CINXE.COM

Search results for: rolling mill

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rolling mill</title> <meta name="description" content="Search results for: rolling mill"> <meta name="keywords" content="rolling mill"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rolling mill" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rolling mill"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 457</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rolling mill</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">457</span> A Hybrid Derivative-Free Optimization Method for Pass Schedule Calculation in Cold Rolling Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadhadi%20Mirmohammadi">Mohammadhadi Mirmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Safian"> Reza Safian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Haddad"> Hossein Haddad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an innovative solution for complex multi-objective optimization problem which is a part of efforts toward maximizing rolling mill throughput and minimizing processing costs in tandem cold rolling. This computational intelligence based optimization has been applied to the rolling schedules of tandem cold rolling mill. This method involves the combination of two derivative-free optimization procedures in the form of nested loops. The first optimization loop is based on Improving Hit and Run method which focus on balance of power, force and reduction distribution in rolling schedules. The second loop is a real-coded genetic algorithm based optimization procedure which optimizes energy consumption and productivity. An experimental result of application to five stand tandem cold rolling mill is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=derivative-free%20optimization" title="derivative-free optimization">derivative-free optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Improving%20Hit%20and%20Run%20method" title=" Improving Hit and Run method"> Improving Hit and Run method</a>, <a href="https://publications.waset.org/abstracts/search?q=real-coded%20genetic%20algorithm" title=" real-coded genetic algorithm"> real-coded genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20schedules%20of%20tandem%20cold%20rolling%20mill" title=" rolling schedules of tandem cold rolling mill"> rolling schedules of tandem cold rolling mill</a> </p> <a href="https://publications.waset.org/abstracts/18442/a-hybrid-derivative-free-optimization-method-for-pass-schedule-calculation-in-cold-rolling-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">696</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">456</span> Study on Roll Marks of Stainless Steel in Rolling Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cai-Wan%20Chang-Jian">Cai-Wan Chang-Jian</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Ting%20Tsai"> Han-Ting Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the processing industry of metal forming, rolling is the most used method of processing. In a cold rolling factory of stainless steel, there occurs a product defect on temper rolling process within cold rolling. It is called 'roll marks', which is a phenomenon of undesirable flatness problem. In this research, we performed a series of experimental measurements on the roll marks, and we used optical sensors to measure it and compared the vibration frequency of roll marks with the vibration frequency of key components in the skin pass mill. We found there is less correlation between the above mentioned data. Finally, we took measurement on the motor driver in rolling mill. We found that the undulation frequency of motor could match with the frequency of roll marks, and then we have confirmed that the motor’s undulation caused roll marks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roll%20mark" title="roll mark">roll mark</a>, <a href="https://publications.waset.org/abstracts/search?q=plane%20strain" title=" plane strain"> plane strain</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20mill" title=" rolling mill"> rolling mill</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/7174/study-on-roll-marks-of-stainless-steel-in-rolling-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">455</span> Advanced Approach to Analysis the Thin Strip Profile in Cold Rolling of Pair Roll Crossing and Shifting Mill Using an Arbitrary Lagrangian-Eulerian Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Aljabri">Abdulrahman Aljabri</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20R.%20I.%20Mahmoud"> Essam R. I. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Almohamedi"> Hamad Almohamedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengyi%20Jiang"> Zhengyi Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold rolled thin strip has received intensive attention through technological and theoretical progress in the rolling process, as well as researchers have focused on its control during rolling as an essential parameter for producing thinner strip with good shape and profile. An advanced approach has been proposed to analysis the thin strip profile in cold rolling of pair roll crossing and shifting mill using Finite Element Analysis (FEA) with an ALE technique. The ALE (Arbitrary Lagrangian-Eulerian) techniques to enable more flexibility of the ALE technique in the adjustment of the finite element mesh, which provides a significant tool for simulating the thin strip under realistic rolling process constraint and provide accurate model results. The FEA can provide theoretical basis for the 3D model of controlling the strip shape and profile in thin strip rolling, and deliver an optimal rolling process parameter, and suggest corrective changes during cold rolling of thin strip. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pair%20roll%20crossing" title="pair roll crossing">pair roll crossing</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20shifting" title=" work roll shifting"> work roll shifting</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20shape%20and%20profile" title=" strip shape and profile"> strip shape and profile</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a> </p> <a href="https://publications.waset.org/abstracts/166979/advanced-approach-to-analysis-the-thin-strip-profile-in-cold-rolling-of-pair-roll-crossing-and-shifting-mill-using-an-arbitrary-lagrangian-eulerian-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">454</span> Effect of Hot Rolling Conditions on Magnetic Properties of Fe-3%Si Non-Grain Oriented Electrical Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Alan">Emre Alan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Yamanturk"> Yusuf Yamanturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokay%20Bas"> Gokay Bas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-grain oriented electrical steels are high silicon containing steels in which the direction of magnetism is intended the same in any direction of the material. Major applications of non-grain-oriented electrical steels are electrical motors, generators, etc. where low magnetic losses are required. Selection