CINXE.COM
Search results for: metal salts
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: metal salts</title> <meta name="description" content="Search results for: metal salts"> <meta name="keywords" content="metal salts"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="metal salts" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="metal salts"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2651</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: metal salts</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2651</span> Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juree%20Hong">Juree Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggeun%20Lee"> Sanggeun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungmok%20Seo"> Jungmok Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Taeyoon%20Lee"> Taeyoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanic%20displacement%20reaction" title=" galvanic displacement reaction"> galvanic displacement reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sensor" title=" hydrogen sensor"> hydrogen sensor</a> </p> <a href="https://publications.waset.org/abstracts/18400/facile-synthesis-of-metal-nanoparticles-on-graphene-via-galvanic-displacement-reaction-for-sensing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2650</span> Natural Dyeing on Wool Fabrics Using Some Red Rose Petals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emrah%20%C3%87imen">Emrah Çimen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Demirelli"> Mustafa Demirelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Yilmaz%20%C5%9Eahinba%C5%9Fkan"> Burcu Yilmaz Şahinbaşkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmure%20%C3%9Cst%C3%BCn%20%C3%96zg%C3%BCr"> Mahmure Üstün Özgür</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural colours are used on a large area such as textile, food and pharmaceutical industries by many researchers. When tannic acid is used together with metal salts for dyeing with natural dyes, antibacterial and fastness properties of textile materials are increased. In addition, the allegens are removed on wool fabrics. In this experimental work, some red rose petals were applied as a natural dye with three different dyeing methods and eight different mordant salts. The effect of tannic acid and different metal salts on dyeing of wool fabric was studied. Colour differences ΔECMC (2:1) and fastness properties of dyed fabrics were investigated and compared with each other. Finally, dark colours and adequate colour fastness results (4+) were obtained after dyeing of wool fabrics with FeSO4.7H2O, FeCl3.6H2O and CuCl2.2H2O in the presence of the tannic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20dye" title="natural dye">natural dye</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20rose%20petals" title=" red rose petals"> red rose petals</a>, <a href="https://publications.waset.org/abstracts/search?q=tannic%20acid" title=" tannic acid"> tannic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=mordant%20salts" title=" mordant salts"> mordant salts</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20fabric" title=" wool fabric"> wool fabric</a> </p> <a href="https://publications.waset.org/abstracts/25586/natural-dyeing-on-wool-fabrics-using-some-red-rose-petals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">630</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2649</span> Effect of Flux Salts on the Recovery Extent and Quality of Metal Values from Spent Rechargeable Lead Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A%20Rabah">Mahmoud A Rabah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20M.%20Abelbasir"> Sabah M. Abelbasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead-calcium alloy containing up to 0.10% calcium was recovered from spent rechargeable sealed acid lead batteries. Two techniques were investigated to explore the effect of flux salts on the extent and quality of the recovered alloy, pyro-metallurgical and electrochemical methods. About 10 kg of the spent batteries were collected for testing. The sample was washed with hot water and dried. The plastic cases of the batteries were mechanically cut, and the contents were dismantled manually, the plastic containers were shredded for recycling. The electrode plates were freed from the loose powder and placed in SiC crucible and covered with alkali chloride salts. The loaded crucible was heated in an electronically controlled chamber furnace type Nabertherm C3 at temperatures up to 800 °C. The obtained metals were analyzed. The effect of temperature, rate of heating, atmospheric conditions, composition of the flux salts on the extent and quality of the recovered products were studied. Results revealed that the spent rechargeable batteries contain 6 blocks of 6 plates of Pb-Ca alloy each. Direct heating of these plates in a silicon carbide crucible under ambient conditions produces lead metal poor in calcium content ( < 0.07%) due to partial oxidation of the alloying calcium element. Rate of temperature increase has a considerable effect on the yield of the lead alloy extraction. Flux salts composition benefits the recovery process. Sodium salts are more powerful as compared to potassium salts. Lead calcium alloy meeting the standard specification was successfully recovered from the spent rechargeable acid lead batteries with a very competitive cost to the same alloy prepared from primary resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rechargeable%20lead%20batteries" title="rechargeable lead batteries">rechargeable lead batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-calcium%20alloy" title=" lead-calcium alloy"> lead-calcium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recovery" title=" waste recovery"> waste recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20salts" title=" flux salts"> flux salts</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20recovery" title=" thermal recovery"> thermal recovery</a> </p> <a href="https://publications.waset.org/abstracts/78511/effect-of-flux-salts-on-the-recovery-extent-and-quality-of-metal-values-from-spent-rechargeable-lead-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2648</span> Nucleophile Mediated Addition-Fragmentation Generation of Aryl Radicals from Aryl Diazonium Salts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elene%20Tatunashvili">Elene Tatunashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Bun%20Chan"> Bun Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20E.