CINXE.COM
Search results for: roll forming die design
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: roll forming die design</title> <meta name="description" content="Search results for: roll forming die design"> <meta name="keywords" content="roll forming die design"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="roll forming die design" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="roll forming die design"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13395</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: roll forming die design</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13395</span> Roll Forming Process and Die Design for a Large Size Square Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinn-Jong%20Sheu">Jinn-Jong Sheu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cang-Fu%20Liang"> Cang-Fu Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Hsien%20Yu"> Cheng-Hsien Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20roll%20forming" title="cold roll forming">cold roll forming</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design" title=" roll forming die design"> roll forming die design</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20roll%20forming" title=" tube roll forming"> tube roll forming</a> </p> <a href="https://publications.waset.org/abstracts/62390/roll-forming-process-and-die-design-for-a-large-size-square-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13394</span> The Development of a Residual Stress Measurement Method for Roll Formed Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Sun">Yong Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Luzin"> Vladimir Luzin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen%20Qian"> Zhen Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20J.%20T.%20Daniel"> William J. T. Daniel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingxing%20Zhang"> Mingxing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shichao%20Ding"> Shichao Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The residual stresses in roll formed products are generally very high and un-predictable. This is due to the occurrence of redundant plastic deformation in roll forming process and it can cause various product defects. Although the residual stresses of a roll formed product consist of longitudinal and transverse residual stresses components, but the longitudinal residual stresses plays a key role to the product defects of a roll formed product and therefore, only the longitudinal residual stresses concerned by the roll forming scholars and engineers. However, how to inspect the residual stresses of a product quickly and economically as a routine operation is still a challenge. This paper introduces a residual stresses measurement method called slope cutting method to study the longitudinal residual stresses through layers geometrically to a roll formed products or a product with similar process such as a rolled sheet. The detailed measuring procedure is given and discussed. The residual stresses variation through the layer can be derived based on the variation of curvature in different layers and steps. The slope cutting method has been explored and validated by experimental study on a roll-formed square tube. The neutron diffraction method is applied to validate the accuracy of the newly proposed layering removal materials results. The two set results agree with each other very well and therefore, the method is expected to be a routine testing method to monitor the quality of a product been formed and that is a great impact to roll forming industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roll%20forming" title="roll forming">roll forming</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20method" title=" measurement method"> measurement method</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20diffraction" title=" neutron diffraction"> neutron diffraction</a> </p> <a href="https://publications.waset.org/abstracts/51177/the-development-of-a-residual-stress-measurement-method-for-roll-formed-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13393</span> Analysis of Roll-Forming for High-Density Wire of Reed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yujeong%20Shin">Yujeong Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Jin%20Cho"> Seong Jin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Ho%20Kim"> Jin Ho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the textile-weaving machine, the reed is the core component to separate thousands of strands of yarn and to produce the fabric in a continuous high-speed movement. In addition, the reed affects the quality of the fiber. Therefore, the wire forming analysis of the main raw materials of the reed needs to be considered. Roll-forming is a key technology among the manufacturing process of reed wire using textile machine. A simulation of roll-forming line in accordance with the reduction rate is performed using LS-DYNA. The upper roller, fixed roller and reed wire are modeled by finite element. The roller is set to be rigid body and the wire of SUS430 is set to be flexible body. We predict the variation of the cross-sectional shape of the wire depending on the reduction ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=textile%20machine" title="textile machine">textile machine</a>, <a href="https://publications.waset.org/abstracts/search?q=reed" title=" reed"> reed</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling" title=" rolling"> rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20ratio" title=" reduction ratio"> reduction ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=wire" title=" wire"> wire</a> </p> <a href="https://publications.waset.org/abstracts/50434/analysis-of-roll-forming-for-high-density-wire-of-reed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13392</span> Study on Roll Marks of Stainless Steel in Rolling Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cai-Wan%20Chang-Jian">Cai-Wan Chang-Jian</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Ting%20Tsai"> Han-Ting Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the processing industry of metal forming, rolling is the most used method of processing. In a cold rolling factory of stainless steel, there occurs a product defect on temper rolling process within cold rolling. It is called 'roll marks', which is a phenomenon of undesirable flatness problem. In this research, we performed a series of experimental measurements on the roll marks, and we used optical sensors to measure it and compared the vibration frequency of roll marks with the vibration frequency of key components in the skin pass mill. We found there is less correlation between the above mentioned data. Finally, we took measurement on the motor driver in rolling mill. We found that the undulation frequency of motor could match with the frequency of roll marks, and then we have confirmed that the motor’s undulation caused roll marks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roll%20mark" title="roll mark">roll mark</a>, <a href="https://publications.waset.org/abstracts/search?q=plane%20strain" title=" plane strain"> plane strain</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20mill" title=" rolling mill"> rolling mill</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/7174/study-on-roll-marks-of-stainless-steel-in-rolling-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13391</span> Effect of Rolling Parameters on Thin Strip Profile in Cold Rolling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Tibar">H. B. Tibar</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Y.