of proper hot rolling process parameters is an important factor in order to produce a material that has desired magnetic properties. In this study, the effect of finishing and coiling temperatures on magnetic properties of Fe-3%Si non-grain oriented electrical steels will be investigated. Additionally, the effect of slab reheating temperature at same entry finishing temperature will be investigated by means of reduction in roughing mill pass number from 1-5 to 1-3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20steels" title="electrical steels">electrical steels</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=roughing%20mill" title=" roughing mill"> roughing mill</a> </p> <a href="https://publications.waset.org/abstracts/56727/effect-of-hot-rolling-conditions-on-magnetic-properties-of-fe-3si-non-grain-oriented-electrical-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">453</span> Study of Mini Steel Re-Rolling and Pickling Mills for the Reduction of Accidents and Health Hazards </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Rana">S. P. Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: For the manufacture of a very thin strip or a strip with a high-quality finish, the stainless steel sheet that is called billet is re-rolled in re-rolling mill to make stainless steel sheet of 18 gauges. The rolls of re-rolling mill exert tremendous pressure over the sheet and there is likely chance of breaking of stainless steel strip from the sheet. The objective of the study was to minimise the number of accidents in steel re-rolling mills due to ejection of stainless steel strip and to minimize the pollution caused by the pickling process used in these units. Methods: Looking into the high rate of frequency and severity of accidents as well as pollution hazard in re-rolling and pickling mills, it becomes essential to make necessary arrangements for prevention of accidents in such type of industry. The author carried out survey/inspections of a large number of re-rolling and pickling mills and allied units. During the course of inspection, the working of these steel re-rolling and pickling mills was closely studied and monitored. A number of accidents involving re-rolling mills were investigated and subsequently remedial measures to prevent the occurrence of such accidents were suggested. Assessment of occupational safety and health system of these units was carried out and compliance level of the statutory requirements was checked. The workers were medically examined and monitored to ascertain their health conditions. Results: Proper use of safety gadgets by workers, machine guarding and regular training brought down the risk to an acceptable level and discharged effluent pollution was brought down to permissible limits. The fatal accidents have been reduced by 83%. Conclusions: Effective enforcement and implementation of the directions/suggestions given to the managements of such units brought down the no. of accidents to a rational level. The number of fatal accidents has reduced by 83% during the study period. The effective implementation of pollution control device curtailed the pollution level to an acceptable level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=re-rolling%20mill" title="re-rolling mill">re-rolling mill</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard" title=" hazard"> hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=accident" title=" accident"> accident</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20hazards" title=" health hazards"> health hazards</a> </p> <a href="https://publications.waset.org/abstracts/10852/study-of-mini-steel-re-rolling-and-pickling-mills-for-the-reduction-of-accidents-and-health-hazards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">452</span> Finite Elemental Simulation of the Combined Process of Asymmetric Rolling and Plastic Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Pesin">A. Pesin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pustovoytov"> D. Pustovoytov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sverdlik"> M. Sverdlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, the need in items represents a large body of rotation (e.g. shrouds of various process units: a converter, a mixer, a scrubber, a steel ladle and etc.) is satisfied by using them at engineering enterprises. At these enterprises large parts of bodies of rotation are made on stamping units or bending and forming machines. In Nosov Magnitogorsk State Technical University in alliance with JSC "Magnitogorsk Metal and Steel Works" there was suggested and implemented the technology for producing such items based on a combination of asymmetric rolling processes and plastic bending under conditions of the plate mill. In this paper, based on finite elemental mathematical simulation in technology of a combined process of asymmetric rolling and bending plastic has been improved. It is shown that for the same curvature along the entire length of the metal sheet it is necessary to introduce additional asymmetry speed when rolling front end and tape trailer. Production of large bodies of rotation at mill 4500 JSC "Magnitogorsk Metal and Steel Works" showed good convergence of theoretical and experimental values of the curvature of the metal. Economic effect obtained more than 1.0 million dollars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20rolling" title="asymmetric rolling">asymmetric rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20bending" title=" plastic bending"> plastic bending</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20process" title=" combined process"> combined process</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/13062/finite-elemental-simulation-of-the-combined-process-of-asymmetric-rolling-and-plastic-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">451</span> Effect of Rolling Parameters on Thin Strip Profile in Cold Rolling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Tibar">H. B. Tibar</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Y.%20Jiang"> Z. Y. Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the influence of rolling process parameters such as the work roll cross angle and work roll shifting value on the strip shape and profile of aluminum have been investigated under dry conditions at a speed ratio of 1.3 using Hille 100 experimental mill. The strip profile was found to improve significantly with increase in work roll cross angle from 0<sup>o</sup> to 1<sup>o</sup>, with an associated decrease in rolling force. The effect of roll shifting (from 0 to 8mm) was not as significant as the roll cross angle. However, an increase in work roll shifting value achieved a similar decrease in rolling force as that of work roll cross angle. The effect of work roll shifting was also found to be maximum at an optimum roll speed of 0.0986 m/s for the desired thickness. Of all these parameters, the most significant effect of the strip shape profile was observed with variation of work roll cross angle. However, the rolling force can be a significantly reduced by either increasing the the work roll cross angle or work roll shifting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20speed%20ratio" title="rolling speed ratio">rolling speed ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20shape" title=" strip shape"> strip shape</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20cross%20angle" title=" work roll cross angle"> work roll cross angle</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20shifting" title=" work roll shifting"> work roll shifting</a> </p> <a href="https://publications.waset.org/abstracts/36497/effect-of-rolling-parameters-on-thin-strip-profile-in-cold-rolling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">450</span> Failure Mode Effect and Criticality Analysis Based Maintenance Planning through Traditional and Multi-Criteria Decision Making Approach for Aluminium Wire Rolling Mill Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilesh%20Pancholi">Nilesh Pancholi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangal%20Bhatt"> Mangal Bhatt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper highlights comparative results of traditional FMECA and multi-factor decision-making approach based on “Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)” for aluminum wire rolling mill plant. The suggested study is carried out to overcome the limitations of FMECA by assigning the scores against each failure modes in crisp values to evaluate the criticalities of the failure modes without uncertainty. The primary findings of the paper are that sudden impact on the rolls seems to be most critical failure cause and high contact stresses due to rolling & sliding action of mesh to be least critical failure cause. It is suggested to modify the current control practices with proper maintenance strategy based on achieved maintainability criticality index (MCI). The outcome of the study will be helpful in deriving optimized maintenance plan to maximize the performance of continuous process industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=FMECA" title=" FMECA"> FMECA</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPSIS" title=" TOPSIS"> TOPSIS</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20industry" title=" process industry"> process industry</a> </p> <a href="https://publications.waset.org/abstracts/62952/failure-mode-effect-and-criticality-analysis-based-maintenance-planning-through-traditional-and-multi-criteria-decision-making-approach-for-aluminium-wire-rolling-mill-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">449</span> Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Khateeb">M. A. El-Khateeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakaka" title=" Sakaka"> Sakaka</a> </p> <a href="https://publications.waset.org/abstracts/15825/application-of-phenol-degrading-microorganisms-for-the-treatment-of-olive-mill-waste-omw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">448</span> Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Heydari%20Vini">M. Heydari Vini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20rolling" title="cold rolling">cold rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20force" title=" rolling force"> rolling force</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20rolled%20thickness%20of%20strips" title=" real rolled thickness of strips"> real rolled thickness of strips</a> </p> <a href="https://publications.waset.org/abstracts/20685/prediction-of-rolling-forces-and-real-exit-thickness-of-strips-in-the-cold-rolling-by-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">447</span> Insights and Observation for Optimum Work Roll Cooling in Flat Hot Mills: A Case Study on Shape Defect Elimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uday%20S.%20Goel">Uday S. Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Senthil%20Kumar"> G. Senthil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Ghosh"> Biswajit Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Mahashabde"> V. V. Mahashabde</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhirendra%20Kumar"> Dhirendra Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Manjunath"> H. Manjunath</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritesh%20Kumar"> Ritesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Bhagwat"> Mahesh Bhagwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Pandey"> Subodh Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tata Steel Bhushan Steel Ltd.(TSBSL)’s Hot Mill at Angul , Orissa , India, was facing shape issues in Hot Rolled (HR) coils. This was resulting in a defect called as ‘Ridge’, which was appearing in subsequent cold rolling operations at various cold mills (CRM) and external customers. A collaborative project was undertaken to resolve this issue. One of the reasons identified was the strange drop in thermal crown after rolling of 20-25 coils in the finishing mill (FM ) schedule. On the shop floor, it was observed that work roll temperatures in the FM after rolling were very high and non uniform across the work roll barrel. Jammed work roll cooling nozzles, insufficient roll bite lubrication and inadequate roll cooling water quality were found to be the main reasons. Regular checking was initiated to check roll cooling nozzles health, and quick replacement done if found jammed was implemented. Improvements on roll lubrication, especially flow rates, was done. Usage of anti-peeling headers and inter stand descaling was enhanced. A subsequent project was also taken up for improving the quality of roll cooling water. Encouraging results were obtained from the project with a reduction in rejection due to ridge at CRM’s by almost 95% of the pre project start levels. Poor profile occurrence of HR coils at HSM was also reduced from a high of 32% in May’19 to <1% since Apr’20. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling%20flat" title="hot rolling flat">hot rolling flat</a>, <a href="https://publications.waset.org/abstracts/search?q=shape" title=" shape"> shape</a>, <a href="https://publications.waset.org/abstracts/search?q=ridge" title=" ridge"> ridge</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll" title=" work roll"> work roll</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20cooling%20nozzle" title=" roll cooling nozzle"> roll cooling nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=lubrication" title=" lubrication"> lubrication</a> </p> <a href="https://publications.waset.org/abstracts/166771/insights-and-observation-for-optimum-work-roll-cooling-in-flat-hot-mills-a-case-study-on-shape-defect-elimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Compare Hot Forming and Cold Forming in Rolling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moarrefzadeh">Ali Moarrefzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In metalworking, rolling is a metal forming process in which metal stock is passed through a pair of rolls. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is termed as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is termed as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. This article describes the use of advanced tubing inspection NDT methods for boiler and heat exchanger equipment in the petrochemical industry to supplement major turnaround inspections. The methods presented include remote field eddy current, magnetic flux leakage, internal rotary inspection system and eddy current. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forming" title="hot forming">hot forming</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20forming" title=" cold forming"> cold forming</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling" title=" rolling"> rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation "> simulation </a> </p> <a href="https://publications.waset.org/abstracts/11373/compare-hot-forming-and-cold-forming-in-rolling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Influence of Different Asymmetric Rolling Processes on Shear Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Pesin">Alexander Pesin</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Pustovoytov"> Denis Pustovoytov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Sverdlik"> Mikhail Sverdlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materials with ultrafine-grained structure and unique physical and mechanical properties can be obtained by methods of severe plastic deformation, which include processes of asymmetric rolling (AR). Asymmetric rolling is a very effective way to create ultrafine-grained structures of metals and alloys. Since the asymmetric rolling is a continuous process, it has great potential for industrial production of ultrafine-grained structure sheets. Basic principles of asymmetric rolling are described in detail in scientific literature. In this work finite element modeling of asymmetric rolling and metal forming processes in multiroll gauge was performed. Parameters of the processes which allow achieving significant values of shear strain were defined. The results of the study will be useful for the research of the evolution of ultra-fine metal structure in asymmetric rolling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20rolling" title="asymmetric rolling">asymmetric rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20strain" title=" equivalent strain"> equivalent strain</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=multiroll%20gauge" title=" multiroll gauge"> multiroll gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=profile" title=" profile"> profile</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strain" title=" shear strain"> shear strain</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet" title=" sheet"> sheet</a> </p> <a href="https://publications.waset.org/abstracts/6490/influence-of-different-asymmetric-rolling-processes-on-shear-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> The Effect on Rolling Mill of Waviness in Hot Rolled Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunthorn%20Sittisakuljaroen">Sunthorn Sittisakuljaroen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The edge waviness in hot rolled steel is a common defect. Variables that effect for such defect include as raw material and machine. These variables are necessary to consider. This research studied the defect of edge waviness for SS 400 of metal sheet manufacture. Defect of metal sheets divided into two groups. The specimens were investigated on chemical composition and mechanical properties to find the difference. The results of investigate showed that not different to a standard significantly. Therefore the roll milled machine for sample need to adjustable rollers for press on metal sheet which was more appropriate to adjustable at both ends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20waviness" title="edge waviness">edge waviness</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling%20steel" title=" hot rolling steel"> hot rolling steel</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20sheet%20defect" title=" metal sheet defect"> metal sheet defect</a>, <a href="https://publications.waset.org/abstracts/search?q=SS%20400" title=" SS 400"> SS 400</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20leveller" title=" roll leveller "> roll leveller </a> </p> <a href="https://publications.waset.org/abstracts/11857/the-effect-on-rolling-mill-of-waviness-in-hot-rolled-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Finite Element Modeling of Influence of Roll Form of Vertical Scale Breaker on Decreased Formation of Surface Defects during Roughing Hot Rolling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Pesin">A. Pesin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pustovoytov"> D. Pustovoytov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sverdlik"> M. Sverdlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During production of rolled steel strips the quality of the surface of finished strips influences steel consumption considerably. The most critical areas for crack formation during rolling are lateral sides of slabs. Deformation behaviors of the slab edge in roughing rolling process were analyzed by the finite element method with Deform-3D. In this study our focus is the analysis of the influence of edger’s form on the possibility to decrease surface cracking during roughing hot rolling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roughing%20hot%20rolling" title="roughing hot rolling">roughing hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=bulging" title=" bulging"> bulging</a> </p> <a href="https://publications.waset.org/abstracts/13032/finite-element-modeling-of-influence-of-roll-form-of-vertical-scale-breaker-on-decreased-formation-of-surface-defects-during-roughing-hot-rolling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> Novel Uses of Discarded Work Rolls of Cold Rolling Mills in Hot Strip Mill of Tata Steel India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uday%20Shanker%20Goel">Uday Shanker Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Vasant%20Mahashabde"> Vinay Vasant Mahashabde</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Ghosh"> Biswajit Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Jha"> Arvind Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar"> Amit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Patel"> Sanjay Kumar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Uma%20Shanker%20Pattanaik"> Uma Shanker Pattanaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinit%20Kumar%20Shah"> Vinit Kumar Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Bhanu"> Chaitanya Bhanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pinch rolls of the Hot Mills must possess resistance to wear, thermal stability, high thermal conductivity and through hardness. Conventionally, pinch rolls have been procured either as new ones or refurbished ones. Discarded Work Rolls from the Cold Mill were taken and machined inhouse at Tata Steel to be used subsequently as the bottom pinch rolls of the Hot Mill. The hardness of the scrapped work rolls from CRM is close to 55HRC and the typical composition is ( C - 0.8% , Mn - 0.40 % , Si - 0.40% , Cr - 3.5% , Mo - 0.5% & V - 0.1% ).The Innovation was the use