CINXE.COM

Search results for: transition metal

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: transition metal</title> <meta name="description" content="Search results for: transition metal"> <meta name="keywords" content="transition metal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="transition metal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="transition metal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4008</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: transition metal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4008</span> Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napat%20Hataivichian">Napat Hataivichian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydrogenation" title=" dehydrogenation"> dehydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a> </p> <a href="https://publications.waset.org/abstracts/25499/propane-dehydrogenation-with-better-stability-by-a-modified-pt-based-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4007</span> Enthalpies of Formation of Equiatomic Binary Hafnium Transition Metal Compounds HfM (M=Co, Ir, Os, Pt, Rh, Ru)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadda%20Krarcha">Hadda Krarcha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Messaasdi"> S. Messaasdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate Hafnium transition metal alloys HfM (M= Co, Ir, Os,Pt, Rh, Ru) phase diagrams in the region of 50/50% atomic ratio, we performed ab initio Full-Potential Linearized Augmented Plane Waves calculations of the enthalpies of formation of HfM compounds at B2 (CsCl) structure type. The obtained enthalpies of formation are discussed and compared to some of the existing models and available experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20of%20formation" title="enthalpy of formation">enthalpy of formation</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=binarry%20compunds" title=" binarry compunds"> binarry compunds</a>, <a href="https://publications.waset.org/abstracts/search?q=hafnium" title=" hafnium"> hafnium</a> </p> <a href="https://publications.waset.org/abstracts/32679/enthalpies-of-formation-of-equiatomic-binary-hafnium-transition-metal-compounds-hfm-mco-ir-os-pt-rh-ru" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4006</span> Pair Interaction in Transition-Metal Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20E.%20Dubinin">Nikolay E. Dubinin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pair-interaction approximations allow to consider a different states of condensed matter from a single position. At the same time, description of an effective pair interaction in transition metal is a hard task since the d-electron contribution to the potential energy in this case is non-pairwise in principle. There are a number of models for transition-metal effective pair potentials. Here we use the Wills-Harrison (WH) approach to calculate pair potentials for Fe, Co, and Ni in crystalline, liquid, and nano states. Last is especially interesting since nano particles of pure transition metals immobilized on the dielectric matrices are widely used in different fields of advanced technologies: as carriers and transmitters of information, as an effective catalytic materials, etc. It is found that the minimum of the pair potential is deeper and oscillations are stronger in nano crystalline state in comparison with the liquid and crystalline states for all metals under consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20pair%20potential" title="effective pair potential">effective pair potential</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20state" title=" nanocrystalline state"> nanocrystalline state</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Wills-Harrison%20approach" title=" Wills-Harrison approach "> Wills-Harrison approach </a> </p> <a href="https://publications.waset.org/abstracts/14984/pair-interaction-in-transition-metal-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4005</span> Chiral Diphosphine Ligands and Their Transition Metal Diphosphine Complexes in Asymmetric Catalysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shannen%20Lorraine">Shannen Lorraine</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Maragh"> Paul Maragh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tara%20Dasgupta"> Tara Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaluddin%20Abdur-Rashid"> Kamaluddin Abdur-Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> (R)-(4,4',6,6'-tetramethoxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (R-Ph-Garphos), and (S)-(4,4',6,6'-tetramethoxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (S-Ph-Garphos) are novel, nucleophilic, chiral atropisomeric ligands. The research explored the synthesis of chiral transition metal complexes containing these ligands and their applications in various asymmetric catalytic transformations. Herein, the transition metal complexes having ruthenium(II), rhodium(I) and iridium(I) metal centres will be discussed. These are air stable complexes and were characterized by CHN analysis, 1H, 13C, and 31P NMR spectroscopy, and polarimetry. Currently, there is an emphasis on 'greener' catalysts and the need for 'green' solvents in asymmetric catalysis. As such, the Ph-Garphos ligands were demethylated thereby introducing hydroxyl moieties unto the ligand scaffold. The facile tunability of the biaryl diphosphines led to the preparation of the (R)-(4,4',6,6'-tetrahydroxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (R-Ph-Garphos-OH), and (S)-(4,4',6,6'-tetrahydroxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (S-Ph-Garphos-OH) ligands. These were successfully characterized by CHN analysis, 1H, 13C, and 31P NMR spectroscopy, and polarimetry. The use of the Ph-Garphos and Ph-Garphos-OH ligands and their transition metal complexes in asymmetric hydrogenations will be reported. Additionally, the scope of the research will highlight the applicability of the Ph-Garphos-OH ligand and its transitional metal complexes as 'green' catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalysis" title="catalysis">catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20hydrogenation" title=" asymmetric hydrogenation"> asymmetric hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=diphosphine%20transition%20metal%20complexes" title=" diphosphine transition metal complexes"> diphosphine transition metal complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ph-Garphos%20ligands" title=" Ph-Garphos ligands"> Ph-Garphos ligands</a> </p> <a href="https://publications.waset.org/abstracts/70174/chiral-diphosphine-ligands-and-their-transition-metal-diphosphine-complexes-in-asymmetric-catalysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4004</span> Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirit%20Siddhapara">Kirit