%20Nashar"> Philippe E. Nashar</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20S.%20P.%20McErlean"> Christopher S. P. McErlean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of aryl diazonium salts is one of the most efficient ways to generate aryl radicals for use in a wide range of transformations, including Sandmeyer-type reactions, Meerwein arylations of olefins and Gomberg-Bachmann-Hey arylations of heteroaromatic systems. The aryl diazonium species can be reduced electrochemically, by UV irradiation, inner-sphere and outer-sphere single electron transfer processes (SET) from metal salts, SET from photo-excited organic catalysts or fragmentation of adducts with weak bases (acetate, hydroxide, etc.). This paper details an approach for the metal-free reduction of aryl diazonium salts, which facilitates the efficient synthesis of various aromatic compounds under exceedingly mild reaction conditions. By measuring the oxidation potential of a number of organic molecules, a series of nucleophiles were identified that reduce aryl diazonium salts via the addition-fragmentation mechanism. This approach leads to unprecedented operational simplicity: The reactions are very rapid and proceed in the open air; there is no need for external irradiation or heating, and the process is compatible with a large number of radical reactions. We illustrate these advantages by using the addition-fragmentation strategy to regioselectively arylate a series of heterocyclic compounds, to synthesize ketones by arylation of silyl enol ethers, and to synthesize benzothiophene and phenanthrene derivatives by radical annulation reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diazonium%20salts" title="diazonium salts">diazonium salts</a>, <a href="https://publications.waset.org/abstracts/search?q=hantzsch%20esters" title=" hantzsch esters"> hantzsch esters</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20reactions" title=" radical reactions"> radical reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20methods" title=" synthetic methods"> synthetic methods</a> </p> <a href="https://publications.waset.org/abstracts/112892/nucleophile-mediated-addition-fragmentation-generation-of-aryl-radicals-from-aryl-diazonium-salts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2647</span> Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dildar%20Gogi">Muhammad Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ahsan%20Khan"> Muhammad Ahsan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sufian"> M. Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nawaz"> Ahmad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed"> Waleed Afzal Naveed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy-metals" title="heavy-metals">heavy-metals</a>, <a href="https://publications.waset.org/abstracts/search?q=larval-instars" title=" larval-instars"> larval-instars</a>, <a href="https://publications.waset.org/abstracts/search?q=lethal-concentration" title=" lethal-concentration"> lethal-concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=silkworm" title=" silkworm"> silkworm</a> </p> <a href="https://publications.waset.org/abstracts/97315/assessment-of-toxic-impact-of-metals-on-different-instars-of-silkworm-bombyx-mori" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2646</span> Corrosion Behavior of Steels in Molten Salt Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Rejkov%C3%A1">Jana Rejková</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Kudrnov%C3%A1"> Marie Kudrnová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the research of materials for one of the types of reactors IV. generation - reactor with molten salts. One of the advantages of molten salts applied as a coolant in reactors is the ability to operate at relatively low pressures, as opposed to cooling with water or gases. Compared to liquid metal cooling, which also allows lower operating pressures, salt melts are less prone to chemical reactions. The service life of the construction materials used is limited by the operating temperatures of the reactor and the content of impurities in the salts. For the research of corrosion resistance, an experimental device was designed and assembled, enabling exposure at high temperatures without access to oxygen in a flowing atmosphere of inert gas. Nickel alloys Inconel 601, 617, and 625 were tested in a mixture of chloride salts LiCl – KCl (58,2 - 41,8 wt. %). The experiment showed high resistance of the materials used and based on the results and XPS analysis, other construction materials were proposed for the experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title="molten salt">molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20reactor" title=" nuclear reactor"> nuclear reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20alloy" title=" nickel alloy"> nickel alloy</a> </p> <a href="https://publications.waset.org/abstracts/143859/corrosion-behavior-of-steels-in-molten-salt-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2645</span> [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Ucar">Nuray Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Altay"> Pelin Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Ozsev%20Yuksek"> Ilkay Ozsev Yuksek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20graphene%20oxide%20fiber" title="continuous graphene oxide fiber">continuous graphene oxide fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Hummers%27%20method" title=" Hummers' method"> Hummers' method</a>, <a href="https://publications.waset.org/abstracts/search?q=CNT" title=" CNT"> CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=MnCl%E2%82%82" title=" MnCl₂"> MnCl₂</a> </p> <a href="https://publications.waset.org/abstracts/99784/keynote-talk-morphological-analysis-of-continuous-graphene-oxide-fibers-incorporated-with-carbon-nanotube-and-mncl2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2644</span> The Effects of Salts Concentration into Microbiological, Physio-Chemical and Sensory Properties of Tempoyak (Indonesian Fermented Durian Flesh)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Addion%20Nizori">Addion Nizori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mursalin"> Mursalin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharia%20Renathe"> Dharia