CINXE.COM

City University of Hong Kong | School of Data Science - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>City University of Hong Kong | School of Data Science - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "departments", 'action': "show_works", 'controller_action': 'departments#show_works', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="9krBqEP7XKyRfuIzoCdhVdKbn7NxjY3j4AQVaxBzcJty45W9hri5Fbnb7qLcUm5iKcAt13VO6/gmv5M8OYPIaQ==" /> <link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="description" content="Academia.edu is the platform to share, find, and explore 50 Million research papers. Join us to accelerate your research needs &amp; academic interests." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'departments'; var $action_name = "show_works"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15282,"monthly_visitors":"113 million","monthly_visitor_count":113458213,"monthly_visitor_count_in_millions":113,"user_count":277593799,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732858777000); window.Aedu.timeDifference = new Date().getTime() - 1732858777000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://cityu-hk.academia.edu/Departments/School_of_Data_Science/Documents" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-departments a-show_works logged_out u-bgColorWhite'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-departments a-show_works logged_out u-bgColorWhite'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav no-xs no-sm no-md"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <div class="DesignSystem" style="margin-top:-40px"><div class="PageHeader"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><div class="u-floatLeft u-fs24 u-tcGrayDarkest"><span class="PageHeader-title u-m0x u-fw700 u-mr5x u-pr5x u-borderColorGrayLight u-borderRight1"><a href="https://cityu-hk.academia.edu/"><span class="u-linkUnstyled u-tcGrayDarkest">City University of Hong Kong</span></a></span><h1 class="u-m0x u-fw300 u-fs24 u-displayInline">School of Data Science</h1></div><div class="u-floatRight u-mt1x"></div></div></div></div></div><div class="TabbedNavigation"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><ul class="nav u-m0x u-p0x list-inline"><li class="u-floatLeft u-pr5x u-mr5x u-borderColorGrayLight u-borderRight1"><a href="https://cityu-hk.academia.edu/"><span><i class="fa fa-arrow-left"></i>&nbsp;&nbsp;All Departments</span></a></li><li class="u-floatLeft active"><a href="https://cityu-hk.academia.edu/Departments/School_of_Data_Science/Documents">10 Papers</a></li><li class="u-floatLeft"><a href="https://cityu-hk.academia.edu/Departments/School_of_Data_Science">47 Researchers</a></li></ul></div></div></div></div><div class="container"><div class="row"><div class="col-xs-12"><div class="u-displayFlex"><div class="u-flexGrow1"><div class="u-ph0x"><div class="works"><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_113508246" data-work_id="113508246" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/113508246/The_Most_Probable_Transition_Paths_of_Stochastic_Dynamical_Systems_A_Sufficient_and_Necessary_Characterization">The Most Probable Transition Paths of Stochastic Dynamical Systems: A Sufficient and Necessary Characterization</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/113508246" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e932ee8e86adf72dcfe2ad5e14373c45" rel="nofollow" data-download="{&quot;attachment_id&quot;:110449571,&quot;asset_id&quot;:113508246,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/110449571/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="280720005" href="https://cityu-hk.academia.edu/YuanfeiHuang">Yuanfei Huang</a><script data-card-contents-for-user="280720005" type="text/json">{"id":280720005,"first_name":"Yuanfei","last_name":"Huang","domain_name":"cityu-hk","page_name":"YuanfeiHuang","display_name":"Yuanfei Huang","profile_url":"https://cityu-hk.academia.edu/YuanfeiHuang","photo":"https://0.academia-photos.com/280720005/129046720/118444638/s65_yuanfei.huang.png"}</script></span></span></li><li class="js-paper-rank-work_113508246 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="113508246"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 113508246, container: ".js-paper-rank-work_113508246", }); });</script></li><li class="js-percentile-work_113508246 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113508246; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_113508246"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_113508246 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="113508246"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113508246; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113508246]").text(description); $(".js-view-count-work_113508246").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_113508246").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="113508246"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">9</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="498" href="https://www.academia.edu/Documents/in/Physics">Physics</a>,&nbsp;<script data-card-contents-for-ri="498" type="text/json">{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="16460" href="https://www.academia.edu/Documents/in/Statistical_Physics">Statistical Physics</a>,&nbsp;<script data-card-contents-for-ri="16460" type="text/json">{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="136128" href="https://www.academia.edu/Documents/in/Brownian_Motion">Brownian Motion</a><script data-card-contents-for-ri="136128" type="text/json">{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=113508246]'), work: {"id":113508246,"title":"The Most Probable Transition Paths of Stochastic Dynamical Systems: A Sufficient and Necessary Characterization","created_at":"2024-01-14T22:40:09.675-08:00","owner_id":280720005,"url":"https://www.academia.edu/113508246/The_Most_Probable_Transition_Paths_of_Stochastic_Dynamical_Systems_A_Sufficient_and_Necessary_Characterization","slug":"The_Most_Probable_Transition_Paths_of_Stochastic_Dynamical_Systems_A_Sufficient_and_Necessary_Characterization","dom_id":"work_113508246","summary":null,"publication":"arXiv (Cornell University)","publication_with_fallback":"arXiv (Cornell University)","downloadable_attachments":[{"id":110449571,"asset_id":113508246,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/110449571/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/110449571/2104-libre.pdf?1705305137=\u0026response-content-disposition=attachment%3B+filename%3DThe_Most_Probable_Transition_Paths_of_St.pdf\u0026Expires=1732583699\u0026Signature=deuCX3WZHI~hukjMLApzl1TlS2c2fyqza7G-5Qg0~JYrG~9LUqXBD02kjLruZ6EcT8LmKOo3o7SbxiJtoD0FFDCRnul4PCnFEgbpjs97L2rdL-pAM2n3AozYvI-EqOWb9rKLBRsmEozbkk1Y-NozhOC2tEhPIuaTDtvrHwI~dtvyRMM17619b1GEsLg2II2v9gsXdTFfghKScQ8QjbC4NTkbmqXAqBOY2CirtbpAeECgKxEvf7y99VlliIcaZGnNI84QEenRdkJGBMOWdEXELW0ir9kf-AhyzQIungpJjCEGxSNvdQa3ldGiv6z9bnGeF3VOpkF7fn9eesEOQ7YSqg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/110449571/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/110449571/mini_magick20240115-1-csu41o.png?1705300910"}],"downloadable_attachments_with_full_thumbnails":[{"id":110449571,"asset_id":113508246,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/110449571/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/110449571/2104-libre.pdf?1705305137=\u0026response-content-disposition=attachment%3B+filename%3DThe_Most_Probable_Transition_Paths_of_St.pdf\u0026Expires=1732583699\u0026Signature=deuCX3WZHI~hukjMLApzl1TlS2c2fyqza7G-5Qg0~JYrG~9LUqXBD02kjLruZ6EcT8LmKOo3o7SbxiJtoD0FFDCRnul4PCnFEgbpjs97L2rdL-pAM2n3AozYvI-EqOWb9rKLBRsmEozbkk1Y-NozhOC2tEhPIuaTDtvrHwI~dtvyRMM17619b1GEsLg2II2v9gsXdTFfghKScQ8QjbC4NTkbmqXAqBOY2CirtbpAeECgKxEvf7y99VlliIcaZGnNI84QEenRdkJGBMOWdEXELW0ir9kf-AhyzQIungpJjCEGxSNvdQa3ldGiv6z9bnGeF3VOpkF7fn9eesEOQ7YSqg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/110449571/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/110449571/mini_magick20240115-1-csu41o.png?1705300910"}],"has_pdf":true,"has_fulltext":true,"page_count":36,"ordered_authors":[{"id":280720005,"first_name":"Yuanfei","last_name":"Huang","domain_name":"cityu-hk","page_name":"YuanfeiHuang","display_name":"Yuanfei Huang","profile_url":"https://cityu-hk.academia.edu/YuanfeiHuang","photo":"https://0.academia-photos.com/280720005/129046720/118444638/s65_yuanfei.huang.