CINXE.COM
Search results for: in situ production
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: in situ production</title> <meta name="description" content="Search results for: in situ production"> <meta name="keywords" content="in situ production"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="in situ production" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="in situ production"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8095</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: in situ production</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8095</span> Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20Gobara">Heba M. Gobara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20M.%20El-Naggar"> Ahmed A. M. El-Naggar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20S.%20El-Sayed"> Rasha S. El-Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20A.%20AlKahlawy"> Amal A. AlKahlawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysts" title=" photocatalysts"> photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=Graphene" title=" Graphene"> Graphene</a> </p> <a href="https://publications.waset.org/abstracts/89204/titania-assisted-metal-organic-framework-matrix-for-elevated-hydrogen-generation-combined-with-the-production-of-graphene-sheets-through-water-splitting-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8094</span> Prediction of in situ Permeability for Limestone Rock Using Rock Quality Designation Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20T.%20Farid">Ahmed T. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Rizwan"> Muhammed Rizwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geotechnical study for evaluating soil or rock permeability is a highly important parameter. Permeability values for rock formations are more difficult for determination than soil formation as it is an effect of the rock quality and its fracture values. In this research, the prediction of in situ permeability of limestone rock formations was predicted. The limestone rock permeability was evaluated using Lugeon tests (in-situ packer permeability). Different sites which spread all over the Riyadh region of Saudi Arabia were chosen to conduct our study of predicting the in-situ permeability of limestone rock. Correlations were deducted between the values of in-situ permeability of the limestone rock with the value of the rock quality designation (RQD) calculated during the execution of the boreholes of the study areas. The study was performed for different ranges of RQD values measured during drilling of the sites boreholes. The developed correlations are recommended for the onsite determination of the in-situ permeability of limestone rock only. For the other sedimentary formations of rock, more studies are needed for predicting the actual correlations related to each type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%20situ" title="In situ">In situ</a>, <a href="https://publications.waset.org/abstracts/search?q=packer" title=" packer"> packer</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=rock" title=" rock"> rock</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/64850/prediction-of-in-situ-permeability-for-limestone-rock-using-rock-quality-designation-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8093</span> In Situ Production of Nano-Cu on a Cotton Fabric Surface by Ink-Jet Printing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Zoghi">N. Zoghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Olya"> M. E. Olya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nano-Cu particles were produced on cotton fabric substrate by ink-jet printing technology with water-soluble ink, which was based on copper. The surface tension and viscosity of the prepared inks were evaluated. The ink-jet printing process was repeated 1, 3, and 5 times in order to evaluate variations in the optical properties by changing thickness of printed film. Following initial drying of the printed film, the samples were annealed at different temperatures (150 °C, 200 °C and 250 °C) to determine the optimum temperature for the parameters set out in this experiment. The prepared nano-Cu particles were characterized by XRD and UV spectroscopy. The appearance of printed image and the nano-Cu particles morphology were observed by SEM. The results demonstrated that the ink-jet printing technology can be used to produce nano-particles on the cotton fabrics surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ink-jet%20printing" title="ink-jet printing">ink-jet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-cu" title=" nano-cu"> nano-cu</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20ink" title=" fabric ink"> fabric ink</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20production" title=" in situ production"> in situ production</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=water-soluble%20ink" title=" water-soluble ink"> water-soluble ink</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/35338/in-situ-production-of-nano-cu-on-a-cotton-fabric-surface-by-ink-jet-printing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8092</span> English Theticity and Focus Expression in Spanish Heritage Speakers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Leal-Arenas">Sebastian Leal-Arenas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> English uses in-situ Nuclear Stress (NS) to express the meanings of theticity and focus. The NS is phonetically represented by an increase in duration, intensity, and pitch range. On the other hand, Spanish conveys the same meanings by aligning the constituent that carries the NS to the end of the sentence via word-order movement. However, little is known about heritage speakers’ production of theticity and focus in English or Spanish. The present study investigates heritage speakers’ production of thetic and subject focus statements. Participants (n = 11) were heritage speakers of Spanish with varying proficiency enrolled in a writing course at a university in the United States. In the production task, participants observed contextualized images and uttered a sentence to answer a provided question. Duration, intensity, and F0 peak were the correlates to stress considered in this investigation. Results indicated that participants tended to present an intonation closer to what is expected in English monolinguals in subject-focus statements than in thetic sentences. However, participants with lower Spanish proficiency used in-situ NS placement in thetic statements more often than those with higher proficiency. Results are discussed in terms of the production patterns observed in heritage speakers with emphasis on the role of language dominance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=focus" title="focus">focus</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage%20speakers" title=" heritage speakers"> heritage speakers</a>, <a href="https://publications.waset.org/abstracts/search?q=prosody" title=" prosody"> prosody</a>, <a href="https://publications.waset.org/abstracts/search?q=theticity" title=" theticity"> theticity</a> </p> <a href="https://publications.waset.org/abstracts/175788/english-theticity-and-focus-expression-in-spanish-heritage-speakers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8091</span> The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Zhao">Lixin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Genmao%20Zhou"> Genmao Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%2BO%E2%82%82%20ISL" title="CO₂+O₂ ISL">CO₂+O₂ ISL</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20production" title=" industrial production"> industrial production</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20field%20layout" title=" well field layout"> well field layout</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium%20processing" title=" uranium processing"> uranium processing</a> </p> <a