CINXE.COM

Search results for: titanium nitride

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: titanium nitride</title> <meta name="description" content="Search results for: titanium nitride"> <meta name="keywords" content="titanium nitride"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="titanium nitride" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="titanium nitride"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 521</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: titanium nitride</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> Titanium Nitride Nanoparticles for Biological Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Nazario%20Bayon">Nicole Nazario Bayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathima%20Prabhu%20Tumkur"> Prathima Prabhu Tumkur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nithin%20Krisshna%20Gunasekaran"> Nithin Krisshna Gunasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnan%20Prabhakaran"> Krishnan Prabhakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Hall"> Joseph C. Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Govindarajan%20T.%20Ramesh"> Govindarajan T. Ramesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium nitride (TiN) nanoparticles have sparked interest over the past decade due to their characteristics such as thermal stability, extreme hardness, low production cost, and similar optical properties to gold. In this study, TiN nanoparticles were synthesized via a thermal benzene route to obtain a black powder of nanoparticles. The final product was drop cast onto conductive carbon tape and sputter coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDX) that revealed they were spherical. ImageJ software determined the average size of the TiN nanoparticles was 79 nm in diameter. EDX revealed the elements present in the sample and showed no impurities. Further characterization by X-ray diffraction (XRD) revealed characteristic peaks of cubic phase titanium nitride, and crystallite size was calculated to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size and size distribution of the TiN nanoparticles, with average size being 154 nm. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged. Biocompatibility studies using MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay showed TiN nanoparticles are not cytotoxic at low concentrations (2, 5, 10, 25, 50, 75 mcg/well), and cell viability began to decrease at a concentration of 100 mcg/well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20nitride" title=" titanium nitride"> titanium nitride</a> </p> <a href="https://publications.waset.org/abstracts/147449/titanium-nitride-nanoparticles-for-biological-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Solution Growth of Titanium Nitride Nanowires for Implantation Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roaa%20Sait">Roaa Sait</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Cross"> Richard Cross</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis and characterization of one dimensional nanostructure such as nanowires has received considerable attention. Much effort has concentrated on TiN material especially in the biological field due to its useful and unique properties in this field. Therefore, for the purpose of this project, synthesis of Titanium Nitride (TiN) nanowires (NWs) will be presented. They will be synthesised by growing titanium dioxide (Ti) NWs in an aqueous solution at low temperatures under atmospheric pressure. Then the grown nanowires will undergo a 'Nitrodation process' in which results in the formation of TiN NWs. The structure, morphology and composition of the grown nanowires will be characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Cyclic Voltammetry (CV). Obtaining TiN NWs is a challenging task since it has not been formulated before, as far as we acknowledge. This might be due to the fact that nitriding Ti NWs can be difficult in terms of optimizing experimental parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanowires" title="nanowires">nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution-growth" title=" dissolution-growth"> dissolution-growth</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a>, <a href="https://publications.waset.org/abstracts/search?q=PECVD" title=" PECVD"> PECVD</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coating" title=" spin coating"> spin coating</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopic%20analysis" title=" scanning electron microscopic analysis"> scanning electron microscopic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry%20analysis" title=" cyclic voltammetry analysis"> cyclic voltammetry analysis</a> </p> <a href="https://publications.waset.org/abstracts/34190/solution-growth-of-titanium-nitride-nanowires-for-implantation-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> A Sustainable Approach for Waste Management: Automotive Waste Transformation into High Value Titanium Nitride Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohannad%20Mayyas">Mohannad Mayyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Pahlevani"> Farshid Pahlevani</a>, <a href="https://publications.waset.org/abstracts/search?q=Veena%20Sahajwalla"> Veena Sahajwalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automotive shredder residue (ASR) is an industrial waste, generated during the recycling process of End-of-life vehicles. The large increasing production volumes of ASR and its hazardous content have raised concerns worldwide, leading some countries to impose more restrictions on ASR waste disposal and encouraging researchers to find efficient solutions for ASR processing. Although a great deal of research work has been carried out, all proposed solutions, to our knowledge, remain commercially and technically unproven. While the volume of waste materials continues to increase, the production of materials from new sustainable sources has become of great