+A">Andrei Kiselev</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+O+J+F">Olivier J. F. Martin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16942v1-abstract-short" style="display: inline;"> It has been observed that achiral nano-particles, such as flat helices, may be subjected to an optical torque even when illuminated by normally incident linearly polarized light. However, the origin of this fascinating phenomenon has so far remained mostly unexplained. We therefore propose an exhaustive discussion that provides a clear and rigorous explanation for the existence of such a torque. U… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16942v1-abstract-full').style.display = 'inline'; document.getElementById('2305.16942v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16942v1-abstract-full" style="display: none;"> It has been observed that achiral nano-particles, such as flat helices, may be subjected to an optical torque even when illuminated by normally incident linearly polarized light. However, the origin of this fascinating phenomenon has so far remained mostly unexplained. We therefore propose an exhaustive discussion that provides a clear and rigorous explanation for the existence of such a torque. Using multipolar theory, and taking into account nonlocal interactions, we find that this torque stems from multipolar pseudochiral responses that generate both spin and orbital angular momenta. We also show that the nature of these peculiar responses makes them particularly dependent on the asymmetry of the particles. By elucidating the origin of this type of torque, this work may prove instrumental for the design of high-performance nano-rotors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16942v1-abstract-full').style.display = 'none'; document.getElementById('2305.16942v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12053">arXiv:2303.12053</a> <span> [<a href="https://arxiv.org/pdf/2303.12053">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Tomography Scan of Charge Density Wave in NbSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jyun-Yu Wu</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+Y">Yung-Ting Lee</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+G">Guan-Hao Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zheng-Hong Li</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+C">Chang-Tsan Lee</a>, <a href="/search/physics?searchtype=author&query=Hsu%2C+J">Jie-Yu Hsu</a>, <a href="/search/physics?searchtype=author&query=Kuo%2C+C">Chia-Nung Kuo</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+J">Juhn-Jong Lin</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+W">Wen-Hao Chang</a>, <a href="/search/physics?searchtype=author&query=Lue%2C+C">Chin-Shan Lue</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+P">Po-Tuan Cheng</a>, <a href="/search/physics?searchtype=author&query=Chiang%2C+C">Cheng-Tien Chiang</a>, <a href="/search/physics?searchtype=author&query=Kuo%2C+C">Chien-Cheng Kuo</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chien-Te Wu</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+C">Chi-Cheng Lee</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">Ming-Chiang Chung</a>, <a href="/search/physics?searchtype=author&query=Hsueh%2C+H">Hung-Chung Hsueh</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+C">Chun-Liang Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12053v1-abstract-short" style="display: inline;"> Charge density wave (CDW) resulted from a small distortion in the lattice is able to create new orders beyond the original lattice. In 2H-NbSe2, one of the layered transition metal dichalcogenides (TMD), the 3x3 charge order appears in two-dimensional (2D) layers. Although CDW is usually described by a sine wave, the spatial distribution within a 2D layer has never been systematically visualized.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12053v1-abstract-full').style.display = 'inline'; document.getElementById('2303.12053v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12053v1-abstract-full" style="display: none;"> Charge density wave (CDW) resulted from a small distortion in the lattice is able to create new orders beyond the original lattice. In 2H-NbSe2, one of the layered transition metal dichalcogenides (TMD), the 3x3 charge order appears in two-dimensional (2D) layers. Although CDW is usually described by a sine wave, the spatial distribution within a 2D layer has never been systematically visualized. Here by using scanning tunneling microscopy (STM) and density functional theory (DFT), we have monitored the evolution of 3x3 CDW along c-axis and realized a nearly tomography scan of CDW of the topmost layer. The results show that the strength of 3x3 charge order varies while increasing the tunneling current. The 3x3 charge order is relatively strong at the outermost Se level and decreases while probing in between Se and Nb levels. Interestingly, the 3x3 charge order gets strong again as reaching Nb level but along with a phase shift. We further calculated the orbital charge distributions and found that both CDW intensity modulation and phase shift are strongly correlated with the distribution of Se p orbitals and Nb d orbitals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12053v1-abstract-full').style.display = 'none'; document.getElementById('2303.12053v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09807">arXiv:2212.09807</a> <span> [<a href="https://arxiv.org/pdf/2212.09807">pdf</a>, <a href="https://arxiv.org/format/2212.09807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Highly-parallelized simulation of a pixelated LArTPC on a GPU </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a> , et al. (1282 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09807v3-abstract-short" style="display: inline;"> The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09807v3-abstract-full').style.display = 'inline'; document.getElementById('2212.09807v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09807v3-abstract-full" style="display: none;"> The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on $10^3$ pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09807v3-abstract-full').style.display = 'none'; document.getElementById('2212.09807v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-926-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15653">arXiv:2211.15653</a> <span> [<a href="https://arxiv.org/pdf/2211.15653">pdf</a>, <a href="https://arxiv.org/format/2211.15653">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11214-023-00984-w">10.1007/s11214-023-00984-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energetic electron precipitation driven by electromagnetic ion cyclotron waves from ELFIN's low altitude perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Angelopoulos%2C+V">V. Angelopoulos</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X+-">X. -J. Zhang</a>, <a href="/search/physics?searchtype=author&query=Artemyev%2C+A+V">A. V. Artemyev</a>, <a href="/search/physics?searchtype=author&query=Mourenas%2C+D">D. Mourenas</a>, <a href="/search/physics?searchtype=author&query=Tsai%2C+E">E. Tsai</a>, <a href="/search/physics?searchtype=author&query=Wilkins%2C+C">C. Wilkins</a>, <a href="/search/physics?searchtype=author&query=Runov%2C+A">A. Runov</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">J. Liu</a>, <a href="/search/physics?searchtype=author&query=Turner%2C+D+L">D. L. Turner</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">W. Li</a>, <a href="/search/physics?searchtype=author&query=Khurana%2C+K">K. Khurana</a>, <a href="/search/physics?searchtype=author&query=Wirz%2C+R+E">R. E. Wirz</a>, <a href="/search/physics?searchtype=author&query=Sergeev%2C+V+A">V. A. Sergeev</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+X">X. Meng</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">J. Wu</a>, <a href="/search/physics?searchtype=author&query=Hartinger%2C+M+D">M. D. Hartinger</a>, <a href="/search/physics?searchtype=author&query=Raita%2C+T">T. Raita</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Y">Y. Shen</a>, <a href="/search/physics?searchtype=author&query=An%2C+X">X. An</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+X">X. Shi</a>, <a href="/search/physics?searchtype=author&query=Bashir%2C+M+F">M. F. Bashir</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">X. Shen</a>, <a href="/search/physics?searchtype=author&query=Gan%2C+L">L. Gan</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+M">M. Qin</a>, <a href="/search/physics?searchtype=author&query=Capannolo%2C+L">L. Capannolo</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15653v1-abstract-short" style="display: inline;"> We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data from the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15653v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15653v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15653v1-abstract-full" style="display: none;"> We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data from the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at 0.5 MeV which are abrupt (bursty) with significant substructure (occasionally down to sub-second timescale). Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Using two years of ELFIN data, we assemble a statistical database of 50 events of strong EMIC wave-driven precipitation. Most reside at L=5-7 at dusk, while a smaller subset exists at L=8-12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio's spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven 1MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to 200-300 keV by much less intense higher frequency EMIC waves. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15653v1-abstract-full').style.display = 'none'; document.getElementById('2211.15653v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01166">arXiv:2211.01166</a> <span> [<a href="https://arxiv.org/pdf/2211.01166">pdf</a>, <a href="https://arxiv.org/format/2211.01166">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a> , et al. (1235 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01166v4-abstract-short" style="display: inline;"> Measurements of electrons from $谓_e$ interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01166v4-abstract-full').style.display = 'inline'; document.getElementById('2211.01166v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01166v4-abstract-full" style="display: none;"> Measurements of electrons from $谓_e$ interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01166v4-abstract-full').style.display = 'none'; document.getElementById('2211.01166v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-784, CERN-EP-DRAFT-MISC-2022-008 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 092012 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10251">arXiv:2209.10251</a> <span> [<a href="https://arxiv.org/pdf/2209.10251">pdf</a>, <a href="https://arxiv.org/format/2209.10251">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.092003">10.1103/PhysRevD.106.092003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiple Coulomb Scattering of muons in Lithium Hydride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&query=Savic%2C+M">M. Savic</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10251v1-abstract-short" style="display: inline;"> Multiple Coulomb Scattering (MCS) is a well known phenomenon occurring when charged particles traverse materials. Measurements of muons traversing low $Z$ materials made in the MuScat experiment showed that theoretical models and simulation codes, such as