href="https://publications.waset.org/abstracts/100421/the-fundamental-research-and-industrial-application-on-co2o2-in-situ-leaching-process-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8090</span> NFC Kenaf Core Graphene Paper: In-situ Method Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Izzati">M. A. Izzati</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rosazley"> R. Rosazley</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Fareezal"> A. W. Fareezal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Shazana"> M. Z. Shazana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rushdan"> I. Rushdan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jani"> M. Jani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic probe were using to produce nanofibrillated cellulose (NFC) kenaf core. NFC kenaf core and graphene was mixed using in-situ method with the 5V voltage for 24 hours. The resulting NFC graphene paper was characterized by field emission scanning electron microscopy (FESEM), fourier transformed infrared (FTIR) spectra and thermogavimetric analysis (TGA). The properties of NFC kenaf core graphene paper are compared with properties of pure NFC kenaf core paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NFC" title="NFC">NFC</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20core" title=" kenaf core"> kenaf core</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20method" title=" in-situ method"> in-situ method</a> </p> <a href="https://publications.waset.org/abstracts/17245/nfc-kenaf-core-graphene-paper-in-situ-method-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8089</span> Correlation Results Based on Magnetic Susceptibility Measurements by in-situ and Ex-Situ Measurements as Indicators of Environmental Changes Due to the Fertilizer Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurin%20Amalina%20Widityani">Nurin Amalina Widityani</a>, <a href="https://publications.waset.org/abstracts/search?q=Adinda%20Syifa%20%20Azhari"> Adinda Syifa Azhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Twin%20Aji%20Kusumagiani"> Twin Aji Kusumagiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20%20Agustine"> Eleonora Agustine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fertilizer industry activities contribute to environmental changes. Changes to the environment became one of a few problems in this era of globalization. Parameters that can be seen as criteria to identify changes in the environment can be seen from the aspects of physics, chemistry, and biology. One aspect that can be assessed quickly and efficiently to describe environmental change is the aspect of physics, one of which is the value of magnetic susceptibility (χ). The rock magnetism method can be used as a proxy indicator of environmental changes, seen from the value of magnetic susceptibility. The rock magnetism method is based on magnetic susceptibility studies to measure and classify the degree of pollutant elements that cause changes in the environment. This research was conducted in the area around the fertilizer plant, with five coring points on each track, each coring point a depth of 15 cm. Magnetic susceptibility measurements were performed by in-situ and ex-situ. In-situ measurements were carried out directly by using the SM30 tool by putting the tools on the soil surface at each measurement point and by that obtaining the value of the magnetic susceptibility. Meanwhile, ex-situ measurements are performed in the laboratory by using the Bartington MS2B tool’s susceptibility, which is done on a coring sample which is taken every 5 cm. In-situ measurement shows results that the value of magnetic susceptibility at the surface varies, with the lowest score on the second and fifth points with the -0.81 value and the highest value at the third point, with the score of 0,345. Ex-situ measurements can find out the variations of magnetic susceptibility values at each depth point of coring. At a depth of 0-5 cm, the value of the highest XLF = 494.8 (x10-8m³/kg) is at the third point, while the value of the lowest XLF = 187.1 (x10-8m³/kg) at first. At a depth of 6-10 cm, the highest value of the XLF was at the second point, which was 832.7 (x10-8m³/kg) while the lowest XLF is at the first point, at 211 (x10-8m³/kg). At a depth of 11-15 cm, the XLF’s highest value = 857.7 (x10-8m³/kg) is at the second point, whereas the value of the lowest XLF = 83.3 (x10-8m³/kg) is at the fifth point. Based on the in situ and exsit measurements, it can be seen that the highest magnetic susceptibility values from the surface samples are at the third point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20susceptibility" title="magnetic susceptibility">magnetic susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer%20plant" title=" fertilizer plant"> fertilizer plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartington%20MS2B" title=" Bartington MS2B"> Bartington MS2B</a>, <a href="https://publications.waset.org/abstracts/search?q=SM30" title=" SM30"> SM30</a> </p> <a href="https://publications.waset.org/abstracts/65609/correlation-results-based-on-magnetic-susceptibility-measurements-by-in-situ-and-ex-situ-measurements-as-indicators-of-environmental-changes-due-to-the-fertilizer-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8088</span> Influence of Processing Parameters in Selective Laser Melting on the Microstructure and Mechanical Properties of Ti/Tin Composites With in-situ and ex-situ Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20S%C3%A1nchez%20de%20Rojas%20Candela">C. Sánchez de Rojas Candela</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Riquelme"> A. Riquelme</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rodrigo"> P. Rodrigo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Escalera-Rodr%C3%ADguez"> M. D. Escalera-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Torres"> B. Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rams"> J. Rams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective laser melting is one of the most commonly used AM techniques. In it, a thin layer of metallic powder is deposited, and a laser is used to melt selected zones. The accumulation of layers, each one molten in the preselected zones, gives rise to the formation of a 3D sample with a nearly arbitrary design. To ensure that the properties of the final parts match those of the powder, all the process is carried out in an inert atmosphere, preferentially Ar, although this gas could be substituted. Ti6Al4V alloy is widely used in multiple industrial applications such as aerospace, maritime transport and biomedical, due to its properties. However, due to the demanding requirements of these applications, greater hardness and wear resistance are necessary, together with a better machining capacity, which currently limits its commercialization. To improve these properties, in this study, Selective Laser Melting (SLM) is used to manufacture Ti/TiN metal matrix composites with in-situ and ex-situ titanium nitride reinforcement where the scanning speed is modified (from 28.5 up to 65 mm/s) to study the influence of the processing parameters in SLM. A one-step method of nitriding the Ti6Al4V alloy is carried out to create in-situ TiN reinforcement in a reactive atmosphere and it is compared with ex-situ composites manufactured by previous mixture of both the titanium alloy powder and the ceramic reinforcement particles. The microstructure and mechanical properties of the different Ti/TiN composite materials have been analyzed. As a result, the existence of a similar matrix has been confirmed in in-situ and ex-situ fabrications and the growth mechanisms of the nitrides have been studied. An increase in the mechanical properties with respect to the initial alloy has been observed in both cases and related to changes in their microstructure. Specifically, a greater improvement (around 30.65%) has been identified in those manufactured by the in-situ method at low speeds although other properties such as porosity must be improved for their future industrial applicability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-situ%20reinforcement" title="in-situ reinforcement">in-situ reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=nitriding%20reaction" title=" nitriding reaction"> nitriding reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20nitride" title=" titanium nitride"> titanium nitride</a> </p> <a href="https://publications.waset.org/abstracts/150850/influence-of-processing-parameters-in-selective-laser-melting-on-the-microstructure-and-mechanical-properties-of-titin-composites-with-in-situ-and-ex-situ-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8087</span> Control of Staphylococcus aureus in Meat System by in situ and ex situ Bacteriocins from Lactobacillus sakei and Pediococcus spp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naimi">M. Naimi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Khaled"> M. B. Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study consisted of an applied test in meat system to assess the effectiveness of three bio agents bacteriocinproducing strains: Lm24: Lactobacillus sakei, Lm14and Lm25: Pediococcus spp. Two tests were carried out: The ex-situ test was intended for three batches added with crude bacteriocin solutions at 12.48 AU/ml for Lm25 and 8.4 AU/ml for Lm14 and Lm24. However, the in situ one consisted of four batches; three of them inoculated with one bacteriocinogenic Lm25, Lm14, Lm24, respectively. The fourth one was used in mixture: Lm14+m24 at approximately of 107 CFU/ml. The two used tests were done in the presence of the pathogen St. aureus ATCC 6538, as a test strain at 103 CFU/ml. Another batch served as a positive or a negative control was used too. The incubation was performed at 7°C. Total viable counts, staphylococci and lactic acid bacteria, at the beginning and at selected times with interval of three days were enumerated. Physicochemical determinations (except for in situ test): pH, dry mater, sugars, fat and total protein, at the beginning and at end of the experiment, were done, according to the international norms. Our results confirmed the ex situ effectiveness. Furthermore, the batches affected negatively the total microbial load over the incubation days, and showed a significant regression in staphylococcal load at day seven, for Lm14, Lm24, and Lm25 of 0.73, 2.11, and 2.4 log units. It should be noticed that, at the last day of culture, staphylococcal load was nil for the three batches. In the in situ test, the cultures displayed less inhibitory attitude and recorded a decrease in staphylococcal load, for Lm14, Lm24, Lm25, Lm14+m24 of 0.73, 0.20, 0.86, 0.032 log units. Therefore, physicochemical analysis for Lm14, Lm24, Lm25, Lm14+m24 showed an increase in pH from 5.50 to 5.77, 6.18, 5.96, 7.22, a decrease in dry mater from 7.30% to 7.05%, 6.87%, 6.32%, 6.00%.This result reflects the decrease in fat ranging from 1.53% to 1.49%, 1.07%, 0.99%, 0.87%; and total protein from 6.18% to 5.25%, 5.56%, 5.37%, 5.5%. This study suggests that the use of selected strains as Lm25 could lead to the best results and would help in preserving and extending the shelf life of lamb meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title="biocontrol">biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ" title=" in situ"> in situ</a>, <a href="https://publications.waset.org/abstracts/search?q=ex%20situ" title=" ex situ"> ex situ</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20system" title=" meat system"> meat system</a>, <a href="https://publications.waset.org/abstracts/search?q=St.%20aureus" title=" St. aureus"> St. aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20sakei" title=" Lactobacillus sakei"> Lactobacillus sakei</a>, <a href="https://publications.waset.org/abstracts/search?q=Pediococcus%20spp." title=" Pediococcus spp."> Pediococcus spp.</a> </p> <a href="https://publications.waset.org/abstracts/1994/control-of-staphylococcus-aureus-in-meat-system-by-in-situ-and-ex-situ-bacteriocins-from-lactobacillus-sakei-and-pediococcus-spp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8086</span> Urea Treatment of Low Dry Matter Oat Silage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor-ul-Ain">Noor-ul-Ain</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir%20Khan"> Muhammad Tahir Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashif%20Khan"> Kashif Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeela%20Ajmal"> Adeela Ajmal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mustafa"> Hamid Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to evaluate the preservative and upgrading potential of urea (70g/kg DM) added to high moisture oat silage at laboratory scale trial and urea was hydrolysed 95%. Microbial activity measured by pH and volatile fatty acids (VFA) and lactate production was reduced (p<0.001) by the urea addition. The pH of oat silage (without treated) was measured 5.7 and increased up to 8.00 on average while; volatile fatty acids (VFA) concentration was decreased. Relative proportions of fermentation acids changed after urea addition, increasing the acetate and butyrate and decreasing the propionate and lactate proportions. The addition of urea to oat silages increased (P<0.001) water soluble and ammonium nitrogen of the forage. These nitrogen fractions represented more than 40% of total nitrogen. After urea addition, total nitrogen content of oat silages increased from 21.0 g/kg DM to 28 g/kg DM. Application of urea at a rate of 70 g/kg DM significantly increased (P<0.001) the in situ degradation of neutral-detergent fibre after 48h of rumen incubation (NDF-situ). The NDF-situ was 200 g/kg NDF higher on oat forages ensiled with urea than on oat forages ensiled without urea. Oat silages can be effectively preserved and upgraded by ensiling with 70 g urea/kg dry matter. Further studies are required to evaluate voluntary intake of this forage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oat" title="oat">oat</a>, <a href="https://publications.waset.org/abstracts/search?q=silage" title=" silage"> silage</a>, <a href="https://publications.waset.org/abstracts/search?q=urea" title=" urea"> urea</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=forage" title=" forage"> forage</a> </p> <a href="https://publications.waset.org/abstracts/42369/urea-treatment-of-low-dry-matter-oat-silage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8085</span> Exploration of in-situ Product Extraction to Increase Triterpenoid Production in Saccharomyces Cerevisiae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Dianat%20Sabet%20Gilani">Mariam Dianat Sabet Gilani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20M.%20Blank"> Lars M. Blank</a>, <a href="https://publications.waset.org/abstracts/search?q=Birgitta%20E.