Renathe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lavlinesia"> Lavlinesia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fitry%20Tafzi"> Fitry Tafzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tempoyak was made from fermented durian flesh, which very popular among Jambi people Indonesia. This study aims to isolate and identification of bacteria developed during fermentations, determine physical-chemical properties of Tempoyak as the effect of adding salts at various concentration and the sensory evaluations of Tempoyak produced is also evaluated. The predominant microorganisms present in Tempoyak were Lactobacillus bacteria. The results also showed that the level of salts concentration has a significant effect on pH, lactic acid content, however, not has a significant impact on sensory evaluations. The best results were 3% of adding salts with the product properties of pH 3.64, lactic acid content 3.11% and overall acceptance score is 3.41. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tempoyak" title="Tempoyak">Tempoyak</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20foods" title=" fermented foods"> fermented foods</a>, <a href="https://publications.waset.org/abstracts/search?q=salts" title=" salts"> salts</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a> </p> <a href="https://publications.waset.org/abstracts/83381/the-effects-of-salts-concentration-into-microbiological-physio-chemical-and-sensory-properties-of-tempoyak-indonesian-fermented-durian-flesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2643</span> Positive effect of Cu2+ and Ca2+ on the Thermostability of Bambara Groundnut Peroxidase A6, and its Catalytic Efficiency Toward the Oxidation of 3,3,5,5 -Tetramethyl Benzidine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yves%20Mann%20Elate%20Lea%20Mbassi">Yves Mann Elate Lea Mbassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Solange%20Evehe%20Bebandoue"> Marie Solange Evehe Bebandoue</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfred%20Fon%20Mbacham"> Wilfred Fon Mbacham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the catalytic performance of enzymes has been a long-standing theme of analytical biochemistry research. Induction of peroxidase activity by metals is a common reaction in higher plants. We thought that this increase in peroxidase activity may be due, on the one hand, to the stimulation of the gene expression of these enzymes but also to a modification of their chemical reactivity following the binding of some metal ions on their active site. We tested the effect of some metal salts (MgCl₂, MnCl₂, ZnCl₂, CaCl₂ and CuSO₄) on the activity and thermostability of peroxidase A6, a thermostable peroxidase that we discovered and purified in a previous study. The chromogenic substrate used was 3,3′,5,5′-tetramethylbenzidine. Of all the metals tested for their effect on A6, only magnesium and copper had a significant effect on the activity of the enzyme at room temperature. The Mann-Whitney test shows a slight inhibitory effect of activity by the magnesium salt (P = 0.043), while the activity of the enzyme is 5 times higher in the presence of the copper salt (P = 0.002). Moreover, the thermostability of peroxidase A6 is increased when calcium and copper salts are present. The activity in the presence of CaCl₂ is 8 times higher than the residual activity of the enzyme alone after incubation at 80°C for 10 min and 35 times higher in the presence of CuSO4 under the same conditions. In addition, manganese and zinc salts slightly reduce the thermostability of the enzyme. The activity and structural stability of peroxidase A6 can clearly be activated by Cu₂+, which therefore enhance the oxidation of 3,3′,5,5′-tetramethylbenzidine, which was used in this study as a chromogenic substrate. Ca₂+ likely has a more stabilizing function for the catalytic site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peroxidase%20activity" title="peroxidase activity">peroxidase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20ions" title=" copper ions"> copper ions</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20ions" title=" calcium ions"> calcium ions</a>, <a href="https://publications.waset.org/abstracts/search?q=thermostability" title=" thermostability"> thermostability</a> </p> <a href="https://publications.waset.org/abstracts/165588/positive-effect-of-cu2-and-ca2-on-the-thermostability-of-bambara-groundnut-peroxidase-a6-and-its-catalytic-efficiency-toward-the-oxidation-of-3355-tetramethyl-benzidine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2642</span> The Influence of Ligands Molecular Structure on the Antibacterial Activity of Some Metal Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87">Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In last decade, metal-organic complexes have captured intensive attention because of their wide range of biological activities such as antibacterial, antifungal, anticancerous, antimicrobial and antiHIV. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In view of our studies, we reasoned that benzimidazoles complexed to metal ions could act as a potent antibacterial agents. Thus, we have bioassayed the inhibitory potency of benzimidazoles and their metal salts (Co or Ni) against Gram negative bacteria Escherichia coli. In order to validate our in vitro study, we performed in silico studies using molecular docking software’s. The investigated compounds and their metal complexes (Co, Ni) showed good antibacterial activity against Escherichia coli. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and enhanced antibacterial activity in comparison with noncomplexed ligands. In view of their enhanced inhibitory properties we propose that the studied complexes can be used as potential pharmaceuticals. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzimidazoles" title="benzimidazoles">benzimidazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=complexes" title=" complexes"> complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a> </p> <a href="https://publications.waset.org/abstracts/45084/the-influence-of-ligands-molecular-structure-on-the-antibacterial-activity-of-some-metal-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2641</span> Homoleptic Complexes of a Tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-Terpyridine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Lanzilotto">Angelo Lanzilotto</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kuss-Petermann"> Martin Kuss-Petermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20E.