Siddhapara</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimple%20Shah"> Dimple Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20from%20solution" title="growth from solution">growth from solution</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides" title=" oxides"> oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title=" magnetic materials"> magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20compounds" title=" titanium compounds"> titanium compounds</a> </p> <a href="https://publications.waset.org/abstracts/13501/effect-of-transition-metal-fe-mn-ion-doping-on-tio2-nano-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4003</span> Symmetry-Protected Dirac Semi-Metallic Phases in Transition Metal Dichalcogenides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saeed%20Bahramy">Mohammad Saeed Bahramy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal dichalcogenides have experienced a resurgence of interest in the past few years owing to their rich properties, ranging from metals and superconductors to strongly spin-orbit-coupled semiconductors and charge-density-wave systems. In all these cases, the transition metal d-electrons mainly determine the ground state properties. This presentation focuses on the chalcogen-derived states. Combining density-functional theory calculations with spin- and angle-resolved photoemission, it is shown that these states generically host a coexistence of type I and type II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. It will be discussed how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across many compounds. Our finding opens a new route to design topological materials with advanced functionalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology" title="topology">topology</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title=" electronic structure"> electronic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirac%20semimetals" title=" Dirac semimetals"> Dirac semimetals</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20dichalcogenides" title=" transition metal dichalcogenides"> transition metal dichalcogenides</a> </p> <a href="https://publications.waset.org/abstracts/94166/symmetry-protected-dirac-semi-metallic-phases-in-transition-metal-dichalcogenides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4002</span> Mechanical Properties of Ternary Metal Nitride Ti1-xTaxN Alloys from First-Principles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Benhamida">M. Benhamida</a>, <a href="https://publications.waset.org/abstracts/search?q=Kh.%20Bouamama"> Kh. Bouamama</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Djemia"> P. Djemia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate by first-principles pseudo-potential calculations the composition dependence of lattice parameter, hardness and elastic properties of ternary disordered solid solutions Ti(1-x)Ta(x)N (1>=x>=0) with B1-rocksalt structure. Calculations use the coherent potential approximation with the exact muffin-tin orbitals (EMTO) and hardness formula for multicomponent covalent solid solution proposed. Bulk modulus B shows a nearly linear behaviour whereas not C44 and C’=(C11-C12)/2 that are not monotonous. Influences of vacancies on hardness of off-stoichiometric transition-metal nitrides TiN(1−x) and TaN(1−x) are also considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20nitride%20materials" title="transition metal nitride materials">transition metal nitride materials</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=EMTO" title=" EMTO"> EMTO</a> </p> <a href="https://publications.waset.org/abstracts/29650/mechanical-properties-of-ternary-metal-nitride-ti1-xtaxn-alloys-from-first-principles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4001</span> The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Meziane">S. Meziane</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20I.%20Faraoun"> H. I. Faraoun</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Esling"> C. Esling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ab%20initio" title="Ab initio">Ab initio</a>, <a href="https://publications.waset.org/abstracts/search?q=High%20efficiency" title=" High efficiency"> High efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Power%20generation%20devices" title=" Power generation devices"> Power generation devices</a>, <a href="https://publications.waset.org/abstracts/search?q=Transition%20metal%20dichalcogenides" title=" Transition metal dichalcogenides"> Transition metal dichalcogenides</a> </p> <a href="https://publications.waset.org/abstracts/51876/the-layered-transition-metal-dichalcogenides-as-materials-for-storage-clean-energy-ab-initio-investigations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4000</span> Investigation on Electronic and Magnetic Properties of Transition Metals Doped Zinc Selenide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata">S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Bentounes"> H. A. Bentounes</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi"> B. Bouadjemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The full potential linear augmented plane wave (FPLAPW) based on density-functional theory (DFT) is employed to study the electronic, magnetic and optical properties of some transition metals doped ZnSe. Calculations are carried out by varying the doped atoms. Four 3D transition elements were used as a dopant: Cr, Mn, Co and Cu in order to induce spin polarization. Our results show that, Mn and Cu-doped ZnSe could be used in spintronic devices only if additional dopants are introduced, on the contrary, transition elements showing delocalized quality such as Cr, and Co doped ZnSe might be promising candidates for application in spintronic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spin-up" title="spin-up">spin-up</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-down" title=" spin-down"> spin-down</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a> </p> <a href="https://publications.waset.org/abstracts/1433/investigation-on-electronic-and-magnetic-properties-of-transition-metals-doped-zinc-selenide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3999</span> The Influence of Structural Disorder and Phonon on Metal-To-Insulator Transition of VO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Wook%20Han">Sang-Wook Han</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Hui%20Hwang"> In-Hui Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenlan%20Jin"> Zhenlan Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-In%20Park"> Chang-In Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We used temperature-dependent X-Ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO₂ films. A direct comparison of simultaneously-measured resistance and XAFS from the VO₂ films