%20Ebert"> Birgitta E. Ebert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant-derived lupane-type, pentacyclic triterpenoids are biologically active compounds that are highly interesting for applications in medical, pharmaceutical, and cosmetic industries. Due to the low abundance of these valuable compounds in their natural sources, and the environmentally harmful downstream process, alternative production methods, such as microbial cell factories, are investigated. Engineered Saccharomyces cerevisiae strains, harboring the heterologous genes for betulinic acid synthesis, can produce up to 2 g L-1 triterpenoids, showing high potential for large-scale production of triterpenoids. One limitation of the microbial synthesis is the intracellular product accumulation. It not only makes cell disruption a necessary step in the downstream processing but also limits productivity and product yield per cell. To overcome these restrictions, the aim of this study is to develop an in-situ extraction method, which extracts triterpenoids into a second organic phase. Such a continuous or sequential product removal from the biomass keeps the cells in an active state and enables extended production time or biomass recycling. After screening of twelve different solvents, selected based on product solubility, biocompatibility, as well as environmental and health impact, isopropyl myristate (IPM) was chosen as a suitable solvent for in-situ product removal from S. cerevisiae. Impedance-based single-cell analysis and off-gas measurement of carbon dioxide emission showed that cell viability and physiology were not affected by the presence of IPM. Initial experiments demonstrated that after the addition of 20 vol % IPM to cultures in the stationary phase, 40 % of the total produced triterpenoids were extracted from the cells into the organic phase. In future experiments, the application of IPM in a repeated batch process will be tested, where IPM is added at the end of each batch run to remove triterpenoids from the cells, allowing the same biocatalysts to be used in several sequential batch steps. Due to its high biocompatibility, the amount of IPM added to the culture can also be increased to more than 20 vol % to extract more than 40 % triterpenoids in the organic phase, allowing the cells to produce more triterpenoids. This highlights the potential for the development of a continuous large-scale process, which allows biocatalysts to produce intracellular products continuously without the necessity of cell disruption and without limitation of the cell capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=betulinic%20acid" title="betulinic acid">betulinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatible%20solvent" title=" biocompatible solvent"> biocompatible solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20extraction" title=" in-situ extraction"> in-situ extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=isopropyl%20myristate" title=" isopropyl myristate"> isopropyl myristate</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20development" title=" process development"> process development</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=triterpenoids" title=" triterpenoids"> triterpenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/127891/exploration-of-in-situ-product-extraction-to-increase-triterpenoid-production-in-saccharomyces-cerevisiae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8084</span> In-situ Raman Spectroscopy of Flexible Graphene Oxide Films Containing Pt Nanoparticles in The Presense of Atomic Hydrogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moafi">Ali Moafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Kalantarzadeh"> Kourosh Kalantarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Kaner"> Richard Kaner</a>, <a href="https://publications.waset.org/abstracts/search?q=Parviz%20Parvin"> Parviz Parvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Asl%20Soleimani"> Ebrahim Asl Soleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Dougal%20McCulloch"> Dougal McCulloch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-situ Raman spectroscopy of flexible graphene-oxide films examined upon exposure to hydrogen gas, air, and synthetic air. The changes in D and G peaks are attributed to defects responding to atomic hydrogen spilled over from the catalytic behavior of Pt nanoparticles distributed all over the film. High-resolution transmission electron microscopy images (HRTEM) as well as electron energy loss spectroscopy (EELS) were carried out to define the density of the samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20Raman%20Spectroscopy" title="in situ Raman Spectroscopy">in situ Raman Spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=EELS" title=" EELS"> EELS</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20hydrogen" title=" atomic hydrogen"> atomic hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/23835/in-situ-raman-spectroscopy-of-flexible-graphene-oxide-films-containing-pt-nanoparticles-in-the-presense-of-atomic-hydrogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8083</span> The Concentration of Formaldehyde in Rainwater and Typhoon Rainwater at Sakai City, Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinh%20Nguyen%20Nhu%20Bao">Chinh Nguyen Nhu Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hien%20To%20Thi"> Hien To Thi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norimichi%20Takenaka"> Norimichi Takenaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formaldehyde (HCHO) concentrations in rainwater including in tropical storms in Sakai City, Osaka, Japan have been measured continuously during rain event by developed chemiluminescence method. The level of formaldehyde was ranged from 15 µg/L to 500 µg/L. The high concentration of HCHO in rainwater is related to the wind direction from the south and west sides of Sakai City where manufactures related to chemicals, oil-refinery, and steel. The in-situ irradiated experiment on rainwater sample was conducted to prove the aqueous phase photo-production of HCHO and the degradation of HCHO. In the daytime, the aqueous phase photolysis is the source of HCHO in rainwater (4.52 ± 5.74 µg/L/h for UV light source in-situ condition, 2.84-8.96 µg/L/h under sunlight). However, in the night time, the degradation is the function of microorganism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemiluminescence" title="chemiluminescence">chemiluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=formaldehyde" title=" formaldehyde"> formaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=rainwater" title=" rainwater"> rainwater</a>, <a href="https://publications.waset.org/abstracts/search?q=typhoon" title=" typhoon"> typhoon</a> </p> <a href="https://publications.waset.org/abstracts/104279/the-concentration-of-formaldehyde-in-rainwater-and-typhoon-rainwater-at-sakai-city-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8082</span> Detection of Nanotoxic Material Using DNA Based QCM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juneseok%20You">Juneseok You</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanho%20Park"> Chanho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuehwan%20Jang"> Kuehwan Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungsoo%20Na"> Sungsoo Na</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotoxic%20material" title="nanotoxic material">nanotoxic material</a>, <a href="https://publications.waset.org/abstracts/search?q=qcm" title=" qcm"> qcm</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20sensing" title=" in situ sensing"> in situ sensing</a> </p> <a href="https://publications.waset.org/abstracts/41494/detection-of-nanotoxic-material-using-dna-based-qcm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8081</span> Factors Affecting the Results of in vitro Gas Production Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Kahraman">O. Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Alatas"> M. S. Alatas</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20Citil"> O. B. Citil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In determination of values of feeds which, are used in ruminant nutrition, different methods are used like in vivo, in vitro, in situ or in sacco. Generally, the most reliable results are taken from the in vivo studies. But because of the disadvantages like being hard, laborious and expensive, time consuming, being hard to keep the experiment conditions under control and too much samples are needed, the in vitro techniques are more preferred. The most widely used in vitro techniques are two-staged digestion technique and gas production technique. In vitro gas production technique is based on the measurement of the CO2 which is released as a result of microbial fermentation of the feeds. In this review, the factors affecting the results obtained from in vitro gas production technique (Hohenheim Feed Test) were discussed. Some factors must be taken into consideration when interpreting the findings obtained in these studies and also comparing the findings reported by different researchers for the same feeds. These factors were discussed in 3 groups: factors related to animal, factors related to feeds and factors related with differences in the application of method. These factors and their effects on the results were explained. Also it can be concluded that the use of in vitro gas production technique in feed evaluation routinely can be contributed to the comprehensive feed evaluation, but standardization is needed in this technique to attain more reliable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%20vitro" title="In vitro">In vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20production%20technique" title=" gas production technique"> gas production technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Hohenheim%20feed%20test" title=" Hohenheim feed test"> Hohenheim feed test</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization" title=" standardization"> standardization</a> </p> <a href="https://publications.waset.org/abstracts/26010/factors-affecting-the-results-of-in-vitro-gas-production-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">599</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8080</span> Innovative Textile Design Using in-situ Ag NPs incorporation into Natural Fabric Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rehan">M. Rehan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mashaly"> H. Mashaly</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Emam"> H. Emam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abou%20El-Kheir"> A. Abou El-Kheir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mowafi">S. Mowafi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we will study a simple highly efficient technique to impart multi functional properties to different fabric substrates by in situ Ag NPs incorporation into fabric matrix. Ag NPs as a coloration and antimicrobial agent were prepared in situ incorporation into fabric matrix (Cotton and Wool) by using trisodium citrate as reducing and stabilizing agent. The Ag NPs treated fabric (Cotton and Wool) showed different color because of localized surface Plasmon resonance (LSPR) property of Ag NPs. The formation of Ag NPs was confirmed by UV/Vis spectra for the supernatant solutions and The Ag NPs treated fabric (Cotton and Wool) were characterized by scanning electron microscopy (SEM) and X-ray photo electron spectroscopy (XPS). The dependence of color properties characterized by colorimetric, fastness and antibacterial properties evaluated by Escherichia coli using counting method and the reaction parameters were studied. The results indicate that, the in situ Ag NPs incorporation into fabric matrix approach can simultaneously impart colorant and antimicrobial properties into different fabric substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%20NPs" title="Ag NPs">Ag NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=coloration" title=" coloration"> coloration</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a> </p> <a href="https://publications.waset.org/abstracts/11113/innovative-textile-design-using-in-situ-ag-nps-incorporation-into-natural-fabric-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8079</span> The Power of in situ Characterization Techniques in Heterogeneous Catalysis: A Case Study of Deacon Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramzi%20Farra">Ramzi Farra</a>, <a href="https://publications.waset.org/abstracts/search?q=Detre%20Teschner"> Detre Teschner</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Willinger"> Marc Willinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Schl%C3%B6gl"> Robert Schlögl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The conventional approach of characterizing solid catalysts under static conditions, i.e., before and after reaction, does not provide sufficient knowledge on the physicochemical processes occurring under dynamic conditions at the molecular level. Hence, the necessity of improving new in situ characterizing techniques with the potential of being used under real catalytic reaction conditions is highly desirable. In situ Prompt Gamma Activation Analysis (PGAA) is a rapidly developing chemical analytical technique that enables us experimentally to assess the coverage of surface species under catalytic turnover and correlate these with the reactivity. The catalytic HCl oxidation (Deacon reaction) over bulk ceria will serve as our example. Furthermore, the in situ Transmission Electron Microscopy is a powerful technique that can contribute to the study of atmosphere and temperature induced morphological or compositional changes of a catalyst at atomic resolution. The application of such techniques (PGAA and TEM) will pave the way to a greater and deeper understanding of the dynamic nature of active catalysts. Experimental/Methodology: In situ Prompt Gamma Activation Analysis (PGAA) experiments were carried out to determine the Cl uptake and the degree of surface chlorination under reaction conditions by varying p(O2), p(HCl), p(Cl2), and the reaction temperature. The abundance and dynamic evolution of OH groups on working catalyst under various steady-state conditions were studied by means of in situ FTIR with a specially designed homemade transmission cell. For real in situ TEM we use a commercial in situ holder with a home built gas feeding system and gas analytics. Conclusions: Two complimentary in situ techniques, namely in situ PGAA and in situ FTIR were utilities to investigate the surface coverage of the two most abundant species (Cl and OH). The OH density and Cl uptake were followed under multiple steady-state conditions as a function of p(O2), p(HCl), p(Cl2), and temperature. These experiments have shown that, the OH density positively correlates with the reactivity whereas Cl negatively. The p(HCl) experiments give rise to increased activity accompanied by Cl-coverage increase (opposite trend to p(O2) and T). Cl2 strongly inhibits the reaction, but no measurable increase of the Cl uptake was found. After considering all previous observations we conclude that only a minority of the available adsorption sites contribute to the reactivity. In addition, the mechanism of the catalysed reaction was proposed. The chlorine-oxygen competition for the available active sites renders re-oxidation as the rate-determining step of the catalysed reaction. Further investigations using in situ TEM are planned and will be conducted in the near future. Such experiments allow us to monitor active catalysts at the atomic scale under the most realistic conditions of temperature and pressure. The talk will shed a light on the potential and limitations of in situ PGAA and in situ TEM in the study of catalyst dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CeO2" title="CeO2">CeO2</a>, <a href="https://publications.waset.org/abstracts/search?q=deacon%20process" title=" deacon process"> deacon process</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20PGAA" title=" in situ PGAA"> in situ PGAA</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20TEM" title=" in situ TEM"> in situ TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20FTIR" title=" in situ FTIR"> in situ FTIR</a> </p> <a href="https://publications.waset.org/abstracts/29519/the-power-of-in-situ-characterization-techniques-in-heterogeneous-catalysis-a-case-study-of-deacon-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8078</span> Low-Cost Space-Based Geoengineering: An Assessment Based on Self-Replicating Manufacturing of in-Situ Resources on the Moon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alex%20Ellery">Alex Ellery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geoengineering approaches to climate change mitigation are unpopular and regarded with suspicion. Of these, space-based approaches are regarded as unworkable and enormously costly. Here, a space-based approach is presented that is modest in