CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;38 of 38 results for author: <span class="mathjax">Collins, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Collins%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Collins, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Collins%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Collins, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14569">arXiv:2404.14569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14569">pdf</a>, <a href="https://arxiv.org/format/2404.14569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.ado8069">10.1126/science.ado8069 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Squeezing the quantum noise of a gravitational-wave detector below the standard quantum limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jia%2C+W">Wenxuan Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+V">Victoria Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+M">Masayuki Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/physics?searchtype=author&amp;query=Evans%2C+M">Matthew Evans</a>, <a href="/search/physics?searchtype=author&amp;query=Mavalvala%2C+N">Nergis Mavalvala</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+R">Rich Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Abouelfettouh%2C+I">Ibrahim Abouelfettouh</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+R">Rana Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Ananyeva%2C+A">Alena Ananyeva</a>, <a href="/search/physics?searchtype=author&amp;query=Appert%2C+S">Stephen Appert</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">Koji Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Aritomi%2C+N">Naoki Aritomi</a>, <a href="/search/physics?searchtype=author&amp;query=Aston%2C+S">Stuart Aston</a>, <a href="/search/physics?searchtype=author&amp;query=Ball%2C+M">Matthew Ball</a>, <a href="/search/physics?searchtype=author&amp;query=Ballmer%2C+S">Stefan Ballmer</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D">David Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+B">Beverly Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Betzwieser%2C+J">Joseph Betzwieser</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharjee%2C+D">Dripta Bhattacharjee</a>, <a href="/search/physics?searchtype=author&amp;query=Billingsley%2C+G">Garilynn Billingsley</a>, <a href="/search/physics?searchtype=author&amp;query=Bode%2C+N">Nina Bode</a>, <a href="/search/physics?searchtype=author&amp;query=Bonilla%2C+E">Edgard Bonilla</a>, <a href="/search/physics?searchtype=author&amp;query=Bossilkov%2C+V">Vladimir Bossilkov</a> , et al. (146 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14569v3-abstract-short" style="display: inline;"> Precision measurements of space and time, like those made by the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental limitations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured, giving rise to an apparent limitation called the Stan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14569v3-abstract-full').style.display = 'inline'; document.getElementById('2404.14569v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14569v3-abstract-full" style="display: none;"> Precision measurements of space and time, like those made by the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental limitations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured, giving rise to an apparent limitation called the Standard Quantum Limit (SQL). Reducing quantum noise below the SQL in gravitational-wave detectors, where photons are used to continuously measure the positions of freely falling mirrors, has been an active area of research for decades. Here we show how the LIGO A+ upgrade reduced the detectors&#39; quantum noise below the SQL by up to 3 dB while achieving a broadband sensitivity improvement, more than two decades after this possibility was first presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14569v3-abstract-full').style.display = 'none'; document.getElementById('2404.14569v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400059 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 385, 1318 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15144">arXiv:2403.15144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15144">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Interface Printing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vidler%2C+C">Callum Vidler</a>, <a href="/search/physics?searchtype=author&amp;query=Halwes%2C+M">Michael Halwes</a>, <a href="/search/physics?searchtype=author&amp;query=Kolesnik%2C+K">Kirill Kolesnik</a>, <a href="/search/physics?searchtype=author&amp;query=Segeritz%2C+P">Philipp Segeritz</a>, <a href="/search/physics?searchtype=author&amp;query=Mail%2C+M">Matthew Mail</a>, <a href="/search/physics?searchtype=author&amp;query=Barlow%2C+A+J">Anders J. Barlow</a>, <a href="/search/physics?searchtype=author&amp;query=Koehl%2C+E+M">Emmanuelle M. Koehl</a>, <a href="/search/physics?searchtype=author&amp;query=Ramakrishnan%2C+A">Anand Ramakrishnan</a>, <a href="/search/physics?searchtype=author&amp;query=Scott%2C+D+J">Daniel J. Scott</a>, <a href="/search/physics?searchtype=author&amp;query=Heath%2C+D+E">Daniel E. Heath</a>, <a href="/search/physics?searchtype=author&amp;query=Crozier%2C+K+B">Kenneth B. Crozier</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+D+J">David J. Collins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15144v2-abstract-short" style="display: inline;"> Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices, aerospace components, microfabrication strategies, and artificial organs. Among additive manufacturing approaches, light-based printing technologies, including two-photon polymerization, projection micro stereolithography, and volumetric printing, have garnered significant attention&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15144v2-abstract-full').style.display = 'inline'; document.getElementById('2403.15144v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15144v2-abstract-full" style="display: none;"> Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices, aerospace components, microfabrication strategies, and artificial organs. Among additive manufacturing approaches, light-based printing technologies, including two-photon polymerization, projection micro stereolithography, and volumetric printing, have garnered significant attention due to their speed, resolution and/or potential applications for biofabrication. In this study, we introduce dynamic interface printing (DIP), a new 3D printing approach that leverages an acoustically modulated, constrained air-liquid boundary to rapidly generate cm-scale three-dimensional structures within tens of seconds. Distinct from volumetric approaches, this process eliminates the need for intricate feedback systems, specialized chemistry, or complex optics while maintaining rapid printing speeds. We demonstrate the versatility of this technique across a broad array of materials and intricate geometries, including those that would be impossible to print via conventional layer-by-layer methods. In doing so, we demonstrate the rapid fabrication of complex structures in-situ, overprinting, structural parallelisation, and biofabrication utility. Moreover, we showcase that the formation of surface waves at this boundary enables enhanced mass transport, material flexibility, and permits three-dimensional particle patterning. We therefore anticipate that this approach will be invaluable for applications where high resolution, scalable throughput, and biocompatible printing is required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15144v2-abstract-full').style.display = 'none'; document.getElementById('2403.15144v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">63 Pages, 4 Figures, 18 Supplementary Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08200">arXiv:2311.08200</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08200">pdf</a>, <a href="https://arxiv.org/format/2311.08200">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Using Old Laboratory Equipment with Modern Web-of-Things Standards: a Smart Laboratory with LabThings Retro </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=McDermott%2C+S">Samuel McDermott</a>, <a href="/search/physics?searchtype=author&amp;query=Kotar%2C+J">Jurij Kotar</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J">Joel Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Mancini%2C+L">Leonardo Mancini</a>, <a href="/search/physics?searchtype=author&amp;query=Bowman%2C+R">Richard Bowman</a>, <a href="/search/physics?searchtype=author&amp;query=Cicuta%2C+P">Pietro Cicuta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08200v1-abstract-short" style="display: inline;"> There has been an increasing, and welcome, Open Hardware trend towards science teams building and sharing their designs for new instruments. These devices, often built upon low-cost microprocessors and micro-controllers, can be readily connected to enable complex, automated, and smart experiments. When designed to use open communication web standards, devices from different laboratories and manufa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08200v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08200v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08200v1-abstract-full" style="display: none;"> There has been an increasing, and welcome, Open Hardware trend towards science teams building and sharing their designs for new instruments. These devices, often built upon low-cost microprocessors and micro-controllers, can be readily connected to enable complex, automated, and smart experiments. When designed to use open communication web standards, devices from different laboratories and manufacturers can be controlled using a single protocol, and even communicate with each other. However, science labs still have a majority of old, perfectly functional, equipment which tends to use older, and sometimes proprietary, standards for communications. In order to encourage the continued and integrated use of this equipment in modern automated experiments, we develop and demonstrate LabThings Retro. This allows us to retrofit old instruments to use modern web-of-things standards, which we demonstrate with closed-loop feedback involving an optical microscope, digital imaging and fluid pumping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08200v1-abstract-full').style.display = 'none'; document.getElementById('2311.08200v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary material - video demonstration available at https://zenodo.org/doi/10.5281/zenodo.10123735</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12891">arXiv:2307.12891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12891">pdf</a>, <a href="https://arxiv.org/format/2307.12891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Design and sensitivity of a 6-axis seismometer for gravitational wave observatories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Prokhorov%2C+L">Leonid Prokhorov</a>, <a href="/search/physics?searchtype=author&amp;query=Cooper%2C+S">Sam Cooper</a>, <a href="/search/physics?searchtype=author&amp;query=Ubhi%2C+A+S">Amit Singh Ubhi</a>, <a href="/search/physics?searchtype=author&amp;query=Mow-Lowry%2C+C">Conor Mow-Lowry</a>, <a href="/search/physics?searchtype=author&amp;query=Bryant%2C+J">John Bryant</a>, <a href="/search/physics?searchtype=author&amp;query=Dmitriev%2C+A">Artemiy Dmitriev</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Fronzo%2C+C">Chiara Di Fronzo</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+C+J">Christopher J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Gill%2C+A">Alex Gill</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+A">Alexandra Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=Heinze%2C+J">Joscha Heinze</a>, <a href="/search/physics?searchtype=author&amp;query=Smetana%2C+J">Jiri Smetana</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+T">Tianliang Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Cumming%2C+A+V">Alan V. Cumming</a>, <a href="/search/physics?searchtype=author&amp;query=Hammond%2C+G">Giles Hammond</a>, <a href="/search/physics?searchtype=author&amp;query=Martynov%2C+D">Denis Martynov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12891v1-abstract-short" style="display: inline;"> We present the design, control system, and noise analysis of a 6-axis seismometer comprising a mass suspended by a single fused silica fibre. We utilise custom-made, compact Michelson interferometers for the readout of the mass motion relative to the table and successfully overcome the sensitivity of existing commercial seismometers by over an order of magnitude in the angular degrees of freedom.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12891v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12891v1-abstract-full" style="display: none;"> We present the design, control system, and noise analysis of a 6-axis seismometer comprising a mass suspended by a single fused silica fibre. We utilise custom-made, compact Michelson interferometers for the readout of the mass motion relative to the table and successfully overcome the sensitivity of existing commercial seismometers by over an order of magnitude in the angular degrees of freedom. We develop the sensor for gravitational-wave observatories, such as LIGO, Virgo, and KAGRA, to help them observe intermediate-mass black holes, increase their duty cycle, and improve localisation of sources. Our control system and its achieved sensitivity makes the sensor suitable for other fundamental physics experiments, such as tests of semiclassical gravity, searches for bosonic dark matter, and studies of the Casimir force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12891v1-abstract-full').style.display = 'none'; document.getElementById('2307.12891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09448">arXiv:2307.09448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.09448">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast In vivo Transient Absorption Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baikie%2C+T+K">Tomi K. Baikie</a>, <a href="/search/physics?searchtype=author&amp;query=Kosm%C3%BCtzky%2C+D">Darius Kosm眉tzky</a>, <a href="/search/physics?searchtype=author&amp;query=Lawrence%2C+J+M">Joshua M. Lawrence</a>, <a href="/search/physics?searchtype=author&amp;query=Gray%2C+V">Victor Gray</a>, <a href="/search/physics?searchtype=author&amp;query=Schnedermann%2C+C">Christoph Schnedermann</a>, <a href="/search/physics?searchtype=author&amp;query=Horton%2C+R">Robin Horton</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+D">Joel D. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Medipally%2C+H">Hitesh Medipally</a>, <a href="/search/physics?searchtype=author&amp;query=Witek%2C+B">Bartosz Witek</a>, <a href="/search/physics?searchtype=author&amp;query=Nowaczyk%2C+M+M">Marc M. Nowaczyk</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jenny Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wey%2C+L">Laura Wey</a>, <a href="/search/physics?searchtype=author&amp;query=Howe%2C+C+J">Christopher J. Howe</a>, <a href="/search/physics?searchtype=author&amp;query=Rao%2C+A">Akshay Rao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09448v1-abstract-short" style="display: inline;"> Transient absorption (TA) spectroscopy has proved fundamental to our understanding of energy and charge transfer in biological systems, allowing measurements of photoactive proteins on sub-picosecond timescales. Recently, ultrafast TA spectroscopy has been applied in vivo, providing sub-picosecond measurements of photosynthetic light harvesting and electron transfer processes within living photosy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09448v1-abstract-full').style.display = 'inline'; document.getElementById('2307.09448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09448v1-abstract-full" style="display: none;"> Transient absorption (TA) spectroscopy has proved fundamental to our understanding of energy and charge transfer in biological systems, allowing measurements of photoactive proteins on sub-picosecond timescales. Recently, ultrafast TA spectroscopy has been applied in vivo, providing sub-picosecond measurements of photosynthetic light harvesting and electron transfer processes within living photosynthetic microorganisms. The analysis of the resultant data is hindered by the number of different photoactive pigments and the associated complexity of photoactive reaction schemes within living cells. Here we show how in vivo ultrafast TA spectroscopy can be applied to a diverse array of organisms from the tree of life, both photosynthetic and non-photosynthetic. We have developed a series of software tools for performing global, lifetime and target analysis of in vivo TA datasets. These advances establish in vivo TA spectroscopy as a versatile technique for studying energy and charge transfer in living systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09448v1-abstract-full').style.display = 'none'; document.getElementById('2307.09448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03761">arXiv:2305.03761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03761">pdf</a>, <a href="https://arxiv.org/format/2305.03761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Weakly-Supervised Anomaly Detection in the Milky Way </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pettee%2C+M">Mariel Pettee</a>, <a href="/search/physics?searchtype=author&amp;query=Thanvantri%2C+S">Sowmya Thanvantri</a>, <a href="/search/physics?searchtype=author&amp;query=Nachman%2C+B">Benjamin Nachman</a>, <a href="/search/physics?searchtype=author&amp;query=Shih%2C+D">David Shih</a>, <a href="/search/physics?searchtype=author&amp;query=Buckley%2C+M+R">Matthew R. Buckley</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+H">Jack H. Collins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03761v1-abstract-short" style="display: inline;"> Large-scale astrophysics datasets present an opportunity for new machine learning techniques to identify regions of interest that might otherwise be overlooked by traditional searches. To this end, we use Classification Without Labels (CWoLa), a weakly-supervised anomaly detection method, to identify cold stellar streams within the more than one billion Milky Way stars observed by the Gaia satelli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03761v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03761v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03761v1-abstract-full" style="display: none;"> Large-scale astrophysics datasets present an opportunity for new machine learning techniques to identify regions of interest that might otherwise be overlooked by traditional searches. To this end, we use Classification Without Labels (CWoLa), a weakly-supervised anomaly detection method, to identify cold stellar streams within the more than one billion Milky Way stars observed by the Gaia satellite. CWoLa operates without the use of labeled streams or knowledge of astrophysical principles. Instead, we train a classifier to distinguish between mixed samples for which the proportions of signal and background samples are unknown. This computationally lightweight strategy is able to detect both simulated streams and the known stream GD-1 in data. Originally designed for high-energy collider physics, this technique may have broad applicability within astrophysics as well as other domains interested in identifying localized anomalies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03761v1-abstract-full').style.display = 'none'; document.getElementById('2305.03761v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.11489">arXiv:2210.11489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.11489">pdf</a>, <a href="https://arxiv.org/format/2210.11489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Machine-Learning Compression for Particle Physics Discoveries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+H">Jack H. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yifeng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Knapen%2C+S">Simon Knapen</a>, <a href="/search/physics?searchtype=author&amp;query=Nachman%2C+B">Benjamin Nachman</a>, <a href="/search/physics?searchtype=author&amp;query=Whiteson%2C+D">Daniel Whiteson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.11489v2-abstract-short" style="display: inline;"> In collider-based particle and nuclear physics experiments, data are produced at such extreme rates that only a subset can be recorded for later analysis. Typically, algorithms select individual collision events for preservation and store the complete experimental response. A relatively new alternative strategy is to additionally save a partial record for a larger subset of events, allowing for la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11489v2-abstract-full').style.display = 'inline'; document.getElementById('2210.11489v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.11489v2-abstract-full" style="display: none;"> In collider-based particle and nuclear physics experiments, data are produced at such extreme rates that only a subset can be recorded for later analysis. Typically, algorithms select individual collision events for preservation and store the complete experimental response. A relatively new alternative strategy is to additionally save a partial record for a larger subset of events, allowing for later specific analysis of a larger fraction of events. We propose a strategy that bridges these paradigms by compressing entire events for generic offline analysis but at a lower fidelity. An optimal-transport-based $尾$ Variational Autoencoder (VAE) is used to automate the compression and the hyperparameter $尾$ controls the compression fidelity. We introduce a new approach for multi-objective learning functions by simultaneously learning a VAE appropriate for all values of $尾$ through parameterization. We present an example use case, a di-muon resonance search at the Large Hadron Collider (LHC), where we show that simulated data compressed by our $尾$-VAE has enough fidelity to distinguish distinct signal morphologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11489v2-abstract-full').style.display = 'none'; document.getElementById('2210.11489v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SLAC-PUB-17704 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12037">arXiv:2203.12037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12037">pdf</a>, <a href="https://arxiv.org/format/2203.12037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.166716">10.1016/j.nima.2022.166716 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quality Control of Mass-Produced GEM Detectors for the CMS GE1/1 Muon Upgrade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbas%2C+M">M. Abbas</a>, <a href="/search/physics?searchtype=author&amp;query=Abbrescia%2C+M">M. Abbrescia</a>, <a href="/search/physics?searchtype=author&amp;query=Abdalla%2C+H">H. Abdalla</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelalim%2C+A">A. Abdelalim</a>, <a href="/search/physics?searchtype=author&amp;query=AbuZeid%2C+S">S. AbuZeid</a>, <a href="/search/physics?searchtype=author&amp;query=Agapitos%2C+A">A. Agapitos</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+A">A. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+A">A. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+W">W. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A8%2C+C">C. Aim猫</a>, <a href="/search/physics?searchtype=author&amp;query=Aruta%2C+C">C. Aruta</a>, <a href="/search/physics?searchtype=author&amp;query=Asghar%2C+I">I. Asghar</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Avila%2C+C">C. Avila</a>, <a href="/search/physics?searchtype=author&amp;query=Babbar%2C+J">J. Babbar</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+R">R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bansal%2C+S">S. Bansal</a>, <a href="/search/physics?searchtype=author&amp;query=Benussi%2C+L">L. Benussi</a>, <a href="/search/physics?searchtype=author&amp;query=Beyrouthy%2C+T">T. Beyrouthy</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatnagar%2C+V">V. Bhatnagar</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+M">M. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+S">S. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Black%2C+K">K. Black</a>, <a href="/search/physics?searchtype=author&amp;query=Borgonovi%2C+L">L. Borgonovi</a> , et al. (157 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12037v1-abstract-short" style="display: inline;"> The series of upgrades to the Large Hadron Collider, culminating in the High Luminosity Large Hadron Collider, will enable a significant expansion of the physics program of the CMS experiment. However, the accelerator upgrades will also make the experimental conditions more challenging, with implications for detector operations, triggering, and data analysis. The luminosity of the proton-proton co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12037v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12037v1-abstract-full" style="display: none;"> The series of upgrades to the Large Hadron Collider, culminating in the High Luminosity Large Hadron Collider, will enable a significant expansion of the physics program of the CMS experiment. However, the accelerator upgrades will also make the experimental conditions more challenging, with implications for detector operations, triggering, and data analysis. The luminosity of the proton-proton collisions is expected to exceed $2-3\times10^{34}$~cm$^{-2}$s$^{-1}$ for Run 3 (starting in 2022), and it will be at least $5\times10^{34}$~cm$^{-2}$s$^{-1}$ when the High Luminosity Large Hadron Collider is completed for Run 4. These conditions will affect muon triggering, identification, and measurement, which are critical capabilities of the experiment. To address these challenges, additional muon detectors are being installed in the CMS endcaps, based on Gas Electron Multiplier technology. For this purpose, 161 large triple-Gas Electron Multiplier detectors have been constructed and tested. Installation of these devices began in 2019 with the GE1/1 station and will be followed by two additional stations, GE2/1 and ME0, to be installed in 2023 and 2026, respectively. The assembly and quality control of the GE1/1 detectors were distributed across several production sites around the world. We motivate and discuss the quality control procedures that were developed to standardize the performance of the detectors, and we present the final results of the production. Out of 161 detectors produced, 156 detectors passed all tests, and 144 detectors are now installed in the CMS experiment. The various visual inspections, gas tightness tests, intrinsic noise rate characterizations, and effective gas gain and response uniformity tests allowed the project to achieve this high success rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12037v1-abstract-full').style.display = 'none'; document.getElementById('2203.12037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 39 figures, submitted to Nuclear Instruments and Methods in Physics Research Section A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05804">arXiv:2112.05804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.05804">pdf</a>, <a href="https://arxiv.org/format/2112.05804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.450211">10.1364/OE.450211 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-modal microscopy imaging with the OpenFlexure Delta