%20Housecroft"> Catherine E. Housecroft</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20C.%20Constable"> Edwin C. Constable</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20S.%20Wenger"> Oliver S. Wenger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We recently described the synthesis of a new tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-terpyridine (1) in which the tpy domain enables the molecule to act as a metalloligand. The synthetic route to 1 has been optimized, the importance of selecting a particular sequence of synthetic steps will be discussed. Three homoleptic complexes have been prepared, [Zn(1)₂]²⁺, [Fe(1)₂]²⁺ and [Ru(1)₂]²⁺, and have been isolated as the hexafluoridophosphate salts. Spectroelectrochemical measurements have been performed and the spectral changes ascribed to redox processes are partitioned on either the porphyrin or the terpyridine units. Compound 1 undergoes a reversible one-electron oxidation/reduction. The removal/gain of a second electron leads to a further irreversible chemical transformation. For the homoleptic [M(1)₂]²⁺ complexes, a suitable potential can be chosen at which both the oxidation and the reduction of the {ZnTPP} core are reversible. When the homoleptic complex contains a redox active metal such as Fe or Ru, spectroelectrochemistry has been used to investigate the metal to ligand charge transfer (MLCT) transition. The latter is sensitive to the oxidation state of the metal, and electrochemical oxidation of the metal center suppresses it. Detailed spectroelectrochemical studies will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homoleptic%20complexes" title="homoleptic complexes">homoleptic complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroelectrochemistry" title=" spectroelectrochemistry"> spectroelectrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=tetraphenylporphyrinatozinc%28II%29" title=" tetraphenylporphyrinatozinc(II)"> tetraphenylporphyrinatozinc(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title=" 2"> 2</a>, <a href="https://publications.waset.org/abstracts/search?q=2%27%3A6%27" title="2':6'">2':6'</a>, <a href="https://publications.waset.org/abstracts/search?q=6%22-terpyridine" title="6"-terpyridine">6"-terpyridine</a> </p> <a href="https://publications.waset.org/abstracts/59759/homoleptic-complexes-of-a-tetraphenylporphyrinatozincii-conjugated-2266-terpyridine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2640</span> Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Petru">Jana Petru</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Kudrnova"> Marie Kudrnova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20device" title=" experimental device"> experimental device</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title=" molten salt"> molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a> </p> <a href="https://publications.waset.org/abstracts/131352/experimental-device-to-test-corrosion-behavior-of-materials-in-the-molten-salt-reactor-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2639</span> Quaternary Ammonium Salts Based Algerian Petroleum Products: Synthesis and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houria%20Hamitouche">Houria Hamitouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Khelifa"> Abdellah Khelifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quaternary ammonium salts (QACs) are the most common cationic surfactants of natural or synthetic origin usually. They possess one or more hydrophobic hydrocarbon chains and hydrophilic cationic group. In fact, the hydrophobic groups are derived from three main sources: petrochemicals, vegetable oils, and animal fats. These QACs have attracted the attention of chemists for a long time, due to their general simple synthesis and their broad application in several fields. They are important as ingredients of cosmetic products and are also used as corrosion inhibitors, in emulsion polymerization and textile processing. Within biological applications, QACs show a good antimicrobial activity and can be used as medicines, gene delivery agents or in DNA extraction methods. The 2004 worldwide annual consumption of QACs was reported as 500,000 tons. The petroleum product is considered a true reservoir of a variety of chemical species, which can be used in the synthesis of quaternary ammonium salts. The purpose of the present contribution is to synthesize the quaternary ammonium salts by Menschutkin reaction, via chloromethylation/quaternization sequences, from Algerian petroleum products namely: reformate, light naphtha and kerosene and characterize. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quaternary%20ammonium%20salts" title="quaternary ammonium salts">quaternary ammonium salts</a>, <a href="https://publications.waset.org/abstracts/search?q=reformate" title=" reformate"> reformate</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20naphtha" title=" light naphtha"> light naphtha</a>, <a href="https://publications.waset.org/abstracts/search?q=kerosene" title=" kerosene "> kerosene </a> </p> <a href="https://publications.waset.org/abstracts/32772/quaternary-ammonium-salts-based-algerian-petroleum-products-synthesis-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2638</span> Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20A.