showed that the thermally-driven structural phase transition (SPT) occurred prior to the metal-insulator transition (MIT) during heating, whereas these changed simultaneously during cooling. XAFS revealed a significant increase in the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO₂ due to the phonons of the V-V arrays along the direction in a metallic phase. A substantial amount of structural disorder existing on the V-V pairs along the c-axis in both M₁ and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder observed on all atomic sites at the SPT prevents the migration of the V 3d¹ electrons, resulting in a Mott insulator in the M₂-phase VO₂. The anomalous structural disorder, particularly, at vanadium sites, effectively affects the migration of metallic electrons, resulting in the Mott insulating properties in M₂ phase and a non-congruence of the SPT, MIT, and local density of state. The thermally-induced phonons in the {111} direction assist the delocalization of the V 3d¹ electrons in the R phase VO₂ and the electrons likely migrate via the V-V array in the {111} direction as well as the V-V dimerization along the c-axis. This study clarifies that the tetragonal symmetry is essentially important for the metallic phase in VO₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-insulator%20transition" title="metal-insulator transition">metal-insulator transition</a>, <a href="https://publications.waset.org/abstracts/search?q=XAFS" title=" XAFS"> XAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=VO%E2%82%82" title=" VO₂"> VO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=structural-phase%20transition" title=" structural-phase transition"> structural-phase transition</a> </p> <a href="https://publications.waset.org/abstracts/79779/the-influence-of-structural-disorder-and-phonon-on-metal-to-insulator-transition-of-vo2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3998</span> Collision Induced Dissociation of Transition Metal Fluoride Complexes and the Multiply Charged Anions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruqia%20Nazir">Ruqia Nazir</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20Perutz"> Robin Perutz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collision-induced dissociation (CID) can be used to study the intrinsic properties of ions in the gas phase.1 Decay pathways of transition metal difluoride complexes of titanium, zirconium, hafnium, and ruthenium were studied by CID in an ESI-Ion trap mass spectrometer. Furthermore, the decay pathways of multiply charged anions (MCAs) of titanium and zirconium were also studied. The CID results are illustrated by the behaviour of (Cp*)₂TiF₂, which initially forms the ions [M-F-]⁺, [M+Na]⁺, and [M+K]⁺. The [(Cp*₂)TiF⁺ ion decays on resonant excitation to lose HF forming [Cp*(C₅Me₄CH₂)Ti]⁺ (Figure). The other major ion, [(Cp*)₂TiF₂+Na]⁺, decays on resonant excitation with production of [(Cp*)₂TiF₂]⁺ and [C₅Me₄CH₂]⁺. We also report the behaviour of Cp₂MF₂ (M = Zr, Hf) and Ru(PMe₃)₄F₂. The decay pathway of the multiply charged anions (MCAs), notably TiF₆²⁻ and ZrF₆²⁻ was concluded to be ionic fragmentation with loss of F⁻ rather than electron detachment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision%20induced%20dissociation" title="collision induced dissociation">collision induced dissociation</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20difluoride%20comolexes" title=" transition metal difluoride comolexes"> transition metal difluoride comolexes</a>, <a href="https://publications.waset.org/abstracts/search?q=multiply%20charged%20anions" title=" multiply charged anions"> multiply charged anions</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/156008/collision-induced-dissociation-of-transition-metal-fluoride-complexes-and-the-multiply-charged-anions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3997</span> NOx Abatement by CO with the Use of Grain Catalysts with Active Coating Made of Transition Metal (Cu, Mn, Nb) Oxides Prepared by Electroless Chemical Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davyd%20Urbanas">Davyd Urbanas</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranas%20Baltrenas"> Pranas Baltrenas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well-known that, despite the constant increase of alternative energy sources usage, today combustible fuels are still widely used in power engineering. As a result of fuel combustion, significant amounts of nitrogen oxides (NOx) and carbon monoxide (CO is a product of incomplete combustion) are supplied to the atmosphere. Also, these pollutants are formed in industry (chemical production, refining, and metal production). In this work, the investigation of nitrogen oxides CO-selective catalytic reduction using new grain load-type catalysts was carried out. The catalysts containing the substrate and a thin active coating made of transition metal (Mn, Cu, and Nb) oxides were prepared with the use of electroless chemical deposition method. Chemical composition, chemical state, and morphology of the formed active coating were investigated using ICP-OES, EDX, SEM, and XPS techniques. The obtained results revealed that the prepared catalysts (Cu-Mn-oxide and Cu-Mn-Nb-oxide) have rough and developed surface and can be successfully used for the flue gas catalytic purification. The significant advantage of prepared catalysts is their suitability from technological application point of view, which differs this work from others dedicated to gas purification by SCR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flue%20gas" title="flue gas">flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20oxides" title=" nitrogen oxides"> nitrogen oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20oxides" title=" transition metal oxides"> transition metal oxides</a> </p> <a href="https://publications.waset.org/abstracts/100423/nox-abatement-by-co-with-the-use-of-grain-catalysts-with-active-coating-made-of-transition-metal-cu-mn-nb-oxides-prepared-by-electroless-chemical-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3996</span> Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Badmus">Mariam Badmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Bothina%20Manasreh"> Bothina Manasreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration" title="concentration">concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayer" title=" monolayer"> monolayer</a> </p> <a href="https://publications.waset.org/abstracts/193868/two-dimensional-transition-metal-dichalcogenides-for-photodetection-and-biosensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3995</span> Synthesis, Spectroscopic and XRD Study of Transition Metal Complex Derived from Low-Schiff Acyl-Hydrazone Ligand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamedou%20El%20Boukhary">Mohamedou El Boukhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Farba%20Bouyagui%20Tamboura"> Farba Bouyagui Tamboura</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamady%20Barry"> A. Hamady Barry</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Moussa%20Seck"> T. Moussa Seck</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20L.