Stage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=McDermott%2C+S">Samuel McDermott</a>, <a href="/search/physics?searchtype=author&amp;query=Ayazi%2C+F">Filip Ayazi</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J">Joel Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Knapper%2C+J">Joe Knapper</a>, <a href="/search/physics?searchtype=author&amp;query=Stirling%2C+J">Julian Stirling</a>, <a href="/search/physics?searchtype=author&amp;query=Bowman%2C+R">Richard Bowman</a>, <a href="/search/physics?searchtype=author&amp;query=Cicuta%2C+P">Pietro Cicuta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05804v3-abstract-short" style="display: inline;"> Microscopes are vital pieces of equipment in much of biological research and medical diagnostics. However, access to a microscope can represent a bottleneck in research, especially in lower-income countries. `Smart&#39; computer controlled motorized microscopes, which can perform automated routines or acquire images in a range of modalities are even more expensive and inaccessible. Developing low-cost&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05804v3-abstract-full').style.display = 'inline'; document.getElementById('2112.05804v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05804v3-abstract-full" style="display: none;"> Microscopes are vital pieces of equipment in much of biological research and medical diagnostics. However, access to a microscope can represent a bottleneck in research, especially in lower-income countries. `Smart&#39; computer controlled motorized microscopes, which can perform automated routines or acquire images in a range of modalities are even more expensive and inaccessible. Developing low-cost, open-source, smart microscopes enables more researchers to conceive and execute optimized or more complex experiments. Here we present the OpenFlexure Delta Stage, a 3D-printed microscope designed for researchers. Powered by the OpenFlexure software stack, it is capable of performing automated experiments. The design files and assembly instructions are freely available under an open licence. Its intuitive and modular design -- along with detailed documentation -- allows researchers to implement a variety of imaging modes with ease. The versatility of this microscope is demonstrated by imaging biological and non-biological samples (red blood cells with Plasmodium parasites and colloidal particles in brightfield, epi-fluorescence, darkfield, Rheinberg and differential phase contrast. We present the design strategy and choice of tools to develop devices accessible to researchers from lower-income countries, as well as the advantages of an open-source project in this context. This microscope, having been open-source since its conception, has already been built and tested by researchers around the world, promoting a community of expertise and an environment of reproducibility in science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05804v3-abstract-full').style.display = 'none'; document.getElementById('2112.05804v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06842">arXiv:2109.06842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06842">pdf</a>, <a href="https://arxiv.org/format/2109.06842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Fast, high precision autofocus on a motorised microscope: automating blood sample imaging on the OpenFlexure Microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Knapper%2C+J">Joe Knapper</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+T">Joel T. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Stirling%2C+J">Julian Stirling</a>, <a href="/search/physics?searchtype=author&amp;query=McDermott%2C+S">Samuel McDermott</a>, <a href="/search/physics?searchtype=author&amp;query=Wadsworth%2C+W">William Wadsworth</a>, <a href="/search/physics?searchtype=author&amp;query=Bowman%2C+R">Richard Bowman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06842v2-abstract-short" style="display: inline;"> The OpenFlexure Microscope is a 3D printed, low-cost microscope capable of automated image acquisition through the use of a motorised translation stage and a Raspberry Pi imaging system. This automation has applications in research and healthcare, including in supporting the diagnosis of malaria in low resource settings. The plasmodium parasites which cause malaria require high magnification imagi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06842v2-abstract-full').style.display = 'inline'; document.getElementById('2109.06842v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06842v2-abstract-full" style="display: none;"> The OpenFlexure Microscope is a 3D printed, low-cost microscope capable of automated image acquisition through the use of a motorised translation stage and a Raspberry Pi imaging system. This automation has applications in research and healthcare, including in supporting the diagnosis of malaria in low resource settings. The plasmodium parasites which cause malaria require high magnification imaging, which has a shallow depth of field, necessitating the development of an accurate and precise autofocus procedure. We present methods of identifying the focal plane of the microscope, and procedures for reliably acquiring a stack of focused images on a system affected by backlash and drift. We also present and assess a method to verify the success of autofocus during the scan. The speed, reliability and precision of each method is evaluated, and the limitations discussed in terms of the end users&#39; requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06842v2-abstract-full').style.display = 'none'; document.getElementById('2109.06842v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03147">arXiv:2109.03147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.03147">pdf</a>, <a href="https://arxiv.org/format/2109.03147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ac595c">10.1088/1361-6382/ac595c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interferometric sensing of a commercial geophone </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cooper%2C+S+J">S. J. Cooper</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+C+J">C. J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Prokhorov%2C+L">L. Prokhorov</a>, <a href="/search/physics?searchtype=author&amp;query=Warner%2C+J">J. Warner</a>, <a href="/search/physics?searchtype=author&amp;query=Hoyland%2C+D">D. Hoyland</a>, <a href="/search/physics?searchtype=author&amp;query=Mow-Lowry%2C+C+M">C. M. Mow-Lowry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03147v1-abstract-short" style="display: inline;"> We present a modified commercial L-4C geophone with interferometric readout that demonstrated a resolution 60 times lower than the included coil-magnet readout at low frequencies. The intended application for the modified sensor is in vibration isolation platforms that require improved performance at frequencies lower than 1 Hz. A controls and noise-model of an Advanced LIGO &#39;HAM-ISI&#39; vibration is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03147v1-abstract-full').style.display = 'inline'; document.getElementById('2109.03147v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03147v1-abstract-full" style="display: none;"> We present a modified commercial L-4C geophone with interferometric readout that demonstrated a resolution 60 times lower than the included coil-magnet readout at low frequencies. The intended application for the modified sensor is in vibration isolation platforms that require improved performance at frequencies lower than 1 Hz. A controls and noise-model of an Advanced LIGO &#39;HAM-ISI&#39; vibration isolation system was developed, and it shows that our sensor can reduce the residual vibration by a factor of 70 at 0.1 Hz <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03147v1-abstract-full').style.display = 'none'; document.getElementById('2109.03147v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.08213">arXiv:2108.08213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.08213">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.combustflame.2021.111567">10.1016/j.combustflame.2021.111567 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental investigation of thermal boundary layers and associated heat loss for transient engine-relevant processes using HRCARS and phosphor thermometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ojo%2C+A+O">Anthony O. Ojo</a>, <a href="/search/physics?searchtype=author&amp;query=Escofet-Martin%2C+D">David Escofet-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J">Joshua Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Falconetti%2C+G">Gabriele Falconetti</a>, <a href="/search/physics?searchtype=author&amp;query=Peterson%2C+B">Brian Peterson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.08213v1-abstract-short" style="display: inline;"> Design of efficient, downsized piston engines requires an understanding of transient wall heat losses. Measurements of the spatially and temporally evolving thermal boundary layer (TBL) are required to facilitate this knowledge. This work takes advantage of hybrid fs/ps rotational coherent anti-Stokes Raman spectroscopy (HRCARS) to measure single-shot, wall-normal gas temperatures, which provide e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08213v1-abstract-full').style.display = 'inline'; document.getElementById('2108.08213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.08213v1-abstract-full" style="display: none;"> Design of efficient, downsized piston engines requires an understanding of transient wall heat losses. Measurements of the spatially and temporally evolving thermal boundary layer (TBL) are required to facilitate this knowledge. This work takes advantage of hybrid fs/ps rotational coherent anti-Stokes Raman spectroscopy (HRCARS) to measure single-shot, wall-normal gas temperatures, which provide exclusive access to the TBL. Phosphor thermometry is used to measure wall temperature. Experiments are performed in a fixed-volume chamber that operates with a transient pressure rise/decay to simulate engine-relevant compression/expansion events. This simplified environment is conducive for fundamental BL studies associated with engine-relevant processes. The TBL development and corresponding heat losses are evaluated within two engine-relevant regimes: (1) an unburned-gas regime comprised of gaseous compression and (2) a burned-gas regime, which includes high-temperature compression/expansion processes. The time-history of important BL quantities such as gas / wall temperatures, TBL thickness, wall heat flux, and relative energy lost at the wall are evaluated in these regimes. During the mild compression, Tcore increases by 30K and a TBL is initiated with 未T ~ 200 渭m. Wall heat fluxes remain below 6 kW/m2, but corresponds to ~6% energy loss per ms. In the burned-gas regime, Tcore resembles adiabatic flame temperatures, while Twall increases by 16K. A TBL rapidly develops as 未T increases from 290-730 渭m. Energy losses in excess of 25% occur after flame impingement and slowly decay to ~10% at the end of expansion. Measurements also resolve thermal mixing of fresh- and burned gases during expansion, which yield strong temperature reversals in the TBL. Findings are compared to canonical environments and demonstrate the transient TBL nature during engine-relevant processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08213v1-abstract-full').style.display = 'none'; document.getElementById('2108.08213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 12 figures (at end of document)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Combustion and Flame 233 (2021) 111567 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02092">arXiv:2104.02092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.02092">pdf</a>, <a href="https://arxiv.org/format/2104.02092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09389-x">10.1140/epjc/s10052-021-09389-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+H">Jack H. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Mart%C3%ADn-Ramiro%2C+P">Pablo Mart铆n-Ramiro</a>, <a href="/search/physics?searchtype=author&amp;query=Nachman%2C+B">Benjamin Nachman</a>, <a href="/search/physics?searchtype=author&amp;query=Shih%2C+D">David Shih</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02092v1-abstract-short" style="display: inline;"> Anomaly detection techniques are growing in importance at the Large Hadron Collider (LHC), motivated by the increasing need to search for new physics in a model-agnostic way. In this work, we provide a detailed comparative study between a well-studied unsupervised method called the autoencoder (AE) and a weakly-supervised approach based on the Classification Without Labels (CWoLa) technique. We ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02092v1-abstract-full').style.display = 'inline'; document.getElementById('2104.02092v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02092v1-abstract-full" style="display: none;"> Anomaly detection techniques are growing in importance at the Large Hadron Collider (LHC), motivated by the increasing need to search for new physics in a model-agnostic way. In this work, we provide a detailed comparative study between a well-studied unsupervised method called the autoencoder (AE) and a weakly-supervised approach based on the Classification Without Labels (CWoLa) technique. We examine the ability of the two methods to identify a new physics signal at different cross sections in a fully hadronic resonance search. By construction, the AE classification performance is independent of the amount of injected signal. In contrast, the CWoLa performance improves with increasing signal abundance. When integrating these approaches with a complete background estimate, we find that the two methods have complementary sensitivity. In particular, CWoLa is effective at finding diverse and moderately rare signals while the AE can provide sensitivity to very rare signals, but only with certain topologies. We therefore demonstrate that both techniques are complementary and can be used together for anomaly detection at the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02092v1-abstract-full').style.display = 'none'; document.getElementById('2104.02092v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05419">arXiv:2103.05419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05419">pdf</a>, <a href="https://arxiv.org/format/2103.05419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2022.122447">10.1016/j.nuclphysa.2022.122447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khalek%2C+R+A">R. Abdul Khalek</a>, <a href="/search/physics?searchtype=author&amp;query=Accardi%2C+A">A. Accardi</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+J">J. Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Adamiak%2C+D">D. Adamiak</a>, <a href="/search/physics?searchtype=author&amp;query=Akers%2C+W">W. Akers</a>, <a href="/search/physics?searchtype=author&amp;query=Albaladejo%2C+M">M. Albaladejo</a>, <a href="/search/physics?searchtype=author&amp;query=Al-bataineh%2C+A">A. Al-bataineh</a>, <a href="/search/physics?searchtype=author&amp;query=Alexeev%2C+M+G">M. G. Alexeev</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&amp;query=Armesto%2C+N">N. Armesto</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+W+R">W. R. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Arratia%2C+M">M. Arratia</a>, <a href="/search/physics?searchtype=author&amp;query=Arrington%2C+J">J. Arrington</a>, <a href="/search/physics?searchtype=author&amp;query=Asaturyan%2C+A">A. Asaturyan</a>, <a href="/search/physics?searchtype=author&amp;query=Asai%2C+M">M. Asai</a>, <a href="/search/physics?searchtype=author&amp;query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/physics?searchtype=author&amp;query=Aune%2C+S">S. Aune</a>, <a href="/search/physics?searchtype=author&amp;query=Avagyan%2C+H">H. Avagyan</a>, <a href="/search/physics?searchtype=author&amp;query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&amp;query=Azmoun%2C+B">B. Azmoun</a>, <a href="/search/physics?searchtype=author&amp;query=Bacchetta%2C+A">A. Bacchetta</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Barbosa%2C+F">F. Barbosa</a>, <a href="/search/physics?searchtype=author&amp;query=Barion%2C+L">L. Barion</a> , et al. (390 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05419v3-abstract-short" style="display: inline;"> This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05419v3-abstract-full').style.display = 'inline'; document.getElementById('2103.05419v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05419v3-abstract-full" style="display: none;"> This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon and nuclei where their structure is dominated by gluons. Moreover, polarized beams in the EIC will give unprecedented access to the spatial and spin structure of the proton, neutron, and light ions. The studies leading to this document were commissioned and organized by the EIC User Group with the objective of advancing the state and detail of the physics program and developing detector concepts that meet the emerging requirements in preparation for the realization of the EIC. The effort aims to provide the basis for further development of concepts for experimental equipment best suited for the science needs, including the importance of two complementary detectors and interaction regions. This report consists of three volumes. Volume I is an executive summary of our findings and developed concepts. In Volume II we describe studies of a wide range of physics measurements and the emerging requirements on detector acceptance and performance. Volume III discusses general-purpose detector concepts and the underlying technologies to meet the physics requirements. These considerations will form the basis for a world-class experimental program that aims to increase our understanding of the fundamental structure of all visible matter <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05419v3-abstract-full').style.display = 'none'; document.getElementById('2103.05419v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">902 pages, 415 authors, 151 institutions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-220990-2021-FORE, JLAB-PHY-21-3198, LA-UR-21-20953 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Phys. A 1026 (2022) 122447 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08320">arXiv:2101.08320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08320">pdf</a>, <a href="https://arxiv.org/format/2101.08320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ac36b9">10.1088/1361-6633/ac36b9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kasieczka%2C+G">Gregor Kasieczka</a>, <a href="/search/physics?searchtype=author&amp;query=Nachman%2C+B">Benjamin Nachman</a>, <a href="/search/physics?searchtype=author&amp;query=Shih%2C+D">David Shih</a>, <a href="/search/physics?searchtype=author&amp;query=Amram%2C+O">Oz Amram</a>, <a href="/search/physics?searchtype=author&amp;query=Andreassen%2C+A">Anders Andreassen</a>, <a href="/search/physics?searchtype=author&amp;query=Benkendorfer%2C+K">Kees Benkendorfer</a>, <a href="/search/physics?searchtype=author&amp;query=Bortolato%2C+B">Blaz Bortolato</a>, <a href="/search/physics?searchtype=author&amp;query=Brooijmans%2C+G">Gustaaf Brooijmans</a>, <a href="/search/physics?searchtype=author&amp;query=Canelli%2C+F">Florencia Canelli</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+H">Jack H. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+B">Biwei Dai</a>, <a href="/search/physics?searchtype=author&amp;query=De+Freitas%2C+F+F">Felipe F. De Freitas</a>, <a href="/search/physics?searchtype=author&amp;query=Dillon%2C+B+M">Barry M. Dillon</a>, <a href="/search/physics?searchtype=author&amp;query=Dinu%2C+I">Ioan-Mihail Dinu</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Z">Zhongtian Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Donini%2C+J">Julien Donini</a>, <a href="/search/physics?searchtype=author&amp;query=Duarte%2C+J">Javier Duarte</a>, <a href="/search/physics?searchtype=author&amp;query=Faroughy%2C+D+A">D. A. Faroughy</a>, <a href="/search/physics?searchtype=author&amp;query=Gonski%2C+J">Julia Gonski</a>, <a href="/search/physics?searchtype=author&amp;query=Harris%2C+P">Philip Harris</a>, <a href="/search/physics?searchtype=author&amp;query=Kahn%2C+A">Alan Kahn</a>, <a href="/search/physics?searchtype=author&amp;query=Kamenik%2C+J+F">Jernej F. Kamenik</a>, <a href="/search/physics?searchtype=author&amp;query=Khosa%2C+C+K">Charanjit K. Khosa</a>, <a href="/search/physics?searchtype=author&amp;query=Komiske%2C+P">Patrick Komiske</a>, <a href="/search/physics?searchtype=author&amp;query=Pottier%2C+L+L">Luc Le Pottier</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08320v1-abstract-short" style="display: inline;"> A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08320v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08320v1-abstract-full" style="display: none;"> A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&amp;D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08320v1-abstract-full').style.display = 'none'; document.getElementById('2101.08320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">108 pages, 53 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00933">arXiv:2101.00933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.00933">pdf</a>, <a href="https://arxiv.org/format/2101.00933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsos.211158">10.1098/rsos.211158 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modern Microscopy with the Web of Things: The OpenFlexure Microscope Software Stack </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+T">Joel T. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Knapper%2C+J">Joe Knapper</a>, <a href="/search/physics?searchtype=author&amp;query=Stirling%2C+J">Julian Stirling</a>, <a href="/search/physics?searchtype=author&amp;query=McDermott%2C+S">Samuel McDermott</a>, <a href="/search/physics?searchtype=author&amp;query=Bowman%2C+R">Richard Bowman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00933v3-abstract-short" style="display: inline;"> Automated and computerised control of scientific instrumentation is almost ubiquitous in the modern laboratory. Most instrumentation is controlled over decades old communication busses or is accessed via proprietary system libraries. This limits which languages and operating systems can be used to control instruments, and poses a significant problem when interfacing multiple instruments into the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00933v3-abstract-full').style.display = 'inline'; document.getElementById('2101.00933v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00933v3-abstract-full" style="display: none;"> Automated and computerised control of scientific instrumentation is almost ubiquitous in the modern laboratory. Most instrumentation is controlled over decades old communication busses or is accessed via proprietary system libraries. This limits which languages and operating systems can be used to control instruments, and poses a significant problem when interfacing multiple instruments into the same experiment. Here we present the OpenFlexure Microscope software stack as an example of how a scientific instrument can be controlled using existing, cross-platform, language-independent, industry-supported standards. We split the control code into client and server applications interfaced via a web API that conforms to the W3C Web of Things standard. This enables simple control of the microscope from multiple languages, provides a modern graphical control interface, and minimises duplicated code. Network control also makes the software stack more robust, allows multiple microscopes to be controlled by one computer, and facilitates sharing of equipment between local or remote users. Using a Web of Things approach in research laboratories has the potential to solve many of the key challenges of experiment integration, using technology that is already well established. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00933v3-abstract-full').style.display = 'none'; document.getElementById('2101.00933v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.09505">arXiv:2009.09505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.09505">pdf</a>, <a href="https://arxiv.org/format/2009.09505">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/12/P12019">10.1088/1748-0221/15/12/P12019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstrip Capacitances of the Readout Board used in Large Triple-GEM Detectors for the CMS Muon Upgrade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbas%2C+M">M. Abbas</a>, <a href="/search/physics?searchtype=author&amp;query=Abbrescia%2C+M">M. Abbrescia</a>, <a href="/search/physics?searchtype=author&amp;query=Abdalla%2C+H">H. Abdalla</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelalim%2C+A">A. Abdelalim</a>, <a href="/search/physics?searchtype=author&amp;query=AbuZeid%2C+S">S. AbuZeid</a>, <a href="/search/physics?searchtype=author&amp;query=Agapitos%2C+A">A. Agapitos</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+A">A. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+A">A. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+W">W. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A8%2C+C">C. Aim猫</a>, <a href="/search/physics?searchtype=author&amp;query=Aruta%2C+C">C. Aruta</a>, <a href="/search/physics?searchtype=author&amp;query=Asghar%2C+I">I. Asghar</a>, <a href="/search/physics?searchtype=author&amp;query=Aspell%2C+P">P. Aspell</a>, <a href="/search/physics?searchtype=author&amp;query=Avila%2C+C">C. Avila</a>, <a href="/search/physics?searchtype=author&amp;query=Babbar%2C+J">J. Babbar</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Band%2C+R">R. Band</a>, <a href="/search/physics?searchtype=author&amp;query=Bansal%2C+S">S. Bansal</a>, <a href="/search/physics?searchtype=author&amp;query=Benussi%2C+L">L. Benussi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatnagar%2C+V">V. Bhatnagar</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+M">M. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+S">S. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Black%2C+K">K. Black</a>, <a href="/search/physics?searchtype=author&amp;query=Borgonovi%2C+L">L. Borgonovi</a>, <a href="/search/physics?searchtype=author&amp;query=Bouhali%2C+O">O. Bouhali</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.09505v1-abstract-short" style="display: inline;"> We present analytical calculations, Finite Element Analysis modeling, and physical measurements of the interstrip capacitances for different potential strip geometries and dimensions of the readout boards for the GE2/1 triple-Gas Electron Multiplier detector in the CMS muon system upgrade. The main goal of the study is to find configurations that minimize the interstrip capacitances and consequent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09505v1-abstract-full').style.display = 'inline'; document.getElementById('2009.09505v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.09505v1-abstract-full" style="display: none;"> We present analytical calculations, Finite Element Analysis modeling, and physical measurements of the interstrip capacitances for different potential strip geometries and dimensions of the readout boards for the GE2/1 triple-Gas Electron Multiplier detector in the CMS muon system upgrade. The main goal of the study is to find configurations that minimize the interstrip capacitances and consequently maximize the signal-to-noise ratio for the detector. We find agreement at the 1.5--4.8% level between the two methods of calculations and on the average at the 17% level between calculations and measurements. A configuration with halved strip lengths and doubled strip widths results in a measured 27--29% reduction over the original configuration while leaving the total number of strips unchanged. We have now adopted this design modification for all eight module types of the GE2/1 detector and will produce the final detector with this new strip design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.09505v1-abstract-full').style.display = 'none'; document.getElementById('2009.09505v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2020 JINST 15 P12019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01752">arXiv:2009.01752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.01752">pdf</a>, <a href="https://arxiv.org/format/2009.01752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.400595">10.1364/OL.400595 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dual-probe 1-d hybrid fs/ps rotational CARS for simultaneous single-shot temperature, pressure, and O2/N2 measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Escofet-Martin%2C+D">David Escofet-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Ojo%2C+A+O">Anthony O. Ojo</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J">Joshua Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Mecker%2C+N+T">Nils Torge Mecker</a>, <a href="/search/physics?searchtype=author&amp;query=Linne%2C+M">Mark Linne</a>, <a href="/search/physics?searchtype=author&amp;query=Peterson%2C+B">Brian Peterson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01752v1-abstract-short" style="display: inline;"> We employ dual-probe 1-d fs/ps hybrid rotational coherent anti-Stokes Raman spectroscopy to investigate simultaneous temperature, pressure, and O2/N2 measurements for gas-phase diagnostics. The dual-probe HRCARS technique allows for simultaneous measurements from the time and frequency-domain. A novel approach for measuring pressure, which offers high accuracy (&lt;1%) and precision (0.42%) is presen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01752v1-abstract-full').style.display = 'inline'; document.getElementById('2009.01752v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01752v1-abstract-full" style="display: none;"> We employ dual-probe 1-d fs/ps hybrid rotational coherent anti-Stokes Raman spectroscopy to investigate simultaneous temperature, pressure, and O2/N2 measurements for gas-phase diagnostics. The dual-probe HRCARS technique allows for simultaneous measurements from the time and frequency-domain. A novel approach for measuring pressure, which offers high accuracy (&lt;1%) and precision (0.42%) is presented. The technique is first demonstrated in a chamber for a range of pressures (1-1.5 bar). This technique shows an impressive capability of resolving 1-d pressure gradients arising from a N2 jet impinging on a surface, both in laminar and turbulent conditions. The technique is shown to be capable of resolving single-shot pressure gradients (0.04 bar/mm) originating from kinetic energy conversion to pressure, and resolves characteristic O2/N2 structures from laminar and turbulent mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01752v1-abstract-full').style.display = 'none'; document.getElementById('2009.01752v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Letters 45 (17), 4758-4761, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.14137">arXiv:2006.14137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.14137">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.trd.2020.102334">10.1016/j.trd.2020.102334 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Estimating Road Network Accessibility during a Hurricane Evacuation: A Case Study of Hurricane Irma in Florida </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yi-Jie Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yujie Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+M">Jennifer M. Collins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.14137v1-abstract-short" style="display: inline;"> Understanding the spatiotemporal road network accessibility during a hurricane evacuation, the level of ease of residents in an area in reaching evacuation destination sites through the road network, is a critical component of emergency management. While many studies have attempted to measure road accessibility (either in the scope of evacuation or beyond), few have considered both dynamic evacuat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14137v1-abstract-full').style.display = 'inline'; document.getElementById('2006.14137v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.14137v1-abstract-full" style="display: none;"> Understanding the spatiotemporal road network accessibility during a hurricane evacuation, the level of ease of residents in an area in reaching evacuation destination sites through the road network, is a critical component of emergency management. While many studies have attempted to measure road accessibility (either in the scope of evacuation or beyond), few have considered both dynamic evacuation demand and characteristics of a hurricane. This study proposes a methodological framework to achieve this goal. In an interval of every six hours, the method first estimates the evacuation demand in terms of number of vehicles per household in each county subdivision by considering the hurricane&#39;s wind radius and track. The closest facility analysis is then employed to model evacuees&#39; route choices towards the predefined evacuation destinations. The potential crowdedness index (PCI), a metric capturing the level of crowdedness of each road segment, is then computed by coupling the estimated evacuation demand and route choices. Finally, the road accessibility of each sub-county is measured by calculating the reciprocal of the sum of PCI values of corresponding roads connecting evacuees from the sub-county to the designated destinations. The method is applied to the entire state of Florida during Hurricane Irma in September 2017. Results show that I-75 and I-95 northbound have a high level of congestion, and sub-counties along the northbound I-95 suffer from the worst road accessibility. In addition, this research performs a sensitivity analysis for examining the impacts of different choices of behavioral response curves on accessibility results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14137v1-abstract-full').style.display = 'none'; document.getElementById('2006.14137v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Transportation Research Part D: Transport and Environment, 83, 102334 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.03052">arXiv:2004.03052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.03052">pdf</a>, <a href="https://arxiv.org/format/2004.03052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1119/10.0003534">10.1119/10.0003534 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Interactive Gravitational-Wave Detector Model for Museums and Fairs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cooper%2C+S+J">S. J. Cooper</a>, <a href="/search/physics?searchtype=author&amp;query=Green%2C+A+C">A. C. Green</a>, <a href="/search/physics?searchtype=author&amp;query=Middleton%2C+H+R">H. R. Middleton</a>, <a href="/search/physics?searchtype=author&amp;query=Berry%2C+C+P+L">C. P. L. Berry</a>, <a href="/search/physics?searchtype=author&amp;query=Buscicchio%2C+R">R. Buscicchio</a>, <a href="/search/physics?searchtype=author&amp;query=Butler%2C+E">E. Butler</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+C+J">C. J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Gettings%2C+C">C. Gettings</a>, <a href="/search/physics?searchtype=author&amp;query=Hoyland%2C+D">D. Hoyland</a>, <a href="/search/physics?searchtype=author&amp;query=Jones%2C+A+W">A. W. Jones</a>, <a href="/search/physics?searchtype=author&amp;query=Lindon%2C+J+H">J. H. Lindon</a>, <a href="/search/physics?searchtype=author&amp;query=Romero-Shaw%2C+I">I. Romero-Shaw</a>, <a href="/search/physics?searchtype=author&amp;query=Stevenson%2C+S+P">S. P. Stevenson</a>, <a href="/search/physics?searchtype=author&amp;query=Takeva%2C+E+P">E. P. Takeva</a>, <a href="/search/physics?searchtype=author&amp;query=Vinciguerra%2C+S">S. Vinciguerra</a>, <a href="/search/physics?searchtype=author&amp;query=Vecchio%2C+A">A. Vecchio</a>, <a href="/search/physics?searchtype=author&amp;query=Mow-Lowry%2C+C+M">C. M. Mow-Lowry</a>, <a href="/search/physics?searchtype=author&amp;query=Freise%2C+A">A. Freise</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.03052v2-abstract-short" style="display: inline;"> In 2015 the first observation of gravitational waves marked a breakthrough in astrophysics, and in technological research and development. The discovery of a gravitational-wave signal from the collision of two black holes, a billion light-years away, received considerable interest from the media and public. We describe the development of a purpose-built exhibit explaining this new area of research&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03052v2-abstract-full').style.display = 'inline'; document.getElementById('2004.03052v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.03052v2-abstract-full" style="display: none;"> In 2015 the first observation of gravitational waves marked a breakthrough in astrophysics, and in technological research and development. The discovery of a gravitational-wave signal from the collision of two black holes, a billion light-years away, received considerable interest from the media and public. We describe the development of a purpose-built exhibit explaining this new area of research to a general audience. The core element of the exhibit is a working Michelson interferometer: a scaled-down version of the key technology used in gravitational-wave detectors. The Michelson interferometer is integrated into a hands-on exhibit, which allows for user interaction and simulated gravitational-wave observations. An interactive display provides a self-guided explanation of gravitational-wave-related topics through video, animation, images and text. We detail the hardware and software used to create the exhibit and discuss two installation variants: an independent learning experience in a museum setting (the Thinktank Birmingham Science Museum), and a science-festival with the presence of expert guides (the 2017 Royal Society Summer Science Exhibition). We assess audience reception in these two settings, describe the improvements we have made given this information, and discuss future public-engagement projects resulting from this work. The exhibit is found to be effective in communicating the new and unfamiliar field of gravitational-wave research to general audiences. An accompanying website provides parts lists and information for others to build their own version of this exhibit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03052v2-abstract-full').style.display = 'none'; document.getElementById('2004.03052v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">For the associated website, see http://www.sr.bham.ac.uk/exhibit/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> American Journal of Physics 89, 702 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13171">arXiv:2003.13171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.13171">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.0c05832">10.1021/acsami.0c05832 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Transport in Air-stable Na3Bi Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Akhgar%2C+G">Golrokh Akhgar</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+L">James L. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Hellerstedt%2C+J">Jack Hellerstedt</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+S">Shaffique Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Fuhrer%2C+M+S">Michael S. Fuhrer</a>, <a href="/search/physics?searchtype=author&amp;query=Edmonds%2C+M+T">Mark T. Edmonds</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13171v1-abstract-short" style="display: inline;"> Na3Bi has attracted significant interest in both bulk form as a three-dimensional topological Dirac semimetal and in ultra-thin form as a wide-bandgap two-dimensional topological insulator. Its extreme air sensitivity has limited experimental efforts on thin- and ultra-thin films grown via molecular beam epitaxy to ultra-high vacuum environments. Here we demonstrate air-stable Na3Bi thin films pas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13171v1-abstract-full').style.display = 'inline'; document.getElementById('2003.13171v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13171v1-abstract-full" style="display: none;"> Na3Bi has attracted significant interest in both bulk form as a three-dimensional topological Dirac semimetal and in ultra-thin form as a wide-bandgap two-dimensional topological insulator. Its extreme air sensitivity has limited experimental efforts on thin- and ultra-thin films grown via molecular beam epitaxy to ultra-high vacuum environments. Here we demonstrate air-stable Na3Bi thin films passivated with magnesium difluoride (MgF2) or silicon (Si) capping layers. Electrical measurements show that deposition of MgF2 or Si has minimal impact on the transport properties of Na3Bi whilst in ultra-high vacuum. Importantly, the MgF2-passivated Na3Bi films are air-stable and remain metallic for over 100 hours after exposure to air, as compared to near instantaneous degradation when they are unpassivated. Air stability enables transfer of films to a conventional high-magnetic field cryostat, enabling quantum transport measurements which verify that the Dirac semimetal character of Na3Bi films is retained after air