importance. Advanced ceramic materials such as nitrides, carbides and borides are widely used in a variety of applications. Among these ceramics, a great deal of attention has been recently paid to Titanium nitride (TiN) owing to its unique characteristics. In our study, we propose a new sustainable approach for ASR management where TiN nanoparticles with ideal particle size ranging from 200 to 315 nm can be synthesized as a by-product. In this approach, TiN is thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) incorporated with titanium oxide (TiO2). Results indicated that TiO2 influences and catalyses degradation reactions of ASR and helps to achieve fast and full decomposition. In addition, the process resulted in titanium nitride (TiN) ceramic with several unique structures (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) that were simply obtained by tuning the ratio of TiO2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20shredder%20residue" title="automotive shredder residue">automotive shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-ceramics" title=" nano-ceramics"> nano-ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20treatment" title=" waste treatment"> waste treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20nitride" title=" titanium nitride"> titanium nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conversion" title=" thermal conversion"> thermal conversion</a> </p> <a href="https://publications.waset.org/abstracts/61761/a-sustainable-approach-for-waste-management-automotive-waste-transformation-into-high-value-titanium-nitride-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karuna%20Tuchinda">Karuna Tuchinda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasithon%20Bland"> Sasithon Bland</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20vapour%20deposition" title="physical vapour deposition">physical vapour deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20turbine%20blade" title=" steam turbine blade"> steam turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium-based%20coating" title=" titanium-based coating"> titanium-based coating</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20prediction" title=" wear prediction"> wear prediction</a> </p> <a href="https://publications.waset.org/abstracts/8420/computational-study-and-wear-prediction-of-steam-turbine-blade-with-titanium-nitride-coating-deposited-by-physical-vapor-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">517</span> TiN/TiO2 Nanostructure Coating on Glass Substrate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Dabir">F. Dabir</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sarraf-Mamoory"> R. Sarraf-Mamoory</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Riahi-Noori"> N. Riahi-Noori </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a nanostructured TiO2 layer was coated onto a FTO-less glass substrate using screen printing technique for back contact DSSC application. Then, titanium nitride thin film was applied on TiO2 layer by plasma assisted chemical vapor deposition (PACVD) as charge collector layer. The microstructure of prepared TiO2 layer was characterized by SEM. The sheet resistance, microstructure and elemental composition of titanium nitride thin films were analysed by four point probe, SEM, and EDS, respectively. TiO2 layer had porous nanostructure. The EDS analysis of TiN thin film showed presence of chlorine impurity. Sheet resistance of TiN thin film was 30 Ω/sq. With respect to the results, PACVD TiN can be a good candidate as a charge collector layer in back contacts DSSC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiO2" title="TiO2">TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=TiN" title=" TiN"> TiN</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20collector" title=" charge collector"> charge collector</a>, <a href="https://publications.waset.org/abstracts/search?q=DSSC" title=" DSSC"> DSSC</a> </p> <a href="https://publications.waset.org/abstracts/11255/tintio2-nanostructure-coating-on-glass-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">516</span> Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ye%20Ling">Ye Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Haihui"> Ruan Haihui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-ion%20hybrid%20supercapacitors" title="Zn-ion hybrid supercapacitors">Zn-ion hybrid supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20absorption%2Fdesorption%20reactions" title=" ion absorption/desorption reactions"> ion absorption/desorption reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20nitride" title=" titanium nitride"> titanium nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolitic%20imidazolate%20framework-8" title=" zeolitic imidazolate framework-8"> zeolitic imidazolate framework-8</a> </p> <a href="https://publications.waset.org/abstracts/186645/titanium-nitride-at-nitrogen-doped-carbon-nanocage-as-high-performance-cathodes-for-aqueous-zn-ion-hybrid-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">515</span> Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Songyan%20Yin">Songyan Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20Rajarao"> Ravindra Rajarao</a>, <a href="https://publications.waset.org/abstracts/search?q=Veena%20Sahajwalla"> Veena Sahajwalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20plastics%20waste" title="automotive plastics waste">automotive plastics waste</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonthermal%20reduction%20and%20nitirdation" title=" carbonthermal reduction and nitirdation"> carbonthermal reduction and nitirdation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=TiN%20film" title=" TiN film"> TiN film</a> </p> <a href="https://publications.waset.org/abstracts/66814/sustainable-approach-to-fabricate-titanium-nitride-film-on-steel-substrate-by-using-automotive-plastics-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">514</span> Microstructure of Ti – AlN