%20Gaye"> Mohamed L. Gaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, low-schiff acyl-hydrazone ligands are highly sought after due to their wide applications in various fields of biology, coordination chemistry, and catalysis. They are studied for their antioxidant, antibacterial and antiviral properties. The complexes of transition metals and the lanthanide they derive are well known for their magnetic, optical, and catalytic properties. In this work, we present the synthesis of an acyl-hydrazone (H2L) schiff base and their 3d transition complexes. The ligand (H2L) is characterized by IR, NMR (1H; 13C) spectroscopy. The complexes are characterized by different physic-chemical techniques such as IR, UV-visible, conductivity, measurement of magnetic susceptibility. The study of XRD allowed us to elucidate the crystalline structure of the manganese (Mn) complex. The asymmetric unit of the complex is composed of two molecules of the ligand, one manganese (II) ion, and two coordinate chloride ions; the environment around Mn is described as a pentagonal base bipyramid. In the crystal lattice, the asymmetric unit is bound by hydrogen bonds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthene" title="synthene">synthene</a>, <a href="https://publications.waset.org/abstracts/search?q=acyl-hydrazone" title=" acyl-hydrazone"> acyl-hydrazone</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20transition%20metal%20complex" title=" 3D transition metal complex"> 3D transition metal complex</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/186028/synthesis-spectroscopic-and-xrd-study-of-transition-metal-complex-derived-from-low-schiff-acyl-hydrazone-ligand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3994</span> Transition Metal Carbodiimide vs. Spinel Matrices for Photocatalytic Water Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karla%20Lienau">Karla Lienau</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20M%C3%BCller"> Rafael Müller</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%C3%A9%20Mor%C3%A9"> René Moré</a>, <a href="https://publications.waset.org/abstracts/search?q=Debora%20Ressnig"> Debora Ressnig</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Cook"> Dan Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Walton"> Richard Walton</a>, <a href="https://publications.waset.org/abstracts/search?q=Greta%20R.%20Patzke"> Greta R. Patzke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing demand for renewable energy sources and storable fuels underscores the high potential of artificial photosynthesis. The four electron transfer process of water oxidation remains the bottleneck of water splitting, so that special emphasis is placed on the development of economic, stable and efficient water oxidation catalysts (WOCs). Our investigations introduced cobalt carbodiimide CoNCN and its transition metal analogues as WOC types, and further studies are focused on the interaction of different transition metals in the convenient all-nitrogen/carbon matrix. This provides further insights into the nature of the ‘true catalyst’ for cobalt centers in this non-oxide environment. Water oxidation activity is evaluated with complementary methods, namely photocatalytically using a Ru-dye sensitized standard setup as well as electrocatalytically, via immobilization of the WOCs on glassy carbon electrodes. To further explore the tuning potential of transition metal combinations, complementary investigations were carried out in oxidic spinel WOC matrices with more versatile host options than the carbodiimide framework. The influence of the preparative history on the WOC performance was evaluated with different synthetic methods (e.g. hydrothermally or microwave assisted). Moreover, the growth mechanism of nanoscale Co3O4-spinel as a benchmark WOC was investigated with in-situ PXRD techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbodiimide" title="carbodiimide">carbodiimide</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spinels" title=" spinels"> spinels</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20oxidation" title=" water oxidation"> water oxidation</a> </p> <a href="https://publications.waset.org/abstracts/49987/transition-metal-carbodiimide-vs-spinel-matrices-for-photocatalytic-water-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3993</span> A Comparative Density Functional Theory Study of Hydrocarbon Combustion on Metal Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abas%20Mohsenzadeh">Abas Mohsenzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Arya"> Mina Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Bolton"> Kim Bolton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic combustion of hydrocarbons is an important technology developed to produce energy with minimum pollutant formation. The catalyst plays a key role in this process which operates at lower temperatures compared to conventional flame combustion. The energetics of the direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces including Ag, Au, Al, Cu, Rh, Pt, Pd, Ni, Fe and Co were investigated using density functional theory (DFT). Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) correlations were proposed based on DFT calculations on the Ag, Au, Al, Cu, Rh, Pt and Pd surfaces. These correlations were then used to estimate the energetics on Fe, Ni and Co surfaces. Results showed that the estimated reaction and activation energies by BEP and TSS correlations on Fe, Ni and Co surfaces are in an excellent agreement with those obtained by DFT calculations. Therefore these correlations can be efficiently used to predict energetics of similar reactions on these surfaces without doing computationally costly transition state calculations. It was found that the activation barrier for CH dissociation follows the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe. Also, BEP (with R2 value of 0.96) and TSS correlations (with R2 value of 0.99) support the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BEP" title="BEP">BEP</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20combustion" title=" hydrocarbon combustion"> hydrocarbon combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20surfaces" title=" metal surfaces"> metal surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=TSS" title=" TSS"> TSS</a> </p> <a href="https://publications.waset.org/abstracts/65294/a-comparative-density-functional-theory-study-of-hydrocarbon-combustion-on-metal-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3992</span> Structural