exposure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13171v1-abstract-full').style.display = 'none'; document.getElementById('2003.13171v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl. Mater. Interfaces 12, 31, 35542 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.13295">arXiv:1911.13295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.13295">pdf</a>, <a href="https://arxiv.org/format/1911.13295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5334/joh.20">10.5334/joh.20 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flat-field and colour correction for the Raspberry Pi camera module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bowman%2C+R">Richard Bowman</a>, <a href="/search/physics?searchtype=author&amp;query=Vodenicharski%2C+B">Boyko Vodenicharski</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J">Joel Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Stirling%2C+J">Julian Stirling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.13295v1-abstract-short" style="display: inline;"> The Raspberry Pi camera module is widely used in open source hardware projects as a low cost camera sensor. However, when the stock lens is removed and replaced with other custom optics the sensor will return a non-uniform background and colour response which hampers the use of this excellent and popular image sensor. This effect is found to be due to the sensor&#39;s optical design as well as due to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.13295v1-abstract-full').style.display = 'inline'; document.getElementById('1911.13295v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.13295v1-abstract-full" style="display: none;"> The Raspberry Pi camera module is widely used in open source hardware projects as a low cost camera sensor. However, when the stock lens is removed and replaced with other custom optics the sensor will return a non-uniform background and colour response which hampers the use of this excellent and popular image sensor. This effect is found to be due to the sensor&#39;s optical design as well as due to built-in corrections in the GPU firmware, which is optimised for a short focal length lens. In this work we characterise and correct the vignetting and colour crosstalk found in the Raspberry Pi camera module v2, presenting two measures that greatly improve the quality of images using custom optics. First, we use a custom &#34;lens shading table&#34; to correct for vignetting of the image, which can be done in real time in the camera&#39;s existing processing pipeline (i.e. the camera&#39;s low-latency preview is corrected). The second correction is a colour unmixing matrix, which enables us to reverse the loss in saturation at the edge of the image, though this requires post-processing of the image. With both of these corrections in place, it is possible to obtain uniformly colour-corrected images, at the expense of slightly increased noise at the edges of the image. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.13295v1-abstract-full').style.display = 'none'; document.getElementById('1911.13295v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.07833">arXiv:1904.07833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.07833">pdf</a>, <a href="https://arxiv.org/format/1904.07833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aba9186">10.1126/sciadv.aba9186 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vaidya%2C+V+D">V. D. Vaidya</a>, <a href="/search/physics?searchtype=author&amp;query=Morrison%2C+B">B. Morrison</a>, <a href="/search/physics?searchtype=author&amp;query=Helt%2C+L+G">L. G. Helt</a>, <a href="/search/physics?searchtype=author&amp;query=Shahrokhshahi%2C+R">R. Shahrokhshahi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahler%2C+D+H">D. H. Mahler</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">M. J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+K">K. Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Lavoie%2C+J">J. Lavoie</a>, <a href="/search/physics?searchtype=author&amp;query=Repingon%2C+A">A. Repingon</a>, <a href="/search/physics?searchtype=author&amp;query=Menotti%2C+M">M. Menotti</a>, <a href="/search/physics?searchtype=author&amp;query=Quesada%2C+N">N. Quesada</a>, <a href="/search/physics?searchtype=author&amp;query=Pooser%2C+R+C">R. C. Pooser</a>, <a href="/search/physics?searchtype=author&amp;query=Lita%2C+A+E">A. E. Lita</a>, <a href="/search/physics?searchtype=author&amp;query=Gerrits%2C+T">T. Gerrits</a>, <a href="/search/physics?searchtype=author&amp;query=Nam%2C+S+W">S. W. Nam</a>, <a href="/search/physics?searchtype=author&amp;query=Vernon%2C+Z">Z. Vernon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.07833v4-abstract-short" style="display: inline;"> We report demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07833v4-abstract-full').style.display = 'inline'; document.getElementById('1904.07833v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.07833v4-abstract-full" style="display: none;"> We report demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition edge sensors. We measure $1.0(1)$~dB of broadband quadrature squeezing (${\sim}4$~dB inferred on-chip) and $1.5(3)$~dB of photon number difference squeezing (${\sim}7$~dB inferred on-chip). Nearly-single temporal mode operation is achieved, with measured raw unheralded second-order correlations $g^{(2)}$ as high as $1.95(1)$. Multi-photon events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07833v4-abstract-full').style.display = 'none'; document.getElementById('1904.07833v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor revisions, and Fig. 5 corrected; Now published in Science Advances</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 23 Sep 2020: Vol. 6, no. 39, eaba9186 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.09750">arXiv:1902.09750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.09750">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Topologically protected entangled photonic states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M">Michelle Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Doyle%2C+C">Cooper Doyle</a>, <a href="/search/physics?searchtype=author&amp;query=Bell%2C+B">Bryn Bell</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Magi%2C+E">Eric Magi</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Segev%2C+M">Mordechai Segev</a>, <a href="/search/physics?searchtype=author&amp;query=Blanco-Redondo%2C+A">Andrea Blanco-Redondo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.09750v1-abstract-short" style="display: inline;"> Entangled multiphoton states lie at the heart of quantum information, computing, and communications. In recent years, topology has risen as a new avenue to robustly transport quantum states in the presence of fabrication defects, disorder and other noise sources. Whereas topological protection of single photons and correlated photons has been recently demonstrated experimentally, the observation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.09750v1-abstract-full').style.display = 'inline'; document.getElementById('1902.09750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.09750v1-abstract-full" style="display: none;"> Entangled multiphoton states lie at the heart of quantum information, computing, and communications. In recent years, topology has risen as a new avenue to robustly transport quantum states in the presence of fabrication defects, disorder and other noise sources. Whereas topological protection of single photons and correlated photons has been recently demonstrated experimentally, the observation of topologically protected entangled states has thus far remained elusive. Here, we experimentally demonstrate the topological protection of spatially-entangled biphoton states. We observe robustness in crucial features of the topological biphoton correlation map in the presence of deliberately introduced disorder in the silicon nanophotonic structure, in contrast with the lack of robustness in nontopological structures. The topological protection is shown to ensure the coherent propagation of the entangled topological modes, which may lead to robust propagation of quantum information in disordered systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.09750v1-abstract-full').style.display = 'none'; document.getElementById('1902.09750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09216">arXiv:1810.09216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.09216">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.054428">10.1103/PhysRevB.99.054428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superchiral photons unveil magnetic circular dichroism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lovesey%2C+S+W">S. W. Lovesey</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+T">J. T. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+S+P">S. P. Collins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09216v1-abstract-short" style="display: inline;"> Polarization-dependent photon spectroscopy (dichroism) using signal-enhancing superchiral beams is shown to be sensitive to magnetic properties of the sample, whereas previous investigations explored charge-like electronic properties of chiral samples. In the process of unveiling the potential to observe magnetic circular dichroism (MCD), we underline an affinity between spectroscopies using the B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09216v1-abstract-full').style.display = 'inline'; document.getElementById('1810.09216v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09216v1-abstract-full" style="display: none;"> Polarization-dependent photon spectroscopy (dichroism) using signal-enhancing superchiral beams is shown to be sensitive to magnetic properties of the sample, whereas previous investigations explored charge-like electronic properties of chiral samples. In the process of unveiling the potential to observe magnetic circular dichroism (MCD), we underline an affinity between spectroscopies using the Borrmann effect, twisted beams and superchiral beams. Use of an effective wavevector in a quantum-mechanical theory unites the aforementioned spectroscopies and vastly improves our understanding of their advantages. Exploiting an effective wavevector for superchiral beams, natural circular dichroism (NCD) is derived from electric dipole - magnetic dipole (E1-M1) and electric dipole - electric quadrupole (E1-E2) absorption events, and MCD is derived from electric quadrupole-electric quadrupole (E2-E2) absorption. Signal enhancement by superchiral beams is a straightforward gain for the user because NCD and MCD are otherwise precisely the same as for a circularly polarized beam, according to our calculations. Our analysis shows that enhancement of E2-E2 is superior to that available for parity-odd events under consideration. Electronic degrees of freedom in all dichroic signals are encapsulated in atomic multipoles that are frequently used in theoretical interpretations of several established experimental techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09216v1-abstract-full').style.display = 'none'; document.getElementById('1810.09216v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 054428 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.02373">arXiv:1611.02373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.02373">pdf</a>, <a href="https://arxiv.org/format/1611.02373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-018-0179-3">10.1038/s41566-018-0179-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological protection of photonic mid-gap cavity modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Noh%2C+J">Jiho Noh</a>, <a href="/search/physics?searchtype=author&amp;query=Benalcazar%2C+W+A">Wladimir A. Benalcazar</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Sheng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">Kevin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hughes%2C+T+L">Taylor L. Hughes</a>, <a href="/search/physics?searchtype=author&amp;query=Rechtsman%2C+M+C">Mikael C. Rechtsman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.02373v1-abstract-short" style="display: inline;"> Defect modes in two-dimensional periodic photonic structures have found use in a highly diverse set of optical devices. For example, photonic crystal cavities confine optical modes to subwavelength volumes and can be used for Purcell enhancement of nonlinearity, lasing, and cavity quantum electrodynamics. Photonic crystal fiber defect cores allow for supercontinuum generation and endlessly-single-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02373v1-abstract-full').style.display = 'inline'; document.getElementById('1611.02373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.02373v1-abstract-full" style="display: none;"> Defect modes in two-dimensional periodic photonic structures have found use in a highly diverse set of optical devices. For example, photonic crystal cavities confine optical modes to subwavelength volumes and can be used for Purcell enhancement of nonlinearity, lasing, and cavity quantum electrodynamics. Photonic crystal fiber defect cores allow for supercontinuum generation and endlessly-single-mode fibers with large cores. However, these modes are notoriously fragile: small changes in the structure can lead to significant detuning of resonance frequency and mode volume. Here, we show that a photonic topological crystalline insulator structure can be used to topologically protect the resonance frequency to be in the middle of the band gap, and therefore minimize the mode volume of a two-dimensional photonic defect mode. We experimentally demonstrate this in a femtosecond-laser-written waveguide array, a geometry akin to a photonic crystal fiber. The topological defect modes are determined by a topological invariant that protects zero-dimensional states (defect modes) embedded in a two-dimensional environment; a novel form of topological protection that has not been previously demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02373v1-abstract-full').style.display = 'none'; document.getElementById('1611.02373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Animations not available in this version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.0809">arXiv:1412.0809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.0809">pdf</a>, <a href="https://arxiv.org/format/1412.0809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep12557">10.1038/srep12557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jizan%2C+I">Iman Jizan</a>, <a href="/search/physics?searchtype=author&amp;query=Helt%2C+L+G">L. G. Helt</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">Chunle Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+D">Duk-Yong Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Chae%2C+C+J">Chang Joon Chae</a>, <a href="/search/physics?searchtype=author&amp;query=Liscidini%2C+M">Marco Liscidini</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.0809v1-abstract-short" style="display: inline;"> The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterization. A promising tool for such characterization uses the classical stimulated process, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0809v1-abstract-full').style.display = 'inline'; document.getElementById('1412.0809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.0809v1-abstract-full" style="display: none;"> The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterization. A promising tool for such characterization uses the classical stimulated process, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a $蠂^{(2)}$ integrated source in A.