of a roll which would otherwise have been otherwise discarded as scrap. Also, the innovation helped in using the scrapped roll which had better wear and heat resistance. In a conventional Pinch roil (Hardness 50 HRC and typical chemistry - C - 10% , Mo+Co+V+Nb ~ 5 % ) , Pick-up is a condition whereby foreign material becomes adhered to the surface of the pinch roll during service. The foreign material is usually adhered metal from the actual product being rolled. The main attributes of the weld overlay rolls are wear resistance and crack resistance. However, the weld overlay roll has a strong tendency for strip pick-up particularly in the area of bead overlap. However, the greatest disadvantage is the depth of weld deposit, which is less than half of the usable shell thickness in most mills. Because of this, the stainless rolls require re-welding on a routine basis. By providing a significantly cheaper in house and more robust alternative of the existing bottom pinch rolls , this innovation results in significant lower worries for the roll shop. Pinch rolls now don't have to be sent outside Jamshedpur for refurbishment or for procuring new ones. Scrapped rolls from adjacent Cold Mill are procured and sent for machining to our Machine Shop inside Tata Steel works in Jamshedpur. This is far more convenient than the older methodology. The idea is also being deployed to the other hot mills of Tata Steel. Multiple campaigns have been tried out at both down coilers of Hot Strip with significantly lower wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling%20flat" title="hot rolling flat">hot rolling flat</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20mill%20work%20roll" title=" cold mill work roll"> cold mill work roll</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20strip%20pinch%20roll" title=" hot strip pinch roll"> hot strip pinch roll</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20surface" title=" strip surface"> strip surface</a> </p> <a href="https://publications.waset.org/abstracts/166767/novel-uses-of-discarded-work-rolls-of-cold-rolling-mills-in-hot-strip-mill-of-tata-steel-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> Modeling the Moment of Resistance Generated by an Ore-Grinding Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marinka%20Baghdasaryan">Marinka Baghdasaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tigran%20Mnoyan"> Tigran Mnoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pertinence of modeling the moment of resistance generated by the ore-grinding mill is substantiated. Based on the ranking of technological indices obtained in the result of the survey among the specialists of several beneficiating plants, the factors determining the level of the moment of resistance generated by the mill are revealed. A priori diagram of the ranks is obtained in which the factors are arranged in the descending order of the impact degree on the level of the moment. The obtained model of the moment of resistance shows the technological character of the operation modes of the ore-grinding mill and can be used for improving the operation modes of the system motor-mill and preventing the abnormal mode of the drive synchronous motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20mode" title=" abnormal mode"> abnormal mode</a>, <a href="https://publications.waset.org/abstracts/search?q=mill" title=" mill"> mill</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20resistance" title=" moment of resistance"> moment of resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a> </p> <a href="https://publications.waset.org/abstracts/47772/modeling-the-moment-of-resistance-generated-by-an-ore-grinding-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> Research of Possibilities to Influence the Metal Cross-Section Deformation during Cold Rolling with the Help of Local Deformation Zone Creation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Pesin">A. Pesin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pustovoytov"> D. Pustovoytov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kolesnik"> A. Kolesnik</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sverdlik"> M. Sverdlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rolling disturbances often arise which might lead to defects such as nonflatness, warpage, corrugation, etc. Numerous methods of compensation for such disturbances are well known. However, most of them preserve the initial form of transverse flow of the strip, such as convex, concave or asymmetric (for example, sphenoid). Sometimes, the form inherited (especially asymmetric) is undesirable. Technical solutions have been developed which include providing conditions for transverse metal flow in deformation zone. It should be noted that greater reduction is followed by transverse flow increase, while less reduction causes a corresponding decrease in metal flow for differently deformed metal lengths to remain approximately the same and in order to avoid the defects mentioned above. One of the solutions suggests sequential strip deforming from rectangular cross-section profile with periodical rectangular grooves back into rectangular profile again. The work was carried out in DEFORM 3D program complex. Experimental rolling was performed on laboratory mill 150. Comparison of experimental and theoretical results demonstrated good correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-section%20deformation" title=" cross-section deformation"> cross-section deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20mechanics" title=" applied mechanics"> applied mechanics</a> </p> <a href="https://publications.waset.org/abstracts/6684/research-of-possibilities-to-influence-the-metal-cross-section-deformation-during-cold-rolling-with-the-help-of-local-deformation-zone-creation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> Energy Audit: A Case Study of a Hot Rolling Mill in Steel Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Dhingra">Arvind Dhingra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejinder%20Singh%20Saggu"> Tejinder Singh Saggu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the energy demands rise and the pollution levels grow, it becomes imperative for us to save energy in all the fields in which it is used. The industrial sector is the major commercial energy consuming sector in India, where electrical energy is the most common and widely used type of energy. As the demand and price of energy are increasing day by day, therefore, the subject of energy conservation is a concern for most energy users particularly industry. Judicious use of energy becomes imperative for third world developing country being presence of energy crisis. This paper provides some measure for energy saving that can be commonly recommended for a rolling unit of steel industry. A case of hot rolling unit in JSL Stainless Ltd., Hisar for energy conservation is given. Overall improvement in energy consumption in light of the stated recommendation is illustrated along with the proposed utilization of the techniques and their applications. Energy conservation