GEANT4 (v7.0), over-estimated the scattering. The Muon Ionization Cooling Experiment (MICE) measured the cooling of a muon beam traversing a liq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10251v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10251v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10251v1-abstract-full" style="display: none;"> Multiple Coulomb Scattering (MCS) is a well known phenomenon occurring when charged particles traverse materials. Measurements of muons traversing low $Z$ materials made in the MuScat experiment showed that theoretical models and simulation codes, such as GEANT4 (v7.0), over-estimated the scattering. The Muon Ionization Cooling Experiment (MICE) measured the cooling of a muon beam traversing a liquid hydrogen or lithium hydride (LiH) energy absorber as part of a programme to develop muon accelerator facilities, such as a Neutrino Factory or a Muon Collider. The energy loss and MCS that occur in the absorber material are competing effects that alter the performance of the cooling channel. Therefore measurements of MCS are required in order to validate the simulations used to predict the cooling performance in future accelerator facilities. We report measurements made in the MICE apparatus of MCS using a LiH absorber and muons within the momentum range 160 to 245 MeV/c. The measured RMS scattering width is about 9% smaller than that predicted by the approximate formula proposed by the Particle Data Group. Data at 172, 200 and 240 MeV/c are compared to the GEANT4 (v9.6) default scattering model. These measurements show agreement with this more recent GEANT4 (v9.6) version over the range of incident muon momenta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10251v1-abstract-full').style.display = 'none'; document.getElementById('2209.10251v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures, journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2022-001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14521">arXiv:2206.14521</a> <span> [<a href="https://arxiv.org/pdf/2206.14521">pdf</a>, <a href="https://arxiv.org/format/2206.14521">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11733-2">10.1140/epjc/s10052-023-11733-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a> , et al. (1203 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14521v2-abstract-short" style="display: inline;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a char… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'inline'; document.getElementById('2206.14521v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14521v2-abstract-full" style="display: none;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/$c$ charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1$\pm0.6$% and 84.1$\pm0.6$%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'none'; document.getElementById('2206.14521v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 20 figures. Accepted version. Published version available in Eur. Phys. J. C 83, 618 (2023) https://doi.org/10.1140/epjc/s10052-023-11733-2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-488-AD-ESH-LBNF-ND-SCD, CERN-EP-DRAFT-MISC-2022-007 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 618 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06040">arXiv:2206.06040</a> <span> [<a href="https://arxiv.org/pdf/2206.06040">pdf</a>, <a href="https://arxiv.org/format/2206.06040">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> The AWAKE Run 2 programme and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gschwendtner%2C+E">Edda Gschwendtner</a>, <a href="/search/physics?searchtype=author&query=Lotov%2C+K">Konstantin Lotov</a>, <a href="/search/physics?searchtype=author&query=Muggli%2C+P">Patric Muggli</a>, <a href="/search/physics?searchtype=author&query=Wing%2C+M">Matthew Wing</a>, <a href="/search/physics?searchtype=author&query=Agnello%2C+R">Riccardo Agnello</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C+C">Claudia Christina Ahdida</a>, <a href="/search/physics?searchtype=author&query=Goncalves%2C+M+C+A">Maria Carolina Amoedo Goncalves</a>, <a href="/search/physics?searchtype=author&query=Andrebe%2C+Y">Yanis Andrebe</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+O">Oznur Apsimon</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+R">Robert Apsimon</a>, <a href="/search/physics?searchtype=author&query=Arnesano%2C+J+M">Jordan Matias Arnesano</a>, <a href="/search/physics?searchtype=author&query=Bachmann%2C+A">Anna-Maria Bachmann</a>, <a href="/search/physics?searchtype=author&query=Barrientos%2C+D">Diego Barrientos</a>, <a href="/search/physics?searchtype=author&query=Batsch%2C+F">Fabian Batsch</a>, <a href="/search/physics?searchtype=author&query=Bencini%2C+V">Vittorio Bencini</a>, <a href="/search/physics?searchtype=author&query=Bergamaschi%2C+M">Michele Bergamaschi</a>, <a href="/search/physics?searchtype=author&query=Blanchard%2C+P">Patrick Blanchard</a>, <a href="/search/physics?searchtype=author&query=Burrows%2C+P+N">Philip Nicholas Burrows</a>, <a href="/search/physics?searchtype=author&query=Buttensch%C3%B6n%2C+B">Birger Buttensch枚n</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+A">Allen Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chappell%2C+J">James Chappell</a>, <a href="/search/physics?searchtype=author&query=Chevallay%2C+E">Eric Chevallay</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">Moses Chung</a>, <a href="/search/physics?searchtype=author&query=Cooke%2C+D+A">David Andrew Cooke</a>, <a href="/search/physics?searchtype=author&query=Damerau%2C+H">Heiko Damerau</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06040v1-abstract-short" style="display: inline;"> Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. Use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06040v1-abstract-full').style.display = 'inline'; document.getElementById('2206.06040v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06040v1-abstract-full" style="display: none;"> Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. Use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5-1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06040v1-abstract-full').style.display = 'none'; document.getElementById('2206.06040v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures. Submitted to Symmetry journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04530">arXiv:2205.04530</a> <span> [<a href="https://arxiv.org/pdf/2205.04530">pdf</a>, <a href="https://arxiv.org/format/2205.04530">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167263">10.1016/j.nima.2022.167263 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Positron accumulation in the GBAR experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Blumer%2C+P">P. Blumer</a>, <a href="/search/physics?searchtype=author&query=Charlton%2C+M">M. Charlton</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Clade%2C+P">P. Clade</a>, <a href="/search/physics?searchtype=author&query=Comini%2C+P">P. Comini</a>, <a href="/search/physics?searchtype=author&query=Crivelli%2C+P">P. Crivelli</a>, <a href="/search/physics?searchtype=author&query=Dalkarov%2C+O">O. Dalkarov</a>, <a href="/search/physics?searchtype=author&query=Debu%2C+P">P. Debu</a>, <a href="/search/physics?searchtype=author&query=Dodd%2C+L">L. Dodd</a>, <a href="/search/physics?searchtype=author&query=Douillet%2C+A">A. Douillet</a>, <a href="/search/physics?searchtype=author&query=Guellati%2C+S">S. Guellati</a>, <a href="/search/physics?searchtype=author&query=Hervieux%2C+P+-">P. -A Hervieux</a>, <a href="/search/physics?searchtype=author&query=Hilico%2C+L">L. Hilico</a>, <a href="/search/physics?searchtype=author&query=Indelicato%2C+P">P. Indelicato</a>, <a href="/search/physics?searchtype=author&query=Janka%2C+G">G. Janka</a>, <a href="/search/physics?searchtype=author&query=Jonsell%2C+S">S. Jonsell</a>, <a href="/search/physics?searchtype=author&query=Karr%2C+J+-">J. -P. Karr</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+E+S">E. S. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y">Y. Ko</a>, <a href="/search/physics?searchtype=author&query=Kosinski%2C+T">T. Kosinski</a>, <a href="/search/physics?searchtype=author&query=Kuroda%2C+N">N. Kuroda</a>, <a href="/search/physics?searchtype=author&query=Latacz%2C+B+M">B. M. Latacz</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+B">B. Lee</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04530v1-abstract-short" style="display: inline;"> We present a description of the GBAR positron (e+) trapping apparatus, which consists of a three stage Buffer Gas Trap (BGT) followed by a High Field Penning Trap (HFT), and discuss its performance. The overall goal of the GBAR experiment is to measure the acceleration of the neutral antihydrogen (H) atom in the terrestrial gravitational field by neutralising a positive antihydrogen ion (H+), whic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04530v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04530v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04530v1-abstract-full" style="display: none;"> We present a description of the GBAR positron (e+) trapping apparatus, which consists of a three stage Buffer Gas Trap (BGT) followed by a High Field Penning Trap (HFT), and discuss its performance. The overall goal of the GBAR experiment is to measure the acceleration of the neutral antihydrogen (H) atom in the terrestrial gravitational field by neutralising a positive antihydrogen ion (H+), which has been cooled to a low temperature, and observing the subsequent H annihilation following free fall. To produce one H+ ion, about 10^10 positrons, efficiently converted into positronium (Ps), together with about 10^7 antiprotons (p), are required. The positrons, produced from an electron linac-based system, are accumulated first in the BGT whereafter they are stacked in the ultra-high vacuum HFT, where we have been able to trap 1.4(2) x 10^9 positrons in 1100 seconds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04530v1-abstract-full').style.display = 'none'; document.getElementById('2205.04530v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research Section A, Volume 1040, 2022, 167263 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17053">arXiv:2203.17053</a> <span> [<a href="https://arxiv.org/pdf/2203.17053">pdf</a>, <a href="https://arxiv.org/format/2203.17053">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10791-2">10.1140/epjc/s10052-022-10791-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a> , et al. (1204 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17053v2-abstract-short" style="display: inline;"> Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the det… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17053v2-abstract-full').style.display = 'inline'; document.getElementById('2203.17053v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17053v2-abstract-full" style="display: none;"> Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17053v2-abstract-full').style.display = 'none'; document.getElementById('2203.17053v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-240-AD-ESH-LBNF-ND-SCD, CERN-EP-2022-077 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 82 (2022) 10, 903 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16134">arXiv:2203.16134</a> <span> [<a href="https://arxiv.org/pdf/2203.16134">pdf</a>, <a href="https://arxiv.org/format/2203.16134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a> , et al. (1202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16134v4-abstract-short" style="display: inline;"> DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16134v4-abstract-full').style.display = 'inline'; document.getElementById('2203.16134v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16134v4-abstract-full" style="display: none;"> DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16134v4-abstract-full').style.display = 'none'; document.getElementById('2203.16134v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-DRAFT-MISC-2022-003; FERMILAB-PUB-22-242-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03725">arXiv:2203.03725</a> <span> [<a href="https://arxiv.org/pdf/2203.03725">pdf</a>, <a href="https://arxiv.org/format/2203.03725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/s10053-022-00355-0">10.1140/epjd/s10053-022-00355-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new benchmark of soft X-ray transition energies of Ne, CO$_2$, and SF$_6$: paving a pathway towards ppm accuracy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Stierhof%2C+J">J. Stierhof</a>, <a href="/search/physics?searchtype=author&query=K%C3%BChn%2C+S">S. K眉hn</a>, <a href="/search/physics?searchtype=author&query=Winter%2C+M">M. Winter</a>, <a href="/search/physics?searchtype=author&query=Micke%2C+P">P. Micke</a>, <a href="/search/physics?searchtype=author&query=Steinbr%C3%BCgge%2C+R">R. Steinbr眉gge</a>, <a href="/search/physics?searchtype=author&query=Shah%2C+C">C. Shah</a>, <a href="/search/physics?searchtype=author&query=Hell%2C+N">N. Hell</a>, <a href="/search/physics?searchtype=author&query=Bissinger%2C+M">M. Bissinger</a>, <a href="/search/physics?searchtype=author&query=Hirsch%2C+M">M. Hirsch</a>, <a href="/search/physics?searchtype=author&query=Ballhausen%2C+R">R. Ballhausen</a>, <a href="/search/physics?searchtype=author&query=Lang%2C+M">M. Lang</a>, <a href="/search/physics?searchtype=author&query=Gr%C3%A4fe%2C+C">C. Gr盲fe</a>, <a href="/search/physics?searchtype=author&query=Wipf%2C+S">S. Wipf</a>, <a href="/search/physics?searchtype=author&query=Cumbee%2C+R">R. Cumbee</a>, <a href="/search/physics?searchtype=author&query=Betancourt-Martinez%2C+G+L">G. L. Betancourt-Martinez</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S">S. Park</a>, <a href="/search/physics?searchtype=author&query=Niskanen%2C+J">J. Niskanen</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Porter%2C+F+S">F. S. Porter</a>, <a href="/search/physics?searchtype=author&query=St%C3%B6hlker%2C+T">T. St枚hlker</a>, <a href="/search/physics?searchtype=author&query=Pfeifer%2C+T">T. Pfeifer</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+G+V">G. V. Brown</a>, <a href="/search/physics?searchtype=author&query=Bernitt%2C+S">S. Bernitt</a>, <a href="/search/physics?searchtype=author&query=Hansmann%2C+P">P. Hansmann</a>, <a href="/search/physics?searchtype=author&query=Wilms%2C+J">J. Wilms</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03725v1-abstract-short" style="display: inline;"> A key requirement for the correct interpretation of high-resolution X-ray spectra is that transition energies are known with high accuracy and precision. We investigate the K-shell features of Ne, CO$_2$, and SF$_6$ gases, by measuring their photo ion-yield spectra at the BESSY II synchrotron facility simultaneously with the 1s-np fluorescence emission of He-like ions produced in the Polar-X EBIT.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03725v1-abstract-full').style.display = 'inline'; document.getElementById('2203.03725v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03725v1-abstract-full" style="display: none;"> A key requirement for the correct interpretation of high-resolution X-ray spectra is that transition energies are known with high accuracy and precision. We investigate the K-shell features of Ne, CO$_2$, and SF$_6$ gases, by measuring their photo ion-yield spectra at the BESSY II synchrotron facility simultaneously with the 1s-np fluorescence emission of He-like ions produced in the Polar-X EBIT. Accurate ab initio calculations of transitions in these ions provide the basis of the calibration. While the CO$_2$ result agrees well with previous measurements, the SF$_6$ spectrum appears shifted by ~0.5 eV, about twice the uncertainty of the earlier results. Our result for Ne shows a large departure from earlier results, but may suffer from larger systematic effects than our other measurements. The molecular spectra agree well with our results of time-dependent density functional theory. We find that the statistical uncertainty allows calibrations in the desired range of 1-10 meV, however, systematic contributions still limit the uncertainty to ~40-100 meV, mainly due to the temporal stability of the monochromator energy scale. Combining our absolute calibration technique with a relative energy calibration technique such as photoelectron energy spectroscopy will be necessary to realize its full potential of achieving uncertainties as low as 1-10 meV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03725v1-abstract-full').style.display = 'none'; document.getElementById('2203.03725v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15141">arXiv:2110.15141</a> <span> [<a href="https://arxiv.org/pdf/2110.15141">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Three dimensional simulations of embolic stroke: clinical comparisons and an equation for sizing emboli from imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hague%2C+J+P">James P. Hague</a>, <a href="/search/physics?searchtype=author&query=Keelan%2C+J">Jonathan Keelan</a>, <a href="/search/physics?searchtype=author&query=Beishon%2C+L">Lucy Beishon</a>, <a href="/search/physics?searchtype=author&query=Swienton%2C+D">David Swienton</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+T+G">Thompson G. Robinson</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+E+M+L">Emma M. L. Chung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15141v2-abstract-short" style="display: inline;"> There is a need to develop Monte Carlo simulations of stroke to run in-silico trials to replace animal models, explore clinical scenarios to develop hypotheses for clinical studies and for interpreting clinical monitoring. We perform three-dimensional (3D) stroke simulations, carrying out in-silico trials to relate lesion volume to embolus diameter and calculate probabilistic lesion overlap maps,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15141v2-abstract-full').style.display = 'inline'; document.getElementById('2110.15141v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15141v2-abstract-full" style="display: none;"> There is a need to develop Monte Carlo simulations of stroke to run in-silico trials to replace animal models, explore clinical scenarios to develop hypotheses for clinical studies and for interpreting clinical monitoring. We perform three-dimensional (3D) stroke simulations, carrying out in-silico trials to relate lesion volume to embolus diameter and calculate probabilistic lesion overlap maps, building on our previous Monte Carlo method. Simulated emboli were released into a 3D in silico vasculature, supplying gray and white matter brain volumes, to generate individual lesion estimates and probabilistic lesion overlap maps. Computer generated lesions were assessed by clinicians and compared with real world radiological images. Simulations of large single emboli reproduced similar middle cerebral artery (MCA), posterior cerebral artery (PCA) and anterior cerebral artery (ACA) lesions to those observed clinically. A proof-of-concept in-silico trial led to a conjecture relating estimated infarct volume as a percentage of total brain volume to relative embolus diameter: $\mathrm{relative diameter} = [\% \mathrm{infarct volume} / a]^{1/b}$, where $a= 104.2 \pm 0.98$, $b=3.380 \pm 0.030$. Probabilistic lesion overlap maps were created, confirming the MCA territory as the most probable resting place of emboli in the computational vasculature, followed by the PCA then ACA. The article shows proof of concept for developing a 3D stroke model from an automatically constructed vasculature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15141v2-abstract-full').style.display = 'none'; document.getElementById('2110.15141v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Major rewrite of v1, note changes in methods section</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12893">arXiv:2109.12893</a> <span> [<a href="https://arxiv.org/pdf/2109.12893">pdf</a>, <a href="https://arxiv.org/format/2109.12893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/11/P11031">10.1088/1748-0221/16/11/P11031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of Proton Bunch Parameters in the AWAKE Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hafych%2C+V">V. Hafych</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Agnello%2C+R">R. Agnello</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C+C">C. C. Ahdida</a>, <a href="/search/physics?searchtype=author&query=Aladi%2C+M">M. Aladi</a>, <a href="/search/physics?searchtype=author&query=Goncalves%2C+M+C+A">M. C. Amoedo Goncalves</a>, <a href="/search/physics?searchtype=author&query=Andrebe%2C+Y">Y. Andrebe</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+O">O. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+R">R. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Bachmann%2C+A+-">A. -M. Bachmann</a>, <a href="/search/physics?searchtype=author&query=Baistrukov%2C+M+A">M. A. Baistrukov</a>, <a href="/search/physics?searchtype=author&query=Batsch%2C+F">F. Batsch</a>, <a href="/search/physics?searchtype=author&query=Bergamaschi%2C+M">M. Bergamaschi</a>, <a href="/search/physics?searchtype=author&query=Blanchard%2C+P">P. Blanchard</a>, <a href="/search/physics?searchtype=author&query=Burrows%2C+P+N">P. N. Burrows</a>, <a href="/search/physics?searchtype=author&query=Buttensch%C3%B6n%2C+B">B. Buttensch枚n</a>, <a href="/search/physics?searchtype=author&query=Chappell%2C+J">J. Chappell</a>, <a href="/search/physics?searchtype=author&query=Chevallay%2C+E">E. Chevallay</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Cooke%2C+D+A">D. A. Cooke</a>, <a href="/search/physics?searchtype=author&query=Damerau%2C+H">H. Damerau</a>, <a href="/search/physics?searchtype=author&query=Davut%2C+C">C. Davut</a>, <a href="/search/physics?searchtype=author&query=Demeter%2C+G">G. Demeter</a>, <a href="/search/physics?searchtype=author&query=Dexter%2C+A">A. Dexter</a>, <a href="/search/physics?searchtype=author&query=Doebert%2C+S">S. Doebert</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12893v1-abstract-short" style="display: inline;"> A precise characterization of the incoming proton bunch parameters is required to accurately simulate the self-modulation process in the Advanced Wakefield Experiment (AWAKE). This paper presents an analysis of the parameters of the incoming proton bunches used in the later stages of the AWAKE Run 1 data-taking period. The transverse structure of the bunch is observed at multiple positions along t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12893v1-abstract-full').style.display = 'inline'; document.getElementById('2109.12893v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12893v1-abstract-full" style="display: none;"> A precise characterization of the incoming proton bunch parameters is required to accurately simulate the self-modulation process in the Advanced Wakefield Experiment (AWAKE). This paper presents an analysis of the parameters of the incoming proton bunches used in the later stages of the AWAKE Run 1 data-taking period. The transverse structure of the bunch is observed at multiple positions along the beamline using scintillating or