~Eckstein \emph{et al.}, Laser Photon. Rev. \textbf{8}, L76 (2014). In this work we extend these results to $蠂^{(3)}$ sources, demonstrating spectral correlation measurements via stimulated four-wave mixing for the first time in a integrated optical waveguide, namely a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that additional resolution can be gained when compared to traditional coincidence measurements. As pump pulse duration can influence the degree of spectral entanglement, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral entanglement regardless of pump pulse duration, and cements its place as an essential characterization method for the development of future quantum integrated devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.0809v1-abstract-full').style.display = 'none'; document.getElementById('1412.0809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 5, 12557 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.7202">arXiv:1402.7202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.7202">pdf</a>, <a href="https://arxiv.org/format/1402.7202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/lpor.201400027">10.1002/lpor.201400027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid photonic circuit for multiplexed heralded single photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meany%2C+T">Thomas Meany</a>, <a href="/search/physics?searchtype=author&amp;query=Ngah%2C+L+A">Lutfi A. Ngah</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+R+J">Robert J. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Withford%2C+M+J">Michael J. Withford</a>, <a href="/search/physics?searchtype=author&amp;query=Alibart%2C+O">Olivier Alibart</a>, <a href="/search/physics?searchtype=author&amp;query=Tanzilli%2C+S">S茅bastien Tanzilli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.7202v1-abstract-short" style="display: inline;"> A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (&gt;1 MHz) fibre coupled electro-optic switches. Hybr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.7202v1-abstract-full').style.display = 'inline'; document.getElementById('1402.7202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.7202v1-abstract-full" style="display: none;"> A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (&gt;1 MHz) fibre coupled electro-optic switches. Hybrid interfacing different platforms is a promising route to exploiting the advantages of existing technology and has permitted the demonstration of the multiplexing of four identical sources of single photons to one output. Since this is an integrated technology, it provides scalability and can immediately leverage any improvements in transmission, detection and photon production efficiencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.7202v1-abstract-full').style.display = 'none'; document.getElementById('1402.7202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, double column, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Laser Photonics Rev. 8, No. 3, L42-L46 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.4498">arXiv:1307.4498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.4498">pdf</a>, <a href="https://arxiv.org/format/1307.4498">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep03087">10.1038/srep03087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-photon absorption limits to heralded single photon sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Husko%2C+C+A">Chad A. Husko</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=De+Rossi%2C+A">Alfredo De Rossi</a>, <a href="/search/physics?searchtype=author&amp;query=Combrie%2C+S">Sylvain Combrie</a>, <a href="/search/physics?searchtype=author&amp;query=Lehoucq%2C+G">Gaelle Lehoucq</a>, <a href="/search/physics?searchtype=author&amp;query=Rey%2C+I+H">Isabella H. Rey</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+T+F">Thomas F. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">Chunle Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.4498v1-abstract-short" style="display: inline;"> Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse these sources in the presence of multi-photon processes for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4498v1-abstract-full').style.display = 'inline'; document.getElementById('1307.4498v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.4498v1-abstract-full" style="display: none;"> Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse these sources in the presence of multi-photon processes for the first time. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We devise a new figure of merit, the quantum utility (QMU), enabling direct comparison and optimisation of single photon sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.4498v1-abstract-full').style.display = 'none'; document.getElementById('1307.4498v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures, 12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 3, 3087 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.0879">arXiv:1306.0879</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.0879">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms2172">10.1038/ncomms2172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+P+J">Patrick J. Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+R+J">Robert J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Dunjko%2C+V">Vedran Dunjko</a>, <a href="/search/physics?searchtype=author&amp;query=Andersson%2C+E">Erika Andersson</a>, <a href="/search/physics?searchtype=author&amp;query=Jeffers%2C+J">John Jeffers</a>, <a href="/search/physics?searchtype=author&amp;query=Buller%2C+G+S">Gerald S. Buller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.0879v1-abstract-short" style="display: inline;"> Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called &#34;one-way&#34; mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0879v1-abstract-full').style.display = 'inline'; document.getElementById('1306.0879v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.0879v1-abstract-full" style="display: none;"> Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called &#34;one-way&#34; mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. The system is based on the interference of phase encoded coherent states of light and our implementation utilises polarisation maintaining optical fibre and photons with a wavelength of 850 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0879v1-abstract-full').style.display = 'none'; document.getElementById('1306.0879v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version submitted for publication. Some slight changes were made to the structure of the text and figures before publication. Includes Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 3:1174 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.7278">arXiv:1305.7278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.7278">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms3582">10.1038/ncomms3582 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Integrated spatial multiplexing of heralded single photon sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collins%2C+M+J">Matthew J. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+C">Chunle Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Rey%2C+I+H">Isabella H. Rey</a>, <a href="/search/physics?searchtype=author&amp;query=Vo%2C+T+D">Trung D. Vo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jiakun He</a>, <a href="/search/physics?searchtype=author&amp;query=Shahnia%2C+S">Shayan Shahnia</a>, <a href="/search/physics?searchtype=author&amp;query=Reardon%2C+C">Christopher Reardon</a>, <a href="/search/physics?searchtype=author&amp;query=Steel%2C+M+J">M. J. Steel</a>, <a href="/search/physics?searchtype=author&amp;query=Krauss%2C+T+F">Thomas F. Krauss</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+A+S">Alex S. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Eggleton%2C+B+J">Benjamin J. Eggleton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.7278v1-abstract-short" style="display: inline;"> The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4%&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.7278v1-abstract-full').style.display = 'inline'; document.getElementById('1305.7278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.7278v1-abstract-full" style="display: none;"> The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4% increase in the heralded single photon output without an increase in unwanted multi-pair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two photon interference, required at the core of optical quantum computing and quantum communication protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.7278v1-abstract-full').style.display = 'none'; document.getElementById('1305.7278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 4, 2582 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.4831">arXiv:1211.4831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.4831">pdf</a>, <a href="https://arxiv.org/format/1211.4831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A Large Hadron Electron Collider at CERN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+J+L+A">J. L. Abelleira Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Adolphsen%2C+C">C. Adolphsen</a>, <a href="/search/physics?searchtype=author&amp;query=Adzic%2C+P">P. Adzic</a>, <a href="/search/physics?searchtype=author&amp;query=Akay%2C+A+N">A. N. Akay</a>, <a href="/search/physics?searchtype=author&amp;query=Aksakal%2C+H">H. Aksakal</a>, <a href="/search/physics?searchtype=author&amp;query=Albacete%2C+J+L">J. L. Albacete</a>, <a href="/search/physics?searchtype=author&amp;query=Allanach%2C+B">B. Allanach</a>, <a href="/search/physics?searchtype=author&amp;query=Alekhin%2C+S">S. Alekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Allport%2C+P">P. Allport</a>, <a href="/search/physics?searchtype=author&amp;query=Andreev%2C+V">V. Andreev</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R+B">R. B. Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Arikan%2C+E">E. Arikan</a>, <a href="/search/physics?searchtype=author&amp;query=Armesto%2C+N">N. Armesto</a>, <a href="/search/physics?searchtype=author&amp;query=Azuelos%2C+G">G. Azuelos</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+M">M. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+D">D. Barber</a>, <a href="/search/physics?searchtype=author&amp;query=Bartels%2C+J">J. Bartels</a>, <a href="/search/physics?searchtype=author&amp;query=Behnke%2C+O">O. Behnke</a>, <a href="/search/physics?searchtype=author&amp;query=Behr%2C+J">J. Behr</a>, <a href="/search/physics?searchtype=author&amp;query=Belyaev%2C+A+S">A. S. Belyaev</a>, <a href="/search/physics?searchtype=author&amp;query=Ben-Zvi%2C+I">I. Ben-Zvi</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+N">N. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+S">S. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Biswal%2C+S">S. Biswal</a> , et al. (184 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.4831v2-abstract-short" style="display: inline;"> This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.4831v2-abstract-full').style.display = 'inline'; document.getElementById('1211.4831v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.4831v2-abstract-full" style="display: none;"> This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.4831v2-abstract-full').style.display = 'none'; document.getElementById('1211.4831v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.2913">arXiv:1206.2913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.2913">pdf</a>, <a href="https://arxiv.org/format/1206.2913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/39/7/075001">10.1088/0954-3899/39/7/075001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+J+L+A">J. L. Abelleira Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Adolphsen%2C+C">C. Adolphsen</a>, <a href="/search/physics?searchtype=author&amp;query=Akay%2C+A+N">A. N. Akay</a>, <a href="/search/physics?searchtype=author&amp;query=Aksakal%2C+H">H. Aksakal</a>, <a href="/search/physics?searchtype=author&amp;query=Albacete%2C+J+L">J. L. Albacete</a>, <a href="/search/physics?searchtype=author&amp;query=Alekhin%2C+S">S. Alekhin</a>, <a href="/search/physics?searchtype=author&amp;query=Allport%2C+P">P. Allport</a>, <a href="/search/physics?searchtype=author&amp;query=Andreev%2C+V">V. Andreev</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R+B">R. B. Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Arikan%2C+E">E. Arikan</a>, <a href="/search/physics?searchtype=author&amp;query=Armesto%2C+N">N. Armesto</a>, <a href="/search/physics?searchtype=author&amp;query=Azuelos%2C+G">G. Azuelos</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+M">M. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+D">D. Barber</a>, <a href="/search/physics?searchtype=author&amp;query=Bartels%2C+J">J. Bartels</a>, <a href="/search/physics?searchtype=author&amp;query=Behnke%2C+O">O. Behnke</a>, <a href="/search/physics?searchtype=author&amp;query=Behr%2C+J">J. Behr</a>, <a href="/search/physics?searchtype=author&amp;query=Belyaev%2C+A+S">A. S. Belyaev</a>, <a href="/search/physics?searchtype=author&amp;query=Ben-Zvi%2C+I">I. Ben-Zvi</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+N">N. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+S">S. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Biswal%2C+S">S. Biswal</a>, <a href="/search/physics?searchtype=author&amp;query=Bl%C3%BCmlein%2C+J">J. Bl眉mlein</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%B6ttcher%2C+H">H. B枚ttcher</a> , et al. (168 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.2913v2-abstract-short" style="display: inline;"> The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.2913v2-abstract-full').style.display = 'inline'; document.getElementById('1206.2913v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.2913v2-abstract-full" style="display: none;"> The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ range extended by four orders of magnitude as compared to previous lepton-nucleus DIS experiments for novel investigations of neutron&#39;s and nuclear structure, the initial conditions of Quark-Gluon Plasma formation and further quantum chromodynamic phenomena. The LHeC may be realised either as a ring-ring or as a linac-ring collider. Optics and beam dynamics studies are presented for both versions, along with technical design considerations on the interaction region, magnets and further components, together with a design study for a high acceptance detector. Civil engineering and installation studies are presented for the accelerator and the detector. The LHeC can be built within a decade and thus be operated while the LHC runs in its high-luminosity phase. It thus represents a major opportunity for progress in particle physics exploiting the investment made in the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.2913v2-abstract-full').style.display = 'none'; document.getElementById('1206.2913v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.4010">arXiv:1010.4010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.4010">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Construction of a Prototype Spark Chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J">Jack Collins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.4010v1-abstract-short" style="display: inline;"> A small demonstration spark chamber is to be built at the Cavendish laboratory. A prototype chamber consisting of five 20x22.5cm plates has been built and descriptions of its properties and construction are given, while a second chamber with a somewhat novel design is nearly complete. A discussion of the issues surrounding the final design is presented, and recommendations are made in light of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.4010v1-abstract-full').style.display = 'inline'; document.getElementById('1010.4010v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.4010v1-abstract-full" style="display: none;"> A small demonstration spark chamber is to be built at the Cavendish laboratory. A prototype chamber consisting of five 20x22.5cm plates has been built and descriptions of its properties and construction are given, while a second chamber with a somewhat novel design is nearly complete. A discussion of the issues surrounding the final design is presented, and recommendations are made in light of the results of this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.4010v1-abstract-full').style.display = 'none'; document.getElementById('1010.4010v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0111073">arXiv:physics/0111073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0111073">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Design of the MPRI Control System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+C">J. C. Collins</a>, <a href="/search/physics?searchtype=author&amp;query=Ball%2C+M">M. Ball</a>, <a href="/search/physics?searchtype=author&amp;query=Broderick%2C+B">B. Broderick</a>, <a href="/search/physics?searchtype=author&amp;query=Katuin%2C+J">J. Katuin</a>, <a href="/search/physics?searchtype=author&amp;query=Manwaring%2C+W">Wm. Manwaring</a>, <a href="/search/physics?searchtype=author&amp;query=Schreuder%2C+N">N. Schreuder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0111073v1-abstract-short" style="display: inline;"> The Indiana University Cyclotron Facility (IUCF) is in the process of building the Midwest Proton Radiation Institute (MPRI). This involves refurbishing the 200MeV cyclotron and building new facilities for the purpose of providing clinical treatment of human cancer tumors. First patients are expected in the Spring of 2003. This paper presents the design and implementation to date of the controls&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0111073v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0111073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0111073v1-abstract-full" style="display: none;"> The Indiana University Cyclotron Facility (IUCF) is in the process of building the Midwest Proton Radiation Institute (MPRI). This involves refurbishing the 200MeV cyclotron and building new facilities for the purpose of providing clinical treatment of human cancer tumors. First patients are expected in the Spring of 2003. This paper presents the design and implementation to date of the controls, hardware and software, for both accelerator and treatment areas. Particular attention is placed on issues of personnel safety and control system security, development of inexpensive VMEbus boards with emphasis on the use of MicroChip PIC processors, beam diagnostics and monitoring and the use of commercial robots and vision systems for patient positioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0111073v1-abstract-full').style.display = 'none'; document.getElementById('physics/0111073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster paper submitted to ICALEPCS&#39;01, San Jose, Nov. 2001, PSN#TUA016, 3 pages, 1 figure, MS Word</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> eConf C011127 (2001) TUAP016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0103034">arXiv:physics/0103034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0103034">pdf</a>, <a href="https://arxiv.org/ps/physics/0103034">ps</a>, <a href="https://arxiv.org/format/physics/0103034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Biology">q-bio</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.1345702">10.1063/1.1345702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Designer Gene Networks: Towards Fundamental Cellular Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hasty%2C+J">Jeff Hasty</a>, <a href="/search/physics?searchtype=author&amp;query=Isaacs%2C+F">Farren Isaacs</a>, <a href="/search/physics?searchtype=author&amp;query=Dolnik%2C+M">Milos Dolnik</a>, <a href="/search/physics?searchtype=author&amp;query=McMillen%2C+D">David McMillen</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+J">J. J. Collins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0103034v1-abstract-short" style="display: inline;"> The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible. Here we show how a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics. </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0103034v1-abstract-full" style="display: none;"> The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible. Here we show how a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0103034v1-abstract-full').style.display = 'none'; document.getElementById('physics/0103034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos {\bf 11}(1) 207, 2001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0102024">arXiv:physics/0102024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0102024">pdf</a>, <a href="https://arxiv.org/ps/physics/0102024">ps</a>, <a href="https://arxiv.org/format/physics/0102024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Quantitative Biology">q-bio.OT</span> </div> </div> <p class="title is-5 mathjax"> On the Compatibility Between Physics and Intelligent Organisms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+C">John C. Collins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0102024v1-abstract-short" style="display: inline;"> It has been commonly argued, on the basis of Goedel&#39;s theorem and related mathematical results, that true artificial intelligence cannot exist. Penrose has further deduced from the existence of human intelligence that fundamental changes in physical theories are needed. I provide an elementary demonstration that these deductions are mistaken. </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0102024v1-abstract-full" style="display: none;"> It has been commonly argued, on the basis of Goedel&#39;s theorem and related mathematical results, that true artificial intelligence cannot exist. Penrose has further deduced from the existence of human intelligence that fundamental changes in physical theories are needed. I provide an elementary demonstration that these deductions are mistaken. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0102024v1-abstract-full').style.display = 'none'; document.getElementById('physics/0102024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-01-013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0003105">arXiv:physics/0003105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0003105">pdf</a>, <a href="https://arxiv.org/ps/physics/0003105">ps</a>, <a href="https://arxiv.org/format/physics/0003105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Biology">q-bio</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.040411297">10.1073/pnas.040411297 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-based switches and amplifiers for gene expression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hasty%2C+J">Jeff Hasty</a>, <a href="/search/physics?searchtype=author&amp;query=Pradines%2C+J">Joel Pradines</a>, <a href="/search/physics?searchtype=author&amp;query=Dolnik%2C+M">Milos Dolnik</a>, <a href="/search/physics?searchtype=author&amp;query=Collins%2C+J+J">J. J. Collins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0003105v1-abstract-short" style="display: inline;"> The regulation of cellular function is often controlled at the level of gene transcription. Such genetic regulation usually consists of interacting networks, whereby gene products from a single network can act to control their own expression or the production of protein in another network. Engineered control of cellular function through the design and manipulation of such networks lies within th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0003105v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0003105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0003105v1-abstract-full" style="display: none;"> The regulation of cellular function is often controlled at the level of gene transcription. Such genetic regulation usually consists of interacting networks, whereby gene products from a single network can act to control their own expression or the production of protein in another network. Engineered control of cellular function through the design and manipulation of such networks lies within the constraints of current technology. Here we develop a model describing the regulation of gene expression, and elucidate the effects of noise on the formulation. We consider a single network derived from bacteriophage $位$, and construct a two-parameter deterministic model describing the temporal evolution of the concentration of $位$ repressor protein. Bistability in the steady-state protein concentration arises naturally, and we show how the bistable regime is enhanced with the addition of the first operator site in the promotor region. We then show how additive and multiplicative external noise can be used to regulate expression. In the additive case, we demonstrate the utility of such control through the construction of a protein switch, whereby protein production is turned ``on&#39;&#39; and ``off&#39;&#39; using short noise pulses. In the multiplicative case, we show that small deviations in the transcription rate can lead to large fluctuations in the production of protein, and describe how these fluctuations can be used to amplify protein production significantly. These novel results suggest that an external noise source could be used as a switch and/or amplifier for gene expression. Such a development could have important implications for gene therapy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0003105v1-abstract-full').style.display = 'none'; document.getElementById('physics/0003105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Natl. Acad. Sci. USA, Vol. 97, Issue 5, 2075-2080, February 29, 2000; http://www.pnas.org/cgi/content/full/97/5/2075 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10