Composite Produced by Selective Laser Melting </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Mizera">Jaroslaw Mizera</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Wisniewski"> Pawel Wisniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryszard%20Sitek"> Ryszard Sitek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective Laser Melting (SLM) is an advanced additive manufacturing technique used for producing parts made of wide range of materials such as: austenitic steel, titanium, nickel etc. In the our experiment we produced a Ti-AlN composite from a mixture of titanium and aluminum nitride respectively 70% at. and 30% at. using SLM technique. In order to define the size of powder particles, laser diffraction tests were performed on HORIBA LA-950 device. The microstructure and chemical composition of the composite was examined by Scanning Electron Microscopy (SEM). The chemical composition in micro areas of the obtained samples was determined by of EDS. The phase composition was analyzed by X-ray phase analysis (XRD). Microhardness Vickers tests were performed using Zwick/Roell microhardness machine under the load of 0.2kG (HV0.2). Hardness measurements were made along the building (xy) and along the plane of the lateral side of the cuboid (xz). The powder used for manufacturing of the samples had a mean particle size of 41μm. It was homogenous with a spherical shape. The specimens were built chiefly from Ti, TiN and AlN. The dendritic microstructure was porous and fine-grained. Some of the aluminum nitride remained unmelted but no porosity was observed in the interface. The formed material was characterized by high hardness exceeding 700 HV0.2 over the entire cross-section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selective%20Laser%20Melting" title="Selective Laser Melting">Selective Laser Melting</a>, <a href="https://publications.waset.org/abstracts/search?q=Composite" title=" Composite"> Composite</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a> </p> <a href="https://publications.waset.org/abstracts/122336/microstructure-of-ti-aln-composite-produced-by-selective-laser-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">513</span> Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Olorunfemi%20Abe">John Olorunfemi Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Olawale%20Muhammed%20Popoola"> Olawale Muhammed Popoola</a>, <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20Patricia%20Idowu%20Popoola"> Abimbola Patricia Idowu Popoola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti6Al4V%20hydride%20system" title=" Ti6Al4V hydride system"> Ti6Al4V hydride system</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure-composition-temperature%20measurements" title=" pressure-composition-temperature measurements"> pressure-composition-temperature measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20nitride%20additives" title=" refractory nitride additives"> refractory nitride additives</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti6Al4V-based%20materials" title=" Ti6Al4V-based materials"> Ti6Al4V-based materials</a> </p> <a href="https://publications.waset.org/abstracts/182054/study-of-the-influence-of-refractory-nitride-additives-on-hydrogen-storage-properties-of-ti6al4v-based-materials-produced-by-spark-plasma-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> Electrical Investigations of Polyaniline/Graphitic Carbon Nitride Composites Using Broadband Dielectric Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Moussa">M. A. Moussa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Abdel%20Rehim"> M. H. Abdel Rehim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.M.%20Turky"> G.M. Turky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyaniline composites with carbon nitride, to overcome compatibility restriction with graphene, were prepared with the solution method. FTIR and Uv-vis spectra were used for structural conformation. While XRD and XPS confirmed the structures in addition to estimation of nitrogen atom surroundings, the pore sizes and the active surface area were determined from BET adsorption isotherm. The electrical and dielectric parameters were measured and calculated with BDS . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nitride" title="carbon nitride">carbon nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20relaxation" title=" dynamic relaxation"> dynamic relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a> </p> <a href="https://publications.waset.org/abstracts/135615/electrical-investigations-of-polyanilinegraphitic-carbon-nitride-composites-using-broadband-dielectric-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">511</span> Thermodynamics of Chlorination of Acid-Soluble Titanium Slag in Molten Salt for Preparation of TiCl4</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Liang">Li Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chinese titanium iron ore reserves with high calcium and magnesium accounted for more than 90% of the total reserves, and acid-soluble titanium slag which is produced by titanium iron ore always used to produce titanium dioxide through sulphate process. To broad the application range of acid-soluble titanium slag, the feasibility and thermodynamics of chlorinated reaction for preparation TiCl4 by titanium slag chlorination in molten slat were conducted in this paper. The analysis results show that TiCl4 can be obtained by chlorinate the acid-dissolved titanium slag with carbon. Component’s thermodynamics reaction trend is: CaO>MnO>FeO(FeCl2)>MgO>V2O5>Fe2O3>FeO(FeCl3)>TiO2>Al2O3>SiO2 in the standard state. Industrial experimental results are consistent with the thermodynamics analysis, the content of TiCl4 is more than 98% in the production. Fe, Si, V, Al, and other impurity content can satisfy the requirements of production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title="thermodynamics">thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=acid-soluble%20titanium%20slag" title=" acid-soluble titanium slag"> acid-soluble titanium slag</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation%20of%20TiCl4" title=" preparation of TiCl4"> preparation of TiCl4</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorination" title=" chlorination"> chlorination</a> </p> <a href="https://publications.waset.org/abstracts/23661/thermodynamics-of-chlorination-of-acid-soluble-titanium-slag-in-molten-salt-for-preparation-of-ticl4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">594</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">510</span> Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Geringswald">D. Geringswald</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hintze"> B. Hintze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H<sub>2</sub>:N<sub>2</sub>). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALD" title="ALD">ALD</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20aspect%20ratio" title=" high aspect ratio"> high aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=PE-MOCVD" title=" PE-MOCVD"> PE-MOCVD</a>, <a href="https://publications.waset.org/abstracts/search?q=TiN" title=" TiN"> TiN</a> </p> <a href="https://publications.waset.org/abstracts/50360/approximation-of-pe-mocvd-to-ald-for-tin-concerning-resistivity-and-chemical-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">509</span> Influence of Processing Parameters in Selective Laser Melting on the Microstructure and Mechanical Properties of Ti/Tin Composites With in-situ and ex-situ Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20S%C3%A1nchez%20de%20Rojas%20Candela">C. Sánchez de Rojas Candela</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Riquelme"> A. Riquelme</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rodrigo"> P. Rodrigo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Escalera-Rodr%C3%ADguez"> M. D. Escalera-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Torres"> B. Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rams"> J. Rams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective laser melting is one of the most commonly used AM techniques. In it, a thin layer of metallic powder is deposited, and a laser is used to melt selected zones. The accumulation of layers, each one molten in the preselected zones, gives rise to the formation of a 3D sample with a nearly arbitrary design. To ensure that the properties of the final parts match those of the powder, all the process is carried out in an inert atmosphere, preferentially Ar, although this gas could be substituted. Ti6Al4V alloy is widely used in multiple industrial applications such as aerospace, maritime transport and biomedical, due to its properties. However, due to the demanding requirements of these applications, greater hardness and wear resistance are necessary, together with a better machining capacity, which currently limits its commercialization. To improve these properties, in this study, Selective Laser Melting (SLM) is used to manufacture Ti/TiN metal matrix composites with in-situ and ex-situ titanium nitride reinforcement where the scanning speed is modified (from 28.5 up to 65 mm/s) to study the influence of the processing parameters in SLM. A one-step method of nitriding the Ti6Al4V alloy is carried out to create in-situ TiN reinforcement in a reactive atmosphere and it is compared with ex-situ composites manufactured by previous mixture of both the titanium alloy powder and the ceramic reinforcement particles. The microstructure and mechanical properties of the different Ti/TiN composite materials have been analyzed. As a result, the existence of a similar matrix has been confirmed in in-situ and ex-situ fabrications and the growth mechanisms of the nitrides have been studied. An increase in the mechanical properties with respect to the initial alloy has been observed in both cases and related to changes in their microstructure. Specifically, a greater improvement (around 30.65%) has been identified in those manufactured by the in-situ method at low speeds although other properties such as porosity must be improved for their future industrial applicability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-situ%20reinforcement" title="in-situ reinforcement">in-situ reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=nitriding%20reaction" title=" nitriding reaction"> nitriding reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20nitride" title=" titanium nitride"> titanium nitride</a> </p> <a href="https://publications.waset.org/abstracts/150850/influence-of-processing-parameters-in-selective-laser-melting-on-the-microstructure-and-mechanical-properties-of-titin-composites-with-in-situ-and-ex-situ-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">508</span> Reactive Sputter Deposition of Titanium Nitride on Silicon Using a Magnetized Sheet Plasma Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janella%20Salamania">Janella Salamania</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcedon%20Fernandez"> Marcedon Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Villanueva%20Henry%20Ramos"> Matthew Villanueva Henry Ramos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium nitrite (TiN) a popular functional and decorative coating because of its golden yellow color, high hardness and superior wear resistance. It is also being studied as a diffusion barrier in integrated circuits due to its known chemical stability and low resistivity. While there have been numerous deposition methods done for TiN, most required the heating of substrates at high temperatures. In this work, TiN films are deposited on silicon (111) and (100) substrates without substrate heating using a patented magnetized sheet plasma source. Films were successfully deposited without substrate heating at various target bias, while maintaining a constant 25% N2 to Ar ratio, and deposition of time of 30 minutes. The resulting films exhibited