%20Jiang"> Z. Y. Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the influence of rolling process parameters such as the work roll cross angle and work roll shifting value on the strip shape and profile of aluminum have been investigated under dry conditions at a speed ratio of 1.3 using Hille 100 experimental mill. The strip profile was found to improve significantly with increase in work roll cross angle from 0<sup>o</sup> to 1<sup>o</sup>, with an associated decrease in rolling force. The effect of roll shifting (from 0 to 8mm) was not as significant as the roll cross angle. However, an increase in work roll shifting value achieved a similar decrease in rolling force as that of work roll cross angle. The effect of work roll shifting was also found to be maximum at an optimum roll speed of 0.0986 m/s for the desired thickness. Of all these parameters, the most significant effect of the strip shape profile was observed with variation of work roll cross angle. However, the rolling force can be a significantly reduced by either increasing the the work roll cross angle or work roll shifting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20speed%20ratio" title="rolling speed ratio">rolling speed ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20shape" title=" strip shape"> strip shape</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20cross%20angle" title=" work roll cross angle"> work roll cross angle</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20shifting" title=" work roll shifting"> work roll shifting</a> </p> <a href="https://publications.waset.org/abstracts/36497/effect-of-rolling-parameters-on-thin-strip-profile-in-cold-rolling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13390</span> Analysis of the Strip Shape and Microstructure with Consideration of Roll Crossing and Shifting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Y.%20Jiang">Z. Y. Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Tibar"> H. B. Tibar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aljabri"> A. Aljabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimisation of the physical and mechanical properties of cold rolled thin strips is achieved by controlling the rolling parameters. In this paper, the factors affecting the asymmetrical cold rolling of thin low carbon steel strip have been studied at a speed ratio of 1.1 without lubricant applied. The effect of rolling parameters on the resulting microstructure was also investigated. It was found that under dry condition, work roll shifting and work roll cross angle can improve the strip profile, and the result is more significant with an increase of work roll cross angle rather than that of work roll shifting. However, there was no obvious change in microstructure. In addition, effects of rolling parameters on strip profile and microstructure have also been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20speed%20ratio" title="rolling speed ratio">rolling speed ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20cross%20angle" title=" work roll cross angle"> work roll cross angle</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20shifting" title=" work roll shifting"> work roll shifting</a> </p> <a href="https://publications.waset.org/abstracts/36517/analysis-of-the-strip-shape-and-microstructure-with-consideration-of-roll-crossing-and-shifting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13389</span> Design of Process Parameters in Electromagnetic Forming Apparatus by FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeong-Gyu%20Park">Hyeong-Gyu Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-Gon%20Noh"> Hak-Gon Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=Beom-Soo%20Kang"> Beom-Soo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Kim"> Jeong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic forming (EMF) process is one of a high-speed forming process, which uses an electromagnetic body (Lorentz) force to deform work-piece. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, the spiral coil is considered to evaluate formability in terms of pressure distribution of the forming process. It also is represented forming results of numerical analysis using ANSYS code. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. The simulation results show that even though input peak currents level are same level in each case, forming condition is certainly different because of frequency of input current and magnitude of current density and magnetic flux density. Finally, the simulation results appear that electromagnetic forming force apparently affected by input current frequency which determines magnitude of current density and magnetic flux density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20forming" title="electromagnetic forming">electromagnetic forming</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20forming" title=" high-speed forming"> high-speed forming</a>, <a href="https://publications.waset.org/abstracts/search?q=RLC%20circuit" title=" RLC circuit"> RLC circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentz%20force" title=" Lorentz force"> Lorentz force</a> </p> <a href="https://publications.waset.org/abstracts/7042/design-of-process-parameters-in-electromagnetic-forming-apparatus-by-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13388</span> Insights and Observation for Optimum Work Roll Cooling in Flat Hot Mills: A Case Study on Shape Defect Elimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uday%20S.%20Goel">Uday S. Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Senthil%20Kumar"> G. Senthil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Ghosh"> Biswajit Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Mahashabde"> V. V. Mahashabde</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhirendra%20Kumar"> Dhirendra Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Manjunath"> H. Manjunath</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritesh%20Kumar"> Ritesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Bhagwat"> Mahesh Bhagwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Pandey"> Subodh Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tata Steel Bhushan Steel Ltd.(TSBSL)’s Hot Mill at Angul , Orissa , India, was facing shape issues in Hot Rolled (HR) coils. This was resulting in a defect called as ‘Ridge’, which was appearing in subsequent cold rolling operations at various cold mills (CRM) and external customers. A collaborative project was undertaken to resolve this issue. One of the reasons identified was the strange drop in thermal crown after rolling of 20-25 coils in the finishing mill (FM ) schedule. On the shop floor, it was observed that work roll temperatures in the FM after rolling were very high and non uniform across the work roll barrel. Jammed work roll cooling nozzles, insufficient roll bite lubrication and inadequate roll cooling water quality were found to be the main reasons. Regular checking was initiated to check roll cooling nozzles health, and quick replacement done if found jammed was implemented. Improvements on roll lubrication, especially flow rates, was done. Usage of anti-peeling headers and inter stand descaling was enhanced. A subsequent project was also taken up for improving the quality of roll cooling water. Encouraging results were obtained from the project with a reduction in rejection due to ridge at CRM’s by almost 95% of the pre project start levels. Poor profile occurrence of HR coils at HSM was also reduced from a high of 32% in May’19 to <1% since Apr’20. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling%20flat" title="hot rolling flat">hot rolling flat</a>, <a href="https://publications.waset.org/abstracts/search?q=shape" title=" shape"> shape</a>, <a href="https://publications.waset.org/abstracts/search?q=ridge" title=" ridge"> ridge</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll" title=" work roll"> work roll</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20cooling%20nozzle" title=" roll cooling nozzle"> roll cooling nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=lubrication" title=" lubrication"> lubrication</a> </p> <a href="https://publications.waset.org/abstracts/166771/insights-and-observation-for-optimum-work-roll-cooling-in-flat-hot-mills-a-case-study-on-shape-defect-elimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13387</span> An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Sawitri">P. Sawitri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cdr.%20Sittha"> S. Cdr. Sittha</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kritsana"> T. Kritsana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20forming" title="flow forming">flow forming</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20vessel" title=" pressure vessel"> pressure vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20rollers" title=" four rollers"> four rollers</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20rate" title=" feed rate"> feed rate</a>, <a href="https://publications.waset.org/abstracts/search?q=spindle%20speed" title=" spindle speed"> spindle speed</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20work" title=" cold work"> cold work</a> </p> <a href="https://publications.waset.org/abstracts/14068/an-improvement-of-flow-forming-process-for-pressure-vessels-by-four-rollers-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13386</span> Controlling Shape and Position of Silicon Micro-nanorolls Fabricated using Fine Bubbles during Anodization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yodai%20Ashikubo">Yodai Ashikubo</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Suzuki"> Toshiaki Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Satoshi%20Kouya"> Satoshi Kouya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitsuya%20Motohashi"> Mitsuya Motohashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functional microstructures such as wires, fins, needles, and rolls are currently being applied to variety of high-performance devices. Under these conditions, a roll structure (silicon micro-nanoroll) was formed on the surface of the silicon substrate via fine bubbles during anodization using an extremely diluted hydrofluoric acid (HF + H₂O). The as-formed roll had a microscale length and width of approximately 1 µm. The number of rolls was 3-10 times and the thickness of the film forming the rolls was about 10 nm. Thus, it is promising for applications as a distinct device material. These rolls functioned as capsules and/or pipelines. To date, number of rolls and roll length have been controlled by anodization conditions. In general, controlling the position and roll winding state is required for device applications. However, it has not been discussed. Grooves formed on silicon surface before anodization might be useful control the bubbles. In this study, we investigated the effect of the grooves on the position and shape of the roll. The surfaces of the silicon wafers were anodized. The starting material was p-type (100) single-crystalline silicon wafers. The resistivity of the wafer is 5-20 ∙ cm. Grooves were formed on the surface of the substrate before anodization using sandpaper and diamond pen. The average width and depth of the grooves were approximately 1 µm and 0.1 µm, respectively. The HF concentration {HF/ (HF + C₂H5OH + H₂O)} was 0.001 % by volume. The C2H5OH concentration {C₂H5OH/ (HF + C₂H5OH + H₂O)} was 70 %. A vertical single-tank cell and Pt cathode were used for anodization. The silicon roll was observed by field-emission scanning electron microscopy (FE-SEM; JSM-7100, JEOL). The atomic bonding state of the rolls was evaluated using X-ray photoelectron spectroscopy (XPS; ESCA-3400, Shimadzu). For straight groove, the rolls were formed along the groove. This indicates that the orientation of the rolls can be controlled by the grooves. For lattice-like groove, the rolls formed inside the lattice and along the long sides. In other words, the aspect ratio of the lattice is very important for the roll formation. In addition, many rolls were formed and winding states were not uniform when the lattice size is too large. On the other hand, no rolls were formed for small lattice. These results indicate that there is the optimal size of lattice for roll formation. In the future, we are planning on formation of rolls using groove formed by lithography technique instead of sandpaper and the pen. Furthermore, the rolls included nanoparticles will be formed for nanodevices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20roll" title="silicon roll">silicon roll</a>, <a