optical transition radiation screens. The parameters of a model that describes the bunch transverse dimensions and divergence are fitted to represent the observed data using Bayesian inference. The analysis is tested on simulated data and then applied to the experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12893v1-abstract-full').style.display = 'none'; document.getElementById('2109.12893v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10792">arXiv:2109.10792</a> <span> [<a href="https://arxiv.org/pdf/2109.10792">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Electric field lines of an arbitrarily moving charged particle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arutunian%2C+S+G">S. G. Arutunian</a>, <a href="/search/physics?searchtype=author&query=Aginian%2C+M+A">M. A. Aginian</a>, <a href="/search/physics?searchtype=author&query=Margaryan%2C+A+V">A. V. Margaryan</a>, <a href="/search/physics?searchtype=author&query=Lazareva%2C+E+G">E. G. Lazareva</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10792v2-abstract-short" style="display: inline;"> In this paper it is shown that the equations of electric field lines of an arbitrarily moving charged particle in the general case are reduced to homogeneous, linear differential equations with variable coefficients. For trajectories where the expression b=Zeta/(Gamma*Kappa) is a constant (Zeta - orbit torsion, Kappa - orbit curvature, Gamma - Lorentz factor of a particle) these equations are redu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10792v2-abstract-full').style.display = 'inline'; document.getElementById('2109.10792v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10792v2-abstract-full" style="display: none;"> In this paper it is shown that the equations of electric field lines of an arbitrarily moving charged particle in the general case are reduced to homogeneous, linear differential equations with variable coefficients. For trajectories where the expression b=Zeta/(Gamma*Kappa) is a constant (Zeta - orbit torsion, Kappa - orbit curvature, Gamma - Lorentz factor of a particle) these equations are reduced to homogeneous, linear differential equations with constant coefficients. This case, in particular, includes all planar trajectories. This paper presents solutions of the equations of electric field lines and corresponding illustrations both in the orbital plane and outside it for a charge moving in a flat monochromatic linearly polarized wave. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10792v2-abstract-full').style.display = 'none'; document.getElementById('2109.10792v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01304">arXiv:2109.01304</a> <span> [<a href="https://arxiv.org/pdf/2109.01304">pdf</a>, <a href="https://arxiv.org/format/2109.01304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1132 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01304v1-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01304v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01304v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01304v1-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3$蟽$ (5$蟽$) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3$蟽$ level with a 100 kt-MW-yr exposure for the maximally CP-violating values $未_{\rm CP}} = \pm蟺/2$. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01304v1-abstract-full').style.display = 'none'; document.getElementById('2109.01304v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-391-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01902">arXiv:2108.01902</a> <span> [<a href="https://arxiv.org/pdf/2108.01902">pdf</a>, <a href="https://arxiv.org/format/2108.01902">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+M+P">M. P. Andrews</a> , et al. (1158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01902v3-abstract-short" style="display: inline;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01902v3-abstract-full').style.display = 'inline'; document.getElementById('2108.01902v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01902v3-abstract-full" style="display: none;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of $7\times 6\times 7.2$~m$^3$. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01902v3-abstract-full').style.display = 'none'; document.getElementById('2108.01902v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11369">arXiv:2107.11369</a> <span> [<a href="https://arxiv.org/pdf/2107.11369">pdf</a>, <a href="https://arxiv.org/format/2107.11369">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.24.101301">10.1103/PhysRevAccelBeams.24.101301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation and Experimental Study of Proton Bunch Self-Modulation in Plasma with Linear Density Gradients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guzm%C3%A1n%2C+P+I+M">P. I. Morales Guzm谩n</a>, <a href="/search/physics?searchtype=author&query=Muggli%2C+P">P. Muggli</a>, <a href="/search/physics?searchtype=author&query=Agnello%2C+R">R. Agnello</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C+C">C. C. Ahdida</a>, <a href="/search/physics?searchtype=author&query=Aladi%2C+M">M. Aladi</a>, <a href="/search/physics?searchtype=author&query=Goncalves%2C+M+C+A">M. C. Amoedo Goncalves</a>, <a href="/search/physics?searchtype=author&query=Andrebe%2C+Y">Y. Andrebe</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+O">O. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+R">R. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Bachmann%2C+A+-">A. -M. Bachmann</a>, <a href="/search/physics?searchtype=author&query=Baistrukov%2C+M+A">M. A. Baistrukov</a>, <a href="/search/physics?searchtype=author&query=Batsch%2C+F">F. Batsch</a>, <a href="/search/physics?searchtype=author&query=Bergamaschi%2C+M">M. Bergamaschi</a>, <a href="/search/physics?searchtype=author&query=Blanchard%2C+P">P. Blanchard</a>, <a href="/search/physics?searchtype=author&query=Braunm%C3%BCller%2C+F">F. Braunm眉ller</a>, <a href="/search/physics?searchtype=author&query=Burrows%2C+P+N">P. N. Burrows</a>, <a href="/search/physics?searchtype=author&query=Buttensch%C3%B6n%2C+B">B. Buttensch枚n</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chappell%2C+J">J. Chappell</a>, <a href="/search/physics?searchtype=author&query=Chevallay%2C+E">E. Chevallay</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Cooke%2C+D+A">D. A. Cooke</a>, <a href="/search/physics?searchtype=author&query=Damerau%2C+H">H. Damerau</a>, <a href="/search/physics?searchtype=author&query=Davut%2C+C">C. Davut</a>, <a href="/search/physics?searchtype=author&query=Demeter%2C+G">G. Demeter</a> , et al. (66 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11369v1-abstract-short" style="display: inline;"> We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported in arXiv:2007.14894v2: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency vari… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11369v1-abstract-full').style.display = 'inline'; document.getElementById('2107.11369v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11369v1-abstract-full" style="display: none;"> We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported in arXiv:2007.14894v2: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11369v1-abstract-full').style.display = 'none'; document.getElementById('2107.11369v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 24, 101301 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05813">arXiv:2106.05813</a> <span> [<a href="https://arxiv.org/pdf/2106.05813">pdf</a>, <a href="https://arxiv.org/format/2106.05813">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08046">10.1088/1748-0221/16/08/P08046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of the MICE diagnostic system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+MICE+collaboration"> The MICE collaboration</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&query=Maletic%2C+D">D. Maletic</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05813v2-abstract-short" style="display: inline;"> Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon collider. The international Muon Ionization Cooling Experiment (MICE) has demonstrated the principle of ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05813v2-abstract-full').style.display = 'inline'; document.getElementById('2106.05813v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05813v2-abstract-full" style="display: none;"> Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon collider. The international Muon Ionization Cooling Experiment (MICE) has demonstrated the principle of ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. This paper documents the performance of the detectors used in MICE to measure the muon-beam parameters, and the physical properties of the liquid hydrogen energy absorber during running. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05813v2-abstract-full').style.display = 'none'; document.getElementById('2106.05813v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2021-001 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 JINST 16 P08046 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02366">arXiv:2105.02366</a> <span> [<a href="https://arxiv.org/pdf/2105.02366">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement and Analysis of Thermal Conductivity of Ceramic Particle Beds for Solar Thermal Energy Storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chung%2C+K+M">Ka Man Chung</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+J">Jian Zeng</a>, <a href="/search/physics?searchtype=author&query=Adapa%2C+S+R">Sarath Reddy Adapa</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+T">Tianshi Feng</a>, <a href="/search/physics?searchtype=author&query=Bagepalli%2C+M+V">Malavika V. Bagepalli</a>, <a href="/search/physics?searchtype=author&query=Loutzenhiser%2C+P+G">Peter G. Loutzenhiser</a>, <a href="/search/physics?searchtype=author&query=Albrecht%2C+K+J">Kevin J. Albrecht</a>, <a href="/search/physics?searchtype=author&query=Ho%2C+C+K">Clifford K. Ho</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Renkun Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02366v1-abstract-short" style="display: inline;"> A systematic study was performed to measure the effective thermal conductivity of ceramic particle beds, a promising heat transfer and thermal energy storage media for concentrating solar power (CSP). The thermal conductivity of the ceramic particle beds was measured using a transient hot-wire (THW) method within a temperature range of room temperature to 700 oC, the target operating temperature o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02366v1-abstract-full').style.display = 'inline'; document.getElementById('2105.02366v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02366v1-abstract-full" style="display: none;"> A systematic study was performed to measure the effective thermal conductivity of ceramic particle beds, a promising heat transfer and thermal energy storage media for concentrating solar power (CSP). The thermal conductivity of the ceramic particle beds was measured using a transient hot-wire (THW) method within a temperature range of room temperature to 700 oC, the target operating temperature of the next-generation CSP systems. Two different types of ceramic particles were examined: (1) CARBOBEAD HSP 40/70 and (2) CARBOBEAD CP 40/100 with the average particle sizes of ~ 400 渭m and ~280 渭m, respectively, and thermal conductivities ranging from ~0.25 W m-1 K-1 to ~0.50 W m-1 K-1 from 20 oC to 700 oC in both air and N2 gas. The gaseous pressure dependence of the thermal conductivity of the ceramic particle beds was also studied in the N2 environment to differentiate the contributions from gas conduction, solid conduction, and radiation. Calculations using the Zehner, Bauer, and Schl眉nder (ZBS) model showed good agreements with the measurements. Based on the model, it is concluded that the effective thermal conductivity of the packed particle beds is dominated by the gas conduction while the solid conduction and radiation contributes to about 20% of the effective thermal conductivity at high temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02366v1-abstract-full').style.display = 'none'; document.getElementById('2105.02366v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, USA Georgia Institute of Technology, Atlanta, Georgia 30332-0405, USA Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM 87123, USA #Corresponding author: rkchen@ucsd.