%20Krysiak">Olga A. Krysiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Cichowicz"> Grzegorz Cichowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Hyk"> Wojciech Hyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Cyranski"> Michal Cyranski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Augustynski"> Jan Augustynski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxides" title=" metal oxides"> metal oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20evolution" title=" oxygen evolution"> oxygen evolution</a> </p> <a href="https://publications.waset.org/abstracts/77511/composite-electrodes-containing-ni-fe-cr-as-an-activatable-oxygen-evolution-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2637</span> Bile Salt Induced Microstructural Changes of Gemini Surfactant Micelles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijaykumar%20Patel">Vijaykumar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bahadur"> P. Bahadur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural evolution of a cationic gemini surfactant 12-4-12 micelles in the presence of bile salts has been investigated using different techniques. A negative value of interaction parameter evaluated from surface tension measurements is a signature of strong synergistic interaction between oppositely charged surfactants. Both the bile salts compete with each other in inducing the micellar transition of 12-4-12 micelles depending on their hydrophobicity. Viscosity measurements disclose that loading of bile salts induces morphological changes in 12-4-12 micelles; sodium deoxycholate is more efficient in altering the aggregation behaviour of 12-4-12 micelles compared to sodium cholate and presents pronounced increase in viscosity and micellar growth which is suppressed at elevated temperatures. A remarkable growth of 12-4-12 micelles in the presence of sodium deoxycholate at low pH has been ascribed to the solubilization of bile acids formed in acidic medium. Small angle neutron scattering experiments provided size and shape of 12-4-12/bile salt mixed micelles are explicated on the basis of hydrophobicity of bile salts. The location of bile salts in micelle was determined from nuclear overhauser effect spectroscopy. The present study characterizes 12-4-12 gemini-bile salt mixed systems which significantly enriches our knowledge, and such a structural transition provides an opportunity to use these bioamphiphiles as delivery vehicles and in some pharmaceutical formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gemini%20surfactants" title="gemini surfactants">gemini surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=bile%20salts" title=" bile salts"> bile salts</a>, <a href="https://publications.waset.org/abstracts/search?q=SANS%20%28small%20angle%20neutron%20scattering%29" title=" SANS (small angle neutron scattering)"> SANS (small angle neutron scattering)</a>, <a href="https://publications.waset.org/abstracts/search?q=NOESY%20%28nuclear%20overhauser%20effect%20spectroscopy%29" title=" NOESY (nuclear overhauser effect spectroscopy)"> NOESY (nuclear overhauser effect spectroscopy)</a> </p> <a href="https://publications.waset.org/abstracts/75883/bile-salt-induced-microstructural-changes-of-gemini-surfactant-micelles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2636</span> In Silico Design of Organometallic Complexes as Potential Antibacterial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87">Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Stela%20Joki%C4%87"> Stela Jokić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The complexes of transition metals with various organic ligands have been extensively studied as models of some important pharmaceutical molecules. It was found that biological properties of different substituted organic molecules are improved when they are complexed by different metals. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In the present work, we have bioassayed the antibacterial potency of benzimidazoles and their metal salts (Cu or Zn) against yeast Sarcina lutea. In order to validate our in vitro study, we performed in silico studies using molecular docking software. The investigated compounds and their metal complexes (Cu, Zn) showed good to moderate inhibitory activity against Sarcina lutea. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and improved antibacterial activity in comparison with non-complexed ligands. These results are part of the CMST COST Action No. 1105 "Functional metal complexes that bind to biomolecules". <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organometallic%20complexes" title="organometallic complexes">organometallic complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=benzimidazoles" title=" benzimidazoles"> benzimidazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometric%20design" title=" chemometric design"> chemometric design</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarcina%20lutea" title=" Sarcina lutea "> Sarcina lutea </a> </p> <a href="https://publications.waset.org/abstracts/32233/in-silico-design-of-organometallic-complexes-as-potential-antibacterial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2635</span> Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samera%20Salimpour%20Abkenar">Samera Salimpour Abkenar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title="eco-friendly">eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=silk" title=" silk"> silk</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20dyeing" title=" traditional dyeing"> traditional dyeing</a> </p> <a href="https://publications.waset.org/abstracts/135825/traditional-dyeing-of-silk-with-natural-dyes-by-eco-friendly-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2634</span> Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Ejsmont">Aleksander Ejsmont</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Wuttke"> Stefan Wuttke</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Goscianska"> Joanna Goscianska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-MOF" title="Co-MOF">Co-MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=solvothermal%20synthesis" title=" solvothermal synthesis"> solvothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology%20control" title=" morphology control"> morphology control</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell" title=" core-shell"> core-shell</a> </p> <a href="https://publications.waset.org/abstracts/138028/optimization-of-cobalt-oxide-conversion-to-co-based-metal-organic-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2633</span> Experimental Investigation on Correlation Between Permeability Variation and Sabkha Soil Salts Dissolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20A.