href="https://publications.waset.org/abstracts/search?q=anodization" title=" anodization"> anodization</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20bubble" title=" fine bubble"> fine bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/192444/controlling-shape-and-position-of-silicon-micro-nanorolls-fabricated-using-fine-bubbles-during-anodization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13385</span> Study on the Changes in Material Strength According to Changes in Forming Methods in Hot-Stamping Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Jeon">Yong-Jun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Pil%20Park"> Hyung-Pil Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Jae%20Song"> Min-Jae Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Baeg-Soon%20Cha"> Baeg-Soon Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Following the recent trend of having increased demand in producing lighter-weight car bodies for improvement of automobile safety and gas mileage, there is a forming method that makes use of hot-stamping technique, which satisfies all conditions mentioned above. Hot-stamping is a forming technique with advantages of excellent formability, good dimensional precision and others since it is a process in which steel plates are heated up to temperatures of at least approximately 900°C after which forming is conducted in die at room temperature followed by rapid cooling. In addition, it has characteristics of allowing for improvement in material strength through achievement of quenching effect by having simultaneous forming and rapid cooling of material of high temperatures. However, there is insufficient information on the changes in material strength according to changes in material temperature with regards to material heating method and forming process in hot-stamping. Accordingly, this study aims to design and press die for T-type product of the scale models of the center pillar and to understand the changes in material strength in relation to changes in forming methods of hot-stamping process. Thus in order to understand the changes in material strength due to quenching effect among the hot-stamping process, material strength and material forming precision were to be studied while varying the forming and forming method when forming. For test methods, material strength was observed by using boron steel that has boron additives, which was heated up to 950°C, after which it was transferred to a die and was cooled down to material temperature of 400°C followed by air cooling process. During the forming and cooling process here, experiment was conducted with forming parameters of 2 holding rates and 3 flange heating rates wherein changing appearance in material strength according to changes forming method were observed by verifying forming strength and forming precision for each of the conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot-stamping" title="hot-stamping">hot-stamping</a>, <a href="https://publications.waset.org/abstracts/search?q=formability" title=" formability"> formability</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=forming" title=" forming"> forming</a>, <a href="https://publications.waset.org/abstracts/search?q=press%20die" title=" press die"> press die</a>, <a href="https://publications.waset.org/abstracts/search?q=forming%20methods" title=" forming methods"> forming methods</a> </p> <a href="https://publications.waset.org/abstracts/7061/study-on-the-changes-in-material-strength-according-to-changes-in-forming-methods-in-hot-stamping-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13384</span> Optimized Control of Roll Stability of Missile using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pham%20Van%20Hung">Pham Van Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Trong%20Hieu"> Nguyen Trong Hieu</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Quoc%20Dinh"> Le Quoc Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Kiem%20Chien"> Nguyen Kiem Chien</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Dinh%20Hieu"> Le Dinh Hieu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article focuses on the study of automatic flight control on missiles during operation. The quality standards and characteristics of missile operations are very strict, requiring high stability and accurate response to commands within a relatively wide range of work. The study analyzes the linear transfer function model of the Missile Roll channel to facilitate the development of control systems. A two-loop control structure for the Missile Roll channel is proposed, with the inner loop controlling the Missile Roll rate and the outer loop controlling the Missile Roll angle. To determine the optimal control parameters, a genetic algorithm is applied. The study uses MATLAB simulation software to implement the genetic algorithm and evaluate the quality of the closed-loop system. The results show that the system achieves better quality than the original structure and is simple, reliable, and ready for implementation in practical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20chanel" title=" roll chanel"> roll chanel</a>, <a href="https://publications.waset.org/abstracts/search?q=two-loop%20control%20structure" title=" two-loop control structure"> two-loop control structure</a>, <a href="https://publications.waset.org/abstracts/search?q=missile" title=" missile"> missile</a> </p> <a href="https://publications.waset.org/abstracts/164639/optimized-control-of-roll-stability-of-missile-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13383</span> Investigation of Roll-Off Factor in Pulse Shaping Filter on Maximal Ratio Combining for CDMA 2000 System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Walia">G. S. Walia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20P.%20Singh"> H. P. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Padma"> D. Padma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of wide variety of communication services is made possible with invention of 3G technology. Code Division Multiple Access 2000 operates on various RF channel bandwidths 1.2288 or 3.6864 Mcps (1x or 3x systems). It is a 3G system which offers high bandwidth and wireless broadband services but its efficiency is lowered due to various factors like fading, interference, scattering, absorption etc. This paper investigates the effect of diversity (MRC), roll off factor in Root Raised Cosine (RRC) filter for the BPSK and QPSK modulation schemes. It is possible to transmit data with minimum Inter symbol Interference and within limited bandwidth with proper pulse shaping technique. Bit error rate (BER) performance is analyzed by applying diversity technique by varying the roll off factor for BPSK and QPSK. Roll off factor reduces the ISI and diversity reduces the Fading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CDMA2000" title="CDMA2000">CDMA2000</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20raised%20cosine" title=" root raised cosine"> root raised cosine</a>, <a href="https://publications.waset.org/abstracts/search?q=roll-off%20factor" title=" roll-off factor"> roll-off factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ISI" title=" ISI"> ISI</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=fading" title=" fading "> fading </a> </p> <a href="https://publications.waset.org/abstracts/9526/investigation-of-roll-off-factor-in-pulse-shaping-filter-on-maximal-ratio-combining-for-cdma-2000-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13382</span> Study on Multi-Point Stretch Forming Process for Double Curved Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwoo%20Park">Jiwoo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Junseok%20Yoon"> Junseok Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Kim"> Jeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Beomsoo%20Kang"> Beomsoo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-point%20stretch%20forming" title="multi-point stretch forming">multi-point stretch forming</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20curved%20surface" title=" double curved surface"> double curved surface</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/7221/study-on-multi-point-stretch-forming-process-for-double-curved-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13381</span> Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temsiri%20Sapsaman">Temsiri Sapsaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Anocha%20Bhocarattanahkul"> Anocha Bhocarattanahkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=work-roll%20cooling%20system" title="work-roll cooling system">work-roll cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20strip%20process%20adjustment" title=" hot strip process adjustment"> hot strip process adjustment</a>, <a href="https://publications.waset.org/abstracts/search?q=feasibility%20study" title=" feasibility study"> feasibility study</a>, <a href="https://publications.waset.org/abstracts/search?q=stand%20reduction" title=" stand reduction"> stand reduction</a> </p> <a href="https://publications.waset.org/abstracts/10836/effective-work-roll-cooling-toward-stand-reduction-in-hot-strip-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13380</span> Hot Forging Process Simulation of Outer Tie Rod to Reduce Forming Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyo%20Jin%20An">Kyo Jin An</a>, <a href="https://publications.waset.org/abstracts/search?q=Bukyo%20Seo"> Bukyo Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chul%20Park"> Young-Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current trend in car market is increase of parts of automobile and weight in vehicle. It comes from improvement of vehicle performance. Outer tie rod is a part of component of steering system and it is lighter than the others. But, weight lightening is still required for improvement of car mileage. So, we have presented a model of aluminized outer tie rod, but the process of fabrication has to be checked to manufacture the product. Therefore, we have anticipated forming load, die stress and abrasion to use the program of forging interpretation in the part of hot forging process of outer tie rod in this study. Also, we have implemented the experiments design to use the table of orthogonal arrays to reduce the forming load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forming%20load" title="forming load">forming load</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20forging" title=" hot forging"> hot forging</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20array" title=" orthogonal array"> orthogonal array</a>, <a href="https://publications.waset.org/abstracts/search?q=outer%20tie%20rod%20%28OTR%29" title=" outer tie rod (OTR)"> outer tie rod (OTR)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%E2%80%93step%20forging" title=" multi–step forging"> multi–step forging</a> </p> <a href="https://publications.waset.org/abstracts/15169/hot-forging-process-simulation-of-outer-tie-rod-to-reduce-forming-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13379</span> Hydro-Mechanical Forming of AZ31 Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Nam%20Kwon">Yong-Nam Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we have designed the hydro-mechanical forming in which AZ31 sheet was drawn to a kind of preform step following gas blow forming for accurate geometry. In order to judge a formability enhancement of AZ31 sheet, model geometry came from a practical automotive part which had quite depth with complicated curvatures, which was proven that a single sheet forming could not gave a successful part. Experimentally, we succeeded to make the model part with accurate dimension. The optimum forming conditions for respective forming steps were considered most important technical features of this hydro-mechanical and would be discussed in details. Also, the effort to avoid detrimental abnormal grain growth was given and discussed for a practical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydro-mechanical%20forming" title="hydro-mechanical forming">hydro-mechanical forming</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ31" title=" AZ31"> AZ31</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20grain%20growth" title=" abnormal grain growth"> abnormal grain growth</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20geometry" title=" model geometry"> model geometry</a> </p> <a href="https://publications.waset.org/abstracts/9497/hydro-mechanical-forming-of-az31-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13378</span> Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Tian">Shuo Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuepiao%20Bai"> Xuepiao Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianqin%20Shang"> Jianqin Shang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengtao%20Gai"> Pengtao Gai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuansong%20Zeng"> Yuansong Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shot%20peen%20forming" title="shot peen forming">shot peen forming</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameter" title=" process parameter"> process parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20model" title=" response surface model"> response surface model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/163364/establishment-and-application-of-numerical-simulation-model-for-shot-peen-forming-stress-field-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13377</span> Integration