cost, fully controllable and reversible, and acts as a natural spur to the development of solar power satellites over the longer term as a clean source of energy. The low-cost approach exploits self-replication technology which it is proposed may be enabled by 3D printing technology. Self-replication of 3D printing platforms will enable mass production of simple spacecraft units. Key elements being developed are 3D-printable electric motors and 3D-printable vacuum tube-based electronics. The power of such technologies will open up enormous possibilities at low cost including space-based geoengineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20resource%20utilization" title=" in-situ resource utilization"> in-situ resource utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=self-replication%20technology" title=" self-replication technology"> self-replication technology</a>, <a href="https://publications.waset.org/abstracts/search?q=space-based%20geoengineering" title=" space-based geoengineering"> space-based geoengineering</a> </p> <a href="https://publications.waset.org/abstracts/32131/low-cost-space-based-geoengineering-an-assessment-based-on-self-replicating-manufacturing-of-in-situ-resources-on-the-moon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8077</span> Nano-Enhanced In-Situ and Field Up-Gradation of Heavy Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devesh%20Motwani">Devesh Motwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjana%20S.%20Baruah"> Ranjana S. Baruah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prime incentive behind up gradation of heavy oil is to increase its API gravity for ease of transportation to refineries, thus expanding the market access of bitumen-based crude to the refineries. There has always been a demand for an integrated approach that aims at simplifying the upgrading scheme, making it adaptable to the production site in terms of economics, environment, and personnel safety. Recent advances in nanotechnology have facilitated the development of two lines of heavy oil upgrading processes that make use of nano-catalysts for producing upgraded oil: In Situ Upgrading and Field Upgrading. The In-Situ upgrading scheme makes use of Hot Fluid Injection (HFI) technique where heavy fractions separated from produced oil are injected into the formations to reintroduce heat into the reservoir along with suspended nano-catalysts and hydrogen. In the presence of hydrogen, catalytic exothermic hydro-processing reactions occur that produce light gases and volatile hydrocarbons which contribute to increased oil detachment from the rock resulting in enhanced recovery. In this way the process is a combination of enhanced heavy oil recovery along with up gradation that effectively handles the heat load within the reservoirs, reduces hydrocarbon waste generation and minimizes the need for diluents. By eliminating most of the residual oil, the Synthetic Crude Oil (SCO) is much easier to transport and more amenable for processing in refineries. For heavy oil reservoirs seriously impacted by the presence of aquifers, the nano-catalytic technology can still be implemented on field though with some additional investments and reduced synergies; however still significantly serving the purpose of production of transportable oil with substantial benefits with respect to both large scale upgrading, and known commercial field upgrading technologies currently on the market. The paper aims to delve deeper into the technology discussed, and the future compatibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=upgrading" title="upgrading">upgrading</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20crude%20oil" title=" synthetic crude oil"> synthetic crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-catalytic%20technology" title=" nano-catalytic technology"> nano-catalytic technology</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibility" title=" compatibility"> compatibility</a> </p> <a href="https://publications.waset.org/abstracts/21782/nano-enhanced-in-situ-and-field-up-gradation-of-heavy-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8076</span> An Easy-Applicable Method for In situ Silver Nanoparticles Preparation into Wool Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Mowafi">Salwa Mowafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Rehan"> Mohamed Rehan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20Kafafy"> Hany Kafafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, three different systems including room temperature, conventional water bath heating and microwave irradiation technique will be employed in the fabrication of silver nanoparticle-wool fibers. The silver nanoparticles will be synthesized in-situ incorporated into wool fibers under redox active bio-template of wool protein which facilitates the reduction of Ag+ to nanoparticulate Ag0. Silver NPs incorporated wool fiber will be characterized by scanning electron microscopy, energy dispersive X-ray, FTIR, TGA, silver content and X-ray photoelectron spectroscopy. The mechanism of binding Ag NPs in-situ incorporated wool fibers matrix will be discussed. The effect of silver nanoparticles on the coloration, antimicrobial, UV-protection and catalytic properties of the wool fibers will be evaluated. The overall results of this study indicate that the Ag NPs in-situ incorporated wool fibers will be applied as colorants for wool fibers with improving in its multi-functionality properties. So, this study provides a simple approach for innovative protein fibers design by applying the optical properties of Plasmonic noble metal nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20irradiation%20technique" title="microwave irradiation technique">microwave irradiation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-functionality%20properties" title=" multi-functionality properties"> multi-functionality properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20fibers" title=" wool fibers"> wool fibers</a> </p> <a href="https://publications.waset.org/abstracts/52765/an-easy-applicable-method-for-in-situ-silver-nanoparticles-preparation-into-wool-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8075</span> Design of New Alloys from Al-Ti-Zn-Mg-Cu System by in situ Al3Ti Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joao%20Paulo%20De%20Oliveira%20Paschoal">Joao Paulo De Oliveira Paschoal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Victor%20Rodrigues%20Dantas"> Andre Victor Rodrigues Dantas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Almeida%20Da%20Silva%20Fernandes"> Fernando Almeida Da Silva Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugenio%20Jose%20Zoqui"> Eugenio Jose Zoqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the adoption of High Pressure Die Casting technologies for the production of automotive bodies by the famous Giga Castings, the technology of processing metal alloys in the semi-solid state (SSM) becomes interesting because it allows for higher product quality, such as lower porosity and shrinkage voids. However, the alloys currently processed are derived from the foundry industry and are based on the Al-Si-(Cu-Mg) system. High-strength alloys, such as those of the Al-Zn-Mg-Cu system, are not usually processed, but the benefits of using this system, which is susceptible to heat treatments, can be associated with the advantages obtained by processing in the semi-solid state, promoting new possibilities for production routes and improving product performance. The current work proposes a new range of alloys to be processed in the semi-solid state through the modification of aluminum alloys of the Al-Zn-Mg-Cu system by the in-situ formation of Al3Ti intermetallic. Such alloys presented the thermodynamic stability required for semi-solid processing, with a sensitivity below 0.03(Celsius degrees * -1), in a wide temperature range. Furthermore, these alloys presented high hardness after