and Electrical Properties of VO₂/ZnO Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Wook%20Han">Sang-Wook Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenlan%20Jin"> Zhenlan Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Hui%20Hwang"> In-Hui Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-In%20Park"> Chang-In Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-to-insulator%20transition" title="metal-to-insulator transition">metal-to-insulator transition</a>, <a href="https://publications.waset.org/abstracts/search?q=VO%E2%82%82" title=" VO₂"> VO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=XAFS" title=" XAFS"> XAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=structural-phase%20transition" title=" structural-phase transition"> structural-phase transition</a> </p> <a href="https://publications.waset.org/abstracts/82394/structural-and-electrical-properties-of-vo2zno-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3991</span> Synthetic Access to Complex Metal Carbonates and Hydroxycarbonates via Sol-Gel Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schirin%20Hanf">Schirin Hanf</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Lizandara-Pueyo"> Carlos Lizandara-Pueyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Timmo%20P.%20Emmert"> Timmo P. Emmert</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Jevtovikj"> Ivana Jevtovikj</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Gl%C3%A4ser"> Roger Gläser</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20A.%20Schunk"> Stephan A. Schunk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal alkoxides are very versatile precursors for a broad array of complex functional materials. However, metal alkoxides, especially transition metal alkoxides, tend to form oligomeric structures due to the very strong M–O–M binding motif. This fact hinders their facile application in sol-gel-processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. Therefore, the development of a synthetic alternative with the aim to grant access to carbonates and hydroxycarbonates from simple metal alkoxide precursors via hydrolysis is key to this project. Our approach involves the reaction of metal alkoxides with unsaturated isoelectronic molecules, such as carbon dioxide. Subsequently, a stoichiometric insertion of the CO₂ into the alkoxide M–O bond takes place and leads to the formation of soluble metal alkyl carbonates. This strategy is a very elegant approach to solubilize metal alkoxide precursors to make them accessible for sol-gel chemistry. After hydrolysis of the metal alkyl carbonates, crystalline metal carbonates, and hydroxycarbonates can be obtained, which were then utilized for the synthesis of Cu/Zn based bulk catalysts for methanol synthesis. Using these catalysts, a comparable catalytic activity to commercially available MeOH catalysts could be reached. Based on these results, a complement for traditional precipitation techniques, which are usually utilized for the synthesis of bulk methanol catalysts, have been found based on an alternative solubilization strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20alkoxides" title="metal alkoxides">metal alkoxides</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20carbonates" title=" metal carbonates"> metal carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20hydroxycarbonates" title=" metal hydroxycarbonates"> metal hydroxycarbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20insertion" title=" CO₂ insertion"> CO₂ insertion</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization"> solubilization</a> </p> <a href="https://publications.waset.org/abstracts/135815/synthetic-access-to-complex-metal-carbonates-and-hydroxycarbonates-via-sol-gel-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3990</span> Synthesis of Biologically Active Heterocyclic Compounds via C-H Bond Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Mishra">Neeraj Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Su%20Kim"> In Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The isoindoline, indazole and indole heterocycles are ubiquitous structural motif found in heterocyclic compounds as they exhibit biological and medicinal applications. For example, isoindoline motif is present in molecules that act as endothelin-A receptor antagonists and dipeptidyl peptidase inhibitors. Moreover, isoindoline derivatives are very crucial constituents in the field of materials science as attractive candidates for organic light-emitting devices. However, compounds containing the indazole motif are known to exhibit to a variety of biological activities, such as estrogen receptor, HIV protease inhibition and anti-tumor activity. The prevalence of indazoles and indoles has led to the development of many useful methods for their preparation. Thus, isoindoline, indazole and indole heterocycles can be new candidates for the next generation of pharmaceuticals. Therefore, the development of highly efficient strategies for the formation of these heterocyclic architectures is an area of great interest in organic synthesis. The past years, transition-metal-catalyzed C−H activation followed by annulation reaction has been frequently used as a powerful tool to construct various heterocycles. Herein, we describe our recent achievements about the transition-metal-catalyzed tandem cyclization reactions of N-benzyltriflamides, 1,2-disubstituted arylhydrazines, acetanilides, etc. via C−H bond activation to access the corresponding bioactive heterocylic scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biologically%20active" title="biologically active">biologically active</a>, <a href="https://publications.waset.org/abstracts/search?q=C-H%20activation" title=" C-H activation"> C-H activation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterocyclic%20compounds" title=" heterocyclic compounds"> heterocyclic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=transition-metal%20catalysts" title=" transition-metal catalysts"> transition-metal catalysts</a> </p> <a href="https://publications.waset.org/abstracts/58546/synthesis-of-biologically-active-heterocyclic-compounds-via-c-h-bond-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3989</span> Relaxation Dynamics of Quantum Emitters Resonantly Coupled to a Localized Surface Plasmon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khachatur%20V.%20Nerkararyan">Khachatur V. Nerkararyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20I.%20Bozhevolnyi"> Sergey I. Bozhevolnyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. It is shown that under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free-space but much longer than the LSP lifetime. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being about 0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. The degree of entanglement measured by the concurrency takes the maximum value, while the distances between the QDEs and metal ball approximately are equal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20surface%20plasmon" title=" localized surface plasmon"> localized surface plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dipole%20emitter" title=" quantum dipole emitter"> quantum dipole emitter</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20dynamics" title=" relaxation dynamics"> relaxation dynamics</a> </p> <a href="https://publications.waset.org/abstracts/28289/relaxation-dynamics-of-quantum-emitters-resonantly-coupled-to-a-localized-surface-plasmon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3988</span> Theoretical Investigation of the Origin of Interfacial Ferromagnetism of (LaNiO₃)n/(CaMnO₃)m Superlattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwuer%20Jilili">Jiwuer Jilili</a>, <a href="https://publications.waset.org/abstracts/search?q=Iogann%20Tolbatov"> Iogann Tolbatov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousumi%20U.%20Kahaly"> Mousumi U. Kahaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal to insulator transition and interfacial magnetism of the LaNiO₃ based superlattice are main interest due to thickness dependent electronic response and tunable magnetic behavior. We investigate the structural, electronic, and magnetic properties of recently experimentally synthesized (LaNiO₃)n/(CaMnO₃)m superlattices with varying LaNiO₃ thickness using density functional theory. The effect of the on-site Coulomb interaction is discussed. In switching from zero to finite U value for Ni atoms, LaNiO₃ shows transitions from half-metallic to metallic character, while spinning ordering changes from paramagnetic to ferromagnetic (FM). For CaMnO₃, U < 3 eV on Mn atoms results in G-type anti-FM spin ordering whereas increasing U value yields FM ordering. In superlattices, metal to insulator transition was achieved with a reduction of LaNiO₃ thickness. The system with one layer of LaNiO₃ yields insulating character. Increasing LaNiO₃ to two layers and above results in the onset of the metallic character with a major contribution from Ni and Mn 3d eg states. Our results for interfacial ferromagnetism, induced Ni magnetic moments and novel antiferromagnetically coupled Ni atoms are consistent with the recent experimental findings. The possible origin of the emergent magnetism is proposed in terms of the exchange interaction and Anderson localization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20magnetism" title=" interfacial magnetism"> interfacial magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-insulator%20transition" title=" metal-insulator transition"> metal-insulator transition</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20magnetism." title=" Ni magnetism."> Ni magnetism.</a> </p> <a href="https://publications.waset.org/abstracts/94575/theoretical-investigation-of-the-origin-of-interfacial-ferromagnetism-of-lanio3ncamno3m-superlattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3987</span> Synthesis of α-Diimin Nickel(II) Catalyst Supported on Graphene and Graphene Oxide for Ethylene Slurry Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrji%20Khosravan">Mehrji Khosravan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Fathali-Sianib"> Mostafa Fathali-Sianib</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Soudbar"> Davood Soudbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasan%20Talebnezhad"> Sasan Talebnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad-Reza%20Ebrahimi"> Mohammad-Reza Ebrahimi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The late transition metal catalyst of the end group of transition metals in the periodic table as Ni, Fe, Co, and Pd was grown up rapidly in polyolefin industries recently. These metals with suitable ligands exhibited special characteristic properties and appropriate activities in the production of polyolefins. The ligand 1,4-bis (2,6-diisopropyl phenyl) acenaphthene was synthesized by reaction of 2,6-diisopropyl aniline and acenaphthenequinone. The ligand was added to nickel (II) dibromide salt for synthesis the 1,4-bis (2,6 diisopropylphenyl) acenaphthene nickel (II) dibromide catalyst. The structure of the ligand characterized by IR technique. The catalyst then deposited on graphene and graphene oxide by vander walss-attachment for use in Ethylene slurry polymerization process in the presence of catalyst activator such as methylaluminoxane (MAO) in hexane solvent. The structure of the catalyst characterized by IR and TEM techniques and some of the polymers were characterized by DSC. The highest activity was achieved at 600 C for catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-diimine%20nickel%20%28II%29%20complex" title="α-diimine nickel (II) complex">α-diimine nickel (II) complex</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20as%20supported%20catalyst" title=" graphene as supported catalyst"> graphene as supported catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20transition%20metal" title=" late transition metal"> late transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20polymerization" title=" ethylene polymerization"> ethylene polymerization</a> </p> <a href="https://publications.waset.org/abstracts/22317/synthesis-of-a-diimin-nickelii-catalyst-supported-on-graphene-and-graphene-oxide-for-ethylene-slurry-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3986</span> Theoretical Analysis of Photoassisted Field Emission near the Metal Surface Using Transfer Hamiltonian Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosangliana%20Chawngthu">Rosangliana Chawngthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramkumar%20K.%20Thapa"> Ramkumar K. Thapa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A model calculation of photoassisted field emission current (PFEC) by using transfer Hamiltonian method will be present here. When the photon energy is incident on the surface of the metals, such that the energy of a photon is usually less than the work function of the metal under investigation. The incident radiation photo excites the electrons to a final state which lies below the vacuum level; the electrons are confined within the metal surface. A strong static electric field is then applied to the surface of the metal which causes the photoexcited electrons to tunnel through the surface potential barrier into the vacuum region and constitutes the considerable current called photoassisted field emission current. The incident radiation is usually a laser beam, causes the transition of electrons from the initial state to the final state and the matrix element for this transition will be written. For the calculation of PFEC, transfer Hamiltonian method is used. The initial