in conventional motor with replacement or use of star delta star converter, reduction in cable losses, replacement of filament of LED lamps, replacement of conventional transformer with cast resin dry type transformer and provision of energy management system for energy conservation and per unit production cost reduction are elaborated in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20audit" title="energy audit">energy audit</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title=" energy conservation"> energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient%20motors" title=" energy efficient motors "> energy efficient motors </a> </p> <a href="https://publications.waset.org/abstracts/25172/energy-audit-a-case-study-of-a-hot-rolling-mill-in-steel-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Effect of Varying Zener-Hollomon Parameter (Temperature and Flow Stress) and Stress Relaxation on Creep Response of Hot Deformed AA3104 Can Body Stock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyindamola%20Kayode">Oyindamola Kayode</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20George"> Sarah George</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Borrageiro"> Roberto Borrageiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Shirran"> Mike Shirran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A phenomenon identified by our industrial partner has experienced sag on AA3104 can body stock (CBS) transfer bar during transportation of the slab from the breakdown mill to the finishing mill. Excessive sag results in bottom scuffing of the slab onto the roller table, resulting in surface defects on the final product. It has been found that increasing the strain rate on the breakdown mill final pass results in a slab resistant to sag. The creep response for materials hot deformed at different Zener–Holloman parameter values needs to be evaluated experimentally to gain better understanding of the operating mechanism. This study investigates this identified phenomenon through laboratory simulation of the breakdown mill conditions for various strain rates by utilizing the Gleeble at UCT Centre for Materials Engineering. The experiment will determine the creep response for a range of conditions as well as quantifying the associated material microstructure (sub-grain size, grain structure etc). The experimental matrices were determined based on experimental conditions approximate to industrial hot breakdown rolling and carried out on the Gleeble 3800 at the Centre for Materials Engineering, University of Cape Town. Plane strain compression samples were used for this series of tests at an applied load that allow for better contact and exaggerated creep displacement. A tantalum barrier layer was used for increased conductivity and decreased risk of anvil welding. One set of tests with no in-situ hold time was performed, where the samples were quenched after deformation. The samples were retained for microstructure analysis of the micrographs from the light microscopy (LM), quantitative data and images from scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), sub-grain size and grain structure from electron back scattered diffraction (EBSD). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloy" title="aluminium alloy">aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=can-body%20stock" title=" can-body stock"> can-body stock</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=creep%20response" title=" creep response"> creep response</a>, <a href="https://publications.waset.org/abstracts/search?q=Zener-Hollomon%20parameter" title=" Zener-Hollomon parameter"> Zener-Hollomon parameter</a> </p> <a href="https://publications.waset.org/abstracts/152728/effect-of-varying-zener-hollomon-parameter-temperature-and-flow-stress-and-stress-relaxation-on-creep-response-of-hot-deformed-aa3104-can-body-stock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20Danielle">C. R. Danielle</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Erik"> S. Erik</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Patrick"> T. Patrick</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hugh"> M. Hugh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20ball%20mill" title="bond ball mill">bond ball mill</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20balance%20model" title=" population balance model"> population balance model</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20size%20distribution" title=" product size distribution"> product size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20stirred%20mill" title=" vertical stirred mill"> vertical stirred mill</a> </p> <a href="https://publications.waset.org/abstracts/62771/prediction-of-product-size-distribution-of-a-vertical-stirred-mill-based-on-breakage-kinetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Effect of Sugar Mill Effluent on Growth, Yield and Soil Properties of Ratoon Cane in Cauvery Command Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Madhu">G. K. Madhu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhaskar"> S. Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dinesh"> M. S. Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Manii"> R. Manii</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Srinivasamurthy"> C. A. Srinivasamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted in the premises of M/s Sri Chamundeshwari Sugars Ltd., Bharathinagar, Mandya District Pvt. Ltd., during 2014 to study the effect of sugar mill effluent (SME) on growth, yield and soil properties of ratoon cane with eight treatments replicated thrice using RCBD design. Significantly higher growth parameters like cane height (249.77 cm) and number of tillers per clump (12.22) were recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower growth attributes were recorded in treatment which received irrigation with sugar mill effluent alone. Significantly higher cane yield (104. 93 t -1) was recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower cane yield (87.40 t ha-1) was observed in treatment which received irrigation with sugar mill effluent alone. Soil properties like pH (7.84) was higher in treatment receiving Alternate irrigation with freshwater and sugar mill effluent + RDF. But EC was significantly higher in treatment which received Cycle of1 irrigation with freshwater + 2 irrigations with sugar mill effluent + RDF as compared to other treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugar%20mill%20effluent" title="sugar mill effluent">sugar mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title=" sugarcane"> sugarcane</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=cane%20yield" title=" cane yield"> cane yield</a> </p> <a href="https://publications.waset.org/abstracts/37275/effect-of-sugar-mill-effluent-on-growth-yield-and-soil-properties-of-ratoon-cane-in-cauvery-command-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Analysis of the Strip Shape and Microstructure with Consideration of Roll Crossing and Shifting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Y.%20Jiang">Z. Y. Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Tibar"> H. B. Tibar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aljabri"> A. Aljabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimisation of the physical and mechanical properties of cold rolled thin strips is achieved by controlling the rolling parameters. In this paper, the factors affecting the asymmetrical cold rolling of thin low carbon steel strip have been studied at a speed ratio of 1.1 without lubricant applied. The effect of rolling parameters on the resulting microstructure was also investigated. It was found that under dry condition, work roll shifting and work roll cross angle can improve the strip profile, and the result is more significant with an increase of work roll cross angle rather than that of work roll shifting. However, there was no obvious change in microstructure. In addition, effects of rolling parameters on strip profile and microstructure have also been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20speed%20ratio" title="rolling speed ratio">rolling speed ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20cross%20angle" title=" work roll cross angle"> work roll cross angle</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20roll%20shifting" title=" work roll shifting"> work roll shifting</a> </p> <a href="https://publications.waset.org/abstracts/36517/analysis-of-the-strip-shape-and-microstructure-with-consideration-of-roll-crossing-and-shifting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> An Algorithm for Estimating the Stable Operation Conditions of the Synchronous Motor of the Ore Mill Electric Drive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Baghdasaryan">M. Baghdasaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sukiasyan"> A. Sukiasyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An algorithm for estimating the stable operation conditions of the synchronous motor of the ore mill electric drive is proposed. The stable operation conditions of the synchronous motor are revealed, taking into account the estimation of the <em>q</em> angle change and the technological factors. The stability condition obtained allows to ensure the stable operation of the motor in the synchronous mode, taking into account the nonlinear character of the mill loading. The developed algorithm gives an opportunity to present the undesirable phenomena, arising in the electric drive system. The obtained stability condition can be successfully applied for the optimal control of the electromechanical system of the mill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20drive" title="electric drive">electric drive</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20motor" title=" synchronous motor"> synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=ore%20mill" title=" ore mill"> ore mill</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20factors" title=" technological factors"> technological factors</a> </p> <a href="https://publications.waset.org/abstracts/47401/an-algorithm-for-estimating-the-stable-operation-conditions-of-the-synchronous-motor-of-the-ore-mill-electric-drive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Fabricating Sheets of Mg-Zn Alloys by Thermomechanical Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min">Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, hot-rolled sheets of Mg-xZn alloy s(x=6, 8, and 10 weight percent) were produced by employing casting, homogenization heat treatment, hot rolling, and annealing processes subsequently. Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys were also investigated in each process. Through calculation of phase equilibria of Mg-Zn alloys, solution treatment temperature was decided as temperatures from 350 oC, where supersaturated solid solution can be obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg-Zn%20alloy" title="Mg-Zn alloy">Mg-Zn alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a> </p> <a href="https://publications.waset.org/abstracts/47844/fabricating-sheets-of-mg-zn-alloys-by-thermomechanical-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Gearbox Defect Detection in the Semi Autogenous Mills Using the Vibration Analysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Firoozabadi">Mostafa Firoozabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Foroughi%20Nematollahi"> Alireza Foroughi Nematollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semi autogenous mills are designed for grinding or primary crushed ore, and are the most widely used in concentrators globally. Any defect occurrence in semi autogenous mills can stop the production line. A Gearbox is a significant part of a rotating machine or a mill, so, the gearbox monitoring is a necessary process to prevent the unwanted defects. When a defect happens in a gearbox bearing, this defect can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. Vibration analysis is one of the most effective and common ways to detect the bearing defects in the mills. Vibration signal in a mill can be made by different parts of the mill including electromotor, pinion girth gear, different rolling bearings, and tire. When a vibration signal, made by the aforementioned parts, is added to the gearbox vibration spectrum, an accurate and on time defect detection in the gearbox will be difficult. In this paper, a new method is proposed to detect the gearbox bearing defects in the semi autogenous mill on time and accurately, using the vibration signal analysis method. In this method, if the vibration values are increased in the vibration curve, the probability of defect occurrence is investigated by comparing the equipment vibration values and the standard ones. Then, all vibration frequencies are extracted from the vibration signal and the equipment defect is detected using the vibration spectrum curve. This method is implemented on the semi autogenous mills in the Golgohar mining and industrial company in Iran. The results show that the proposed method can detect the bearing looseness on time and accurately. After defect detection, the bearing is opened before the equipment failure and the predictive maintenance actions are implemented on it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=gearbox%20defects" title=" gearbox defects"> gearbox defects</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20maintenance" title=" predictive maintenance"> predictive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/36163/gearbox-defect-detection-in-the-semi-autogenous-mills-using-the-vibration-analysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Optimal Path Motion of Positional Electric Drive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Grigoryev">M. A. Grigoryev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Shishkov"> A. N. Shishkov</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Savosteenko"> N. V. Savosteenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article identifies optimal path motion of positional electric drive, for example, the feed of cold pilgering mill. It is shown that triangle is the optimum shape of the speed curve, and