aging heat treatment, reaching 190HV. Therefore, they are excellent candidates for the manufacture of parts that require low levels of defects and high mechanical strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloys" title="aluminum alloys">aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=semisolid%20metals%20processing" title=" semisolid metals processing"> semisolid metals processing</a>, <a href="https://publications.waset.org/abstracts/search?q=intermetallics" title=" intermetallics"> intermetallics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20aluminide" title=" titanium aluminide"> titanium aluminide</a> </p> <a href="https://publications.waset.org/abstracts/194660/design-of-new-alloys-from-al-ti-zn-mg-cu-system-by-in-situ-al3ti-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8074</span> In-Situ Studies of Cyclohexane Oxidation Using Laser Raman Spectroscopy for the Refinement of Mechanism Based Kinetic Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christine%20Fr%C3%A4ulin">Christine Fräulin</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Schurr"> Daniela Schurr</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Shahidi%20Rad"> Hamed Shahidi Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerrit%20Waters"> Gerrit Waters</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCnter%20Rinke"> Günter Rinke</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Dittmeyer"> Roland Dittmeyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Nilles"> Michael Nilles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reaction mechanisms of many liquid-phase reactions in organic chemistry have not yet been sufficiently clarified. Process conditions of several hundred degrees celsius and pressures to ten megapascals complicate the sampling and the determination of kinetic data. Space resolved in-situ measurements promises new insights. A non-invasive in-situ measurement technique has the advantages that no sample preparation is necessary, there is no change in sample mixture before analysis and the sampling do no lead to interventions in the flow. Thus, the goal of our research was the development of a contact-free spatially resolved measurement technique for kinetic studies of liquid phase reaction under process conditions. Therefore we used laser Raman spectroscopy combined with an optical transparent microchannel reactor. To show the performance of the system we choose the oxidation of cyclohexane as sample reaction. Cyclohexane oxidation is an economically important process. The products are intermediates for caprolactam and adipic acid, which are starting materials for polyamide 6 and 6.6 production. To maintain high selectivities of 70 to 90 %, the reaction is performed in industry at a low conversion of about six percent. As Raman spectroscopy is usually very selective but not very sensitive the detection of the small product concentration in cyclohexane oxidation is quite challenging. To meet these requirements, an optical experimental setup was optimized to determine the concentrations by laser Raman spectroscopy with respect to good detection sensitivity. With this measurement technique space resolved kinetic studies of uncatalysed and homogeneous catalyzed cyclohexane oxidation were carried out to obtain details about the reaction mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-situ%20laser%20raman%20spectroscopy" title="in-situ laser raman spectroscopy">in-situ laser raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20resolved%20kinetic%20measurements" title=" space resolved kinetic measurements"> space resolved kinetic measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20catalysis" title=" homogeneous catalysis"> homogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a> </p> <a href="https://publications.waset.org/abstracts/2600/in-situ-studies-of-cyclohexane-oxidation-using-laser-raman-spectroscopy-for-the-refinement-of-mechanism-based-kinetic-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8073</span> Recovery of Rare Earths and Scandium from in situ Leaching Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxim%20S.%20Botalov">Maxim S. Botalov</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20%D0%9C.%20Titova"> Svetlana М. Titova</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20V.%20Smyshlyaev"> Denis V. Smyshlyaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Grigory%20M.%20Bunkov"> Grigory M. Bunkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20V.%20Kirillov"> Evgeny V. Kirillov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20V.%20Kirillov"> Sergey V. Kirillov</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxim%20A.%20Mashkovtsev"> Maxim A. Mashkovtsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20N.%20Rychkov"> Vladimir N. Rychkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In uranium production, in-situ leaching (ISL) with its relatively low cost has become an important technology. As the orebody containing uranium most often contains a considerable value of other metals, particularly rare earth metals it has rendered feasible to recover the REM from the barren ISL solutions, from which the major uranium content has been removed. Ural Federal University (UrFU, Ekaterinburg, Russia) have performed joint research on the development of industrial technologies for the extraction of REM and Scandium compounds from Uranium ISL solutions. Leaching experiments at UrFU have been supported with multicomponent solution model. The experimental work combines solvent extraction with advanced ion exchange methodology in a pilot facility capable of treating 500 kg/hr of solids. The pilot allows for the recovery of a 99% concentrate of scandium oxide and collective concentrate with over 50 % REM content, with further recovery of heavy and light REM concentrates (99%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=scandium" title=" scandium"> scandium</a> </p> <a href="https://publications.waset.org/abstracts/88125/recovery-of-rare-earths-and-scandium-from-in-situ-leaching-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8072</span> Formulation Development and Evaluation Chlorpheniramine Maleate Containing Nanoparticles Loaded Thermo Sensitive in situ Gel for Treatment of Allergic Rhinitis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Saini">Vipin Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar"> Manish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailendra%20Bhatt"> Shailendra Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandurangan"> A. Pandurangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to fabricate a thermo sensitive gel containing Chlorpheniramine maleate (CPM) loaded nanoparticles following intranasal administration for effective treatment of allergic rhinitis. Chitosan based nanoparticles were prepared by precipitation method followed by the addition of developed NPs within the Poloxamer 407 and carbopol 934P based mucoadhesive thermo-reversible gel. Developed formulations were evaluated for Particle size, PDI, % entrapment efficiency and % cumulative drug permeation. NP3 formulation was found to be optimized on the basis of minimum particle size (143.9 nm), maximum entrapment efficiency (80.10±0.414 %) and highest drug permeation (90.92±0.531 %). The optimized formulation NP3 was then formulated into thermo reversible in situ gel. This intensifies the contact between nasal mucosa and the drug, increases and facilitates the drug absorption which results in increased bioavailability. G4 formulation was selected as the optimize on the basis of gelation ability and mucoadhesive strength. Histology was carried out to examine the damage caused by the optimized G4 formulation. Results revealed no visual signs of tissue damage thus indicated safe nasal delivery of nanoparticulate in situ gel formulation G4. Thus, intranasal CPM NP-loaded in situ gel was found to be a promising formulation for the treatment of allergic