state wavefunction is calculated by using Kronig-Penney potential model. The effect of the matrix element will also be studied. An appropriate dielectric model for the surface region of the metal will be used for the evaluation of vector potential. FORTRAN programme is used for the calculation of PFEC. The results will be checked with experimental data and the theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoassisted%20field%20emission" title="photoassisted field emission">photoassisted field emission</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20Hamiltonian" title=" transfer Hamiltonian"> transfer Hamiltonian</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20potential" title=" vector potential"> vector potential</a>, <a href="https://publications.waset.org/abstracts/search?q=wavefunction" title=" wavefunction"> wavefunction</a> </p> <a href="https://publications.waset.org/abstracts/78831/theoretical-analysis-of-photoassisted-field-emission-near-the-metal-surface-using-transfer-hamiltonian-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3985</span> Electronic/Optoelectronic Property Tuning in Two-Dimensional Transition Metal Dichalcogenides via High Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Xia">Juan Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaxu%20Yan"> Jiaxu Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ze%20Xiang%20Shen"> Ze Xiang Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tuneable interlayer interactions in two-dimensional (2D) transition metal dichlcogenides (TMDs) offer an exciting platform for exploring new physics and applications by material variety, thickness, stacking sequence, electromagnetic filed, and stress/strain. Compared with the five methods mentioned above, high pressure is a clean and powerful tool to induce dramatic changes in lattice parameters and physical properties for 2D TMD materials. For instance, high pressure can strengthen the van der Waals interactions along c-axis and shorten the covalent bonds in atomic plane, leading to the typical first-order structural transition (2Hc to 2Ha for MoS2), or metallization. In particular, in the case of WTe₂, its unique symmetry endows the significant anisotropy and the corresponding unexpected properties including the giant magnetoresistance, pressure-induced superconductivity and Weyl semimetal states. Upon increasing pressure, the Raman peaks for WTe₂ at ~120 cm⁻¹, are gradually red-shifted and totally suppressed above 10 GPa, attributed to the possible structural instability of orthorhombic Td phase under high pressure and phase transition to a new monoclinic T' phase with inversion symmetry. Distinct electronic structures near Fermi level between the Td and T' phases may pave a feasible way to achieve the Weyl state tuning in one material without doping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20TMDs" title="2D TMDs">2D TMDs</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20property" title=" electronic property"> electronic property</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure" title=" high pressure"> high pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=first-principles%20calculations" title=" first-principles calculations"> first-principles calculations</a> </p> <a href="https://publications.waset.org/abstracts/76856/electronicoptoelectronic-property-tuning-in-two-dimensional-transition-metal-dichalcogenides-via-high-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3984</span> Theoretical Investigation of Gas Adsorption on Metal- Graphene Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Safdari">Fatemeh Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirnaser%20Shamkhali"> Amirnaser Shamkhali</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamabbas%20Parsafar"> Gholamabbas Parsafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanostructures are of great importance in academic research and industry, which can be mentioned to chemical sensors, catalytic processes, pharmaceutical and environmental issues. Common point in all of these applications is the occurrence of adsorption of molecules on these structures. Important carbon nanostructures in this case are mainly nanotubes and graphene. To modify pure graphene, recently, many experimental and theoretical studies have carried out to investigate of metal adsorption on graphene. In this work, the adsorption of CO molecules on pure graphene and on metal adatom on graphene surface has been simulated based on density functional theory (DFT). All calculations were performed by PBE functional and Troullier-Martins pseudopotentials. Density of states (DOS) for graphene-CO, graphen and CO around the Fermi energy has been moved and very small mixing occured which implies the physisorption of CO on the bare graphen surface. While, the results have showed that CO adsorption on transition-metal adatom on graphene surface is chemisorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20adatom" title=" metal adatom"> metal adatom</a> </p> <a href="https://publications.waset.org/abstracts/35219/theoretical-investigation-of-gas-adsorption-on-metal-graphene-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3983</span> Numerical Simulations of the Transition Flow of Model Propellers for Predicting Open Water Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huilan%20Yao">Huilan Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaixin%20Zhang"> Huaixin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulations of the transition flow of model propellers are important for predicting hydrodynamic performance and studying scale effects. In this paper, the transition flow of a model propeller under different loadings are simulated using a transition model provided by STAR-CCM+, and the influence of turbulence intensity (TI) on the transition, especially friction and pressure components of propeller performance, was studied. Before that, the transition model was applied to simulate the transition flow of a flat plate and an airfoil. Predicted transitions agree well with experimental results. Then, the transition model was applied for propeller simulations in open water, and the influence of TI was studied. Under the heavy and moderate loadings, thrust and torque of the propeller predicted by the transition model (different TI) and two turbulence models are very close and agree well with measurements. However, under the light loading, only the transition model with low TI predicts the most accurate results. Above all, the friction components of propeller performance predicted by the transition model with different TI have obvious difference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transition%20flow" title="transition flow">transition flow</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20propellers" title=" model propellers"> model