the ratio of its sides depends on the type of load diagram, in particular from the influence of the main drive of pilgering mill, and is not dependent on the presence of backlash and elasticity in the system. This thesis is proved analytically, and confirmed the results are obtained by a mathematical model that take into account the influence of the main drive-to-drive feed. By statistical analysis of oscillograph traces obtained on the real object allowed to give recommendations on the optimal control of the electric drive feed cold pilgering mill 450. Based on the data that the load torque depends on by hit the pipe in rolls of pilgering mill, occurs in the interval (0,6…0,75) tc, the recommended ratio of start time to the braking time is 2:1. Optimized path motion allowed get up to 25% more RMS torque for the cycle that allowed increased the productivity of the mill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20curve%20speed" title="optimal curve speed">optimal curve speed</a>, <a href="https://publications.waset.org/abstracts/search?q=positional%20electric%20drive" title=" positional electric drive"> positional electric drive</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20pilgering%20mill%20450" title=" cold pilgering mill 450"> cold pilgering mill 450</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20path%20motion" title=" optimal path motion"> optimal path motion</a> </p> <a href="https://publications.waset.org/abstracts/46141/optimal-path-motion-of-positional-electric-drive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Rolling Contact Fatigue Failure Analysis of Ball Bearing in Gear Box</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyas%20Palit">Piyas Palit</a>, <a href="https://publications.waset.org/abstracts/search?q=Urbi%20Pal"> Urbi Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Mathur"> Jitendra Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Das"> Santanu Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bearing is an important machinery part in the industry. When bearings fail to meet their expected life the consequences are increased downtime, loss of revenue and missed the delivery. This article describes the failure of a gearbox bearing in rolling contact fatigue. The investigation consists of visual observation, chemical analysis, characterization of microstructures using optical microscopes and hardness test. The present study also considers bearing life as well as the operational condition of bearings. Surface-initiated rolling contact fatigue, leading to a surface failure known as pitting, is a life-limiting failure mode in many modern machine elements, particularly rolling element bearings. Metallography analysis of crack propagation, crack morphology was also described. Indication of fatigue spalling in the ferrography test was also discussed. The analysis suggested the probable reasons for such kind of failure in operation. This type of spalling occurred due to (1) heavier external loading condition or (2) exceeds its service life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing" title="bearing">bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20contact%20fatigue" title=" rolling contact fatigue"> rolling contact fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20life" title=" bearing life"> bearing life</a> </p> <a href="https://publications.waset.org/abstracts/108273/rolling-contact-fatigue-failure-analysis-of-ball-bearing-in-gear-box" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Flicker Detection with Motion Tolerance for Embedded Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianrong%20Wu">Jianrong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Fu"> Xuan Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Akihiro%20Higashi"> Akihiro Higashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiming%20Tan"> Zhiming Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=illumination%20flicker" title="illumination flicker">illumination flicker</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20camera" title=" embedded camera"> embedded camera</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20shutter" title=" rolling shutter"> rolling shutter</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/14449/flicker-detection-with-motion-tolerance-for-embedded-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Thermo-Mechanical Processing of Armor Steel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taher%20El-Bitar">Taher El-Bitar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20El-Meligy"> Maha El-Meligy</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20El-Shenawy"> Eman El-Shenawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Almosilhy%20Almosilhy"> Almosilhy Almosilhy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Dawood"> Nader Dawood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steel contains 0.3% C and 0.004% B, beside Mn, Cr, Mo, and Ni. The alloy was processed by using 20-ton capacity electric arc furnace (EAF), and then refined by ladle furnace (LF). Liquid steel was cast as rectangular ingots. Dilatation test showed the critical transformation temperatures Ac<sub>1</sub>, Ac<sub>3</sub>, M<sub>s</sub> and M<sub>f</sub> as 716, 835, 356, and 218 &deg;C. The ingots were austenitized and soaked and then rough rolled to thin slabs with 80 mm thickness. The thin slabs were then reheated and soaked for finish rolling to 6.0 mm thickness plates. During the rough rolling, the roll force increases as a result of rolling at temperatures less than recrystallization temperature. However, during finish rolling, the steel reflects initially continuous static recrystallization after which it shows strain hardening due to fall of temperature. It was concluded that, the steel plates were successfully heat treated by quenching-tempering at 250 &ordm;C for 20 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=armor%20steel" title="armor steel">armor steel</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitizing" title=" austenitizing"> austenitizing</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20transformation%20temperatures%20%28CTTs%29" title=" critical transformation temperatures (CTTs)"> critical transformation temperatures (CTTs)</a>, <a href="https://publications.waset.org/abstracts/search?q=dilatation%20curve" title=" dilatation curve"> dilatation curve</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20and%20finish%20rolling%20processes" title=" rough and finish rolling processes"> rough and finish rolling processes</a>, <a href="https://publications.waset.org/abstracts/search?q=soaking" title=" soaking"> soaking</a>, <a href="https://publications.waset.org/abstracts/search?q=tempering" title=" tempering"> tempering</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20processing" title=" thermo-mechanical processing"> thermo-mechanical processing</a> </p> <a href="https://publications.waset.org/abstracts/60271/thermo-mechanical-processing-of-armor-steel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rolling%20mill&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10