from Laboratory to Industrialization for Hybrid Printed Electronics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Moulay">Ahmed Moulay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Zhuldybina"> Mariia Zhuldybina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirko%20Torres"> Mirko Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Rozel"> Mike Rozel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Duc%20Trinh"> Ngoc Duc Trinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlo%C3%A9%20Bois"> Chloé Bois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid printed electronics technology (HPE) provides innovative opportunities to enhance conventional electronics applications, which are often based on printed circuit boards (PCB). By combining the best of both performance from conventional electronic components and the flexibility from printed circuits makes it possible to manufacture HPE at high volumes using roll-to-roll printing processes. However, several challenges must be overcome in order to accurately integrate an electronic component on a printed circuit. In this presentation, we will demonstrate the integration process of electronic components from the lab scale to the industrialization. Both the printing quality and the integration technique must be studied to define the optimal conditions. To cover the parameters that influence the print quality of the printed circuit, different printing processes, flexible substrates, and conductive inks will be used to determine the optimized printing process/ink/substrate system. After the systems is selected, an electronic component of 2.5 mm2 chip size will be integrated to validate the functionality of the printed, electronic circuit. Critical information such as the conductive adhesive, the curing conditions, and the chip encapsulation will be determined. Thanks to these preliminary results, we are able to demonstrate the chip integration on a printed circuit using industrial equipment, showing the potential of industrialization, compatible using roll-to-roll printing and integrating processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flat%20bed%20screen-printing" title="flat bed screen-printing">flat bed screen-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20printed%20electronics" title=" hybrid printed electronics"> hybrid printed electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20production" title=" large-scale production"> large-scale production</a>, <a href="https://publications.waset.org/abstracts/search?q=roll-to-roll%20printing" title=" roll-to-roll printing"> roll-to-roll printing</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20screen%20printing" title=" rotary screen printing"> rotary screen printing</a> </p> <a href="https://publications.waset.org/abstracts/142964/integration-from-laboratory-to-industrialization-for-hybrid-printed-electronics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13376</span> Forming for Confirmation of Predicted Epoxy Forming Composition Range in Cr-Zn System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Foad%20Saadi">Foad Saadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim of this work was to determine the approximate Epoxy forming composition range of Cr-Zn system for the composites produced by forming compositing. It was predicted by MI edema semi-empirical model that the composition had to be in the range of 30-60 wt. % tin, while Cr-32Zn had the most susceptibility to produce amorphous composite. In the next stage, some different compositions of Cr-Zn were foamingly composited, where one of them had the proper predicted composition. Products were characterized by SDM analysis. There was a good agreement between calculation and experiments, in which Cr-32Zn composite had the most amorphization degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cr-Zn%20system" title="Cr-Zn system">Cr-Zn system</a>, <a href="https://publications.waset.org/abstracts/search?q=forming%20compositing" title=" forming compositing"> forming compositing</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20composite" title=" amorphous composite"> amorphous composite</a>, <a href="https://publications.waset.org/abstracts/search?q=MI%20edema%20model" title=" MI edema model"> MI edema model</a> </p> <a href="https://publications.waset.org/abstracts/79319/forming-for-confirmation-of-predicted-epoxy-forming-composition-range-in-cr-zn-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13375</span> Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Ghassan%20Al-Abtah">Fatima Ghassan Al-Abtah</a>, <a href="https://publications.waset.org/abstracts/search?q=Naser%20Al-Huniti"> Naser Al-Huniti</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsadig%20Mahdi"> Elsadig Mahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium" title="magnesium">magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=superplastic%20forming" title=" superplastic forming"> superplastic forming</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/109276/simulation-based-parametric-study-for-the-hybrid-superplastic-forming-of-az31" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13374</span> Simultaneous Measurement of Displacement and Roll Angle of Object</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Furutani">R. Furutani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ishii"> K. Ishii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser interferometers are now widely used for length and displacement measurement. In conventional methods, the optical path difference between two mirrors, one of which is a reference mirror and the other is a target mirror, is measured, as in Michelson interferometry, or two target mirrors are set up and the optical path difference between the two targets is measured, as in differential interferometry. In these interferometers, the two laser beams pass through different optical elements so that the measurement result is affected by the vibration and other effects in the optical paths. In addition, it is difficult to measure the roll angle around the optical axis. The proposed interferometer simultaneously measures both the translational motion along the optical axis and the roll motion around it by combining the retroreflective principle of the ball lens (BL) and the polarization. This interferometer detects the interferogram by the two beams traveling along the identical optical path from the beam source to BL. This principle is expected to reduce external influences by using the interferogram between the two lasers in an identical optical path. The proposed interferometer uses a BL so that the reflected light from the lens travels on the identical optical path as the incident light. After reaching the aperture of