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics","nofollow":false},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics","nofollow":false},{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion","nofollow":false},{"id":228362,"name":"Stochastic differential equation","url":"https://www.academia.edu/Documents/in/Stochastic_differential_equation"},{"id":339971,"name":"Dynamical Systems Theory","url":"https://www.academia.edu/Documents/in/Dynamical_Systems_Theory"},{"id":506858,"name":"Nonlinear system","url":"https://www.academia.edu/Documents/in/Nonlinear_system"},{"id":741671,"name":"Markov Process","url":"https://www.academia.edu/Documents/in/Markov_Process"},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation"}],"publication_year":2021,"publication_year_with_fallback":2021,"paper_rank":null,"all_time_views":0,"active_discussion":{}}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_113508251" data-work_id="113508251" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/113508251/Characterization_of_the_most_probable_transition_paths_of_stochastic_dynamical_systems_with_stable_L%C3%A9vy_noise">Characterization of the most probable transition paths of stochastic dynamical systems with stable Lévy noise</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/113508251" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="86167c6e6f7d256d7af0e5fd17edb810" rel="nofollow" data-download="{&quot;attachment_id&quot;:110449597,&quot;asset_id&quot;:113508251,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/110449597/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="280720005" href="https://cityu-hk.academia.edu/YuanfeiHuang">Yuanfei Huang</a><script data-card-contents-for-user="280720005" type="text/json">{"id":280720005,"first_name":"Yuanfei","last_name":"Huang","domain_name":"cityu-hk","page_name":"YuanfeiHuang","display_name":"Yuanfei Huang","profile_url":"https://cityu-hk.academia.edu/YuanfeiHuang","photo":"https://0.academia-photos.com/280720005/129046720/118444638/s65_yuanfei.huang.png"}</script></span></span></li><li class="js-paper-rank-work_113508251 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="113508251"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 113508251, container: ".js-paper-rank-work_113508251", }); });</script></li><li class="js-percentile-work_113508251 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113508251; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_113508251"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_113508251 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="113508251"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113508251; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113508251]").text(description); $(".js-view-count-work_113508251").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_113508251").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="113508251"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="318" href="https://www.academia.edu/Documents/in/Mathematical_Physics">Mathematical Physics</a>,&nbsp;<script data-card-contents-for-ri="318" type="text/json">{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="402" href="https://www.academia.edu/Documents/in/Environmental_Science">Environmental Science</a>,&nbsp;<script data-card-contents-for-ri="402" type="text/json">{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="498" href="https://www.academia.edu/Documents/in/Physics">Physics</a><script data-card-contents-for-ri="498" type="text/json">{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=113508251]'), work: {"id":113508251,"title":"Characterization of the most probable transition paths of stochastic dynamical systems with stable Lévy noise","created_at":"2024-01-14T22:40:22.407-08:00","owner_id":280720005,"url":"https://www.academia.edu/113508251/Characterization_of_the_most_probable_transition_paths_of_stochastic_dynamical_systems_with_stable_L%C3%A9vy_noise","slug":"Characterization_of_the_most_probable_transition_paths_of_stochastic_dynamical_systems_with_stable_Lévy_noise","dom_id":"work_113508251","summary":null,"publication":"Journal of Statistical Mechanics: Theory and Experiment","publication_with_fallback":"Journal of Statistical Mechanics: Theory and Experiment","downloadable_attachments":[{"id":110449597,"asset_id":113508251,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/110449597/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/110449597/1812-libre.pdf?1705305115=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_the_most_probable_tr.pdf\u0026Expires=1732672157\u0026Signature=FQFc3HVIyVuR-U~Qq-RNptOMCZEGgp6tph1RCWfk1QYjmSHf-tgtMEx8ZyoPm6d-SkYhlstP9wANdIrC2UGRM8bxdTLwoxG2QGIEryn5ZLu-rAmJinb9773PE6BmLYt2RozCWJCYTEUmOwsCL6hVOANqg8CuRM5U3FA~hAahkTAsJWRqFqMYFdp611Ng7PH9HYrX0wDsU9J6UiL3ECeZx~LVZyP4IXvV5DEY7mpyhoNeMtYra8bKdwWbl3AXPR8H5HU-ft35ewUFDY66bxTJs~iqRuTxx9Nmuy9TYTmdDkrAbDwqyR1kMvDwNcsxTXw-1RUsmmoVWJdJ~xlSTfUMKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/110449597/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/110449597/mini_magick20240115-1-lfe2t2.png?1705300923"}],"downloadable_attachments_with_full_thumbnails":[{"id":110449597,"asset_id":113508251,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/110449597/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/110449597/1812-libre.pdf?1705305115=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_the_most_probable_tr.pdf\u0026Expires=1732672157\u0026Signature=FQFc3HVIyVuR-U~Qq-RNptOMCZEGgp6tph1RCWfk1QYjmSHf-tgtMEx8ZyoPm6d-SkYhlstP9wANdIrC2UGRM8bxdTLwoxG2QGIEryn5ZLu-rAmJinb9773PE6BmLYt2RozCWJCYTEUmOwsCL6hVOANqg8CuRM5U3FA~hAahkTAsJWRqFqMYFdp611Ng7PH9HYrX0wDsU9J6UiL3ECeZx~LVZyP4IXvV5DEY7mpyhoNeMtYra8bKdwWbl3AXPR8H5HU-ft35ewUFDY66bxTJs~iqRuTxx9Nmuy9TYTmdDkrAbDwqyR1kMvDwNcsxTXw-1RUsmmoVWJdJ~xlSTfUMKA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/110449597/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/110449597/mini_magick20240115-1-lfe2t2.png?1705300923"}],"has_pdf":true,"has_fulltext":true,"page_count":25,"ordered_authors":[{"id":280720005,"first_name":"Yuanfei","last_name":"Huang","domain_name":"cityu-hk","page_name":"YuanfeiHuang","display_name":"Yuanfei Huang","profile_url":"https://cityu-hk.academia.edu/YuanfeiHuang","photo":"https://0.academia-photos.com/280720005/129046720/118444638/s65_yuanfei.huang.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics","nofollow":false},{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science","nofollow":false},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics","nofollow":false},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"}],"publication_year":2019,"publication_year_with_fallback":2019,"paper_rank":null,"all_time_views":1,"active_discussion":{}}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_113508252" data-work_id="113508252" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/113508252/Estimating_the_most_probable_transition_time_for_stochastic_dynamical_systems">Estimating the most probable transition time for stochastic dynamical systems</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This work is devoted to the investigation of the most probable transition time between metastable states for stochastic dynamical systems with non-vanishing Brownian noise. Instead of minimizing the Onsager–Machlup action functional, we... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_113508252" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This work is devoted to the investigation of the most probable transition time between metastable states for stochastic dynamical systems with non-vanishing Brownian noise. Instead of minimizing the Onsager–Machlup action functional, we examine the maximum probability that the solution process of the system stays in a neighbourhood (or a tube) of a transition path, in order to characterize the most probable transition path. We first establish the exponential decay lower bound and a power law decay upper bound for the maximum of this probability. Based on these estimates, we further derive the lower and upper bounds for the most probable transition time, under suitable conditions. Finally, we illustrate our results in simple stochastic dynamical systems, and highlight the relation with some relevant works.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/113508252" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="1536d0f227ac9396e8294a77497dce73" rel="nofollow" data-download="{&quot;attachment_id&quot;:110449596,&quot;asset_id&quot;:113508252,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/110449596/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="280720005" href="https://cityu-hk.academia.edu/YuanfeiHuang">Yuanfei Huang</a><script data-card-contents-for-user="280720005" type="text/json">{"id":280720005,"first_name":"Yuanfei","last_name":"Huang","domain_name":"cityu-hk","page_name":"YuanfeiHuang","display_name":"Yuanfei Huang","profile_url":"https://cityu-hk.academia.edu/YuanfeiHuang","photo":"https://0.academia-photos.com/280720005/129046720/118444638/s65_yuanfei.huang.png"}</script></span></span></li><li class="js-paper-rank-work_113508252 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="113508252"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 113508252, container: ".js-paper-rank-work_113508252", }); });</script></li><li class="js-percentile-work_113508252 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113508252; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_113508252"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_113508252 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="113508252"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113508252; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113508252]").text(description); $(".js-view-count-work_113508252").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_113508252").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="113508252"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="498" href="https://www.academia.edu/Documents/in/Physics">Physics</a>,&nbsp;<script data-card-contents-for-ri="498" type="text/json">{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="16460" href="https://www.academia.edu/Documents/in/Statistical_Physics">Statistical Physics</a><script data-card-contents-for-ri="16460" type="text/json">{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=113508252]'), work: {"id":113508252,"title":"Estimating the most probable transition time for stochastic dynamical systems","created_at":"2024-01-14T22:40:22.553-08:00","owner_id":280720005,"url":"https://www.academia.edu/113508252/Estimating_the_most_probable_transition_time_for_stochastic_dynamical_systems","slug":"Estimating_the_most_probable_transition_time_for_stochastic_dynamical_systems","dom_id":"work_113508252","summary":"This work is devoted to the investigation of the most probable transition time between metastable states for stochastic dynamical systems with non-vanishing Brownian noise. Instead of minimizing the Onsager–Machlup action functional, we examine the maximum probability that the solution process of the system stays in a neighbourhood (or a tube) of a transition path, in order to characterize the most probable transition path. We first establish the exponential decay lower bound and a power law decay upper bound for the maximum of this probability. Based on these estimates, we further derive the lower and upper bounds for the most probable transition time, under suitable conditions. Finally, we illustrate our results in simple stochastic dynamical systems, and highlight the relation with some relevant works.","publication":"Nonlinearity","publication_with_fallback":"Nonlinearity","downloadable_attachments":[{"id":110449596,"asset_id":113508252,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/110449596/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/110449596/2006.10979v1-libre.pdf?1705305117=\u0026response-content-disposition=attachment%3B+filename%3DEstimating_the_most_probable_transition.pdf\u0026Expires=1732672157\u0026Signature=IFW-zZgdhR2lMykUwExH6yGiKWHriAS-EjKdxosnAw9xwJkPS3jTZd6L1E7mVZmaH8b-ElBEArs-odhRf~gTAlMbImnnOlNp1ACyGVauSs-ct3so-834wHkOJw~9UC8Dp~wBJzpjw4hafpy6hFyOn17r-kEorqHgTwEa~tMlB5KgixWb-azkVZayGssiKl7rjJeSfh-af0B9GzxA1JYBuCWo95j5adR1yWW12LXVPaAISCHKr5wjmg~uAVqM94AeAhdCjpCD7F6j3sW3Bsg5M52ev7N2MyJuIZb3FTz2DYAEC~tY5rhoGFBeK2HbHZWy4q13B8pPgRDEp4B1RJ0Eng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/110449596/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/110449596/mini_magick20240115-1-atwisv.png?1705300924"}],"downloadable_attachments_with_full_thumbnails":[{"id":110449596,"asset_id":113508252,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/110449596/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/110449596/2006.10979v1-libre.pdf?1705305117=\u0026response-content-disposition=attachment%3B+filename%3DEstimating_the_most_probable_transition.pdf\u0026Expires=1732672157\u0026Signature=IFW-zZgdhR2lMykUwExH6yGiKWHriAS-EjKdxosnAw9xwJkPS3jTZd6L1E7mVZmaH8b-ElBEArs-odhRf~gTAlMbImnnOlNp1ACyGVauSs-ct3so-834wHkOJw~9UC8Dp~wBJzpjw4hafpy6hFyOn17r-kEorqHgTwEa~tMlB5KgixWb-azkVZayGssiKl7rjJeSfh-af0B9GzxA1JYBuCWo95j5adR1yWW12LXVPaAISCHKr5wjmg~uAVqM94AeAhdCjpCD7F6j3sW3Bsg5M52ev7N2MyJuIZb3FTz2DYAEC~tY5rhoGFBeK2HbHZWy4q13B8pPgRDEp4B1RJ0Eng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/110449596/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/110449596/mini_magick20240115-1-atwisv.png?1705300924"}],"has_pdf":true,"has_fulltext":true,"page_count":28,"ordered_authors":[{"id":280720005,"first_name":"Yuanfei","last_name":"Huang","domain_name":"cityu-hk","page_name":"YuanfeiHuang","display_name":"Yuanfei Huang","profile_url":"https://cityu-hk.academia.edu/YuanfeiHuang","photo":"https://0.academia-photos.com/280720005/129046720/118444638/s65_yuanfei.huang.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics","nofollow":false},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics","nofollow":false},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics","nofollow":false},{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion"},{"id":228362,"name":"Stochastic differential equation","url":"https://www.academia.edu/Documents/in/Stochastic_differential_equation"},{"id":779767,"name":"Nonlinearity","url":"https://www.academia.edu/Documents/in/Nonlinearity"}],"publication_year":2021,"publication_year_with_fallback":2021,"paper_rank":null,"all_time_views":0,"active_discussion":{}}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_113508279" data-work_id="113508279" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/113508279/Modelling_brain_wide_neuronal_morphology_via_rooted_Cayley_trees">Modelling brain-wide neuronal morphology via rooted Cayley trees</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Neuronal morphology is an essential element for brain activity and function. We take advantage of current availability of brain-wide neuron digital reconstructions of the Pyramidal cells from a mouse brain, and analyze several emergent... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_113508279" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Neuronal morphology is an essential element for brain activity and function. We take advantage of current availability of brain-wide neuron digital reconstructions of the Pyramidal cells from a mouse brain, and analyze several emergent features of brain-wide neuronal morphology. We observe that axonal trees are self-affine while dendritic trees are self-similar. We also show that tree size appear to be random, independent of the number of dendrites within single neurons. Moreover, we consider inhomogeneous branching model which stochastically generates rooted 3-Cayley trees for the brain-wide neuron topology. Based on estimated order-dependent branching probability from actual axonal and dendritic trees, our inhomogeneous model quantitatively captures a number of topological features including size and shape of both axons and dendrites. This sheds lights on a universal mechanism behind the topological formation of brain-wide axonal and dendritic trees.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/113508279" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="78c087e744060a01008fbce03453770f" rel="nofollow" data-download="{&quot;attachment_id&quot;:110449592,&quot;asset_id&quot;:113508279,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/110449592/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="280720005" href="https://cityu-hk.academia.edu/YuanfeiHuang">Yuanfei Huang</a><script data-card-contents-for-user="280720005" type="text/json">{"id":280720005,"first_name":"Yuanfei","last_name":"Huang","domain_name":"cityu-hk","page_name":"YuanfeiHuang","display_name":"Yuanfei Huang","profile_url":"https://cityu-hk.academia.edu/YuanfeiHuang","photo":"https://0.academia-photos.com/280720005/129046720/118444638/s65_yuanfei.huang.png"}</script></span></span></li><li class="js-paper-rank-work_113508279 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="113508279"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 113508279, container: ".js-paper-rank-work_113508279", }); });</script></li><li class="js-percentile-work_113508279 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 113508279; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_113508279"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_113508279 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="113508279"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 113508279; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=113508279]").text(description); $(".js-view-count-work_113508279").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_113508279").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="113508279"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">6</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="161" href="https://www.academia.edu/Documents/in/Neuroscience">Neuroscience</a>,&nbsp;<script data-card-contents-for-ri="161" type="text/json">{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="7710" href="https://www.academia.edu/Documents/in/Biology">Biology</a>,&nbsp;<script data-card-contents-for-ri="7710" type="text/json">{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26327" href="https://www.academia.edu/Documents/in/Medicine">Medicine</a><script data-card-contents-for-ri="26327" type="text/json">{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=113508279]'), work: {"id":113508279,"title":"Modelling brain-wide neuronal morphology via rooted Cayley trees","created_at":"2024-01-14T22:41:13.343-08:00","owner_id":280720005,"url":"https://www.academia.edu/113508279/Modelling_brain_wide_neuronal_morphology_via_rooted_Cayley_trees","slug":"Modelling_brain_wide_neuronal_morphology_via_rooted_Cayley_trees","dom_id":"work_113508279","summary":"Neuronal morphology is an essential element for brain activity and function. We take advantage of current availability of brain-wide neuron digital reconstructions of the Pyramidal cells from a mouse brain, and analyze several emergent features of brain-wide neuronal morphology. We observe that axonal trees are self-affine while dendritic trees are self-similar. We also show that tree size appear to be random, independent of the number of dendrites within single neurons. Moreover, we consider inhomogeneous branching model which stochastically generates rooted 3-Cayley trees for the brain-wide neuron topology. Based on estimated order-dependent branching probability from actual axonal and dendritic trees, our inhomogeneous model quantitatively captures a number of topological features including size and shape of both axons and dendrites. This sheds lights on a universal mechanism behind the topological formation of brain-wide axonal and dendritic trees.","publication":"Scientific Reports","publication_with_fallback":"Scientific Reports","downloadable_attachments":[{"id":110449592,"asset_id":113508279,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/110449592/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/110449592/s41598-018-34050-1-libre.pdf?1705305126=\u0026response-content-disposition=attachment%3B+filename%3DModelling_brain_wide_neuronal_morphology.pdf\u0026Expires=1732672157\u0026Signature=YRLVxBr15aMp3aMy1WC9Cry~D1EprRGoycRSYB9PLWDHnDWSoTuBJu7OMZJE0jePRH2k6H9tYj0Fh~a7jo2U3TN9wYGSOPK-64s4caqgCrD6TIF-fV7iNd8zjXIRxrVOC4rbok6LYEpFrCScfeRcZ8AqnOkk5b2V~V1sSYv2kOEsxdk-kOreRcSyZC~BTqsbmnYmEZFSUuHaRjzwgOJicVw7wLnNUlxSZiFMZanVW49mX4p~WyJz9qIZkz-IpWHIP2LyAPF80mdZrbejRbyoZBmWSP3QJzHuvdNblBOGYQcQlZiNbbYkr1TwzirnnDWRe4daPzHfHtPOgtpCnRReow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/110449592/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/110449592/mini_magick20240115-1-rnolq5.png?1705300918"}],"downloadable_attachments_with_full_thumbnails":[{"id":110449592,"asset_id":113508279,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/110449592/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/110449592/s41598-018-34050-1-libre.pdf?1705305126=\u0026response-content-disposition=attachment%3B+filename%3DModelling_brain_wide_neuronal_morphology.pdf\u0026Expires=1732672157\u0026Signature=YRLVxBr15aMp3aMy1WC9Cry~D1EprRGoycRSYB9PLWDHnDWSoTuBJu7OMZJE0jePRH2k6H9tYj0Fh~a7jo2U3TN9wYGSOPK-64s4caqgCrD6TIF-fV7iNd8zjXIRxrVOC4rbok6LYEpFrCScfeRcZ8AqnOkk5b2V~V1sSYv2kOEsxdk-kOreRcSyZC~BTqsbmnYmEZFSUuHaRjzwgOJicVw7wLnNUlxSZiFMZanVW49mX4p~WyJz9qIZkz-IpWHIP2LyAPF80mdZrbejRbyoZBmWSP3QJzHuvdNblBOGYQcQlZiNbbYkr1TwzirnnDWRe4daPzHfHtPOgtpCnRReow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/110449592/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/110449592/mini_magick20240115-1-rnolq5.png?1705300918"}],"has_pdf":true,"has_fulltext":true,"page_count":10,"ordered_authors":[{"id":280720005,"first_name":"Yuanfei","last_name":"Huang","domain_name":"cityu-hk","page_name":"YuanfeiHuang","display_name":"Yuanfei Huang","profile_url":"https://cityu-hk.academia.edu/YuanfeiHuang","photo":"https://0.academia-photos.com/280720005/129046720/118444638/s65_yuanfei.huang.png"}],"research_interests":[{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience","nofollow":false},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology","nofollow":false},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine","nofollow":false},{"id":85916,"name":"Theoretical Morphology (in Biology)","url":"https://www.academia.edu/Documents/in/Theoretical_Morphology_in_Biology_"},{"id":473565,"name":"Neuron","url":"https://www.academia.edu/Documents/in/Neuron"}],"publication_year":2018,"publication_year_with_fallback":2018,"paper_rank":null,"all_time_views":2,"active_discussion":{}}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_63319793" data-work_id="63319793" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/63319793/Restatement_and_Question_Generation_for_Counsellor_Chatbot">Restatement and Question Generation for Counsellor Chatbot</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Amidst rising mental health needs in society, virtual agents are increasingly deployed in counselling. In order to give pertinent advice, counsellors must first gain an understanding of the issues at hand by eliciting sharing from the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_63319793" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Amidst rising mental health needs in society, virtual agents are increasingly deployed in counselling. In order to give pertinent advice, counsellors must first gain an understanding of the issues at hand by eliciting sharing from the counsellee. It is thus important for the counsellor chatbot to encourage the user to open up and talk. One way to sustain the conversation flow is to acknowledge the counsellee’s key points by restating them, or probing them further with questions. This paper applies models from two closely related NLP tasks — summarization and question generation — to restatement and question generation in the counselling context. We conducted experiments on a manually annotated dataset of Cantonese post-reply pairs on topics related to loneliness, academic anxiety and test anxiety. We obtained the best performance in both restatement and question generation by fine-tuning BertSum, a state-of-the-art summarization model, with the in-domain manual dataset augmented wit...