%20Alotaibi">Fahad A. Alotaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increase in salt dissolution rate with continuous water flow is expected to lead to the progressive collapse of the soil structure. Evaluation of the relationship between soil salt dissolution and the variation of sabkha soil permeability in terms of type, rate, and quantity in order to assure construction safety in these environments. The current study investigates the relationship of soil permeability with the rate of dissolution of calcium (Ca2+), sulfate (SO4-2), chloride (CL−1), magnesium (Mg2+), sodium (Na+), and potassium (K+1) ions. Results revealed an increase in sabkha soil permeability with the rate of ions dissolution. This makes the efficiency of using a waterproofing stabilization agent in the reduction of sabkha salts dissolution the main criterion is selecting suitable stabilizing method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sabkha" title="sabkha">sabkha</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=salts" title=" salts"> salts</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a> </p> <a href="https://publications.waset.org/abstracts/157869/experimental-investigation-on-correlation-between-permeability-variation-and-sabkha-soil-salts-dissolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2632</span> Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Srivastava">V. K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti%20cancer" title="anti cancer">anti cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=biocidal" title=" biocidal"> biocidal</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20binding" title=" DNA binding"> DNA binding</a>, <a href="https://publications.waset.org/abstracts/search?q=spectra" title=" spectra"> spectra</a> </p> <a href="https://publications.waset.org/abstracts/87396/synthetic-characterization-and-biological-studies-of-bistetrathiomolybdate-compounds-of-pt-ii-pd-ii-and-ni-ii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2631</span> An Eco-Friendly Preparations of Izonicotinamide Quaternary Salts in Deep Eutectic Solvents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dajana%20Ga%C5%A1o-Soka%C4%8D">Dajana Gašo-Sokač</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Bu%C5%A1i%C4%87"> Valentina Bušić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep eutectic solvents (DES) are liquids composed of two or three safe, inexpensive components, often interconnected by noncovalent hydrogen bonds which produce eutectic mixture whose melting point is lower than that of each component. No data in literature have been found on the quaternization reaction in DES. The use of DES have several advantages: they are environmentally benign and biodegradable, easy for purification and simple for preparation. An environmentally sustainable method for preparing quaternary salts of izonicotinamide and substituted 2-bromoacetophenones was demonstrated here using choline chloride-based DES. The quaternization reaction was carried out by three synthetic approaches: conventional method, microwave and ultrasonic irradiation. We showed that the highest yields were obtained by the microwave method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20eutectic%20solvents" title="deep eutectic solvents">deep eutectic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=izonicotinamide%20salts" title=" izonicotinamide salts"> izonicotinamide salts</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20irradiation" title=" ultrasonic irradiation"> ultrasonic irradiation</a> </p> <a href="https://publications.waset.org/abstracts/118856/an-eco-friendly-preparations-of-izonicotinamide-quaternary-salts-in-deep-eutectic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2630</span> Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Ahn">Phillip Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Bryan%20Kim"> Bryan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20removal" title="heavy metal removal">heavy metal removal</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewaters" title=" wastewaters"> wastewaters</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20remediation" title=" water remediation"> water remediation</a> </p> <a href="https://publications.waset.org/abstracts/41163/adsorption-of-heavy-metals-using-chemically-modified-tea-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2629</span> Effects of Commonly-Used Inorganic Salts on the Morphology and Electrochemical Performance of Carboxylated Cellulose Nanocrystals Doped Polypyrrole Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuxinsun">Zuxinsun</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Eyley"> Samuel Eyley</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongjian%20Guo"> Yongjian Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Reeta%20Salminen"> Reeta Salminen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wim%20Thielemans"> Wim Thielemans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polypyrrole(PPy), as one of the most promising pseudocapacitor electrode materials, has attracted large research interest due to its low cost, high electrical conductivity and easy fabrication, limited capacitance, and cycling stability of PPy films hinder their practical applications. In this study, through adding different amounts of KCl into the pyrrole and CNC-COO⁻ system, three-dimensional, porous, and reticular PPy films were electropolymerized at last without the assistance of any template or substrate. Replacing KCl with NaCl, KBr, and NaClO4, the porous PPy films were still obtained rather than relatively dense PPy films which were deposited with pyrrole and CNC-COO⁻ or pyrrole and KCl. The nucleation and growth mechanisms of PPy films were studied in the deposited electrolyte with or without salts to illustrate the evolution of morphology from relatively dense to porous structure. The capacitance of PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films increased from 160.6 to 183.4 F g⁻¹ at 0.2 A g⁻¹. More importantly, at a high current density of 2.0 A g⁻¹ (20 mA cm⁻²), the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films exhibited an excellent capacitance of 125.0 F g⁻¹ (1.19 F cm⁻²), increasing about 203.7 % over PPy/CNC-COO- films. 