the He-Ne laser oscillator, the reflected light is reflected by a mirror with a very high reflectivity installed in the aperture and is irradiated back toward the BL. Both the first laser beam that enters the BL and the second laser beam that enters the BL after the round trip interferes with each other, enabling the measurement of displacement along the optical axis. In addition, for the measurement of the roll motion, a quarter-wave plate is installed on the optical path to change the polarization state of the laser. The polarization states of the first laser beam and second laser beam are different by the roll angle of the target. As a result, this system can measure the displacement and the roll angle of BL simultaneously. It was verified by the simulation and the experiment that the proposed optical system could measure the displacement and the roll angle simultaneously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20path%20interferometer" title="common path interferometer">common path interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20measurement" title=" displacement measurement"> displacement measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20interferometer" title=" laser interferometer"> laser interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20measurement" title=" simultaneous measurement"> simultaneous measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20angle%20measurement" title=" roll angle measurement"> roll angle measurement</a> </p> <a href="https://publications.waset.org/abstracts/165172/simultaneous-measurement-of-displacement-and-roll-angle-of-object" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13373</span> A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittiphat%20Rattanachan">Kittiphat Rattanachan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sheet metal forming process, the raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloy, which have the different cell unit, mechanical property and chemical composition. They were forming into cone shape specimens 100 mm diameter with different wall’s incline angle: 90o, 75o, and 60o. The investigation, the specimens were forming until the surface fracture was occurred. The experimental result showed that both materials with the smaller wall’s incline angle, the higher formability. The formability limited of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 was higher formability than SUS 304. This result could be used as the initial utilized data in designing the single point incremental forming parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NC%20incremental%20forming" title="NC incremental forming">NC incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20point%20incremental%20forming" title=" single point incremental forming"> single point incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20incline%20angle" title=" wall incline angle"> wall incline angle</a>, <a href="https://publications.waset.org/abstracts/search?q=formability" title=" formability"> formability</a> </p> <a href="https://publications.waset.org/abstracts/11732/a-comparison-of-single-point-incremental-forming-formability-between-carbon-steel-and-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13372</span> Numerical and Experimental Approach to Evaluate Forming Coil of Electromagnetic Forming Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Noh">H. G. Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Park"> H. G. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Kang"> B. S. Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kim"> J. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic forming process (EMF) is one of high-velocity forming processes using Lorentz force. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for EMF process. A 2-D axis-symmetric electromagnetic model was considered based on the spiral type forming coil. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. In order to deform the sheet in the patter shape die, two types of spiral shape coil were considered to deform the pattern shape sheet. One is a spiral coil that has 6turns with dead zone at centre point. Another is a normal spiral coil without dead zone that has 8 turns. In the electric analysis, input current and magnetic force were compared and then plastic deformation was treated in the mechanical analysis for two coil cases. Deformation behaviour of dead zone coil case has good agreement with pattern shape die. As a result, deformation behaviour could be controlled by giving dead zone at centre of the coil in spiral shape coil case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20forming" title="electromagnetic forming">electromagnetic forming</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20coil" title=" spiral coil"> spiral coil</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentz%20force" title=" Lorentz force"> Lorentz force</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/7002/numerical-and-experimental-approach-to-evaluate-forming-coil-of-electromagnetic-forming-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13371</span> Evaluation of Forming Properties on AA 5052 Aluminium Alloy by Incremental Forming </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Anbu%20Raj">A. Anbu Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Mugendiren"> V. Mugendiren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sheet metal forming is a vital manufacturing process used in automobile, aerospace, agricultural industries, etc. Incremental forming is a promising process providing a short and inexpensive way of forming complex three-dimensional parts without using die. The aim of this research is to study the forming behaviour of AA 5052, Aluminium Alloy, using incremental forming and also to study the FLD of cone shape AA 5052 Aluminium Alloy at room temperature and various annealing temperature. Initially the surface roughness and wall thickness through incremental forming on AA 5052 Aluminium Alloy sheet at room temperature is optimized by controlling the effects of forming parameters. The central composite design (CCD) was utilized to plan the experiment. The step depth, feed rate, and spindle speed were considered as input parameters in this study. The surface roughness and wall thickness were used as output response. The process performances such as average thickness and surface roughness were evaluated. The optimized results are taken for minimum surface roughness and maximum wall thickness. The optimal results are determined based on response surface methodology and the analysis of variance. Formability Limit Diagram is constructed on AA 5052 Aluminium Alloy at room temperature and various annealing temperature by using optimized process parameters