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/63319793" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ea998140a1e8c5caea797338c7664673" rel="nofollow" data-download="{&quot;attachment_id&quot;:75789734,&quot;asset_id&quot;:63319793,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/75789734/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="124326311" href="https://cityu-hk.academia.edu/BaikunLiang">Baikun Liang</a><script data-card-contents-for-user="124326311" type="text/json">{"id":124326311,"first_name":"Baikun","last_name":"Liang","domain_name":"cityu-hk","page_name":"BaikunLiang","display_name":"Baikun Liang","profile_url":"https://cityu-hk.academia.edu/BaikunLiang","photo":"https://0.academia-photos.com/124326311/31810882/29034934/s65_baikun.liang.jpg"}</script></span></span></li><li class="js-paper-rank-work_63319793 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="63319793"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 63319793, container: ".js-paper-rank-work_63319793", }); });</script></li><li class="js-percentile-work_63319793 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 63319793; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_63319793"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_63319793 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="63319793"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 63319793; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=63319793]").text(description); $(".js-view-count-work_63319793").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_63319793").removeClass('hidden') })</script></div></li></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_47897750 coauthored" data-work_id="47897750" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/47897750/ANOVA_MOP_ANOVA_Decomposition_for_Multiobjective_Optimization">ANOVA-MOP: ANOVA Decomposition for Multiobjective Optimization</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Real-world optimization problems may involve a number of computationally expensive functions with a large number of input variables. Metamodel-based optimization methods can reduce the computational costs of evaluating expensive... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_47897750" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Real-world optimization problems may involve a number of computationally expensive functions with a large number of input variables. Metamodel-based optimization methods can reduce the computational costs of evaluating expensive functions, but this does not reduce the dimension of the search domain nor mitigate the curse of dimensionality effects. The dimension of the search domain can be reduced by functional anova decomposition involving Sobol&#39; sensitivity indices. This approach allows one to rank decision variables according to their impact on the objective function values. On the basis of the sparsity of effects principle, typically only a small number of decision variables significantly affects an objective function. Therefore, neglecting the variables with the smallest impact should lead to an acceptably accurate and simpler metamodel for the original problem. This appealing strategy has been applied only to single-objective optimization problems so far. Given a high-dimensional optimization problem with multiple objectives, a method called anova-mop is proposed for defining a number of independent low-dimensional subproblems with a smaller number of objectives. The method allows one to define approximated solutions for the original problem by suitably combining the solutions of the subproblems. The quality of the approximated solutions and both practical and theoretical aspects related to decision making are discussed.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/47897750" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="bab5133161dedb595202e21a86676afc" rel="nofollow" data-download="{&quot;attachment_id&quot;:81811182,&quot;asset_id&quot;:47897750,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/81811182/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="14666669" href="https://independent.academia.edu/AlbertoLovison">Alberto Lovison</a><script data-card-contents-for-user="14666669" type="text/json">{"id":14666669,"first_name":"Alberto","last_name":"Lovison","domain_name":"independent","page_name":"AlbertoLovison","display_name":"Alberto Lovison","profile_url":"https://independent.academia.edu/AlbertoLovison","photo":"https://0.academia-photos.com/14666669/3990052/4660974/s65_alberto.lovison.jpg_oh_be60aed6d4509174a262621d9850119a_oe_54421a0e___gda___1414161895_769528a3b0cd34e82621fee539f17217"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-47897750">+2</span><div class="hidden js-additional-users-47897750"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://cityu-hk.academia.edu/MatthiasTan">Matthias Tan</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/MohammadTabatabaei15">Mohammad Tabatabaei</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-47897750'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-47897750').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_47897750 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="47897750"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 47897750, container: ".js-paper-rank-work_47897750", }); });</script></li><li class="js-percentile-work_47897750 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47897750; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_47897750"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_47897750 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="47897750"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47897750; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47897750]").text(description); $(".js-view-count-work_47897750").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_47897750").