a golden yellow color which is characteristic of TiN. X-ray diffraction patterns show the formation of TiN predominantly oriented in the (111) direction regardless of substrate used. EDX data also confirms the 1:1 stoichiometry of titanium an nitrogen. Ellipsometry measurements estimate the thickness to range from 28 nm to 33 nm. SEM images were also taken to observe the morphology of the film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coatings" title="coatings">coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrides" title=" nitrides"> nitrides</a>, <a href="https://publications.waset.org/abstracts/search?q=coatings" title=" coatings"> coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20magnetron%20sputtering" title=" reactive magnetron sputtering"> reactive magnetron sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/29494/reactive-sputter-deposition-of-titanium-nitride-on-silicon-using-a-magnetized-sheet-plasma-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">507</span> Chemical Stability of Ceramic Crucibles to Molten Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Min%20Park">Jong-Min Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Ki%20Park"> Hyung-Ki Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium is widely used due to its high specific strength, good biocompatibility, and excellent corrosion resistance. In order to produce titanium powders, it is necessary to melt titanium, and generally it is conducted by an induction heating method using Al₂O₃ ceramic crucible. However, since titanium reacts chemically with Al₂O₃, it is difficult to melt titanium by the induction heating method using Al₂O₃ crucible. To avoid this problem, we studied the chemical stability of the various crucibles such as Al₂O₃, MgO, ZrO₂, and Y₂O₃ crucibles to molten titanium. After titanium lumps (Grade 2, O(oxygen)<0.25wt%) were placed in each crucible, they were heated to 1800℃ with a heating rate of 5 ℃/min, held at 1800℃ for 30 min, and finally cooled to room temperature with a cooling rate of 5 ℃/min. All heat treatments were carried out in high purity Ar atmosphere. To evaluate the chemical stability, thermodynamic data such as Ellingham diagram were utilized, and also Vickers hardness test, microstructure analysis, and EPMA quantitative analysis were performed. As a result, Al₂O₃, MgO and ZrO₂ crucibles chemically reacted with molten titanium, but Y₂O₃ crucible rarely reacted with it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium" title="titanium">titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20melting" title=" induction melting"> induction melting</a>, <a href="https://publications.waset.org/abstracts/search?q=crucible" title=" crucible"> crucible</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20stability" title=" chemical stability"> chemical stability</a> </p> <a href="https://publications.waset.org/abstracts/77805/chemical-stability-of-ceramic-crucibles-to-molten-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">506</span> Mechanical and Microstructural Properties of Rotary-Swaged Wire of Commercial-Purity Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Duchek">Michal Duchek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Pal%C3%A1n"> Jan Palán</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Kubina"> Tomas Kubina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commercial-purity%20titanium" title="commercial-purity titanium">commercial-purity titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=wire" title=" wire"> wire</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20swaging" title=" rotary swaging"> rotary swaging</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/73382/mechanical-and-microstructural-properties-of-rotary-swaged-wire-of-commercial-purity-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">505</span> Dielectric Behavior of 2D Layered Insulator Hexagonal Boron Nitride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Jain">Nikhil Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xu"> Yang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Yu"> Bin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hexagonal boron nitride (h-BN) has been used as a substrate and gate dielectric for graphene field effect transistors (GFETs). Using a graphene/h-BN/TiN (channel/dielectric/gate) stack, key material properties of h-BN were investigated i.e. dielectric strength and tunneling behavior. Work function difference between graphene and TiN results in spontaneous p-doping of graphene through a multi-layer h-BN flake. However, at high levels of current stress, n-doping of graphene is observed, possibly due to the charge transfer across the thin h-BN multi layer. Neither Direct Tunneling (DT) nor Fowler-Nordheim Tunneling (FNT) was observed in TiN/h-BN/Au hetero structures with h-BN showing two distinct volatile conduction states before breakdown. Hexagonal boron nitride emerges as a material of choice for gate dielectrics in GFETs because of robust dielectric properties and high tunneling barrier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=transistors" title=" transistors"> transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20strength" title=" dielectric strength"> dielectric strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tunneling" title=" tunneling"> tunneling</a> </p> <a href="https://publications.waset.org/abstracts/22593/dielectric-behavior-of-2d-layered-insulator-hexagonal-boron-nitride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">504</span> Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20D%C5%82ugosz">Olga Długosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Pulit-Prociak"> Jolanta Pulit-Prociak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Banach"> Marcin Banach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20carrier" title=" drug carrier"> drug carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione" title=" glutathione"> glutathione</a> </p> <a