from the response surface methodology. The cone has higher formability than the square pyramid and higher wall thickness distribution. Finally the FLD on cone shape and square pyramid shape at room temperature and the various annealing temperature is compared experimentally and simulated with Abaqus software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incremental%20forming" title="incremental forming">incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thickness" title=" wall thickness"> wall thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/66474/evaluation-of-forming-properties-on-aa-5052-aluminium-alloy-by-incremental-forming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13370</span> Melt Conditioned-Twin Roll Casting of Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Das">Sanjeev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. The microstructures showed uniform fine equiaxed grain morphology in the case of MC-TRC cast samples. In the case of TRC samples elongated grains with centerline segregation was observed. Further investigation showed both the process has different solidification mechanism. Tensile tests were performed at 250–400ºC for both TRC and MCTRC samples. At 250ºC, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. It was observed that homogenized MC-TRC samples were easily hot stamped compared to TRC samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MC-TRC" title="MC-TRC">MC-TRC</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title=" magnesium alloy"> magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a> </p> <a href="https://publications.waset.org/abstracts/71008/melt-conditioned-twin-roll-casting-of-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13369</span> Constant-Roll Warm Inflation within Rastall Gravity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Saleem">Rabia Saleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has a recently proposed strategy to find the exact inflationary solution of the Friedman equations in the context of the Rastall theory of gravity (RTG), known as constant-roll warm inflation, including dissipation effects. We establish the model to evaluate the effective potential of inflation and entropy. We develop the inflationary observable like scalar-tensor power spectra, scalar-tensor spectral indices, tensor-to-scalar ratio, and running of spectral-index. The theory parameter $\lambda$ is constrained to observe the compatibility of our model with Planck 2013, Planck TT, TE, EE+lowP (2015), and Planck 2018 bounds. The results are feasible and interesting up to the 2$\sigma$ confidence level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20gravity" title="modified gravity">modified gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=warm%20inflation" title=" warm inflation"> warm inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=constant-roll%20limit" title=" constant-roll limit"> constant-roll limit</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipation" title=" dissipation"> dissipation</a> </p> <a href="https://publications.waset.org/abstracts/156363/constant-roll-warm-inflation-within-rastall-gravity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13368</span> Investigation of a Hybrid Process: Multipoint Incremental Forming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safa%20Boudhaouia">Safa Boudhaouia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amen%20Gahbiche"> Mohamed Amen Gahbiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliane%20Giraud"> Eliane Giraud</a>, <a href="https://publications.waset.org/abstracts/search?q=Wacef%20Ben%20Salem"> Wacef Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Dal%20Santo"> Philippe Dal Santo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incremental%20forming" title="incremental forming">incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=MPIF" title=" MPIF"> MPIF</a>, <a href="https://publications.waset.org/abstracts/search?q=multipoint%20forming" title=" multipoint forming"> multipoint forming</a> </p> <a href="https://publications.waset.org/abstracts/51894/investigation-of-a-hybrid-process-multipoint-incremental-forming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13367</span> Microstructures Evolution of a Nano/Ultrafine Grained Low Carbon Steel Produced by Martensite Treatment Using Accumulative Roll Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Salari">Mehdi Salari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work introduces a new experimental method of martensite treatment contains accumulative roll-bonding used for producing the nano/ultrafine grained structure in low carbon steel. The ARB process up to 4 cycles was performed under unlubricated conditions, while the annealing process was carried out in the temperature range of 450–550°C for 30–100 min. The microstructures of the deformed and annealed specimens were investigated. The results showed that in the annealed specimen at 450°C for 30 or 60 min, recrystallization couldn’t be completed. Decrease in time and temperature intensified the volume fraction of the martensite cell blocks. Fully equiaxed nano/ultrafine grained ferrite was developed from the martensite cell blocks during the annealing at temperature around 500°C for 100 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=martensite%20process" title="martensite process">martensite process</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulative%20roll%20bonding" title=" accumulative roll bonding"> accumulative roll bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20carbon%20steel" title=" plain carbon steel"> plain carbon steel</a> </p> <a href="https://publications.waset.org/abstracts/17328/microstructures-evolution-of-a-nanoultrafine-grained-low-carbon-steel-produced-by-martensite-treatment-using-accumulative-roll-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13366</span> A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Ghermezi">Masoud Ghermezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sheet%20metal" title="sheet metal">sheet metal</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20forming" title=" metal forming"> metal forming</a>, <a href="https://publications.waset.org/abstracts/search?q=forming%20limit%20curve%20%28FLC%29" title=" forming limit curve (FLC)"> forming limit curve (FLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=M-K%20theory" title=" M-K theory"> M-K theory</a> </p> <a href="https://publications.waset.org/abstracts/33928/a-mathematical-based-prediction-of-the-forming-limit-of-thin-walled-sheet-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=446">446</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=447">447</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>