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="47897750"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="556845" href="https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics">Numerical Analysis and Computational Mathematics</a><script data-card-contents-for-ri="556845" type="text/json">{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=47897750]'), work: {"id":47897750,"title":"ANOVA-MOP: ANOVA Decomposition for Multiobjective Optimization","created_at":"2021-05-03T01:25:54.989-07:00","owner_id":14666669,"url":"https://www.academia.edu/47897750/ANOVA_MOP_ANOVA_Decomposition_for_Multiobjective_Optimization","slug":"ANOVA_MOP_ANOVA_Decomposition_for_Multiobjective_Optimization","dom_id":"work_47897750","summary":"Real-world optimization problems may involve a number of computationally expensive functions with a large number of input variables. Metamodel-based optimization methods can reduce the computational costs of evaluating expensive functions, but this does not reduce the dimension of the search domain nor mitigate the curse of dimensionality effects. The dimension of the search domain can be reduced by functional anova decomposition involving Sobol' sensitivity indices. This approach allows one to rank decision variables according to their impact on the objective function values. On the basis of the sparsity of effects principle, typically only a small number of decision variables significantly affects an objective function. Therefore, neglecting the variables with the smallest impact should lead to an acceptably accurate and simpler metamodel for the original problem. This appealing strategy has been applied only to single-objective optimization problems so far. Given a high-dimensional optimization problem with multiple objectives, a method called anova-mop is proposed for defining a number of independent low-dimensional subproblems with a smaller number of objectives. The method allows one to define approximated solutions for the original problem by suitably combining the solutions of the subproblems. The quality of the approximated solutions and both practical and theoretical aspects related to decision making are discussed.","publication":"SIAM Journal on Optimization","publication_with_fallback":"SIAM Journal on Optimization","downloadable_attachments":[{"id":81811182,"asset_id":47897750,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/81811182/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/81811182/SIOPT_2018-libre.pdf?1646605039=\u0026response-content-disposition=attachment%3B+filename%3DANOVA_MOP_ANOVA_Decomposition_for_Multio.pdf\u0026Expires=1732862376\u0026Signature=T3e79wO2DXWNfdFZbqxXKKKo-iWZgM~IvcNGXvh8~1i8UQ2noakK1VjVF1cW1p9JHdhDOD6I9fEhstpFsr~Je1BJYWUxC-I-L4Xb7lkDM7yQSSlK~VzLspmtcoOxrcv-iFX~Lx8V0NlaZVuKx3RK4YExHhHTy-c9cojQiZGgmerOi3NSnQTr7yd7IJ~DG4-ISwFE89iQsBfAhoiIQnV9AiuYugBOeB006z4ZEYR2mkiUiMnLx6D1jqBiSkXXdnARdcOgCk2QFkvXlOvVc6Atu0D-et0tPkj~FS8gAVso3jPQYkauVQ0qU8s9OSTY4K~CgHkPOYBtzYbKPfkJAUk1~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/81811182/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/81811182/mini_magick20220306-22486-19cfmxx.png?1646602384"}],"downloadable_attachments_with_full_thumbnails":[{"id":81811182,"asset_id":47897750,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/81811182/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/81811182/SIOPT_2018-libre.pdf?1646605039=\u0026response-content-disposition=attachment%3B+filename%3DANOVA_MOP_ANOVA_Decomposition_for_Multio.pdf\u0026Expires=1732862376\u0026Signature=T3e79wO2DXWNfdFZbqxXKKKo-iWZgM~IvcNGXvh8~1i8UQ2noakK1VjVF1cW1p9JHdhDOD6I9fEhstpFsr~Je1BJYWUxC-I-L4Xb7lkDM7yQSSlK~VzLspmtcoOxrcv-iFX~Lx8V0NlaZVuKx3RK4YExHhHTy-c9cojQiZGgmerOi3NSnQTr7yd7IJ~DG4-ISwFE89iQsBfAhoiIQnV9AiuYugBOeB006z4ZEYR2mkiUiMnLx6D1jqBiSkXXdnARdcOgCk2QFkvXlOvVc6Atu0D-et0tPkj~FS8gAVso3jPQYkauVQ0qU8s9OSTY4K~CgHkPOYBtzYbKPfkJAUk1~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/81811182/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/81811182/mini_magick20220306-22486-19cfmxx.png?1646602384"}],"has_pdf":true,"has_fulltext":true,"page_count":30,"ordered_authors":[{"id":14666669,"first_name":"Alberto","last_name":"Lovison","domain_name":"independent","page_name":"AlbertoLovison","display_name":"Alberto Lovison","profile_url":"https://independent.academia.edu/AlbertoLovison","photo":"https://0.academia-photos.com/14666669/3990052/4660974/s65_alberto.lovison.jpg_oh_be60aed6d4509174a262621d9850119a_oe_54421a0e___gda___1414161895_769528a3b0cd34e82621fee539f17217"},{"id":216372697,"first_name":"Matthias","last_name":"Tan","domain_name":"cityu-hk","page_name":"MatthiasTan","display_name":"Matthias Tan","profile_url":"https://cityu-hk.academia.edu/MatthiasTan","photo":"/images/s65_no_pic.png"},{"id":216721577,"first_name":"Mohammad","last_name":"Tabatabaei","domain_name":"independent","page_name":"MohammadTabatabaei15","display_name":"Mohammad Tabatabaei","profile_url":"https://independent.academia.edu/MohammadTabatabaei15","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics","nofollow":false},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics","nofollow":false}],"publication_year":2018,"publication_year_with_fallback":2018,"paper_rank":null,"all_time_views":28,"active_discussion":{}}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_72854997" data-work_id="72854997" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/72854997/Uncertainty_quantification_of_microclimate_variables_in_building_energy_models">Uncertainty quantification of microclimate variables in building energy models</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/72854997" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a978da6bd1be49d4e24dcf5f4fcbb9d2" rel="nofollow" data-download="{&quot;attachment_id&quot;:81614356,&quot;asset_id&quot;:72854997,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/81614356/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="216372697" href="https://cityu-hk.academia.edu/MatthiasTan">Matthias Tan</a><script data-card-contents-for-user="216372697" type="text/json">{"id":216372697,"first_name":"Matthias","last_name":"Tan","domain_name":"cityu-hk","page_name":"MatthiasTan","display_name":"Matthias Tan","profile_url":"https://cityu-hk.academia.edu/MatthiasTan","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_72854997 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="72854997"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 72854997, container: ".js-paper-rank-work_72854997", }); });</script></li><li class="js-percentile-work_72854997 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72854997; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_72854997"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_72854997 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="72854997"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72854997; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72854997]").text(description); $(".js-view-count-work_72854997").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_72854997").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="72854997"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1372" href="https://www.academia.edu/Documents/in/Architecture">Architecture</a>,&nbsp;<script data-card-contents-for-ri="1372" type="text/json">{"id":1372,"name":"Architecture","url":"https://www.academia.edu/Documents/in/Architecture","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="73271" href="https://www.academia.edu/Documents/in/Building_Performance_Simulation">Building Performance Simulation</a>,&nbsp;<script data-card-contents-for-ri="73271" type="text/json">{"id":73271,"name":"Building Performance Simulation","url":"https://www.academia.edu/Documents/in/Building_Performance_Simulation","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="101782" href="https://www.academia.edu/Documents/in/Building">Building</a><script data-card-contents-for-ri="101782" type="text/json">{"id":101782,"name":"Building","url":"https://www.academia.edu/Documents/in/Building","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=72854997]'), work: {"id":72854997,"title":"Uncertainty quantification of microclimate variables in building energy models","created_at":"2022-03-02T19:54:20.602-08:00","owner_id":216372697,"url":"https://www.academia.edu/72854997/Uncertainty_quantification_of_microclimate_variables_in_building_energy_models","slug":"Uncertainty_quantification_of_microclimate_variables_in_building_energy_models","dom_id":"work_72854997","summary":null,"publication":"Journal of Building Performance Simulation","publication_with_fallback":"Journal of Building Performance