propellers</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20performance" title=" hydrodynamic performance"> hydrodynamic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/76762/numerical-simulations-of-the-transition-flow-of-model-propellers-for-predicting-open-water-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3982</span> Transition Economies, Typology, and Models: The Case of Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderahman%20Efhialelbum">Abderahman Efhialelbum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The period since the fall of the Berlin Wall on November 9, 1989, and the collapse of the former Soviet Union in December 1985 has seen a major change in the economies and labour markets of Eastern Europe. The events also had reverberating effects across Asia and South America and parts of Africa, including Libya. This article examines the typologies and the models of transition economies. Also, it sheds light on the Libyan transition in particular and the impact of Qadhafi’s regime on the transition process. Finally, it illustrates how the Libyan transition process followed the trajectory of other countries using economic indicators such as free trade, property rights, and inflation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transition" title="transition">transition</a>, <a href="https://publications.waset.org/abstracts/search?q=economy" title=" economy"> economy</a>, <a href="https://publications.waset.org/abstracts/search?q=typology" title=" typology"> typology</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya"> Libya</a> </p> <a href="https://publications.waset.org/abstracts/147560/transition-economies-typology-and-models-the-case-of-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3981</span> Study for Establishing a Concept of Underground Mining in a Folded Deposit with Weathering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Pramanik">Chandan Pramanik</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Chanda"> Bikramjit Chanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large metal mines operated with open-cast mining methods must transition to underground mining at the conclusion of the operation; however, this requires a period of a difficult time when production convergence due to interference between the two mining methods. A transition model with collaborative mining operations is presented and established in this work, based on the case of the South Kaliapani Underground Project, to address these technical issues of inadequate production security and other mining challenges during the transition phase and beyond. By integrating the technology of the small-scale Drift and Fill method and Highly productive Sub Level Open Stoping at deep section, this hybrid mining concept tries to eliminate major bottlenecks and offers an optimized production profile with the safe and sustainable operation. Considering every geo-mining aspect, this study offers a genuine and precise technical deliberation for the transition from open pit to underground mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drift%20and%20fill" title="drift and fill">drift and fill</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-mining%20aspect" title=" geo-mining aspect"> geo-mining aspect</a>, <a href="https://publications.waset.org/abstracts/search?q=sublevel%20open%20stoping" title=" sublevel open stoping"> sublevel open stoping</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20mining%20method" title=" underground mining method"> underground mining method</a> </p> <a href="https://publications.waset.org/abstracts/160119/study-for-establishing-a-concept-of-underground-mining-in-a-folded-deposit-with-weathering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3980</span> Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juree%20Hong">Juree Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggeun%20Lee"> Sanggeun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungmok%20Seo"> Jungmok Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Taeyoon%20Lee"> Taeyoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanic%20displacement%20reaction" title=" galvanic displacement reaction"> galvanic displacement reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sensor" title=" hydrogen sensor"> hydrogen sensor</a> </p> <a href="https://publications.waset.org/abstracts/18400/facile-synthesis-of-metal-nanoparticles-on-graphene-via-galvanic-displacement-reaction-for-sensing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3979</span> Road Transition Design on Freeway Tunnel Entrance and Exit Based on Traffic Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Bai">Han Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Zhang"> Tong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemei%20Yu"> Lemei Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Doudou%20Xie"> Doudou Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Zhao"> Liang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road transition design on freeway tunnel entrance and exit is one vital factor in realizing smooth transition and improving traveling safety for vehicles. The goal of this research is to develop a horizontal road transition design tool that considers the transition technology of traffic capacity consistency to explore its accommodation mechanism. The influencing factors of capacity are synthesized and a modified capacity calculation model focusing on the influence of road width and lateral clearance is developed based on the VISSIM simulation to calculate the width of road transition sections. To keep the traffic capacity consistency, the right side of the transition section of the tunnel entrance and exit is divided into three parts: front arc, an intermediate transition section, and end arc; an optimization design on each transition part is conducted to improve the capacity stability and horizontal alignment transition. A case study on the Panlong Tunnel in Ji-Qing freeway illustrates the application of the tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title="traffic safety">traffic safety</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20transition" title=" road transition"> road transition</a>, <a href="https://publications.waset.org/abstracts/search?q=freeway%20tunnel" title=" freeway tunnel"> freeway tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20capacity" title=" traffic capacity"> traffic capacity</a> </p> <a href="https://publications.waset.org/abstracts/88916/road-transition-design-on-freeway-tunnel-entrance-and-exit-based-on-traffic-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=133">133</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=134">134</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transition%20metal&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10