103.3 % of its initial capacitance was retained after 5000 cycles at 2 A g⁻¹ (20 mA cm⁻²) for the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 supercapacitor. The analyses reveal that the porous and reticular PPy/CNC-COO⁻-salts films open up more active reaction areas to store charges. The stiff and ribbonlike CNC-COO⁻ as the permanent dopants improve strength and stability of PPy/CNC-COO⁻-salts films. Our demonstration provides a simple and practical way to deposit PPy-based supercapacitors with high capacitance and cycling ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title="polypyrrole">polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanocrystals" title=" cellulose nanocrystals"> cellulose nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20and%20reticular%20structure" title=" porous and reticular structure"> porous and reticular structure</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20salts" title=" inorganic salts"> inorganic salts</a> </p> <a href="https://publications.waset.org/abstracts/144677/effects-of-commonly-used-inorganic-salts-on-the-morphology-and-electrochemical-performance-of-carboxylated-cellulose-nanocrystals-doped-polypyrrole-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2628</span> Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napat%20Hataivichian">Napat Hataivichian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydrogenation" title=" dehydrogenation"> dehydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a> </p> <a href="https://publications.waset.org/abstracts/25499/propane-dehydrogenation-with-better-stability-by-a-modified-pt-based-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2627</span> Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaibir%20Sharma">Jaibir Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20JaeWung"> Lee JaeWung</a>, <a href="https://publications.waset.org/abstracts/search?q=Merugu%20Srinivas"> Merugu Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Navab%20Singh"> Navab Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewetting" title="dewetting">dewetting</a>, <a href="https://publications.waset.org/abstracts/search?q=themal%20annealing" title=" themal annealing"> themal annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/abstracts/search?q=porous" title=" porous"> porous</a> </p> <a href="https://publications.waset.org/abstracts/31602/preparation-of-porous-metal-membrane-by-thermal-annealing-for-thin-film-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2626</span> Corrosion Investigation of Superalloys, Molybdenum and TZM in Chloride Molten Salts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Craig%20Jantzen">Craig Jantzen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Abram"> Tim Abram</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Engelberg"> Dirk Engelberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugues%20Lambert"> Hugues Lambert</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Cooper"> Daniel Cooper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molten salts are of high interest for use as coolants in nuclear reactors due to favourable high temperature and thermodynamic properties. The corrosive behaviour of molten salts however pose a materials integrity challenge. Three Ni / Ni-Fe based and two Mo based alloys have been exposed to molten eutectics (LiCl-KCl at 59.5:40.5 mol% and KCl-MgCl2 at 68:32 mol%) at 600°C and 800°C for durations up to 500hrs. Corrosion was observed to preferentially attack alloy constituents in order of their reactivity, with chromium the most vulnerable and depleted element. Alloy weight-loss per unit area was calculated to give linear corrosion rates, discounting any initial rapid corrosion of impurities. Further analysis was carried out using ICP-MS, SEM and EDX techniques to give a more detailed view of the corrosion mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title="molten salt">molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=licl" title=" licl"> licl</a>, <a href="https://publications.waset.org/abstracts/search?q=KCL" title=" KCL"> KCL</a>, <a href="https://publications.waset.org/abstracts/search?q=MgCl" title=" MgCl"> MgCl</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum" title=" molybdenum"> molybdenum</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=superalloys" title=" superalloys"> superalloys</a> </p> <a href="https://publications.waset.org/abstracts/60521/corrosion-investigation-of-superalloys-molybdenum-and-tzm-in-chloride-molten-salts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2625</span> Modeling by Application of the Nernst-Planck Equation and Film Theory for Predicting of Chromium Salts through Nanofiltration Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aimad%20Oulebsir">Aimad Oulebsir</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Chaabane"> Toufik Chaabane</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivasankar%20Venkatramann"> Sivasankar Venkatramann</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Darchen"> Andre Darchen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Maachi"> Rachida Maachi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to propose a model for the prediction of the mechanism transfer of the trivalent ions through a nanofiltration membrane (NF) by introduction of the polarization concentration phenomenon and to study its influence on the retention of salts. This model is the combination of the Nernst-Planck equation and the equations of the film theory. This model is characterized by two transfer parameters: Reflection coefficient s and solute permeability Ps which are estimated numerically. The thickness of the boundary layer, δ, solute concentration at the membrane surface, Cm, and concentration profile in the polarization layer have also been estimated. The mathematical formulation suggested was established. The retentions of trivalent salts are estimated and compared with the experimental results. A comparison between the results with and without phenomena of polarization of concentration is made and the thickness of boundary layer alimentation side was given. Experimental and calculated results are shown to be in good agreement. The model is then success fully extended to experimental data reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiltration" title="nanofiltration">nanofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration%20polarisation" title=" concentration polarisation"> concentration polarisation</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium%20salts" title=" chromium salts"> chromium salts</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/32513/modeling-by-application-of-the-nernst-planck-equation-and-film-theory-for-predicting-of-chromium-salts-through-nanofiltration-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2624</span> Valorization of Waste Reverse Osmosis Desalination Brine and Crystallization Sequence