Simulation","downloadable_attachments":[{"id":81614356,"asset_id":72854997,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/81614356/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/81614356/P_1758-libre.pdf?1646284222=\u0026response-content-disposition=attachment%3B+filename%3DUncertainty_quantification_of_microclima.pdf\u0026Expires=1732672157\u0026Signature=Tn1jVhoz29f3kyNge-sZgyg1z0B2hZRBdyJNy5ltmvzHc9Juc3EhtSB4p5XxiOQME9kvTR5BdFX6Ox75BYnVfKU2eEXTW8VohWBLKR0l3tjB6NvkUo8O7yF2pVb4Zg7a0UOomenqYGucEmS~XTc1~NfQFIJH4SboTh-P4e6upabVvUmf29FUArOsHSOWbZRQpXWz7EhXiVhCufmg3Lj2k9wNYP4GO0i52tLQptHmfW8KGSB7KKah~1H4fxObj2TdVtBwGnQQhyXC1Cxk5Msi7PQg9LraSZavkEXhtBZsn5mRh3JOb-Vhr5GzKgr3oQj-y0ftDq8VUN5ODlrxseP~zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/81614356/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/81614356/mini_magick20220302-12222-dky5x8.png?1646279771"}],"downloadable_attachments_with_full_thumbnails":[{"id":81614356,"asset_id":72854997,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/81614356/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/81614356/P_1758-libre.pdf?1646284222=\u0026response-content-disposition=attachment%3B+filename%3DUncertainty_quantification_of_microclima.pdf\u0026Expires=1732672157\u0026Signature=Tn1jVhoz29f3kyNge-sZgyg1z0B2hZRBdyJNy5ltmvzHc9Juc3EhtSB4p5XxiOQME9kvTR5BdFX6Ox75BYnVfKU2eEXTW8VohWBLKR0l3tjB6NvkUo8O7yF2pVb4Zg7a0UOomenqYGucEmS~XTc1~NfQFIJH4SboTh-P4e6upabVvUmf29FUArOsHSOWbZRQpXWz7EhXiVhCufmg3Lj2k9wNYP4GO0i52tLQptHmfW8KGSB7KKah~1H4fxObj2TdVtBwGnQQhyXC1Cxk5Msi7PQg9LraSZavkEXhtBZsn5mRh3JOb-Vhr5GzKgr3oQj-y0ftDq8VUN5ODlrxseP~zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/81614356/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/81614356/mini_magick20220302-12222-dky5x8.png?1646279771"}],"has_pdf":true,"has_fulltext":true,"page_count":8,"ordered_authors":[{"id":216372697,"first_name":"Matthias","last_name":"Tan","domain_name":"cityu-hk","page_name":"MatthiasTan","display_name":"Matthias Tan","profile_url":"https://cityu-hk.academia.edu/MatthiasTan","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering","nofollow":false},{"id":1372,"name":"Architecture","url":"https://www.academia.edu/Documents/in/Architecture","nofollow":false},{"id":73271,"name":"Building Performance Simulation","url":"https://www.academia.edu/Documents/in/Building_Performance_Simulation","nofollow":false},{"id":101782,"name":"Building","url":"https://www.academia.edu/Documents/in/Building","nofollow":false}],"publication_year":2014,"publication_year_with_fallback":2014,"paper_rank":null,"all_time_views":24,"active_discussion":{}}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_72854998" data-work_id="72854998" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/72854998/A_Bayesian_Approach_for_Interpreting_Mean_Shifts_in_Multivariate_Quality_Control">A Bayesian Approach for Interpreting Mean Shifts in Multivariate Quality Control</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/72854998" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="338af21436c7f454e2aad5ec72bbb9d9" rel="nofollow" data-download="{&quot;attachment_id&quot;:83901101,&quot;asset_id&quot;:72854998,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/83901101/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="216372697" href="https://cityu-hk.academia.edu/MatthiasTan">Matthias Tan</a><script data-card-contents-for-user="216372697" type="text/json">{"id":216372697,"first_name":"Matthias","last_name":"Tan","domain_name":"cityu-hk","page_name":"MatthiasTan","display_name":"Matthias Tan","profile_url":"https://cityu-hk.academia.edu/MatthiasTan","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_72854998 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="72854998"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 72854998, container: ".js-paper-rank-work_72854998", }); });</script></li><li class="js-percentile-work_72854998 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72854998; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_72854998"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_72854998 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="72854998"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72854998; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72854998]").text(description); $(".js-view-count-work_72854998").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_72854998").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="72854998"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">15</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="892" href="https://www.academia.edu/Documents/in/Statistics">Statistics</a><script data-card-contents-for-ri="892" type="text/json">{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=72854998]'), work: {"id":72854998,"title":"A Bayesian Approach for Interpreting Mean Shifts in Multivariate Quality Control","created_at":"2022-03-02T19:54:20.737-08:00","owner_id":216372697,"url":"https://www.academia.edu/72854998/A_Bayesian_Approach_for_Interpreting_Mean_Shifts_in_Multivariate_Quality_Control","slug":"A_Bayesian_Approach_for_Interpreting_Mean_Shifts_in_Multivariate_Quality_Control","dom_id":"work_72854998","summary":null,"publication":"Technometrics","publication_with_fallback":"Technometrics","downloadable_attachments":[{"id":83901101,"asset_id":72854998,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/83901101/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/83901101/A_Bayesian_Approach_for_Interpreting_Mea20220411-32718-1ncukri.pdf?1649728949=\u0026response-content-disposition=attachment%3B+filename%3DA_Bayesian_Approach_for_Interpreting_Mea.pdf\u0026Expires=1732672158\u0026Signature=Cqb8FAx6dVExC~DQAREeXjr1iOMYpjoF18APz9gJMP59WxRVIk0cI2D1IFW4AYUoQh2-d7JmVH3mDq3GhuUXn35VdCnKKzDcBcR5bh4gVv2AynB6tI-4d21BUBpzpSmHXTSFSq2qQsmXU3msNrA0Fiw0hDdxpKINoMqxxcuatwNToNX-z81eRP43JwdUdI7Vug9Yo04U0w7A5SLKPgN78-1PWshclqNBXPwgijuACIXWgMWIKQLYAm3mn8bNj50mYaZwqo-fIvDNRQCkwcmGw7JrRRwiWKhMf1TphUqMFL-BkUVmv3KT9APlOTu0hEjQGhN2hgLPW3R0zjvtIbzvBQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/83901101/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/83901101/mini_magick20220411-22241-o0kkif.png?1649743012"}],"downloadable_attachments_with_full_thumbnails":[{"id":83901101,"asset_id":72854998,"asset_type":"Work","always_allow_download":false,"scribd_thumbnail_url":"https://attachments.academia-assets.com/83901101/thumbnails/1.jpg","download_url":"https://d1wqtxts1xzle7.cloudfront.net/83901101/A_Bayesian_Approach_for_Interpreting_Mea20220411-32718-1ncukri.pdf?1649728949=\u0026response-content-disposition=attachment%3B+filename%3DA_Bayesian_Approach_for_Interpreting_Mea.pdf\u0026Expires=1732672158\u0026Signature=Cqb8FAx6dVExC~DQAREeXjr1iOMYpjoF18APz9gJMP59WxRVIk0cI2D1IFW4AYUoQh2-d7JmVH3mDq3GhuUXn35VdCnKKzDcBcR5bh4gVv2AynB6tI-4d21BUBpzpSmHXTSFSq2qQsmXU3msNrA0Fiw0hDdxpKINoMqxxcuatwNToNX-z81eRP43JwdUdI7Vug9Yo04U0w7A5SLKPgN78-1PWshclqNBXPwgijuACIXWgMWIKQLYAm3mn8bNj50mYaZwqo-fIvDNRQCkwcmGw7JrRRwiWKhMf1TphUqMFL-BkUVmv3KT9APlOTu0hEjQGhN2hgLPW3R0zjvtIbzvBQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA","download_file_url":"https://www.academia.edu/attachments/83901101/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&","full_thumbnail_url":"https://0.academia-photos.com/attachment_thumbnails/83901101/mini_magick20220411-22241-o0kkif.png?1649743012"}],"has_pdf":true,"has_fulltext":true,"page_count":15,"ordered_authors":[{"id":216372697,"first_name":"Matthias","last_name":"Tan","domain_name":"cityu-hk","page_name":"MatthiasTan","display_name":"Matthias Tan","profile_url":"https://cityu-hk.academia.edu/MatthiasTan","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering","nofollow":false},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science","nofollow":false},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics","nofollow":false},{"id":37306,"name":"Quality Control","url":"https://www.academia.edu/Documents/in/Quality_Control"},{"id":85879,"name":"Variable Selection","url":"https://www.academia.edu/Documents/in/Variable_Selection"},{"id":160328,"name":"Prior Knowledge","url":"https://www.academia.edu/Documents/in/Prior_Knowledge"},{"id":229603,"name":"Gibbs sampling","url":"https://www.academia.edu/Documents/in/Gibbs_sampling"},{"id":234543,"name":"Fault Isolation","url":"https://www.academia.edu/Documents/in/Fault_Isolation"},{"id":374707,"name":"Mean shift","url":"https://www.academia.edu/Documents/in/Mean_shift"},{"id":483305,"name":"Control