href="https://publications.waset.org/abstracts/138040/titanium-dioxide-modified-with-glutathione-as-potential-drug-carrier-with-reduced-toxic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">503</span> Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20D%C5%82ugosz">Olga Długosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Pulit-Prociak"> Jolanta Pulit-Prociak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Banach"> Marcin Banach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF, and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20carrier" title=" drug carrier"> drug carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione" title=" glutathione"> glutathione</a> </p> <a href="https://publications.waset.org/abstracts/142599/titanium-dioxide-modified-with-glutathione-as-potential-drug-carrier-with-reduced-toxic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">502</span> Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%A0pela%20Hajduk">Špela Hajduk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sean%20P.%20Berglund"> Sean P. Berglund</a>, <a href="https://publications.waset.org/abstracts/search?q=Matejka%20Podlogar"> Matejka Podlogar</a>, <a href="https://publications.waset.org/abstracts/search?q=Goran%20Dra%C5%BEi%C4%87"> Goran Dražić</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatwa%20F.%20Abdi"> Fatwa F. Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zorica%20C.%20Orel"> Zorica C. Orel</a>, <a href="https://publications.waset.org/abstracts/search?q=Menny%20Shalom"> Menny Shalom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nitride" title="carbon nitride">carbon nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=photoanode" title=" photoanode"> photoanode</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20splitting" title=" solar water splitting"> solar water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/71217/carbon-nitride-growth-on-zno-architectures-for-enhanced-photoelectrochemical-water-splitting-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">501</span> High-Temperature Tribological Characterization of Nano-Sized Silicon Nitride + 5% Boron Nitride Ceramic Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Farooq%20Wani">Mohammad Farooq Wani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tribological studies on nano-sized ß-silicon nitride+5% BN were carried out in dry air at high temperatures to clarify the lack of consensus in the bibliographic data concerning the Tribological behavior of Si3N4 ceramics and effect of doped hexagonal boron nitride on coefficient of friction and wear coefficient at different loads and elevated temperatures. The composites were prepared via high energy mechanical milling and subsequent spark plasma sintering using Y2O3 and Al2O3 as sintering additives. After sintering, the average crystalline size of Si3N4 was observed to be 50 nm. Tribological tests were performed with temperature and Friction coefficients 0.16 to 1.183 and 0.54 to 0.71 were observed for Nano-sized ß-silicon nitride+5% BN composite under normal load of 10N-70 N and over high temperature range of 350 ºC-550 ºC respectively. Specific wear coefficients from 1.33x 10-4 mm3N-1m-1 to 4.42x 10-4 mm3N-1m-1 were observed for Nano-sized Si3N4 + 5% BN composite against Si3N4 ball as tribo-pair counterpart over high temperature range of 350 ºC-550 ºC while as under normal load of 10N to70N Specific wear coefficients of 6.91x 10-4 mm3N-1m-1 to 1.70x 10-4 were observed. The addition of BN to the Si3N4 composite resulted in a slight reduction of the friction coefficient and lower values of wear coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramics" title="ceramics">ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20and%20wear" title=" friction and wear"> friction and wear</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20lubrication" title=" solid lubrication"> solid lubrication</a> </p> <a href="https://publications.waset.org/abstracts/15590/high-temperature-tribological-characterization-of-nano-sized-silicon-nitride-5-boron-nitride-ceramic-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">500</span> Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tariku%20Nefo%20Duke">Tariku Nefo Duke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide" title="polyimide">polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=electroactive" title=" electroactive"> electroactive</a>, <a href="https://publications.waset.org/abstracts/search?q=Tg" title=" Tg"> Tg</a> </p> <a href="https://publications.waset.org/abstracts/149868/corrosion-resistance-of-mild-steel-coated-with-different-polyimidesh-boron-nitride-composite-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">499</span> Biological Evaluation of Some Modern Titanium Alloys for Dental Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Maria%20Angelescu">Roxana Maria Angelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raluca%20Ion"> Raluca Ion</a>, <a href="https://publications.waset.org/abstracts/search?q=Ani%C5%9Foara%20C%C3%AEmpean"> Anişoara Cîmpean</a>, <a href="https://publications.waset.org/abstracts/search?q=Doina%20R%C4%83ducanu"> Doina Răducanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Lucia%20Angelescu"> Mariana Lucia Angelescu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an attempt to find titanium alloys that fulfill the requirements for mechanical and biological compatibility, laboratory and material related tests were performed during the years, as well as preclinical and clinical trials. The multidisciplinary scientific research facilitates the global evaluation of biocompatibility and osseointegration regarding the dental implant alloys. The aim of this study was to determine the in vitro biocompatibility of three modern titanium alloys: Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (wt%), Ti-36.5Nb-4.5Zr-3Ta-0.16O (wt%) and Ti-20Nb-5Ta (wt%), in order to establish whether the use of these titanium