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.00047">arXiv:2105.00047</a> <span> [<a href="https://arxiv.org/pdf/2105.00047">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> In-situ Thermal Transport Measurement of Flowing Fluid using Modulated Photothermal Radiometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zeng%2C+J">Jian Zeng</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+K+M">Ka Man Chung</a>, <a href="/search/physics?searchtype=author&query=Adapa%2C+S+R">Sarath Reddy Adapa</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+T">Tianshi Feng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Renkun Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.00047v1-abstract-short" style="display: inline;"> In situ thermal transport measurement of flowing fluid could be useful for the characterization and diagnosis of practical thermal systems such as fluid heat exchangers and thermal energy storage systems. Despite abundant reports on the ex-situ thermal conductivity measurement of stagnant fluids, a suitable technique for the thermal conductivity measurement of flowing fluid has been rarely reporte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00047v1-abstract-full').style.display = 'inline'; document.getElementById('2105.00047v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.00047v1-abstract-full" style="display: none;"> In situ thermal transport measurement of flowing fluid could be useful for the characterization and diagnosis of practical thermal systems such as fluid heat exchangers and thermal energy storage systems. Despite abundant reports on the ex-situ thermal conductivity measurement of stagnant fluids, a suitable technique for the thermal conductivity measurement of flowing fluid has been rarely reported. This paper presents the thermal conductivity measurement of flowing fluid within a pipe using a non-contact modulated photothermal radiometry (MPR) technique, where the surface of the pipe is heated by an intensity-modulated laser and the heat diffuses into the fluid with suitable modulation frequency. We design a tube section with small wall thickness suitable for the MPR measurements to maximize the sensitivity of the thermal response to the fluid properties while minimizing the lateral heat spreading effect. Intrinsic thermal conductivity of different fluids was obtained within a proper range of frequency and flow velocity where the forced convection effect is negligible. The forced convection effect became prominent at high flowing velocity and at low modulation frequency, leading to overestimated thermal conductivity of fluid. It is found that the intrinsic thermal conductivity could be obtained when the flow velocity is less than 100 mm/sec and ReD1/2Pr1/3 < 100 for DI water and Xceltherm oil under the specified experimental conditions, where Re_D is the Reynolds number and Pr is the Prandtl number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00047v1-abstract-full').style.display = 'none'; document.getElementById('2105.00047v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States 2Program of Material Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States *These authors contributed equally. #Corresponding author: rkchen@ucsd.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10288">arXiv:2104.10288</a> <span> [<a href="https://arxiv.org/pdf/2104.10288">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.24.121304">10.1103/PhysRevAccelBeams.24.121304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Witness electron beam injection using an active plasma lens for a proton beam-driven plasma wakefield accelerator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kim%2C+S+-">S. -Y. Kim</a>, <a href="/search/physics?searchtype=author&query=Moon%2C+K">K. Moon</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Sjobak%2C+K+N">K. N. Sjobak</a>, <a href="/search/physics?searchtype=author&query=Adli%2C+E">E. Adli</a>, <a href="/search/physics?searchtype=author&query=Doebert%2C+S">S. Doebert</a>, <a href="/search/physics?searchtype=author&query=Dayyani%2C+M">M. Dayyani</a>, <a href="/search/physics?searchtype=author&query=Yoon%2C+E+S">E. S. Yoon</a>, <a href="/search/physics?searchtype=author&query=Nam%2C+I">I. Nam</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+G">G. Hahn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10288v2-abstract-short" style="display: inline;"> An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $渭$m can be achieved within a short distance using a focusing gradient on the order of 100 T/m. The active plasma lens is therefore an attractive element for plasma wakefield acceleration, because an ultra-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10288v2-abstract-full').style.display = 'inline'; document.getElementById('2104.10288v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10288v2-abstract-full" style="display: none;"> An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $渭$m can be achieved within a short distance using a focusing gradient on the order of 100 T/m. The active plasma lens is therefore an attractive element for plasma wakefield acceleration, because an ultra-small size of the witness electron beam is required for injection into the plasma wakefield to minimize emittance growth and to enhance the capturing efficiency. When the drive beam and witness electron beam co-propagate through the active plasma lens, interactions between the drive and witness beams, and the plasma must be considered. In this paper, through particle-in-cell simulations, we discuss the possibility of using an active plasma lens for the final focusing of the electron beam for the AWAKE RUN 2 experiments. It is confirmed that the amplitude of the plasma wakefield excited by proton bunches remains the same even after propagation through the active plasma lens. The emittance of the witness electron beam increases rapidly in the plasma density ramp regions of the lens. Nevertheless, when the witness electron beam has a charge of 100 pC, emittance of 10 mm mrad, and bunch length of 60 $渭$m, its emittance growth is not significant along the active plasma lens. For small emittance, such as 2 mm mrad, the emittance growth is found to be strongly dependent on the RMS beam size, plasma density, and multiple Coulomb scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10288v2-abstract-full').style.display = 'none'; document.getElementById('2104.10288v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07296">arXiv:2104.07296</a> <span> [<a href="https://arxiv.org/pdf/2104.07296">pdf</a>, <a href="https://arxiv.org/ps/2104.07296">ps</a>, <a href="https://arxiv.org/format/2104.07296">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Longitudinal phase space manipulation using double emittance exchange to generate multi-color X-ray </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Seok%2C+J">J. Seok</a>, <a href="/search/physics?searchtype=author&query=Ha%2C+G">G. Ha</a>, <a href="/search/physics?searchtype=author&query=Power%2C+J">J. Power</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07296v1-abstract-short" style="display: inline;"> Generating temporally separated two X-ray pulses or even two pulses with different colors has been pursued for various X-ray experiments. Recently, this concept is extended to generate multi-color X-ray pulses, and a few approaches have been proposed. We introduce one of possible new ways to generate multi-color X-ray using a longitudinal phase space (LPS) modulator and a manipulator. In this exam… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07296v1-abstract-full').style.display = 'inline'; document.getElementById('2104.07296v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07296v1-abstract-full" style="display: none;"> Generating temporally separated two X-ray pulses or even two pulses with different colors has been pursued for various X-ray experiments. Recently, this concept is extended to generate multi-color X-ray pulses, and a few approaches have been proposed. We introduce one of possible new ways to generate multi-color X-ray using a longitudinal phase space (LPS) modulator and a manipulator. In this example, a wakefield structure and double-emittance exchange beamline are used as the LPS modulator and the LPS manipulator, respectively. In this way, we can generate multiple bunches having designed energy and time separations. These separations can be adjusted for each application differently. This paper describes the principle of the method and its feasibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07296v1-abstract-full').style.display = 'none'; document.getElementById('2104.07296v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06818">arXiv:2104.06818</a> <span> [<a href="https://arxiv.org/pdf/2104.06818">pdf</a>, <a href="https://arxiv.org/ps/2104.06818">ps</a>, <a href="https://arxiv.org/format/2104.06818">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.24.054201">10.1103/PhysRevAccelBeams.24.054201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle beam eigen-emittances, phase integral, vorticity, and rotations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Groening%2C+L">L. Groening</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+C">C. Xiao</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06818v1-abstract-short" style="display: inline;"> Particle beam eigen-emittances comprise the lowest set of rms-emittances that can be imposed to a beam through symplectic optical elements. For cases of practical relevance this paper introduces an approximation providing a very simple and powerful relation between transverse eigen-emittance variation and the beam phase integral. This relation enormously facilitates modeling eigen-emittance tailor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06818v1-abstract-full').style.display = 'inline'; document.getElementById('2104.06818v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06818v1-abstract-full" style="display: none;"> Particle beam eigen-emittances comprise the lowest set of rms-emittances that can be imposed to a beam through symplectic optical elements. For cases of practical relevance this paper introduces an approximation providing a very simple and powerful relation between transverse eigen-emittance variation and the beam phase integral. This relation enormously facilitates modeling eigen-emittance tailoring scenarios. It reveals that difference of eigen-emittances is given by the beam phase integral or vorticity rather than by angular momentum. Within the approximation any beam is equivalent to two objects rotating at angular velocities of same strength and different sign. A description through circular beam modes has been done already in [A. Burov, S. Nagaitsev, and Y. Derbenev, Circular modes, beam adapters, and their applications in beam optics, Phys. Rev. E 66, 016503 (2002)]. The new relation presented here is a complementary and vivid approach to provide a physical picture of the nature of eigen-emittances for cases of practical interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06818v1-abstract-full').style.display = 'none'; document.getElementById('2104.06818v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 24, 054201 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09676">arXiv:2012.09676</a> <span> [<a href="https://arxiv.org/pdf/2012.09676">pdf</a>, <a href="https://arxiv.org/format/2012.09676">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.164802">10.1103/PhysRevLett.126.164802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Batsch%2C+F">F. Batsch</a>, <a href="/search/physics?searchtype=author&query=Muggli%2C+P">P. Muggli</a>, <a href="/search/physics?searchtype=author&query=Agnello%2C+R">R. Agnello</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C+C">C. C. Ahdida</a>, <a href="/search/physics?searchtype=author&query=Goncalves%2C+M+C+A">M. C. Amoedo Goncalves</a>, <a href="/search/physics?searchtype=author&query=Andrebe%2C+Y">Y. Andrebe</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+O">O. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+R">R. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Bachmann%2C+A+-">A. -M. Bachmann</a>, <a href="/search/physics?searchtype=author&query=Baistrukov%2C+M+A">M. A. Baistrukov</a>, <a href="/search/physics?searchtype=author&query=Blanchard%2C+P">P. Blanchard</a>, <a href="/search/physics?searchtype=author&query=Braunm%C3%BCller%2C+F">F. Braunm眉ller</a>, <a href="/search/physics?searchtype=author&query=Burrows%2C+P+N">P. N. Burrows</a>, <a href="/search/physics?searchtype=author&query=Buttensch%C3%B6n%2C+B">B. Buttensch枚n</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chappell%2C+J">J. Chappell</a>, <a href="/search/physics?searchtype=author&query=Chevallay%2C+E">E. Chevallay</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Cooke%2C+D+A">D. A. Cooke</a>, <a href="/search/physics?searchtype=author&query=Damerau%2C+H">H. Damerau</a>, <a href="/search/physics?searchtype=author&query=Davut%2C+C">C. Davut</a>, <a href="/search/physics?searchtype=author&query=Demeter%2C+G">G. Demeter</a>, <a href="/search/physics?searchtype=author&query=Deubner%2C+H+L">H. L. Deubner</a>, <a href="/search/physics?searchtype=author&query=Doebert%2C+S">S. Doebert</a>, <a href="/search/physics?searchtype=author&query=Farmer%2C+J">J. Farmer</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09676v1-abstract-short" style="display: inline;"> We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude ($\ge(4.1\pm0.4)$ MV/m), the phase of the modulation along the bunch is reproducible from event to event, with 3 to 7% (of 2$蟺$) rms variations all along the bunch. The phase is not… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09676v1-abstract-full').style.display = 'inline'; document.getElementById('2012.09676v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09676v1-abstract-full" style="display: none;"> We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude ($\ge(4.1\pm0.4)$ MV/m), the phase of the modulation along the bunch is reproducible from event to event, with 3 to 7% (of 2$蟺$) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09676v1-abstract-full').style.display = 'none'; document.getElementById('2012.09676v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Letter and Supplemental Material, 6 figures, 8 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 164802 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14080">arXiv:2010.14080</a> <span> [<a href="https://arxiv.org/pdf/2010.14080">pdf</a>, <a href="https://arxiv.org/ps/2010.14080">ps</a>, <a href="https://arxiv.org/format/2010.14080">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165647">10.1016/j.nima.2021.165647 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mitigation of Space-Charge-Driven Resonance and Instability in High-Intensity Linear Accelerators via Beam Spinning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheon%2C+Y">Yoo-Lim Cheon</a>, <a href="/search/physics?searchtype=author&query=Moon%2C+S">Seok-Ho Moon</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">Moses Chung</a>, <a href="/search/physics?searchtype=author&query=Jeon%2C+D">Dong-O Jeon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14080v3-abstract-short" style="display: inline;"> For modern high-intensity linear accelerators, the well-known envelope instability and recently reported fourth-order particle resonance impose a fundamental operational limit (i.e., zero-current phase advance should be less than 90 deg). Motivated by the stability of spinning flying objects, we propose a novel approach of using spinning beams to surpass this limit. We discovered that spinning bea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14080v3-abstract-full').style.display = 'inline'; document.getElementById('2010.14080v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14080v3-abstract-full" style="display: none;"> For modern high-intensity linear accelerators, the well-known envelope instability and recently reported fourth-order particle resonance impose a fundamental operational limit (i.e., zero-current phase advance should be less than 90 deg). Motivated by the stability of spinning flying objects, we propose a novel approach of using spinning beams to surpass this limit. We discovered that spinning beams have an intrinsic characteristic that can suppress the impact of the fourth-order resonance on emittance growth and the associated envelope instability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14080v3-abstract-full').style.display = 'none'; document.getElementById('2010.14080v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.05715">arXiv:2010.05715</a> <span> [<a href="https://arxiv.org/pdf/2010.05715">pdf</a>, <a href="https://arxiv.org/format/2010.05715">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.24.011301">10.1103/PhysRevAccelBeams.24.011301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chappell%2C+J">J. Chappell</a>, <a href="/search/physics?searchtype=author&query=Adli%2C+E">E. Adli</a>, <a href="/search/physics?searchtype=author&query=Agnello%2C+R">R. Agnello</a>, <a href="/search/physics?searchtype=author&query=Aladi%2C+M">M. Aladi</a>, <a href="/search/physics?searchtype=author&query=Andrebe%2C+Y">Y. Andrebe</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+O">O. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+R">R. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Bachmann%2C+A+-">A. -M. Bachmann</a>, <a href="/search/physics?searchtype=author&query=Baistrukov%2C+M+A">M. A. Baistrukov</a>, <a href="/search/physics?searchtype=author&query=Batsch%2C+F">F. Batsch</a>, <a href="/search/physics?searchtype=author&query=Bergamaschi%2C+M">M. Bergamaschi</a>, <a href="/search/physics?searchtype=author&query=Blanchard%2C+P">P. Blanchard</a>, <a href="/search/physics?searchtype=author&query=Burrows%2C+P+N">P. N. Burrows</a>, <a href="/search/physics?searchtype=author&query=Buttensch%C3%B6n%2C+B">B. Buttensch枚n</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chevallay%2C+E">E. Chevallay</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Cooke%2C+D+A">D. A. Cooke</a>, <a href="/search/physics?searchtype=author&query=Damerau%2C+H">H. Damerau</a>, <a href="/search/physics?searchtype=author&query=Davut%2C+C">C. Davut</a>, <a href="/search/physics?searchtype=author&query=Demeter%2C+G">G. Demeter</a>, <a href="/search/physics?searchtype=author&query=Deubner%2C+L+H">L. H. Deubner</a>, <a href="/search/physics?searchtype=author&query=Dexter%2C+A">A. Dexter</a>, <a href="/search/physics?searchtype=author&query=Djotyan%2C+G+P">G. P. Djotyan</a>, <a href="/search/physics?searchtype=author&query=Doebert%2C+S">S. Doebert</a> , et al. (74 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.05715v1-abstract-short" style="display: inline;"> Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield cau… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05715v1-abstract-full').style.display = 'inline'; document.getElementById('2010.05715v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.05715v1-abstract-full" style="display: none;"> Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron injection delay scans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05715v1-abstract-full').style.display = 'none'; document.getElementById('2010.05715v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11392">arXiv:2008.11392</a> <span> [<a href="https://arxiv.org/pdf/2008.11392">pdf</a>, <a href="https://arxiv.org/format/2008.11392">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Proton beam defocusing in AWAKE: comparison of simulations and measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gorn%2C+A+A">A. A. Gorn</a>, <a href="/search/physics?searchtype=author&query=Turner%2C+M">M. Turner</a>, <a href="/search/physics?searchtype=author&query=Adli%2C+E">E. Adli</a>, <a href="/search/physics?searchtype=author&query=Agnello%2C+R">R. Agnello</a>, <a href="/search/physics?searchtype=author&query=Aladi%2C+M">M. Aladi</a>, <a href="/search/physics?searchtype=author&query=Andrebe%2C+Y">Y. Andrebe</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+O">O. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Apsimon%2C+R">R. Apsimon</a>, <a href="/search/physics?searchtype=author&query=Bachmann%2C+A+-">A. -M. Bachmann</a>, <a href="/search/physics?searchtype=author&query=Baistrukov%2C+M+A">M. A. Baistrukov</a>, <a href="/search/physics?searchtype=author&query=Batsch%2C+F">F. Batsch</a>, <a href="/search/physics?searchtype=author&query=Bergamaschi%2C+M">M. Bergamaschi</a>, <a href="/search/physics?searchtype=author&query=Blanchard%2C+P">P. Blanchard</a>, <a href="/search/physics?searchtype=author&query=Burrows%2C+P+N">P. N. Burrows</a>, <a href="/search/physics?searchtype=author&query=Buttenschon%2C+B">B. Buttenschon</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Chappell%2C+J">J. Chappell</a>, <a href="/search/physics?searchtype=author&query=Chevallay%2C+E">E. Chevallay</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Cooke%2C+D+A">D. A. Cooke</a>, <a href="/search/physics?searchtype=author&query=Damerau%2C+H">H. Damerau</a>, <a href="/search/physics?searchtype=author&query=Davut%2C+C">C. Davut</a>, <a href="/search/physics?searchtype=author&query=Demeter%2C+G">G. Demeter</a>, <a href="/search/physics?searchtype=author&query=Deubner%2C+L+H">L. H. Deubner</a>, <a href="/search/physics?searchtype=author&query=Dexter%2C+A">A. Dexter</a> , et al. (74 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11392v1-abstract-short" style="display: inline;"> In 2017, AWAKE demonstrated the seeded self-modulation (SSM) of a 400 GeV proton beam from the Super Proton Synchrotron (SPS) at CERN. The angular distribution of the protons deflected due to SSM is a quantitative measure of the process, which agrees with simulations by the two-dimensional (axisymmetric) particle-in-cell code LCODE. Agreement is achieved for beam populations between $10^{11}$ and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11392v1-abstract-full').style.display = 'inline'; document.getElementById('2008.11392v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11392v1-abstract-full" style="display: none;"> In 2017, AWAKE demonstrated the seeded self-modulation (SSM) of a 400 GeV proton beam from the Super Proton Synchrotron (SPS) at CERN. The angular distribution of the protons deflected due to SSM is a quantitative measure of the process, which agrees with simulations by the two-dimensional (axisymmetric) particle-in-cell code LCODE. Agreement is achieved for beam populations between $10^{11}$ and $3 \times 10^{11}$ particles, various plasma density gradients ($-20 梅20\%$) and two plasma densities ($2\times 10^{14} \text{cm}^{-3}$ and $7 \times 10^{14} \text{cm}^{-3}$). The agreement is reached only in the case of a wide enough simulation box (at least five plasma wavelengths). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11392v1-abstract-full').style.display = 'none'; document.getElementById('2008.11392v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.07747">arXiv:2006.07747</a> <span> [<a href="https://arxiv.org/pdf/2006.07747">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11214-020-00721-7">10.1007/s11214-020-00721-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The ELFIN Mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Angelopoulos%2C+V">V. Angelopoulos</a>, <a href="/search/physics?searchtype=author&query=Tsai%2C+E">E. Tsai</a>, <a href="/search/physics?searchtype=author&query=Bingley%2C+L">L. Bingley</a>, <a href="/search/physics?searchtype=author&query=Shaffer%2C+C">C. Shaffer</a>, <a href="/search/physics?searchtype=author&query=Turner%2C+D+L">D. L. Turner</a>, <a href="/search/physics?searchtype=author&query=Runov%2C+A">A. Runov</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">W. Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">J. Liu</a>, <a href="/search/physics?searchtype=author&query=Artemyev%2C+A+V">A. V. Artemyev</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X+-">X. -J. Zhang</a>, <a href="/search/physics?searchtype=author&query=Strangeway%2C+R+J">R. J. Strangeway</a>, <a href="/search/physics?searchtype=author&query=Wirz%2C+R+E">R. E. Wirz</a>, <a href="/search/physics?searchtype=author&query=Shprits%2C+Y+Y">Y. Y. Shprits</a>, <a href="/search/physics?searchtype=author&query=Sergeev%2C+V+A">V. A. Sergeev</a>, <a href="/search/physics?searchtype=author&query=Caron%2C+R+P">R. P. Caron</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Cruce%2C+P">P. Cruce</a>, <a href="/search/physics?searchtype=author&query=Greer%2C+W">W. Greer</a>, <a href="/search/physics?searchtype=author&query=Grimes%2C+E">E. Grimes</a>, <a href="/search/physics?searchtype=author&query=Hector%2C+K">K. Hector</a>, <a href="/search/physics?searchtype=author&query=Lawson%2C+M+J">M. J. Lawson</a>, <a href="/search/physics?searchtype=author&query=Leneman%2C+D">D. Leneman</a>, <a href="/search/physics?searchtype=author&query=Masongsong%2C+E+V">E. V. Masongsong</a>, <a href="/search/physics?searchtype=author&query=Russell%2C+C+L">C. L. Russell</a>, <a href="/search/physics?searchtype=author&query=Wilkins%2C+C">C. Wilkins</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.07747v2-abstract-short" style="display: inline;"> The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (~93deg inclination), nearly circular, low-Earth (~450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07747v2-abstract-full').style.display = 'inline'; document.getElementById('2006.07747v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.07747v2-abstract-full" style="display: none;"> The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (~93deg inclination), nearly circular, low-Earth (~450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (~90min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50keV to 5MeV electrons with deltaE/E<40% and a fluxgate magnetometer (FGM) on a ~72cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5Hz Nyquist (nominally) with <0.3nT/sqrt(Hz) noise at 1Hz. The spinning satellites (T_spin~3s) are equipped with magnetorquers that permit spin-up/down and reorientation maneuvers. The spin axis is placed normal to the orbit plane, allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250keV-5MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07747v2-abstract-full').style.display = 'none'; document.getElementById('2006.07747v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Space Science Reviews April 2020. 51 pages, 7 tables, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.05966">arXiv:2006.05966</a> <span> [<a href="https://arxiv.org/pdf/2006.05966">pdf</a>, <a href="https://arxiv.org/format/2006.05966">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164657">10.1016/j.nima.2020.164657 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Positron production using a 9 MeV electron linac for the GBAR experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Charlton%2C+M">M. Charlton</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Clade%2C+P">P. Clade</a>, <a href="/search/physics?searchtype=author&query=Comini%2C+P">P. Comini</a>, <a href="/search/physics?searchtype=author&query=Crepin%2C+P">P-P. Crepin</a>, <a href="/search/physics?searchtype=author&query=Crivelli%2C+P">P. Crivelli</a>, <a href="/search/physics?searchtype=author&query=Dalkarov%2C+O">O. Dalkarov</a>, <a href="/search/physics?searchtype=author&query=Debu%2C+P">P. Debu</a>, <a href="/search/physics?searchtype=author&query=Dodd%2C+L">L. Dodd</a>, <a href="/search/physics?searchtype=author&query=Douillet%2C+A">A. Douillet</a>, <a href="/search/physics?searchtype=author&query=Guellati-Khelifa%2C+S">S. Guellati-Khelifa</a>, <a href="/search/physics?searchtype=author&query=Hervieux%2C+P">P-A. Hervieux</a>, <a href="/search/physics?searchtype=author&query=Hilico%2C+L">L. Hilico</a>, <a href="/search/physics?searchtype=author&query=Husson%2C+A">A. Husson</a>, <a href="/search/physics?searchtype=author&query=Indelicato%2C+P">P. Indelicato</a>, <a href="/search/physics?searchtype=author&query=Janka%2C+G">G. Janka</a>, <a href="/search/physics?searchtype=author&query=Jonsell%2C+S">S. Jonsell</a>, <a href="/search/physics?searchtype=author&query=Karr%2C+J">J-P. Karr</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+E">E-S. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y">Y. Ko</a>, <a href="/search/physics?searchtype=author&query=Kosinski%2C+T">T. Kosinski</a>, <a href="/search/physics?searchtype=author&query=Kuroda%2C+N">N. Kuroda</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.05966v3-abstract-short" style="display: inline;"> For the GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment at CERN's Antiproton Decelerator (AD) facility we have constructed a source of slow positrons, which uses a low-energy electron linear accelerator (linac). The driver linac produces electrons of 9 MeV kinetic energy that create positrons from bremsstrahlung-induced pair production. Staying below 10 MeV ensures no persistent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.05966v3-abstract-full').style.display = 'inline'; document.getElementById('2006.05966v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.05966v3-abstract-full" style="display: none;"> For the GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment at CERN's Antiproton Decelerator (AD) facility we have constructed a source of slow positrons, which uses a low-energy electron linear accelerator (linac). The driver linac produces electrons of 9 MeV kinetic energy that create positrons from bremsstrahlung-induced pair production. Staying below 10 MeV ensures no persistent radioactive activation in the target zone and that the radiation level outside the biological shield is safe for public access. An annealed tungsten-mesh assembly placed directly behind the target acts as a positron moderator. The system produces $5\times10^7$ slow positrons per second, a performance demonstrating that a low-energy electron linac is a superior choice over positron-emitting radioactive sources for high positron flux. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.05966v3-abstract-full').style.display = 'none'; document.getElementById('2006.05966v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in NIM A. 33 pages 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods Phys. Res. A 985, 164657 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13838">arXiv:2003.13838</a> <span> [<a href="https://arxiv.org/pdf/2003.13838">pdf</a>, <a href="https://arxiv.org/format/2003.13838">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.243001">10.1103/PhysRevLett.125.243001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Precision Determination of Oxygen-K$伪$ Transition Energy Excludes Incongruent Motion of Interstellar Oxygen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Leutenegger%2C+M+A">M. A. Leutenegger</a>, <a href="/search/physics?searchtype=author&query=K%C3%BChn%2C+S">S. K眉hn</a>, <a href="/search/physics?searchtype=author&query=Micke%2C+P">P. Micke</a>, <a href="/search/physics?searchtype=author&query=Steinbr%C3%BCgge%2C+R">R. Steinbr眉gge</a>, <a href="/search/physics?searchtype=author&query=Stierhof%2C+J">J. Stierhof</a>, <a href="/search/physics?searchtype=author&query=Shah%2C+C">C. Shah</a>, <a href="/search/physics?searchtype=author&query=Hell%2C+N">N. Hell</a>, <a href="/search/physics?searchtype=author&query=Bissinger%2C+M">M. Bissinger</a>, <a href="/search/physics?searchtype=author&query=Hirsch%2C+M">M. Hirsch</a>, <a href="/search/physics?searchtype=author&query=Ballhausen%2C+R">R. Ballhausen</a>, <a href="/search/physics?searchtype=author&query=Lang%2C+M">M. Lang</a>, <a href="/search/physics?searchtype=author&query=Gr%C3%A4fe%2C+C">C. Gr盲fe</a>, <a href="/search/physics?searchtype=author&query=Wipf%2C+S">S. Wipf</a>, <a href="/search/physics?searchtype=author&query=Cumbee%2C+R">R. Cumbee</a>, <a href="/search/physics?searchtype=author&query=Betancourt-Martinez%2C+G+L">G. L. Betancourt-Martinez</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S">S. Park</a>, <a href="/search/physics?searchtype=author&query=Yerokhin%2C+V+A">V. A. Yerokhin</a>, <a href="/search/physics?searchtype=author&query=Surzhykov%2C+A">A. Surzhykov</a>, <a href="/search/physics?searchtype=author&query=Stolte%2C+W+C">W. C. Stolte</a>, <a href="/search/physics?searchtype=author&query=Niskanen%2C+J">J. Niskanen</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Porter%2C+F+S">F. S. Porter</a>, <a href="/search/physics?searchtype=author&query=St%C3%B6hlker%2C+T">T. St枚hlker</a>, <a href="/search/physics?searchtype=author&query=Pfeifer%2C+T">T. Pfeifer</a>, <a href="/search/physics?searchtype=author&query=Wilms%2C+J">J. Wilms</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13838v2-abstract-short" style="display: inline;"> We demonstrate a widely applicable technique to absolutely calibrate the energy scale of x-ray spectra with experimentally well-known and accurately calculable transitions of highly charged ions, allowing us to measure the K-shell Rydberg spectrum of molecular O$_2$ with 8 meV uncertainty. We reveal a systematic $\sim$450 meV shift from previous literature values, and settle an extraordinary discr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13838v2-abstract-full').style.display = 'inline'; document.getElementById('2003.13838v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13838v2-abstract-full" style="display: none;"> We demonstrate a widely applicable technique to absolutely calibrate the energy scale of x-ray spectra with experimentally well-known and accurately calculable transitions of highly charged ions, allowing us to measure the K-shell Rydberg spectrum of molecular O$_2$ with 8 meV uncertainty. We reveal a systematic $\sim$450 meV shift from previous literature values, and settle an extraordinary discrepancy between astrophysical and laboratory measurements of neutral atomic oxygen, the