chart","url":"https://www.academia.edu/Documents/in/Control_chart"},{"id":853732,"name":"Hierarchical Bayes","url":"https://www.academia.edu/Documents/in/Hierarchical_Bayes"},{"id":2485951,"name":"Posterior distribution","url":"https://www.academia.edu/Documents/in/Posterior_distribution"},{"id":2752334,"name":"Bayesian approach","url":"https://www.academia.edu/Documents/in/Bayesian_approach"},{"id":3016943,"name":"technometrics","url":"https://www.academia.edu/Documents/in/technometrics"}],"publication_year":2012,"publication_year_with_fallback":2012,"paper_rank":null,"all_time_views":1,"active_discussion":{}}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_72855007" data-work_id="72855007" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/72855007/Residual_Distillation_Towards_Portable_Deep_Neural_Networks_without_Shortcuts">Residual Distillation: Towards Portable Deep Neural Networks without Shortcuts</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">By transferring both features and gradients between different layers, shortcut connections explored by ResNets allow us to effectively train very deep neural networks up to hundreds of layers. However, the additional computation costs... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_72855007" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">By transferring both features and gradients between different layers, shortcut connections explored by ResNets allow us to effectively train very deep neural networks up to hundreds of layers. However, the additional computation costs induced by those shortcuts are often overlooked. For example, during online inference, the shortcuts in ResNet-50 account for about 40 percent of the entire memory usage on feature maps, because the features in the preceding layers cannot be released until the subsequent calculation is completed. In this work, for the first time, we consider training the CNN models with shortcuts and deploying them without. In particular, we propose a novel joint-training framework to train plain CNN by leveraging the gradients of the ResNet counterpart. During forward step, the feature maps of the early stages of plain CNN are passed through later stages of both itself and the ResNet counterpart to calculate the loss. During backpropagation, gradients calculated from ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/72855007" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4bacd2d025f1a924cd2e0efdbbede664" rel="nofollow" data-download="{&quot;attachment_id&quot;:81614325,&quot;asset_id&quot;:72855007,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/81614325/download_file?st=MTczMjg1ODc3Niw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="216372697" href="https://cityu-hk.academia.edu/MatthiasTan">Matthias Tan</a><script data-card-contents-for-user="216372697" type="text/json">{"id":216372697,"first_name":"Matthias","last_name":"Tan","domain_name":"cityu-hk","page_name":"MatthiasTan","display_name":"Matthias Tan","profile_url":"https://cityu-hk.academia.edu/MatthiasTan","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_72855007 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="72855007"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 72855007, container: ".js-paper-rank-work_72855007", }); });</script></li><li class="js-percentile-work_72855007 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72855007; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_72855007"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_72855007 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="72855007"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72855007; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72855007]").text(description); $(".js-view-count-work_72855007").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_72855007").removeClass('hidden') })</script></div></li></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_72855008" data-work_id="72855008" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/72855008/Hierarchical_Neural_Architecture_Search_via_Operator_Clustering">Hierarchical Neural Architecture Search via Operator Clustering</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Recently, the efficiency of automatic neural architecture design has been significantly improved by gradient-based search methods such as DARTS. However, recent literature has brought doubt to the generalization ability of DARTS, arguing... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_72855008" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Recently, the efficiency of automatic neural architecture design has been significantly improved by gradient-based search methods such as DARTS. However, recent literature has brought doubt to the generalization ability of DARTS, arguing that DARTS performs poorly when the search space is changed, i.e, when different set of candidate operators are used. Regularization techniques such as early stopping have been proposed to partially solve this problem. In this paper, we tackle this problem from a different perspective by identifying two contributing factors to the collapse of DARTS when the search space changes: (1) the correlation of similar operators incurs unfavorable competition among them and makes their relative importance score unreliable and (2) the optimization complexity gap between the proxy search stage and the final training. Based on these findings, we propose a new hierarchical search algorithm. With its operator clustering and optimization complexity match, the algor...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/72855008" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ac53a7047175ae38d375f0fd43f9932c" rel="nofollow" data-download="{&quot;attachment_id&quot;:81614327,&quot;asset_id&quot;:72855008,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/81614327/download_file?st=MTczMjg1ODc3Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="216372697" href="https://cityu-hk.academia.edu/MatthiasTan">Matthias Tan</a><script data-card-contents-for-user="216372697" type="text/json">{"id":216372697,"first_name":"Matthias","last_name":"Tan","domain_name":"cityu-hk","page_name":"MatthiasTan","display_name":"Matthias Tan","profile_url":"https://cityu-hk.academia.edu/MatthiasTan","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_72855008 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="72855008"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 72855008, container: ".js-paper-rank-work_72855008", }); });</script></li><li class="js-percentile-work_72855008 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72855008; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_72855008"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_72855008 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="72855008"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72855008; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72855008]").text(description); $(".js-view-count-work_72855008").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_72855008").removeClass('hidden') })</script></div></li></ul></li></ul></div></div></div></div><div class="u-taCenter Pagination"></div></div></div></div></div></div></div> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "f717b8ff67b539ebb52f2111752bbe48ec07603c4848fa64a44ebe035d526120", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Gcphe0E0o8//PjjKSUAWqspOqCSMkqFwGdrjyYac7oWdYzVuhHdGdtebNFs1NRmdMRUaQIhRx2vfYWWer2xWdw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://cityu-hk.academia.edu/Departments/School_of_Data_Science/Documents" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="KMS1s26e2ErmX2cYL6zqc2eTPCGydsTlYz6zRFbWMp6sbeGmq9098876a4lT2eVEnMiORba1ov6lhTUTfyaKbA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style=""><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style=""><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10