alloys can have any toxic or injurious effects on biological systems. The commonly used Ti-6Al-4V alloy was investigated as a reference material. The behavior of MC3T3-E1 pre-osteoblasts on all these four metallic surfaces was evaluated. The tests of immunofluorescence, cytotoxicity and cellular proliferation lead to the conclusion that the newly-developed titanium alloys elicit a good cellular response in terms of cellular survival, adhesion, morphology and proliferative potential as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility%20tests" title="biocompatibility tests">biocompatibility tests</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implants" title=" dental implants"> dental implants</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering" title=" biomedical engineering"> biomedical engineering</a> </p> <a href="https://publications.waset.org/abstracts/27562/biological-evaluation-of-some-modern-titanium-alloys-for-dental-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> Effect of Precursor’s Grain Size on the Conversion of Microcrystalline Gallium Antimonide GaSb to Nanocrystalline Gallium Nitride GaN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20F.%20Janik">Jerzy F. Janik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Drygas"> Mariusz Drygas</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslaw%20M.%20Bucko"> Miroslaw M. Bucko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple precursor system has been recently developed in our laboratory for the conversion of affordable microcrystalline gallium antimonide GaSb to a range of nanocrystalline powders of gallium nitride GaN – a wide bandgap semiconductor indispensable in modern optoelectronics. The process relies on high temperature nitridation reactions of GaSb with ammonia. Topochemical relationships set up by the cubic lattice of GaSb result in some metastable cubic GaN formed in addition to the stable hexagonal GaN. A prior application of high energy ball milling to the initially microcrystalline GaSb precursor is shown to alter the nitridation output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title="nanocrystalline">nanocrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20nitride" title=" gallium nitride"> gallium nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=GaN" title=" GaN"> GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20antimonide" title=" gallium antimonide"> gallium antimonide</a>, <a href="https://publications.waset.org/abstracts/search?q=GaSb" title=" GaSb"> GaSb</a>, <a href="https://publications.waset.org/abstracts/search?q=nitridation" title=" nitridation"> nitridation</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20milling" title=" ball milling"> ball milling</a> </p> <a href="https://publications.waset.org/abstracts/18150/effect-of-precursors-grain-size-on-the-conversion-of-microcrystalline-gallium-antimonide-gasb-to-nanocrystalline-gallium-nitride-gan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">497</span> Surface Modification of Titanium Alloy with Laser Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassier%20A.%20Nassir">Nassier A. Nassir</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Birch"> Robert Birch</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rico%20Sierra"> D. Rico Sierra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Edwardson"> S. P. Edwardson</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Dearden"> G. Dearden</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwei%20Guan"> Zhongwei Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20strength" title="bonding strength">bonding strength</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20surface%20treatment" title=" laser surface treatment"> laser surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=PEKK" title=" PEKK"> PEKK</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-ether-ketone-ketone" title="poly-ether-ketone-ketone">poly-ether-ketone-ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloy" title=" titanium alloy"> titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/92507/surface-modification-of-titanium-alloy-with-laser-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">496</span> Electrical Properties of Polarization-Induced Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride Sapphire Template by Molecular Beam Epitaxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guanlin%20Wu">Guanlin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Yao"> Jiajia Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Liu"> Fang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junshuai%20Xue"> Junshuai Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Jincheng%20Zhang"> Jincheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Hao"> Yue Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to the excellent thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN)/Gallium nitride (GaN) is a highly promising material to achieve high breakdown voltage and output power devices among III-nitrides. In this study, we explore the growth and characterization of polarization-induced AlN/GaN heterostructures using plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and demonstrate the effectiveness of the PA-MBE approach, a thick AlN buffer of 180 nm was first grown on the AlN-on sapphire template. This buffer acts as a back-barrier to enhance the breakdown characteristic and isolate leakage paths that exist in the interface between the AlN epilayer and the AlN template. A root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 was measured by atomic force microscopy (AFM), and the full-width at half-maximum of (002) and (102) planes on the X-ray rocking curve was 101 and 206 arcsec, respectively, using by high-resolution X-ray diffraction (HR-XRD). The electron mobility of 443 cm2/Vs with a carrier concentration of 2.50×1013 cm-2 at room temperature was achieved in the AlN/GaN heterostructures by using a polarization-induced