Approach for Kainite Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Bouazza">Ayoub Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Faddouli"> Ali Faddouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Amal"> Said Amal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Benhida"> Rachid Benhida</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaoula%20Khaless"> Khaoula Khaless</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brine waste generated from reverse osmosis (RO) desalination plants contains various valuable compounds, mainly salts, trace elements, and organic matter. These wastes are up to two times saltier than standard seawater. Therefore, there is a strong economic interest in recovering these salts. The current practice in desalination plants is to reject the brine back to the sea, which affects the marine ecosystem and the environment. Our study aims to bring forth a reliable management solution for the valorisation of waste brines. Natural evaporation, isothermal evaporation at 25°C and 50°C, and evaporation using continuous heating were used to crystallize valuable salts from a reverse osmosis desalination plant brine located on the Moroccan Atlantic coast. The crystallization sequence of the brine was studied in comparison with standard seawater. The X-Ray Diffraction (XRD) of the precipitated solid phases showed similar results, where halite was the main solid phase precipitated from both the brine and seawater. However, Jänecke diagram prediction, along with FREZCHEM simulations, showed that Kainite should crystallize before Epsomite and Carnallite. As the absence of kainite formation in many experiments in the literature has been related to the metastability of kainite and the critical relative humidity conditions, and the precipitation of K–Mg salts is very sensitive to climatic conditions. An evaporation process is proposed as a solution to achieve the predicted crystallization path and to affirm the recovery of Kainite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salts%20crystallization" title="salts crystallization">salts crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20evaporation" title=" solar evaporation"> solar evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=frezchem" title=" frezchem"> frezchem</a>, <a href="https://publications.waset.org/abstracts/search?q=ZLD" title=" ZLD"> ZLD</a> </p> <a href="https://publications.waset.org/abstracts/162012/valorization-of-waste-reverse-osmosis-desalination-brine-and-crystallization-sequence-approach-for-kainite-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2623</span> Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ipek%20Gunay">Ipek Gunay</a>, <a href="https://publications.waset.org/abstracts/search?q=Efe%20B.%20Orman"> Efe B. Orman</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20Ozer"> Metin Ozer</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekir%20Salih"> Bekir Salih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R.%20Ozkaya"> Ali R. Ozkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phthalocyanine" title="phthalocyanine">phthalocyanine</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20spectroelectrochemistry" title=" in-situ spectroelectrochemistry"> in-situ spectroelectrochemistry</a> </p> <a href="https://publications.waset.org/abstracts/76061/electrochemicalelectro-catalytic-applications-of-novel-alcohol-substituted-metallophthalocyanines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2622</span> Biological Studies of N-O Donor 4-Acypyrazolone Heterocycle and Its Pd/Pt Complexes of Therapeutic Importance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omoruyi%20Gold%20Idemudia">Omoruyi Gold Idemudia</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20P.%20Sadimenko"> Alexander P. Sadimenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of N-heterocycles with novel properties, having broad spectrum biological activities that may become alternative medicinal drugs, have been attracting a lot of research attention due to the emergence of medicinal drug’s limitations such as disease resistance and their toxicity effects among others. Acylpyrazolones have been employed as pharmaceuticals as well as analytical reagent and their application as coordination complexes with transition metal ions have been well established. By way of a condensation reaction with amines acylpyrazolone ketones form a more chelating and superior group of compounds known as azomethines. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one was reacted with phenylhydrazine to get a new phenylhydrazone which was further reacted with aqueous solutions of palladium and platinum salts, in an effort towards the discovery of transition metal based synthetic drugs. The compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one phenylhydrazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group based on x-ray crystallography. The bidentate ON ligand formed a square planar geometry on coordinating with metal ions based on FTIR, electronic and NMR spectra as well as magnetic moments. Reported compounds showed antibacterial activities against the nominated bacterial isolates using the disc diffusion technique at 20 mg/ml in triplicates. The metal complexes exhibited a better antibacterial activity with platinum complex having an MIC value of 0.63 mg/ml. Similarly, ligand and complexes also showed antioxidant scavenging properties against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 0.5mg/ml relative to ascorbic acid (standard drug). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acylpyrazolone" title="acylpyrazolone">acylpyrazolone</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20studies" title=" antibacterial studies"> antibacterial studies</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20complexes" title=" metal complexes"> metal complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=phenylhydrazone" title=" phenylhydrazone"> phenylhydrazone</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/53297/biological-studies-of-n-o-donor-4-acypyrazolone-heterocycle-and-its-pdpt-complexes-of-therapeutic-importance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=88">88</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=89">89</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20salts&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>