latter being calibrated against the aforementioned O$_2$ literature values. Because of the widespread use of such, now deprecated, references, our method impacts on many branches of x-ray absorption spectroscopy. Moreover, it potentially reduces absolute uncertainties there to below the meV level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13838v2-abstract-full').style.display = 'none'; document.getElementById('2003.13838v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by PRL. Main article: 7 pages, 3 figures. Supplemental Material: 3 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 243001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.05965">arXiv:2003.05965</a> <span> [<a href="https://arxiv.org/pdf/2003.05965">pdf</a>, <a href="https://arxiv.org/format/2003.05965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.052831">10.1103/PhysRevA.102.052831 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of strong two-electron--one-photon transitions in few-electron ion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Togawa%2C+M">Moto Togawa</a>, <a href="/search/physics?searchtype=author&query=K%C3%BChn%2C+S">Steffen K眉hn</a>, <a href="/search/physics?searchtype=author&query=Shah%2C+C">Chintan Shah</a>, <a href="/search/physics?searchtype=author&query=Amaro%2C+P">Pedro Amaro</a>, <a href="/search/physics?searchtype=author&query=Steinbr%C3%BCgge%2C+R">Ren茅 Steinbr眉gge</a>, <a href="/search/physics?searchtype=author&query=Stierhof%2C+J">Jakob Stierhof</a>, <a href="/search/physics?searchtype=author&query=Hell%2C+N">Natalie Hell</a>, <a href="/search/physics?searchtype=author&query=Rosner%2C+M">Michael Rosner</a>, <a href="/search/physics?searchtype=author&query=Fujii%2C+K">Keisuke Fujii</a>, <a href="/search/physics?searchtype=author&query=Bissinger%2C+M">Matthias Bissinger</a>, <a href="/search/physics?searchtype=author&query=Ballhausen%2C+R">Ralf Ballhausen</a>, <a href="/search/physics?searchtype=author&query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/physics?searchtype=author&query=Seltmann%2C+J">J枚rn Seltmann</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S">SungNam Park</a>, <a href="/search/physics?searchtype=author&query=Grilo%2C+F">Filipe Grilo</a>, <a href="/search/physics?searchtype=author&query=Porter%2C+F+S">F. Scott Porter</a>, <a href="/search/physics?searchtype=author&query=Santos%2C+J+P">Jos茅 Paulo Santos</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">Moses Chung</a>, <a href="/search/physics?searchtype=author&query=St%C3%B6hlker%2C+T">Thomas St枚hlker</a>, <a href="/search/physics?searchtype=author&query=Wilms%2C+J">J枚rn Wilms</a>, <a href="/search/physics?searchtype=author&query=Pfeifer%2C+T">Thomas Pfeifer</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+G+V">Gregory V. Brown</a>, <a href="/search/physics?searchtype=author&query=Leutenegger%2C+M+A">Maurice A. Leutenegger</a>, <a href="/search/physics?searchtype=author&query=Bernitt%2C+S">Sven Bernitt</a>, <a href="/search/physics?searchtype=author&query=L%C3%B3pez-Urrutia%2C+J+R+C">Jos茅 R. Crespo L贸pez-Urrutia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.05965v2-abstract-short" style="display: inline;"> We resonantly excite the $K$ series of O$^{5+}$ and O$^{6+}$ up to principal quantum number $n=11$ with monochromatic x rays, producing $K$-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O$^{5+}$ reveal strong two-electron--one-photon (TEOP) transitions. We find that for the $[(1s\,2s)_1\,5p_{3/2}]_{3/2;1/2}$ states, TEOP relaxation is by far s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.05965v2-abstract-full').style.display = 'inline'; document.getElementById('2003.05965v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.05965v2-abstract-full" style="display: none;"> We resonantly excite the $K$ series of O$^{5+}$ and O$^{6+}$ up to principal quantum number $n=11$ with monochromatic x rays, producing $K$-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O$^{5+}$ reveal strong two-electron--one-photon (TEOP) transitions. We find that for the $[(1s\,2s)_1\,5p_{3/2}]_{3/2;1/2}$ states, TEOP relaxation is by far stronger than the radiative decay and competes with the usually much faster Auger decay path. This enhanced TEOP decay arises from a strong correlation with the near-degenerate upper states $[(1s\,2p_{3/2})_1\,4s]_{3/2;1/2}$ of a Li-like satellite blend of the He-like $K伪$ transition. Even in three-electron systems, TEOP transitions can play a dominant role, and the present results should guide further research on the ubiquitous and abundant many-electron ions where electronic energy degeneracies are far more common and configuration mixing is stronger. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.05965v2-abstract-full').style.display = 'none'; document.getElementById('2003.05965v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 102, 052831 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.09707">arXiv:1911.09707</a> <span> [<a href="https://arxiv.org/pdf/1911.09707">pdf</a>, <a href="https://arxiv.org/format/1911.09707">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.225001">10.1103/PhysRevLett.124.225001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=K%C3%BChn%2C+S">Steffen K眉hn</a>, <a href="/search/physics?searchtype=author&query=Shah%2C+C">Chintan Shah</a>, <a href="/search/physics?searchtype=author&query=L%C3%B3pez-Urrutia%2C+J+R+C">Jos茅 R. Crespo L贸pez-Urrutia</a>, <a href="/search/physics?searchtype=author&query=Fujii%2C+K">Keisuke Fujii</a>, <a href="/search/physics?searchtype=author&query=Steinbr%C3%BCgge%2C+R">Ren茅 Steinbr眉gge</a>, <a href="/search/physics?searchtype=author&query=Stierhof%2C+J">Jakob Stierhof</a>, <a href="/search/physics?searchtype=author&query=Togawa%2C+M">Moto Togawa</a>, <a href="/search/physics?searchtype=author&query=Harman%2C+Z">Zolt谩n Harman</a>, <a href="/search/physics?searchtype=author&query=Oreshkina%2C+N+S">Natalia S. Oreshkina</a>, <a href="/search/physics?searchtype=author&query=Cheung%2C+C">Charles Cheung</a>, <a href="/search/physics?searchtype=author&query=Kozlov%2C+M+G">Mikhail G. Kozlov</a>, <a href="/search/physics?searchtype=author&query=Porsev%2C+S+G">Sergey G. Porsev</a>, <a href="/search/physics?searchtype=author&query=Safronova%2C+M+S">Marianna S. Safronova</a>, <a href="/search/physics?searchtype=author&query=Berengut%2C+J+C">Julian C. Berengut</a>, <a href="/search/physics?searchtype=author&query=Rosner%2C+M">Michael Rosner</a>, <a href="/search/physics?searchtype=author&query=Bissinger%2C+M">Matthias Bissinger</a>, <a href="/search/physics?searchtype=author&query=Ballhausen%2C+R">Ralf Ballhausen</a>, <a href="/search/physics?searchtype=author&query=Hell%2C+N">Natalie Hell</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S">SungNam Park</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">Moses Chung</a>, <a href="/search/physics?searchtype=author&query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/physics?searchtype=author&query=Seltmann%2C+J">J枚rn Seltmann</a>, <a href="/search/physics?searchtype=author&query=Surzhykov%2C+A+S">Andrey S. Surzhykov</a>, <a href="/search/physics?searchtype=author&query=Yerokhin%2C+V+A">Vladimir A. Yerokhin</a>, <a href="/search/physics?searchtype=author&query=Wilms%2C+J">J枚rn Wilms</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.09707v4-abstract-short" style="display: inline;"> For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic $2p-3d$ transitions, $3C$ and $3D$, in Fe XVII ions found oscillator strength ratios $f(3C)/f(3D)$ disagreeing with theory, but uncertainties had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA II… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09707v4-abstract-full').style.display = 'inline'; document.getElementById('1911.09707v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.09707v4-abstract-full" style="display: none;"> For more than 40 years, most astrophysical observations and laboratory studies of two key soft x-ray diagnostic $2p-3d$ transitions, $3C$ and $3D$, in Fe XVII ions found oscillator strength ratios $f(3C)/f(3D)$ disagreeing with theory, but uncertainties had precluded definitive statements on this much studied conundrum. Here, we resonantly excite these lines using synchrotron radiation at PETRA III, and reach, at a millionfold lower photon intensities, a 10 times higher spectral resolution, and 3 times smaller uncertainty than earlier work. Our final result of $f(3C)/f(3D) = 3.09(8)(6)$ supports many of the earlier clean astrophysical and laboratory observations, while departing by five sigmas from our own newest large-scale ab initio calculations, and excluding all proposed explanations, including those invoking nonlinear effects and population transfers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09707v4-abstract-full').style.display = 'none'; document.getElementById('1911.09707v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text (6 pages, 3 figures), Supplmentary Material (8 pages, 4 figure), Published in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 225001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.08807">arXiv:1909.08807</a> <span> [<a href="https://arxiv.org/pdf/1909.08807">pdf</a>, <a href="https://arxiv.org/format/1909.08807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.163708">10.1016/j.nima.2020.163708 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear Beam Stability in Periodic Focusing Systems:Krein Signature and Band Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chung%2C+M">Moses Chung</a>, <a href="/search/physics?searchtype=author&query=Cheon%2C+Y">Yoolim Cheon</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+H">Hong Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.08807v1-abstract-short" style="display: inline;"> The general question of how a beam becomes unstable has been one of the fundamental research topics among beam and accelerator physicists for several decades. In this study, we revisited the general problem of linear beam stability in periodic focusing systems by applying the concepts of Krein signature and band structure. We numerically calculated the eigenvalues and other associated characterist… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08807v1-abstract-full').style.display = 'inline'; document.getElementById('1909.08807v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.08807v1-abstract-full" style="display: none;"> The general question of how a beam becomes unstable has been one of the fundamental research topics among beam and accelerator physicists for several decades. In this study, we revisited the general problem of linear beam stability in periodic focusing systems by applying the concepts of Krein signature and band structure. We numerically calculated the eigenvalues and other associated characteristics of one-period maps, and discussed the stability properties of single-particle motions with skew quadrupoles and envelope perturbations in high-intensity beams on an equal footing. In particular, an application of the Krein theory to envelope instability analysis was newly attempted in this study. The appearance of instabilities is interpreted as the result of the collision between eigenmodes of opposite Krein signatures and the formation of a band gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08807v1-abstract-full').style.display = 'none'; document.getElementById('1909.08807v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chung%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chung%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chung%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>