GaN channel. The low depletion capacitance of 15 pF is resolved by the capacitance-voltage. These results indicate that the polarization-induced AlN/GaN heterostructures have great potential for next-generation high-temperature, high-frequency, and high-power electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlN" title="AlN">AlN</a>, <a href="https://publications.waset.org/abstracts/search?q=GaN" title=" GaN"> GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=MBE" title=" MBE"> MBE</a>, <a href="https://publications.waset.org/abstracts/search?q=heterostructures" title=" heterostructures"> heterostructures</a> </p> <a href="https://publications.waset.org/abstracts/165723/electrical-properties-of-polarization-induced-aluminum-nitridegallium-nitride-heterostructures-homoepitaxially-grown-on-aluminum-nitride-sapphire-template-by-molecular-beam-epitaxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">495</span> Effect of Texture of Orthorhombic Martensite on Thermal Expansion of Metastable Titanium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Stepanova">E. Stepanova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Popov"> N. Popov</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Demakov"> S. Demakov</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Stepanov"> S. Stepanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the so-called invar-type behavior of metastable titanium alloy subjected to cold rolling. The effect was shown to occur due to the anisotropy of thermal expansion of titanium orthorhombic martensite. By means of X-ray diffraction analysis and dilatometry analyses, the influence of crystallographic texture of orthorhombic martensite on the coefficient of thermal expansion of sheets of metastable titanium alloy VT23 was examined. Anisotropy of the coefficient of thermal expansion has been revealed. It was lower in the rolling plane and higher along the transverse direction of the cold-rolled sheet comparing to the coefficient of thermal expansion of the unprocessed alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invar-type" title="invar-type">invar-type</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20rolling" title=" cold rolling"> cold rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=metastable%20titanium%20alloy" title=" metastable titanium alloy"> metastable titanium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/63456/effect-of-texture-of-orthorhombic-martensite-on-thermal-expansion-of-metastable-titanium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">494</span> One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huiwu%20Yu">Huiwu Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangyou%20Li"> Xiangyou Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyan%20Zeng"> Xiaoyan Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20microspheres" title=" porous microspheres"> porous microspheres</a>, <a href="https://publications.waset.org/abstracts/search?q=picosecond%20laser" title=" picosecond laser"> picosecond laser</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-welding" title=" nano-welding"> nano-welding</a> </p> <a href="https://publications.waset.org/abstracts/61694/one-step-synthesis-of-titanium-dioxide-porous-microspheres-by-picosecond-pulsed-laser-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">493</span> A Brief Review of Titanium Powders Used in Laser Powder-Bed Fusion Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alhajeri">Ali Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarig%20Makki"> Tarig Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosa%20Almutahhar"> Mosa Almutahhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmed"> Mohammed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ali"> Usman Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal powder is the raw material used for laser powder-bed fusion (LPBF) additive manufacturing (AM). There are many metal materials that can be used in LPBF. The properties of these materials are varied between each other, which can affect the building part. The objective of this paper is to do an overview of the titanium powders available in LBPF. Comparison between different literature works will lead us to study the similarities and differences between the powder properties such as size, shape, and chemical composition. Furthermore, the results of this paper will point out the significant titanium powder properties in order to clearly illustrate their effect on the build parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LPBF" title="LPBF">LPBF</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V" title=" Ti-6Al-4V"> Ti-6Al-4V</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-5553" title=" Ti-5553"> Ti-5553</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20powder" title=" metal powder"> metal powder</a>, <a href="https://publications.waset.org/abstracts/search?q=AM" title=" AM"> AM</a> </p> <a href="https://publications.waset.org/abstracts/151600/a-brief-review-of-titanium-powders-used-in-laser-powder-bed-fusion-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">492</span> Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Busra%20Balli">Busra Balli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuncay%20Dikici"> Tuncay Dikici</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Toparli"> Mustafa Toparli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20implant" title="dental implant">dental implant</a>, <a href="https://publications.waset.org/abstracts/search?q=etching" title=" etching"> etching</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modifications" title=" surface modifications"> surface modifications</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/17922/enhancement-and-characterization-of-titanium-surfaces-with-sandblasting-and-acid-etching-for-dental-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=titanium%20nitride&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10