rhinitis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20gel" title=" in situ gel"> in situ gel</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorpheniramine%20maleate" title=" chlorpheniramine maleate"> chlorpheniramine maleate</a>, <a href="https://publications.waset.org/abstracts/search?q=poloxamer%20407" title=" poloxamer 407"> poloxamer 407</a> </p> <a href="https://publications.waset.org/abstracts/82062/formulation-development-and-evaluation-chlorpheniramine-maleate-containing-nanoparticles-loaded-thermo-sensitive-in-situ-gel-for-treatment-of-allergic-rhinitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8071</span> Evaluation of Iranian Standard for Assessment of Liquefaction Potential of Cohesionless Soils Based on SPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayad">Reza Ziaie Moayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Kouhpeyma"> Azam Kouhpeyma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-situ testing is preferred to evaluate the liquefaction potential in cohesionless soils due to high disturbance during sampling. Although new in-situ methods with high accuracy have been developed, standard penetration test, the simplest and the oldest in-situ test, is still used due to the profusion of the recorded data. This paper reviews the Iranian standard of evaluating liquefaction potential in soils (codes 525) and compares the liquefaction assessment methods based on SPT results on cohesionless soil in this standard with the international standards. To this, methods for assessing liquefaction potential which are presented by Cetin et al. (2004), Boulanger and Idriss (2014) are compared with what is presented in standard 525. It is found that although the procedure used in Iranian standard of evaluating the potential of liquefaction has not been updated according to the new findings, it is a conservative procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesionless%20soil" title="cohesionless soil">cohesionless soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT" title=" SPT"> SPT</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20525" title=" standard 525"> standard 525</a> </p> <a href="https://publications.waset.org/abstracts/133623/evaluation-of-iranian-standard-for-assessment-of-liquefaction-potential-of-cohesionless-soils-based-on-spt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8070</span> In-situ Oxygen Enrichment for UCG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesola%20O.%20Orimoloye">Adesola O. Orimoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membranes" title="membranes">membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen-enrichment" title=" oxygen-enrichment"> oxygen-enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a> </p> <a href="https://publications.waset.org/abstracts/21622/in-situ-oxygen-enrichment-for-ucg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8069</span> In-situ Oxygen Enrichment for Underground Coal Gasification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesola%20O.%20Orimoloye">Adesola O. Orimoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membranes" title="membranes">membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen-enrichment" title=" oxygen-enrichment"> oxygen-enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a> </p> <a href="https://publications.waset.org/abstracts/21892/in-situ-oxygen-enrichment-for-underground-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8068</span> Solar Power Satellites: Reconsideration Based on Novel Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alex%20Ellery">Alex Ellery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar power satellites (SPS), despite their promise as a clean energy source, have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current $20,000/kg to < $200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to $2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many. Here, I present a novel approach to reduce the specific cost of solar power satellites to ~$1/kg by leveraging two enabling technologies – in-situ resource utilization and 3D printing. The power of such technologies will open up enormous possibilities for providing additional options for combating climate change whilst meeting demands for global energy. From the constraints imposed by in-situ resource utilization, a novel approach to solar energy conversion in SPS may be realized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20energy%20sources" title="clean energy sources">clean energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20resource%20utilisation" title=" in-situ resource utilisation"> in-situ resource utilisation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20power%20satellites" title=" solar power satellites"> solar power satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20emission" title=" thermionic emission"> thermionic emission</a> </p> <a href="https://publications.waset.org/abstracts/37681/solar-power-satellites-reconsideration-based-on-novel-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8067</span> In-Situ LDH Formation of Sodium Aluminate Activated Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Liu">Tao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingliang%20Yu"> Qingliang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20H.%20Brouwers"> H. J. H. Brouwers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the reaction products in the alkali-activated ground granulated blast furnace slag (AAS), the layered double hydroxides (LDHs) have a remarkable capacity of chloride and heavy metal ions absorption. The promotion of LDH phases in the AAS matrix can increase chloride resistance. The objective of this study is that use the different dosages of sodium aluminate to activate slag, consequently promoting the formation of in-situ LDH. The hydration kinetics of the sodium aluminate activated slag (SAAS) was tested by the isothermal calorimetry. Meanwhile, the reaction products were determined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The sodium hydroxide-activated slag is selected as the reference. The results of XRD, TGA, and FTIR showed that the formation of LDH in SAAS was increased by the aluminate dosages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20granulated%20blast%20furnace%20slag" title="ground granulated blast furnace slag">ground granulated blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20aluminate%20activated%20slag" title=" sodium aluminate activated slag"> sodium aluminate activated slag</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20LDH%20formation" title=" in-situ LDH formation"> in-situ LDH formation</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride%20absorption" title=" chloride absorption"> chloride absorption</a> </p> <a href="https://publications.waset.org/abstracts/143331/in-situ-ldh-formation-of-sodium-aluminate-activated-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8066</span> Parameters Identification of Granular Soils around PMT Test by Inverse Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Younes%20Abed">Younes Abed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granular%20soils" title="granular soils">granular soils</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20expansion" title=" cavity expansion"> cavity expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=pressuremeter%20test" title=" pressuremeter test"> pressuremeter test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20procedure" title=" identification procedure"> identification procedure</a> </p> <a href="https://publications.waset.org/abstracts/2474/parameters-identification-of-granular-soils-around-pmt-test-by-inverse-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=269">269</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=270">270</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=in%20situ%20production&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>